research communications
of 3-(triphenylphosphoranylidene)-2,5-dihydrofuran-2,5-dione tetrahydrofuran monosolvate
aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation, bDepartment of Chemistry, Kazan State University, Kremlevskaya St. 18, 420008, Kazan, Russian Federation, and cUniversity of Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, Leipzig, Germany
*Correspondence e-mail: Almaz_zagidullin@mail.ru
The title pseudo-polymorph of 3-(triphenylphosphoranylidene)-2,5-dihydrofuran-2,5-dione crystallizes with a tetrahydrofuran solvent molecule, viz. C22H17O3P·C4H8O. The succinic anhydride ring is approximately planar (r.m.s. deviation = 0.032 Å). The tetrahydrofuran molecule is disordered over two orientations about a pseudo-twofold axis with refined occupancy ratio 0.718 (4):0.282 (4). In the crystal, C—H⋯O hydrogen bonds link molecules of the dihydrofuran-2,5-dione derivative into chains parallel to the b axis and arranged into layers stacked along [100] alternating with hydrogen-bonded tetrahydrofuran layers.
Keywords: crystal structure; tetrahydrofuran solvate; pseudopolymorph; ylid.
CCDC reference: 1862873
1. Chemical context
Pseudopolymorphs are solvated forms of a compound that have different crystal structures and/or differ in the nature of the included solvent (Kumar et al., 1999). The investigation of this phenomenon plays an important role for both fundamental and applied reasons. Phosphorus are useful intermediates, which have been used in many reactions and are involved in the synthesis of organic compounds (Selva et al., 2014; Kolodiazhnyi, 1999; Balema et al., 2002). In this paper, the structure of the pseudopolymorph of 3-(triphenylphosphoranylidene)-2,5-dihydrofuran-2,5-dione (Geoffroy et al., 1993), crystallized with a THF solvent molecule, is described.
2. Structural commentary
In the title compound (Fig. 1), the succinic anhydride ring is almost planar (r.m.s. deviation = 0.032 Å), with the C4 methylenic carbon atom displaced by only 0.118 (2) Å out of the least-squares mean plane through atoms C1, C2, C3 and O1 [maximum deviation of 0.007 (2) Å for C2]. The phosphorus atom deviates from the least-squares mean plane of the succinic anhydride ring by 0.1855 (4) Å. The arrangement of the phenyl rings is propeller-wise, which is common arrangement for Ph3P-X fragments. The THF solvent molecule is disordered over two orientations related by a pseudo-twofold axis. As recently reported by Islamov et al. (2017), molecules located in general positions rotate more easily than those located on symmetry elements, and the presence of disorder increases the number of minima on the profile of the making the barrier even lower (Karlen et al., 2010). However, since the quality of the anisotropic displacement parameters of the THF atoms is low, an attempt to determine the height of the using TLS analysis (Dunitz et al., 1988) was unsuccessful.
3. Supramolecular features
In the crystal, 3-(triphenylphosphoranylidene)-2,5-dihydrofuran-2,5-dione molecules interact through C—H⋯O hydrogen bonds (Table 1), forming chains running parallel to the b axis. Alternating layers of chains and THF molecules are stacked parallel to the bc plane (Fig. 2) and connected by C—H⋯O hydrogen bonds (Table 1).
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016) revealed 426 structures containing the Ph3P=C fragment. The distribution histogram of the P=C distance [with a mean value of 1.729 Å and a standard deviation of 0.030 Å] is shown in Fig. 3. The P=C distance in the title compound is 1.717 (2) Å, which in good agreement with that of the dichloromethane pseudopolymorph [1.717 (6) Å; Geoffroy et al., 1993]. In spite of the differences in the crystal packing, the conformation of the molecule is very similar to that of the CH2Cl2 solvate (r.m.s. deviation = 0.032 Å; Fig. 4).
5. Synthesis and crystallization
To a stirred solution maleic anhydride (0.17 g, 1.72 mmol) in tetrahydrofuran THF (5 mL) was added triphenylphosphine (0.45 g, 1.72 mmol) at room temperature. The reaction mixture was stirred at room temperature for 24 h, then the solution was filtered and concentrated under reduced pressure. The reaction mixture was allowed to cool in the freezer (243 K, three days) and yellowish crystals precipitated. The crystals were separated from solvent and dried to give 0.56 g (90%) of the title compound. 1H NMR (CDCl3, δ, ppm, J, Hz): 1.78 (m, CH2 from THF), 3.14 (s, 2H, CH2), 3.67 (m, OCH2 from THF), 7.44–7.72 (m, 15H, Ph). 31P{1H} NMR (CDCl3, δ, ppm, J, Hz): +13.6 (s).
6. Refinement
Crystal data, data collection and structure . The THF molecule is disordered over two sites with an occupancy ratio of 0.718 (4):0.282 (4). EADP and SAME restraints were used to model this disordered molecule. The H atoms of the 3-(triphenylphosphoranylidene) dihydrofuran-2,5-dione molecule were located in difference-Fourier maps and refined freely. The THF H atoms were placed geometrically and refined using a riding-model approximation with C—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1862873
https://doi.org/10.1107/S2056989018011775/rz5234sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011775/rz5234Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018011775/rz5234Isup3.cdx
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C22H17O3P·C4H8O | F(000) = 912 |
Mr = 432.43 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1287 (5) Å | Cell parameters from 5863 reflections |
b = 10.5530 (4) Å | θ = 3.0–32.6° |
c = 17.5838 (8) Å | µ = 0.16 mm−1 |
β = 104.435 (4)° | T = 130 K |
V = 2179.57 (16) Å3 | Needles, pale yellow |
Z = 4 | 0.20 × 0.15 × 0.05 mm |
Agilent Xcalibur Sapphire3 CCD diffractometer | 5123 reflections with I > 2σ(I) |
Radiation source: sealed x-ray tube | Rint = 0.061 |
ω scans | θmax = 32.6°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −18→17 |
Tmin = 0.995, Tmax = 1 | k = −15→15 |
30663 measured reflections | l = −26→26 |
7381 independent reflections |
Refinement on F2 | 10 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0367P)2 + 1.6405P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
7381 reflections | Δρmax = 0.55 e Å−3 |
370 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.35862 (4) | 0.49261 (4) | 0.15957 (2) | 0.01719 (10) | |
O1 | 0.20198 (11) | 0.76108 (12) | 0.01566 (8) | 0.0267 (3) | |
O2 | 0.35896 (12) | 0.79120 (13) | 0.11583 (8) | 0.0325 (3) | |
O3 | 0.05937 (12) | 0.67737 (15) | −0.07627 (8) | 0.0365 (4) | |
C1 | 0.26851 (14) | 0.58651 (16) | 0.09179 (10) | 0.0196 (3) | |
C2 | 0.28856 (15) | 0.71485 (17) | 0.08280 (10) | 0.0228 (4) | |
C3 | 0.13225 (15) | 0.66384 (19) | −0.01654 (11) | 0.0252 (4) | |
C4 | 0.16138 (15) | 0.54664 (18) | 0.03290 (11) | 0.0223 (3) | |
C5 | 0.32090 (14) | 0.33056 (16) | 0.13491 (9) | 0.0184 (3) | |
C6 | 0.39680 (15) | 0.24576 (18) | 0.11459 (10) | 0.0223 (4) | |
C7 | 0.36203 (17) | 0.12181 (18) | 0.09439 (11) | 0.0263 (4) | |
C8 | 0.25270 (17) | 0.08421 (18) | 0.09336 (11) | 0.0272 (4) | |
C9 | 0.17691 (17) | 0.16811 (18) | 0.11337 (11) | 0.0259 (4) | |
C10 | 0.21095 (15) | 0.29100 (17) | 0.13488 (11) | 0.0224 (3) | |
C11 | 0.34766 (14) | 0.51365 (17) | 0.25923 (9) | 0.0191 (3) | |
C12 | 0.30953 (17) | 0.62921 (19) | 0.28046 (11) | 0.0259 (4) | |
C13 | 0.30127 (18) | 0.6482 (2) | 0.35722 (12) | 0.0302 (4) | |
C14 | 0.33144 (17) | 0.5526 (2) | 0.41208 (11) | 0.0293 (4) | |
C15 | 0.36981 (17) | 0.4372 (2) | 0.39104 (11) | 0.0278 (4) | |
C16 | 0.37760 (15) | 0.41676 (18) | 0.31450 (11) | 0.0237 (4) | |
C17 | 0.50533 (14) | 0.51511 (16) | 0.15815 (10) | 0.0194 (3) | |
C18 | 0.53141 (16) | 0.56868 (18) | 0.09223 (11) | 0.0241 (4) | |
C19 | 0.64382 (17) | 0.5776 (2) | 0.08833 (12) | 0.0304 (4) | |
C20 | 0.73049 (16) | 0.5328 (2) | 0.14956 (12) | 0.0303 (4) | |
C21 | 0.70505 (16) | 0.4806 (2) | 0.21537 (11) | 0.0283 (4) | |
C22 | 0.59299 (15) | 0.47212 (19) | 0.22015 (11) | 0.0247 (4) | |
H4A | 0.1714 (16) | 0.476 (2) | 0.0002 (12) | 0.023 (5)* | |
H4B | 0.0986 (18) | 0.530 (2) | 0.0566 (12) | 0.028 (6)* | |
H6 | 0.4736 (18) | 0.273 (2) | 0.1138 (12) | 0.027 (5)* | |
H7 | 0.4134 (16) | 0.064 (2) | 0.0801 (12) | 0.021 (5)* | |
H8 | 0.2294 (18) | 0.001 (2) | 0.0810 (12) | 0.028 (6)* | |
H9 | 0.1041 (19) | 0.142 (2) | 0.1131 (13) | 0.033 (6)* | |
H10 | 0.1598 (18) | 0.349 (2) | 0.1476 (13) | 0.031 (6)* | |
H12 | 0.2872 (18) | 0.696 (2) | 0.2434 (13) | 0.033 (6)* | |
H13 | 0.273 (2) | 0.728 (2) | 0.3708 (14) | 0.044 (7)* | |
H14 | 0.3238 (19) | 0.566 (2) | 0.4650 (14) | 0.036 (6)* | |
H15 | 0.3900 (19) | 0.370 (2) | 0.4293 (14) | 0.035 (6)* | |
H16 | 0.4058 (18) | 0.332 (2) | 0.2995 (13) | 0.033 (6)* | |
H18 | 0.4709 (18) | 0.601 (2) | 0.0507 (13) | 0.032 (6)* | |
H19 | 0.6601 (19) | 0.614 (2) | 0.0407 (14) | 0.039 (6)* | |
H20 | 0.811 (2) | 0.539 (2) | 0.1460 (14) | 0.039 (6)* | |
H21 | 0.7635 (19) | 0.451 (2) | 0.2572 (14) | 0.037 (6)* | |
O4 | 0.9797 (3) | 0.6888 (3) | 0.1470 (2) | 0.0667 (10) | 0.718 (4) |
C23 | 0.9886 (4) | 0.7506 (4) | 0.2223 (2) | 0.0567 (10) | 0.718 (4) |
H23A | 0.9324 | 0.7145 | 0.2485 | 0.068* | 0.718 (4) |
H23B | 1.0658 | 0.7385 | 0.2570 | 0.068* | 0.718 (4) |
C24 | 0.9665 (11) | 0.8833 (6) | 0.2065 (6) | 0.0645 (14) | 0.718 (4) |
H24A | 1.0263 | 0.9358 | 0.2408 | 0.077* | 0.718 (4) |
H24B | 0.8917 | 0.9074 | 0.2153 | 0.077* | 0.718 (4) |
C25 | 0.9668 (12) | 0.9006 (11) | 0.1196 (4) | 0.076 (2) | 0.718 (4) |
H25A | 0.9144 | 0.9690 | 0.0946 | 0.092* | 0.718 (4) |
H25B | 1.0442 | 0.9189 | 0.1136 | 0.092* | 0.718 (4) |
C26 | 0.9267 (7) | 0.7765 (9) | 0.0877 (3) | 0.0600 (12) | 0.718 (4) |
H26A | 0.8428 | 0.7709 | 0.0770 | 0.072* | 0.718 (4) |
H26B | 0.9496 | 0.7601 | 0.0383 | 0.072* | 0.718 (4) |
O4F | 1.0380 (5) | 0.9389 (7) | 0.1713 (4) | 0.057 (2) | 0.282 (4) |
C23F | 0.965 (3) | 0.9030 (19) | 0.2222 (17) | 0.0645 (14) | 0.282 (4) |
H23C | 0.8965 | 0.9582 | 0.2132 | 0.077* | 0.282 (4) |
H23D | 1.0061 | 0.9077 | 0.2782 | 0.077* | 0.282 (4) |
C24F | 0.9329 (11) | 0.7719 (12) | 0.1986 (6) | 0.0567 (10) | 0.282 (4) |
H24C | 0.8575 | 0.7504 | 0.2072 | 0.068* | 0.282 (4) |
H24D | 0.9902 | 0.7114 | 0.2281 | 0.068* | 0.282 (4) |
C25F | 0.930 (2) | 0.771 (3) | 0.1100 (8) | 0.0600 (12) | 0.282 (4) |
H25C | 0.9780 | 0.7024 | 0.0974 | 0.072* | 0.282 (4) |
H25D | 0.8510 | 0.7605 | 0.0774 | 0.072* | 0.282 (4) |
C26F | 0.975 (3) | 0.894 (3) | 0.0982 (12) | 0.076 (2) | 0.282 (4) |
H26C | 1.0239 | 0.8877 | 0.0612 | 0.092* | 0.282 (4) |
H26D | 0.9116 | 0.9534 | 0.0759 | 0.092* | 0.282 (4) |
H22 | 0.5776 (17) | 0.437 (2) | 0.2658 (12) | 0.026 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01787 (19) | 0.0168 (2) | 0.01680 (18) | 0.00042 (16) | 0.00412 (14) | −0.00023 (17) |
O1 | 0.0279 (7) | 0.0222 (7) | 0.0280 (7) | 0.0025 (5) | 0.0034 (5) | 0.0065 (5) |
O2 | 0.0379 (8) | 0.0195 (7) | 0.0358 (8) | −0.0044 (6) | 0.0013 (6) | −0.0017 (6) |
O3 | 0.0282 (7) | 0.0449 (9) | 0.0310 (7) | 0.0028 (6) | −0.0029 (6) | 0.0112 (7) |
C1 | 0.0203 (8) | 0.0182 (8) | 0.0191 (8) | 0.0000 (6) | 0.0027 (6) | 0.0005 (6) |
C2 | 0.0236 (8) | 0.0212 (9) | 0.0231 (8) | 0.0020 (7) | 0.0048 (7) | 0.0006 (7) |
C3 | 0.0203 (8) | 0.0301 (10) | 0.0254 (9) | 0.0035 (7) | 0.0061 (7) | 0.0043 (8) |
C4 | 0.0182 (8) | 0.0238 (9) | 0.0236 (8) | −0.0002 (7) | 0.0024 (6) | 0.0026 (7) |
C5 | 0.0208 (8) | 0.0170 (8) | 0.0165 (7) | 0.0008 (6) | 0.0032 (6) | 0.0013 (6) |
C6 | 0.0224 (8) | 0.0235 (9) | 0.0204 (8) | 0.0040 (7) | 0.0041 (7) | 0.0007 (7) |
C7 | 0.0340 (10) | 0.0213 (9) | 0.0228 (9) | 0.0082 (8) | 0.0056 (7) | −0.0008 (7) |
C8 | 0.0369 (10) | 0.0159 (8) | 0.0269 (9) | −0.0010 (8) | 0.0043 (8) | 0.0005 (7) |
C9 | 0.0270 (9) | 0.0205 (9) | 0.0300 (9) | −0.0020 (7) | 0.0066 (7) | 0.0012 (7) |
C10 | 0.0237 (8) | 0.0183 (8) | 0.0257 (9) | 0.0017 (7) | 0.0069 (7) | 0.0010 (7) |
C11 | 0.0190 (7) | 0.0204 (8) | 0.0186 (7) | −0.0006 (6) | 0.0060 (6) | −0.0012 (6) |
C12 | 0.0340 (10) | 0.0216 (9) | 0.0236 (9) | 0.0040 (8) | 0.0097 (7) | 0.0020 (7) |
C13 | 0.0427 (11) | 0.0242 (10) | 0.0281 (9) | 0.0053 (8) | 0.0170 (8) | −0.0012 (8) |
C14 | 0.0375 (11) | 0.0318 (10) | 0.0218 (9) | 0.0002 (8) | 0.0135 (8) | 0.0002 (8) |
C15 | 0.0346 (10) | 0.0272 (10) | 0.0228 (9) | 0.0023 (8) | 0.0095 (8) | 0.0037 (8) |
C16 | 0.0269 (9) | 0.0234 (9) | 0.0221 (8) | 0.0013 (7) | 0.0082 (7) | 0.0012 (7) |
C17 | 0.0195 (7) | 0.0201 (8) | 0.0185 (7) | −0.0013 (6) | 0.0047 (6) | −0.0016 (6) |
C18 | 0.0237 (8) | 0.0275 (9) | 0.0217 (8) | 0.0009 (7) | 0.0069 (7) | 0.0009 (7) |
C19 | 0.0286 (10) | 0.0383 (12) | 0.0273 (10) | −0.0018 (8) | 0.0125 (8) | 0.0016 (9) |
C20 | 0.0208 (9) | 0.0387 (12) | 0.0322 (10) | −0.0040 (8) | 0.0084 (7) | −0.0051 (9) |
C21 | 0.0208 (8) | 0.0373 (11) | 0.0246 (9) | 0.0006 (8) | 0.0014 (7) | −0.0034 (8) |
C22 | 0.0238 (8) | 0.0293 (10) | 0.0206 (8) | −0.0004 (7) | 0.0048 (7) | −0.0001 (7) |
O4 | 0.079 (2) | 0.0495 (17) | 0.083 (2) | 0.0060 (15) | 0.0406 (17) | −0.0007 (16) |
C23 | 0.059 (3) | 0.069 (3) | 0.039 (2) | 0.002 (2) | 0.0074 (19) | 0.0047 (19) |
C24 | 0.061 (2) | 0.058 (3) | 0.079 (5) | −0.004 (3) | 0.027 (3) | −0.022 (3) |
C25 | 0.050 (3) | 0.061 (3) | 0.113 (6) | −0.007 (2) | 0.012 (5) | 0.018 (4) |
C26 | 0.0586 (19) | 0.092 (3) | 0.029 (3) | −0.0256 (19) | 0.011 (3) | −0.001 (3) |
O4F | 0.051 (4) | 0.076 (5) | 0.037 (3) | −0.041 (3) | −0.004 (3) | 0.012 (3) |
C23F | 0.061 (2) | 0.058 (3) | 0.079 (5) | −0.004 (3) | 0.027 (3) | −0.022 (3) |
C24F | 0.059 (3) | 0.069 (3) | 0.039 (2) | 0.002 (2) | 0.0074 (19) | 0.0047 (19) |
C25F | 0.0586 (19) | 0.092 (3) | 0.029 (3) | −0.0256 (19) | 0.011 (3) | −0.001 (3) |
C26F | 0.050 (3) | 0.061 (3) | 0.113 (6) | −0.007 (2) | 0.012 (5) | 0.018 (4) |
P1—C1 | 1.7168 (17) | C17—C22 | 1.395 (2) |
P1—C5 | 1.7952 (18) | C18—C19 | 1.385 (3) |
P1—C17 | 1.8016 (17) | C18—H18 | 0.96 (2) |
P1—C11 | 1.8039 (17) | C19—C20 | 1.387 (3) |
O1—C3 | 1.360 (2) | C19—H19 | 0.98 (2) |
O1—C2 | 1.455 (2) | C20—C21 | 1.384 (3) |
O2—C2 | 1.212 (2) | C20—H20 | 1.00 (2) |
O3—C3 | 1.201 (2) | C21—C22 | 1.385 (3) |
C1—C2 | 1.392 (2) | C21—H21 | 0.94 (2) |
C1—C4 | 1.506 (2) | C22—H22 | 0.95 (2) |
C3—C4 | 1.502 (3) | O4—C26 | 1.423 (8) |
C4—H4A | 0.97 (2) | O4—C23 | 1.455 (5) |
C4—H4B | 0.97 (2) | C23—C24 | 1.440 (9) |
C5—C6 | 1.393 (2) | C23—H23A | 0.9900 |
C5—C10 | 1.397 (2) | C23—H23B | 0.9900 |
C6—C7 | 1.393 (3) | C24—C25 | 1.540 (10) |
C6—H6 | 0.98 (2) | C24—H24A | 0.9900 |
C7—C8 | 1.380 (3) | C24—H24B | 0.9900 |
C7—H7 | 0.95 (2) | C25—C26 | 1.460 (7) |
C8—C9 | 1.383 (3) | C25—H25A | 0.9900 |
C8—H8 | 0.94 (2) | C25—H25B | 0.9900 |
C9—C10 | 1.385 (3) | C26—H26A | 0.9900 |
C9—H9 | 0.93 (2) | C26—H26B | 0.9900 |
C10—H10 | 0.94 (2) | O4F—C26F | 1.404 (19) |
C11—C12 | 1.388 (3) | O4F—C23F | 1.461 (17) |
C11—C16 | 1.395 (2) | C23F—C24F | 1.468 (15) |
C12—C13 | 1.393 (3) | C23F—H23C | 0.9900 |
C12—H12 | 0.95 (2) | C23F—H23D | 0.9900 |
C13—C14 | 1.381 (3) | C24F—C25F | 1.549 (14) |
C13—H13 | 0.96 (3) | C24F—H24C | 0.9900 |
C14—C15 | 1.386 (3) | C24F—H24D | 0.9900 |
C14—H14 | 0.97 (2) | C25F—C26F | 1.445 (15) |
C15—C16 | 1.389 (3) | C25F—H25C | 0.9900 |
C15—H15 | 0.97 (2) | C25F—H25D | 0.9900 |
C16—H16 | 1.02 (2) | C26F—H26C | 0.9900 |
C17—C18 | 1.395 (2) | C26F—H26D | 0.9900 |
C1—P1—C5 | 107.60 (8) | C17—C18—H18 | 119.1 (13) |
C1—P1—C17 | 111.98 (8) | C18—C19—C20 | 120.22 (18) |
C5—P1—C17 | 108.38 (8) | C18—C19—H19 | 118.5 (13) |
C1—P1—C11 | 114.52 (8) | C20—C19—H19 | 121.3 (13) |
C5—P1—C11 | 106.01 (8) | C21—C20—C19 | 120.07 (18) |
C17—P1—C11 | 108.03 (8) | C21—C20—H20 | 120.2 (14) |
C3—O1—C2 | 109.44 (14) | C19—C20—H20 | 119.7 (14) |
C2—C1—C4 | 109.82 (15) | C20—C21—C22 | 120.18 (18) |
C2—C1—P1 | 122.78 (13) | C20—C21—H21 | 120.4 (14) |
C4—C1—P1 | 127.38 (13) | C22—C21—H21 | 119.4 (14) |
O2—C2—C1 | 135.62 (17) | C21—C22—C17 | 119.98 (17) |
O2—C2—O1 | 116.47 (16) | C21—C22—H22 | 118.8 (12) |
C1—C2—O1 | 107.90 (15) | C17—C22—H22 | 121.3 (12) |
O3—C3—O1 | 121.34 (18) | C26—O4—C23 | 107.1 (4) |
O3—C3—C4 | 128.29 (19) | C24—C23—O4 | 107.0 (5) |
O1—C3—C4 | 110.37 (15) | C24—C23—H23A | 110.3 |
C3—C4—C1 | 101.89 (15) | O4—C23—H23A | 110.3 |
C3—C4—H4A | 109.7 (12) | C24—C23—H23B | 110.3 |
C1—C4—H4A | 114.2 (12) | O4—C23—H23B | 110.3 |
C3—C4—H4B | 107.5 (13) | H23A—C23—H23B | 108.6 |
C1—C4—H4B | 113.0 (12) | C23—C24—C25 | 105.1 (6) |
H4A—C4—H4B | 110.0 (17) | C23—C24—H24A | 110.7 |
C6—C5—C10 | 119.98 (16) | C25—C24—H24A | 110.7 |
C6—C5—P1 | 121.94 (13) | C23—C24—H24B | 110.7 |
C10—C5—P1 | 118.06 (13) | C25—C24—H24B | 110.7 |
C5—C6—C7 | 119.43 (17) | H24A—C24—H24B | 108.8 |
C5—C6—H6 | 120.6 (13) | C26—C25—C24 | 101.1 (6) |
C7—C6—H6 | 120.0 (13) | C26—C25—H25A | 111.6 |
C8—C7—C6 | 120.15 (18) | C24—C25—H25A | 111.6 |
C8—C7—H7 | 120.1 (12) | C26—C25—H25B | 111.6 |
C6—C7—H7 | 119.7 (12) | C24—C25—H25B | 111.6 |
C7—C8—C9 | 120.65 (18) | H25A—C25—H25B | 109.4 |
C7—C8—H8 | 120.5 (13) | O4—C26—C25 | 104.8 (7) |
C9—C8—H8 | 118.8 (13) | O4—C26—H26A | 110.8 |
C8—C9—C10 | 119.81 (18) | C25—C26—H26A | 110.8 |
C8—C9—H9 | 120.0 (14) | O4—C26—H26B | 110.8 |
C10—C9—H9 | 120.2 (14) | C25—C26—H26B | 110.8 |
C9—C10—C5 | 119.96 (17) | H26A—C26—H26B | 108.9 |
C9—C10—H10 | 120.4 (13) | C26F—O4F—C23F | 101.3 (16) |
C5—C10—H10 | 119.6 (13) | O4F—C23F—C24F | 103.2 (12) |
C12—C11—C16 | 120.19 (16) | O4F—C23F—H23C | 111.1 |
C12—C11—P1 | 118.66 (14) | C24F—C23F—H23C | 111.1 |
C16—C11—P1 | 121.14 (13) | O4F—C23F—H23D | 111.1 |
C11—C12—C13 | 119.78 (18) | C24F—C23F—H23D | 111.1 |
C11—C12—H12 | 121.6 (14) | H23C—C23F—H23D | 109.1 |
C13—C12—H12 | 118.6 (14) | C23F—C24F—C25F | 103.2 (14) |
C14—C13—C12 | 120.07 (18) | C23F—C24F—H24C | 111.1 |
C14—C13—H13 | 121.2 (15) | C25F—C24F—H24C | 111.1 |
C12—C13—H13 | 118.7 (15) | C23F—C24F—H24D | 111.1 |
C13—C14—C15 | 120.23 (18) | C25F—C24F—H24D | 111.1 |
C13—C14—H14 | 119.8 (14) | H24C—C24F—H24D | 109.1 |
C15—C14—H14 | 120.0 (14) | C26F—C25F—C24F | 102.9 (14) |
C14—C15—C16 | 120.24 (18) | C26F—C25F—H25C | 111.2 |
C14—C15—H15 | 120.3 (14) | C24F—C25F—H25C | 111.2 |
C16—C15—H15 | 119.5 (14) | C26F—C25F—H25D | 111.2 |
C15—C16—C11 | 119.48 (17) | C24F—C25F—H25D | 111.2 |
C15—C16—H16 | 119.8 (13) | H25C—C25F—H25D | 109.1 |
C11—C16—H16 | 120.7 (13) | O4F—C26F—C25F | 108.1 (17) |
C18—C17—C22 | 119.64 (16) | O4F—C26F—H26C | 110.1 |
C18—C17—P1 | 119.62 (13) | C25F—C26F—H26C | 110.1 |
C22—C17—P1 | 120.61 (13) | O4F—C26F—H26D | 110.1 |
C19—C18—C17 | 119.90 (17) | C25F—C26F—H26D | 110.1 |
C19—C18—H18 | 121.0 (13) | H26C—C26F—H26D | 108.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O4Fi | 0.92 (2) | 2.59 (2) | 3.253 (8) | 129.4 (18) |
C22—H22···O2ii | 0.95 (2) | 2.55 (2) | 3.386 (2) | 148.2 (16) |
C20—H20···O4 | 1.00 (3) | 2.58 (2) | 3.452 (4) | 145.8 (19) |
C21—H21···O4Fiii | 0.94 (2) | 2.43 (2) | 3.283 (6) | 151 (2) |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Balema, V. P., Wiench, J. W., Pruski, M. & Pecharsky, V. K. (2002). J. Am. Chem. Soc. 124, 6244–6245. CrossRef Google Scholar
Dunitz, J., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856–867. CrossRef CAS Web of Science Google Scholar
Geoffroy, M., Rao, G., Tancic, Z. & Bernardinelli, G. (1993). Faraday Trans. 89, 2391–2396. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Islamov, D. R., Shtyrlin, V. G., Serov, N. Y., Fedyanin, I. V. & Lyssenko, K. A. (2017). Cryst. Growth Des. 17, 4703–4709. CrossRef Google Scholar
Karlen, S. D., Reyes, H., Taylor, R. E., Khan, S. I., Hawthorne, M. F. & Garcia-Garibay, M. A. (2010). Proc. Nat. Acad. Sci. USA, 107, 14973–14977. CrossRef Google Scholar
Kolodiazhnyi, O. I. (1999). Organic Synthesis, pp. 478–494. Weinheim: Wiley-VCH. Google Scholar
Kumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Selva, M., Perosa, A. & Noè, M. (2014). Organophosphorus Chemistry, Vol. 43, pp. 85–116. UK: Royal Society of Chemistry. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.