research communications
8Bi9O0.25 containing interstitial oxygen atoms
of TiaInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: hisanori.yamane.a1@tohoku.ac.jp
Single crystals of Ti8Bi9O0.25, titanium bismuth oxide (8/9/0.25), were obtained from a sample prepared by heating a mixture of Ti, TiO2 and Bi powders in an Ar atmosphere. Single-crystal X-ray analysis revealed that the introduction of O atoms into the structure of Ti8Bi9 retains the space-group type P4/nmm. The oxygen site is located within a Ti4 tetrahedron (point group symmetry m2) that is vacant in the Ti8Bi9 The occupancy of this site is 0.25 (4), and the O—Ti distance is 1.8824 (11) Å.
CCDC reference: 1863407
1. Chemical context
The 8Bi9, having the tetragonal P4/nmm, a = 10.277 (1) Å, c = 7.375 (1) Å, Z = 2, was determined by Richter and Jeitschko (1997). This compound was identified in Ti–Bi binary phase diagrams (Okamoto, 2010, 2015), and was also confirmed by powder X-ray diffraction (PXRD) in a study of the Ti–Bi phase diagram (Maruyama et al., 2013). Recently, the use of a Bi has enabled single-crystal growth of a new polymorph of TiO (∊-phase; Amano et al., 2016) and some new suboxides: Ti8(SnxBi1–x)O7, Ti11.17(Sn0.85Bi0.15)3O10 and Ti12–δGaxBi3–xO10 (Amano & Yamane, 2017; Yamane & Amano, 2017). While exploring new suboxides containing Ti using a Bi we also found the title compound, Ti8Bi9O0.25 where interstitial O sites are partly occupied.
of TiIn the present communication, details of single-crystal growth of Ti8Bi9O0.25 and its comparison with the of Ti8Bi9 (Richter & Jeitschko, 1997) are reported.
2. Structural commentary
Reflections from a single crystal of Ti8Bi9O0.25 could be indexed with a primitive tetragonal cell similar to that of the oxygen-free compound Ti8Bi9 (Richter & Jeitschko, 1997). The differences in the lengths of the a and c axes and in the cell volume from those of Ti8Bi9 were +1.0%, −0.09% and +0.74%, respectively. The observed for the new compound were the same as for Ti8Bi9, revealing P4/nmm.
The 8Bi9O0.25 are depicted in Figs. 1 and 2, respectively. In the of Ti8Bi9 (Richter & Jeitschko, 1997), the Ti2 site is in a trigonal antiprism (point group symmetry. .2/m) made up from Bi atoms with Bi—Ti distances of 2.848 (1) and 2.931 (1) Å (Table 1). The Ti3 and Ti4 sites are situated in square antiprisms in which the Bi—Ti distances range from 2.937 (5) to 3.144 (6) Å. The Ti3- and Ti4-centered Bi14Bi24 square antiprisms both exhibit symmetry 4mm and are arranged along the c axis by sharing the square planes. The Bi1Bi22 triangle plane is shared by the Ti2-centered Bi12Bi24 trigonal antiprism and the Ti3-centered Bi14Bi24 square antiprism. In the of Ti8Bi9, only the Ti1 site forms a Ti polyhedron. The Ti1—Ti1 distances of the Ti14 tetrahedron are 2.934 (6) and 3.074 (3) Å. In addition to the three Ti1 sites, each Ti1 site is surrounded by six Bi atoms at distances of 2.945 (4)–3.074 (5) Å, and by two Ti2 sites at a distance of 3.017 (2) Å. The O atom of Ti8Bi9O0.25 is located in the Ti14 tetrahedron at a site with symmetry m2 and with a site occupancy of 0.25 (4). The partial occupation by the O atoms changes the Ti1—Ti1 distances in the tetrahedron to 2.992 (2) and 3.1142 (19) Å, representing increases of 1.9% and 1.3%, respectively. The Ti1—Bi2 distance is also increased by 1.4%, although the changes in the Ti3—Bi and Ti4—Bi distances are both less than 0.4%.
and atomic arrangement for Ti
|
The O1—Ti1 distance of 1.8824 (11) Å is intermediate between the sums of ionic radii for Ti3+ and O2− (1.91 Å) and Ti2+—O2− (1.845 Å), based on ionic radii of 0.67 and 0.605 Å for Ti3+ and Ti2+, respectively, in sixfold coordination, and an O2− radius of 1.24 Å in fourfold coordination (Shannon, 1976). The bond-valence sums (BVSs) calculated for the O1 site in the Ti14 tetrahedron using bond-valence parameters (R0) for Ti4+ (1.815 Å), Ti3+ (1.815 Å) and Ti2+ (1.734 Å) and B = 0.37 (Brese & O'Keeffe, 1991; Amano & Yamane, 2017) are 3.33, 3.12 and 2.68 valence units (v.u.), respectively. All of these values are considerably greater than the expected valence value of 2 for an O atom, which may suggest that the O1 site is not fully occupied, or that bond-valence parameters for titanium in lower oxidation states (and/or tetrahedral coordination) need revision. Complete occupation of O atoms in tetrahedral sites surrounded by Ti atoms has been reported for the crystal structures of Ti12-δGaxBi3–xO10. In these structures, the Ti—O distances range from 1.957 (3) to 2.291 (3) Å, all of which exceed the value of 1.8824 (11) Å for O1—Ti1 in Ti8Bi9O0.25. The BVSs calculated for the O sites in Ti12–δGaxBi3–xO10 using the parameters for Ti3+ and Ti2+ were found to be in the ranges 2.18–2.21 and 1.87–1.89 v.u., respectively (Amano & Yamane, 2017).
3. Synthesis and crystallization
A sample containing the title compound was prepared by combining 0.85 mmol Ti powder (99.99%, Mitsuwa Chemical Co., Ltd), 0.125 mol TiO2 powder (rutile, 99.99%, Rare Metallic Co., Ltd) and 1.5 mmol Bi powder (99.999%, Mitsuwa Chemical Co., Ltd) in an agate mortar and subsequent pressing into a pellet (Ø 6 mm) under atmospheric conditions. The pellet was placed in a Ta boat that was then transferred into a stainless-steel tube and sealed with a cap in an Ar-filled (MBRAUN; O2 and H2O < 1 ppm). The sealed stainless-steel tube was heated to 1073 K at a rate of approximately 400 K h−1, maintained at this temperature for 10 h, and subsequently cooled to 723 K at a rate of 10 K h−1. Below 723 K, the sample was cooled to room temperature by shutting off the electric power to the heater of the furnace. The resulting sample was crushed and single-crystal fragments of Ti8Bi9O0.25 were extracted. A single crystal for XRD analysis was sealed in a glass capillary. The crushed sample was also analyzed by (EPMA, JEOL, JXA-8200). Only Bi, Ti and O were found in the bulk. The O concentration was greater than the expected values, indicating that some oxidation had occurred while transferring the specimens to the EPMA instrument. In addition to fragments with a Ti:Bi atomic ratio of approximately 8:9, some Bi-rich (>85%) portions and fragments with a Ti:Bi ratio of approximately 3:2 were also identified.
4. Refinement
Crystal data, data collection and structure . The diffraction data of Ti8Bi9O0.25 were initially analyzed using the Ti8Bi9 model (Richter & Jeitschko, 1997), and a residual electron density of 8.4 e Å−3 was observed at (3/4, 1/4, 0), which corresponds to the 2a site in the Ti14 tetrahedron. The O-atom occupancy of this site was refined to be 0.25 (4), resulting in a decrease in R[F2 > 2σ (F2)] from 0.045 to 0.020. For this site an isotropic atomic displacement parameter was considered.
details are summarized in Table 2Supporting information
CCDC reference: 1863407
https://doi.org/10.1107/S205698901801188X/wm5456sup1.cif
contains datablocks I, Ti8Bi9O0.25. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801188X/wm5456Isup4.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Ti8Bi9O0.25 | Dx = 9.598 Mg m−3 |
Mr = 2267.94 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/nmm | Cell parameters from 9927 reflections |
a = 10.3198 (2) Å | θ = 2.8–36.3° |
c = 7.3684 (1) Å | µ = 104.26 mm−1 |
V = 784.72 (3) Å3 | T = 301 K |
Z = 2 | Granule, black |
F(000) = 1850 | 0.10 × 0.08 × 0.06 mm |
Bruker APEXII CCD diffractometer | 1101 independent reflections |
Radiation source: micro focus sealed tube | 1079 reflections with I > 2σ(I) |
Detector resolution: 7.4074 pixels mm-1 | Rint = 0.059 |
ω– and φ–scans | θmax = 36.3°, θmin = 2.8° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.011, Tmax = 0.075 | k = −16→17 |
14767 measured reflections | l = −11→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + 5.5451P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.020 | (Δ/σ)max < 0.001 |
wR(F2) = 0.044 | Δρmax = 1.55 e Å−3 |
S = 1.36 | Δρmin = −1.61 e Å−3 |
1101 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
34 parameters | Extinction coefficient: 0.00132 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ti1 | 0.2500 | 0.60505 (11) | 0.15508 (15) | 0.00985 (18) | |
Ti2 | 0.0000 | 0.0000 | 0.0000 | 0.0082 (2) | |
Ti3 | 0.2500 | 0.2500 | 0.0782 (3) | 0.0161 (4) | |
Ti4 | 0.2500 | 0.2500 | 0.5769 (3) | 0.0094 (3) | |
Bi1 | 0.08500 (2) | 0.08500 (2) | 0.34804 (3) | 0.00996 (6) | |
Bi2 | 0.2500 | 0.01379 (2) | 0.80886 (3) | 0.00990 (6) | |
Bi3 | 0.7500 | 0.2500 | 0.5000 | 0.01392 (9) | |
O1 | 0.7500 | 0.2500 | 0.0000 | 0.001 (6)* | 0.25 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0095 (4) | 0.0098 (4) | 0.0102 (4) | 0.000 | 0.000 | −0.0005 (3) |
Ti2 | 0.0073 (3) | 0.0073 (3) | 0.0099 (6) | 0.0006 (4) | 0.0002 (3) | 0.0002 (3) |
Ti3 | 0.0180 (6) | 0.0180 (6) | 0.0122 (9) | 0.000 | 0.000 | 0.000 |
Ti4 | 0.0081 (5) | 0.0081 (5) | 0.0119 (8) | 0.000 | 0.000 | 0.000 |
Bi1 | 0.01015 (7) | 0.01015 (7) | 0.00956 (10) | −0.00054 (6) | −0.00099 (4) | −0.00099 (4) |
Bi2 | 0.00785 (9) | 0.01194 (10) | 0.00990 (10) | 0.000 | 0.000 | 0.00110 (6) |
Bi3 | 0.01626 (13) | 0.01626 (13) | 0.00924 (17) | 0.000 | 0.000 | 0.000 |
Ti1—O1i | 1.8824 (11) | Ti4—Bi1v | 2.9398 (13) |
Ti1—Bi2ii | 2.8305 (11) | Ti4—Bi1 | 2.9399 (13) |
Ti1—Bi3iii | 2.9491 (11) | Ti4—Bi2xviii | 2.9771 (13) |
Ti1—Bi1iv | 2.9610 (9) | Ti4—Bi2v | 2.9771 (13) |
Ti1—Bi1v | 2.9610 (9) | Ti4—Bi2iv | 2.9771 (13) |
Ti1—Ti1vi | 2.992 (2) | Ti4—Bi2 | 2.9771 (13) |
Ti1—Ti2iv | 3.0228 (6) | Bi1—Ti1xviii | 2.9610 (9) |
Ti1—Ti2v | 3.0227 (6) | Bi1—Ti1v | 2.9610 (9) |
Ti1—Ti1vii | 3.1142 (19) | Bi1—Bi1xiv | 3.3423 (4) |
Ti1—Ti1viii | 3.1142 (19) | Bi1—Bi1iv | 3.4054 (3) |
Ti1—Bi2ix | 3.1175 (6) | Bi1—Bi1xviii | 3.4054 (3) |
Ti1—Bi2x | 3.1175 (6) | Bi2—Ti1xx | 2.8305 (11) |
Ti2—Bi1 | 2.8488 (2) | Bi2—Ti2xxi | 2.9428 (1) |
Ti2—Bi1xi | 2.8488 (2) | Bi2—Ti2xxii | 2.9428 (1) |
Ti2—Bi2xii | 2.9428 (1) | Bi2—Ti1xxiii | 3.1175 (6) |
Ti2—Bi2xiii | 2.9428 (1) | Bi2—Ti1xxiv | 3.1175 (6) |
Ti2—Bi2xiv | 2.9428 (1) | Bi2—Ti3xxii | 3.1434 (16) |
Ti2—Bi2xv | 2.9428 (1) | Bi2—Bi2xviii | 3.4474 (3) |
Ti2—Ti1xvi | 3.0228 (6) | Bi2—Bi2iv | 3.4474 (3) |
Ti2—Ti1v | 3.0228 (6) | Bi2—Bi3xxv | 3.5482 (2) |
Ti2—Ti1xvii | 3.0228 (6) | Bi3—Ti1iv | 2.9491 (11) |
Ti2—Ti1xviii | 3.0228 (6) | Bi3—Ti1iii | 2.9491 (11) |
Ti3—Bi1v | 3.1227 (16) | Bi3—Ti1xxvi | 2.9491 (11) |
Ti3—Bi1iv | 3.1227 (16) | Bi3—Ti1xxvii | 2.9491 (11) |
Ti3—Bi1xviii | 3.1227 (16) | Bi3—Bi2xxviii | 3.5482 (2) |
Ti3—Bi1 | 3.1228 (16) | Bi3—Bi2xxv | 3.5482 (2) |
Ti3—Bi2xiii | 3.1434 (16) | Bi3—Bi2xxix | 3.5482 (2) |
Ti3—Bi2xv | 3.1434 (16) | Bi3—Bi2xviii | 3.5482 (2) |
Ti3—Bi2ii | 3.1434 (16) | O1—Ti1xxvii | 1.8824 (11) |
Ti3—Bi2xix | 3.1434 (16) | O1—Ti1xxx | 1.8824 (11) |
Ti4—Bi1iv | 2.9398 (13) | O1—Ti1iv | 1.8824 (11) |
Ti4—Bi1xviii | 2.9398 (13) | O1—Ti1i | 1.8824 (11) |
O1i—Ti1—Bi2ii | 78.30 (4) | Bi2xv—Ti3—Bi2xix | 66.51 (4) |
O1i—Ti1—Bi3iii | 96.90 (4) | Bi2ii—Ti3—Bi2xix | 66.51 (4) |
Bi2ii—Ti1—Bi3iii | 175.19 (4) | Bi1iv—Ti4—Bi1xviii | 109.99 (7) |
O1i—Ti1—Bi1iv | 144.872 (13) | Bi1iv—Ti4—Bi1v | 70.79 (4) |
Bi2ii—Ti1—Bi1iv | 98.38 (3) | Bi1xviii—Ti4—Bi1v | 70.79 (4) |
Bi3iii—Ti1—Bi1iv | 85.54 (3) | Bi1iv—Ti4—Bi1 | 70.79 (4) |
O1i—Ti1—Bi1v | 144.872 (13) | Bi1xviii—Ti4—Bi1 | 70.79 (4) |
Bi2ii—Ti1—Bi1v | 98.38 (3) | Bi1v—Ti4—Bi1 | 109.99 (7) |
Bi3iii—Ti1—Bi1v | 85.54 (3) | Bi1iv—Ti4—Bi2xviii | 143.472 (1) |
Bi1iv—Ti1—Bi1v | 70.21 (3) | Bi1xviii—Ti4—Bi2xviii | 81.667 (5) |
O1i—Ti1—Ti1vi | 37.37 (3) | Bi1v—Ti4—Bi2xviii | 81.667 (5) |
Bi2ii—Ti1—Ti1vi | 115.67 (2) | Bi1—Ti4—Bi2xviii | 143.471 (2) |
Bi3iii—Ti1—Ti1vi | 59.52 (2) | Bi1iv—Ti4—Bi2v | 81.667 (5) |
Bi1iv—Ti1—Ti1vi | 131.482 (19) | Bi1xviii—Ti4—Bi2v | 143.472 (1) |
Bi1v—Ti1—Ti1vi | 131.482 (19) | Bi1v—Ti4—Bi2v | 81.667 (5) |
O1i—Ti1—Ti2iv | 93.18 (3) | Bi1—Ti4—Bi2v | 143.471 (1) |
Bi2ii—Ti1—Ti2iv | 60.259 (18) | Bi2xviii—Ti4—Bi2v | 70.76 (4) |
Bi3iii—Ti1—Ti2iv | 120.510 (18) | Bi1iv—Ti4—Bi2iv | 81.667 (5) |
Bi1iv—Ti1—Ti2iv | 56.850 (12) | Bi1xviii—Ti4—Bi2iv | 143.472 (1) |
Bi1v—Ti1—Ti2iv | 115.77 (3) | Bi1v—Ti4—Bi2iv | 143.472 (1) |
Ti1vi—Ti1—Ti2iv | 111.02 (2) | Bi1—Ti4—Bi2iv | 81.667 (5) |
O1i—Ti1—Ti2v | 93.18 (3) | Bi2xviii—Ti4—Bi2iv | 109.93 (7) |
Bi2ii—Ti1—Ti2v | 60.259 (18) | Bi2v—Ti4—Bi2iv | 70.76 (4) |
Bi3iii—Ti1—Ti2v | 120.510 (18) | Bi1iv—Ti4—Bi2 | 143.472 (1) |
Bi1iv—Ti1—Ti2v | 115.77 (3) | Bi1xviii—Ti4—Bi2 | 81.668 (5) |
Bi1v—Ti1—Ti2v | 56.850 (12) | Bi1v—Ti4—Bi2 | 143.472 (2) |
Ti1vi—Ti1—Ti2v | 111.02 (2) | Bi1—Ti4—Bi2 | 81.667 (5) |
Ti2iv—Ti1—Ti2v | 117.19 (4) | Bi2xviii—Ti4—Bi2 | 70.76 (4) |
O1i—Ti1—Ti1vii | 34.188 (17) | Bi2v—Ti4—Bi2 | 109.93 (7) |
Bi2ii—Ti1—Ti1vii | 63.05 (3) | Bi2iv—Ti4—Bi2 | 70.76 (4) |
Bi3iii—Ti1—Ti1vii | 112.88 (4) | Ti2—Bi1—Ti4 | 150.82 (4) |
Bi1iv—Ti1—Ti1vii | 113.225 (13) | Ti2—Bi1—Ti1xviii | 62.668 (16) |
Bi1v—Ti1—Ti1vii | 161.22 (5) | Ti4—Bi1—Ti1xviii | 109.028 (19) |
Ti1vi—Ti1—Ti1vii | 61.29 (2) | Ti2—Bi1—Ti1v | 62.668 (16) |
Ti2iv—Ti1—Ti1vii | 58.99 (2) | Ti4—Bi1—Ti1v | 109.028 (19) |
Ti2v—Ti1—Ti1vii | 107.75 (4) | Ti1xviii—Bi1—Ti1v | 122.09 (4) |
O1i—Ti1—Ti1viii | 34.188 (17) | Ti2—Bi1—Ti3 | 76.27 (4) |
Bi2ii—Ti1—Ti1viii | 63.05 (3) | Ti4—Bi1—Ti3 | 74.55 (5) |
Bi3iii—Ti1—Ti1viii | 112.88 (4) | Ti1xviii—Bi1—Ti3 | 75.04 (2) |
Bi1iv—Ti1—Ti1viii | 161.22 (5) | Ti1v—Bi1—Ti3 | 75.04 (2) |
Bi1v—Ti1—Ti1viii | 113.225 (13) | Ti2—Bi1—Bi1xiv | 106.253 (10) |
Ti1vi—Ti1—Ti1viii | 61.29 (2) | Ti4—Bi1—Bi1xiv | 102.93 (4) |
Ti2iv—Ti1—Ti1viii | 107.75 (4) | Ti1xviii—Bi1—Bi1xiv | 106.02 (2) |
Ti2v—Ti1—Ti1viii | 58.99 (2) | Ti1v—Bi1—Bi1xiv | 106.02 (2) |
Ti1vii—Ti1—Ti1viii | 57.42 (4) | Ti3—Bi1—Bi1xiv | 177.48 (4) |
O1i—Ti1—Bi2ix | 70.76 (2) | Ti2—Bi1—Bi1iv | 107.934 (3) |
Bi2ii—Ti1—Bi2ix | 106.54 (2) | Ti4—Bi1—Bi1iv | 54.606 (18) |
Bi3iii—Ti1—Bi2ix | 71.53 (2) | Ti1xviii—Bi1—Bi1iv | 54.897 (13) |
Bi1iv—Ti1—Bi2ix | 141.17 (3) | Ti1v—Bi1—Bi1iv | 131.480 (19) |
Bi1v—Ti1—Bi2ix | 76.984 (10) | Ti3—Bi1—Bi1iv | 56.957 (19) |
Ti1vi—Ti1—Bi2ix | 61.325 (18) | Bi1xiv—Bi1—Bi1iv | 121.663 (4) |
Ti2iv—Ti1—Bi2ix | 161.73 (4) | Ti2—Bi1—Bi1xviii | 107.934 (3) |
Ti2v—Ti1—Bi2ix | 57.249 (4) | Ti4—Bi1—Bi1xviii | 54.606 (18) |
Ti1vii—Ti1—Bi2ix | 104.57 (2) | Ti1xviii—Bi1—Bi1xviii | 131.480 (19) |
Ti1viii—Ti1—Bi2ix | 54.03 (3) | Ti1v—Bi1—Bi1xviii | 54.897 (13) |
O1i—Ti1—Bi2x | 70.76 (2) | Ti3—Bi1—Bi1xviii | 56.957 (19) |
Bi2ii—Ti1—Bi2x | 106.54 (2) | Bi1xiv—Bi1—Bi1xviii | 121.663 (4) |
Bi3iii—Ti1—Bi2x | 71.53 (2) | Bi1iv—Bi1—Bi1xviii | 90.0 |
Bi1iv—Ti1—Bi2x | 76.984 (10) | Ti1xx—Bi2—Ti2xxi | 63.110 (6) |
Bi1v—Ti1—Bi2x | 141.17 (3) | Ti1xx—Bi2—Ti2xxii | 63.110 (6) |
Ti1vi—Ti1—Bi2x | 61.325 (18) | Ti2xxi—Bi2—Ti2xxii | 122.496 (7) |
Ti2iv—Ti1—Bi2x | 57.249 (5) | Ti1xx—Bi2—Ti4 | 150.71 (4) |
Ti2v—Ti1—Bi2x | 161.73 (4) | Ti2xxi—Bi2—Ti4 | 108.320 (15) |
Ti1vii—Ti1—Bi2x | 54.03 (3) | Ti2xxii—Bi2—Ti4 | 108.320 (14) |
Ti1viii—Ti1—Bi2x | 104.57 (2) | Ti1xx—Bi2—Ti1xxiii | 62.93 (4) |
Bi2ix—Ti1—Bi2x | 121.67 (4) | Ti2xxi—Bi2—Ti1xxiii | 109.73 (2) |
Bi1—Ti2—Bi1xi | 180.0 | Ti2xxii—Bi2—Ti1xxiii | 59.756 (18) |
Bi1—Ti2—Bi2xii | 81.606 (5) | Ti4—Bi2—Ti1xxiii | 139.81 (3) |
Bi1xi—Ti2—Bi2xii | 98.393 (5) | Ti1xx—Bi2—Ti1xxiv | 62.93 (4) |
Bi1—Ti2—Bi2xiii | 98.394 (5) | Ti2xxi—Bi2—Ti1xxiv | 59.756 (18) |
Bi1xi—Ti2—Bi2xiii | 81.607 (5) | Ti2xxii—Bi2—Ti1xxiv | 109.73 (2) |
Bi2xii—Ti2—Bi2xiii | 180.0 | Ti4—Bi2—Ti1xxiv | 139.81 (3) |
Bi1—Ti2—Bi2xiv | 81.606 (5) | Ti1xxiii—Bi2—Ti1xxiv | 57.35 (4) |
Bi1xi—Ti2—Bi2xiv | 98.393 (5) | Ti1xx—Bi2—Ti3xxii | 76.52 (4) |
Bi2xii—Ti2—Bi2xiv | 71.710 (9) | Ti2xxi—Bi2—Ti3xxii | 74.653 (16) |
Bi2xiii—Ti2—Bi2xiv | 108.290 (9) | Ti2xxii—Bi2—Ti3xxii | 74.653 (16) |
Bi1—Ti2—Bi2xv | 98.394 (5) | Ti4—Bi2—Ti3xxii | 74.19 (5) |
Bi1xi—Ti2—Bi2xv | 81.607 (5) | Ti1xxiii—Bi2—Ti3xxii | 128.56 (3) |
Bi2xii—Ti2—Bi2xv | 108.290 (9) | Ti1xxiv—Bi2—Ti3xxii | 128.56 (3) |
Bi2xiii—Ti2—Bi2xv | 71.710 (9) | Ti1xx—Bi2—Bi2xviii | 107.841 (15) |
Bi2xiv—Ti2—Bi2xv | 180.0 | Ti2xxi—Bi2—Bi2xviii | 54.145 (4) |
Bi1—Ti2—Ti1xvi | 119.52 (2) | Ti2xxii—Bi2—Bi2xviii | 130.853 (4) |
Bi1xi—Ti2—Ti1xvi | 60.48 (2) | Ti4—Bi2—Bi2xviii | 54.621 (18) |
Bi2xii—Ti2—Ti1xvi | 117.005 (19) | Ti1xxiii—Bi2—Bi2xviii | 163.087 (18) |
Bi2xiii—Ti2—Ti1xvi | 62.995 (19) | Ti1xxiv—Bi2—Bi2xviii | 106.151 (18) |
Bi2xiv—Ti2—Ti1xvi | 56.632 (18) | Ti3xxii—Bi2—Bi2xviii | 56.746 (19) |
Bi2xv—Ti2—Ti1xvi | 123.369 (18) | Ti1xx—Bi2—Bi2iv | 107.841 (15) |
Bi1—Ti2—Ti1v | 60.48 (2) | Ti2xxi—Bi2—Bi2iv | 130.853 (4) |
Bi1xi—Ti2—Ti1v | 119.52 (2) | Ti2xxii—Bi2—Bi2iv | 54.145 (4) |
Bi2xii—Ti2—Ti1v | 62.995 (19) | Ti4—Bi2—Bi2iv | 54.621 (18) |
Bi2xiii—Ti2—Ti1v | 117.005 (19) | Ti1xxiii—Bi2—Bi2iv | 106.151 (18) |
Bi2xiv—Ti2—Ti1v | 123.369 (18) | Ti1xxiv—Bi2—Bi2iv | 163.087 (18) |
Bi2xv—Ti2—Ti1v | 56.632 (18) | Ti3xxii—Bi2—Bi2iv | 56.746 (19) |
Ti1xvi—Ti2—Ti1v | 180.00 (4) | Bi2xviii—Bi2—Bi2iv | 90.0 |
Bi1—Ti2—Ti1xvii | 119.52 (2) | Ti1xx—Bi2—Bi3xxv | 104.22 (2) |
Bi1xi—Ti2—Ti1xvii | 60.48 (2) | Ti2xxi—Bi2—Bi3xxv | 105.657 (5) |
Bi2xii—Ti2—Ti1xvii | 56.631 (18) | Ti2xxii—Bi2—Bi3xxv | 105.657 (5) |
Bi2xiii—Ti2—Ti1xvii | 123.369 (18) | Ti4—Bi2—Bi3xxv | 105.07 (4) |
Bi2xiv—Ti2—Ti1xvii | 117.005 (19) | Ti1xxiii—Bi2—Bi3xxv | 52.029 (19) |
Bi2xv—Ti2—Ti1xvii | 62.995 (19) | Ti1xxiv—Bi2—Bi3xxv | 52.029 (19) |
Ti1xvi—Ti2—Ti1xvii | 117.99 (4) | Ti3xxii—Bi2—Bi3xxv | 179.25 (4) |
Ti1v—Ti2—Ti1xvii | 62.01 (4) | Bi2xviii—Bi2—Bi3xxv | 122.853 (2) |
Bi1—Ti2—Ti1xviii | 60.48 (2) | Bi2iv—Bi2—Bi3xxv | 122.853 (2) |
Bi1xi—Ti2—Ti1xviii | 119.52 (2) | Ti1iv—Bi3—Ti1iii | 137.96 (3) |
Bi2xii—Ti2—Ti1xviii | 123.369 (18) | Ti1iv—Bi3—Ti1xxvi | 137.96 (3) |
Bi2xiii—Ti2—Ti1xviii | 56.631 (18) | Ti1iii—Bi3—Ti1xxvi | 60.96 (4) |
Bi2xiv—Ti2—Ti1xviii | 62.995 (19) | Ti1iv—Bi3—Ti1xxvii | 60.96 (4) |
Bi2xv—Ti2—Ti1xviii | 117.005 (19) | Ti1iii—Bi3—Ti1xxvii | 137.96 (3) |
Ti1xvi—Ti2—Ti1xviii | 62.01 (4) | Ti1xxvi—Bi3—Ti1xxvii | 137.96 (3) |
Ti1v—Ti2—Ti1xviii | 117.99 (4) | Ti1iv—Bi3—Bi2xxviii | 160.38 (2) |
Ti1xvii—Ti2—Ti1xviii | 180.00 (4) | Ti1iii—Bi3—Bi2xxviii | 56.443 (9) |
Bi1v—Ti3—Bi1iv | 66.09 (4) | Ti1xxvi—Bi3—Bi2xxviii | 56.443 (9) |
Bi1v—Ti3—Bi1xviii | 66.09 (4) | Ti1xxvii—Bi3—Bi2xxviii | 99.42 (2) |
Bi1iv—Ti3—Bi1xviii | 100.91 (7) | Ti1iv—Bi3—Bi2xxv | 56.443 (9) |
Bi1v—Ti3—Bi1 | 100.91 (7) | Ti1iii—Bi3—Bi2xxv | 160.38 (2) |
Bi1iv—Ti3—Bi1 | 66.09 (4) | Ti1xxvi—Bi3—Bi2xxv | 99.42 (2) |
Bi1xviii—Ti3—Bi1 | 66.09 (4) | Ti1xxvii—Bi3—Bi2xxv | 56.443 (9) |
Bi1v—Ti3—Bi2xiii | 145.571 (2) | Bi2xxviii—Bi3—Bi2xxv | 114.292 (4) |
Bi1iv—Ti3—Bi2xiii | 88.805 (5) | Ti1iv—Bi3—Bi2xxix | 56.443 (9) |
Bi1xviii—Ti3—Bi2xiii | 145.571 (2) | Ti1iii—Bi3—Bi2xxix | 99.42 (2) |
Bi1—Ti3—Bi2xiii | 88.805 (5) | Ti1xxvi—Bi3—Bi2xxix | 160.38 (2) |
Bi1v—Ti3—Bi2xv | 145.571 (2) | Ti1xxvii—Bi3—Bi2xxix | 56.443 (9) |
Bi1iv—Ti3—Bi2xv | 145.571 (2) | Bi2xxviii—Bi3—Bi2xxix | 114.292 (4) |
Bi1xviii—Ti3—Bi2xv | 88.805 (5) | Bi2xxv—Bi3—Bi2xxix | 100.208 (7) |
Bi1—Ti3—Bi2xv | 88.805 (5) | Ti1iv—Bi3—Bi2xviii | 99.42 (2) |
Bi2xiii—Ti3—Bi2xv | 66.51 (4) | Ti1iii—Bi3—Bi2xviii | 56.443 (9) |
Bi1v—Ti3—Bi2ii | 88.805 (5) | Ti1xxvi—Bi3—Bi2xviii | 56.443 (9) |
Bi1iv—Ti3—Bi2ii | 88.805 (5) | Ti1xxvii—Bi3—Bi2xviii | 160.38 (2) |
Bi1xviii—Ti3—Bi2ii | 145.571 (2) | Bi2xxviii—Bi3—Bi2xviii | 100.208 (7) |
Bi1—Ti3—Bi2ii | 145.571 (2) | Bi2xxv—Bi3—Bi2xviii | 114.292 (4) |
Bi2xiii—Ti3—Bi2ii | 66.51 (4) | Bi2xxix—Bi3—Bi2xviii | 114.292 (4) |
Bi2xv—Ti3—Bi2ii | 101.70 (7) | Ti1xxvii—O1—Ti1xxx | 111.62 (3) |
Bi1v—Ti3—Bi2xix | 88.805 (5) | Ti1xxvii—O1—Ti1iv | 105.25 (7) |
Bi1iv—Ti3—Bi2xix | 145.571 (2) | Ti1xxx—O1—Ti1iv | 111.62 (3) |
Bi1xviii—Ti3—Bi2xix | 88.805 (5) | Ti1xxvii—O1—Ti1i | 111.62 (3) |
Bi1—Ti3—Bi2xix | 145.571 (2) | Ti1xxx—O1—Ti1i | 105.25 (7) |
Bi2xiii—Ti3—Bi2xix | 101.70 (7) | Ti1iv—O1—Ti1i | 111.62 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, −y+1/2, z−1; (iii) −x+1, −y+1, −z+1; (iv) y, −x+1/2, z; (v) −x+1/2, −y+1/2, z; (vi) −x+1/2, −y+3/2, z; (vii) y−1/2, −x+1, −z; (viii) −y+1, x+1/2, −z; (ix) y+1/2, −x+1, −z+1; (x) −y, x+1/2, −z+1; (xi) −x, −y, −z; (xii) −y, x−1/2, −z+1; (xiii) y, −x+1/2, z−1; (xiv) −x, −y, −z+1; (xv) x, y, z−1; (xvi) x−1/2, y−1/2, −z; (xvii) y−1/2, −x, −z; (xviii) −y+1/2, x, z; (xix) −y+1/2, x, z−1; (xx) −x+1/2, −y+1/2, z+1; (xxi) −y+1/2, x, z+1; (xxii) x, y, z+1; (xxiii) y−1/2, −x, −z+1; (xxiv) −y+1, x−1/2, −z+1; (xxv) −x+1, −y, −z+1; (xxvi) x+1/2, y−1/2, −z+1; (xxvii) −y+3/2, x, z; (xxviii) y+1, −x+1/2, z; (xxix) x+1/2, y+1/2, −z+1; (xxx) x+1/2, y−1/2, −z. |
Ti8Bi9 | Ti8Bi9O0.25 | |
Ti1—Ti1 | 2.934 (6) | 2.992 (2) |
Ti1—Ti1 | 3.074 (3) × 2 | 3.1142 (19) × 2 |
Ti1—Ti2 | 3.017 (2) × 2 | 3.0228 (6) × 2 |
Ti1—Bi1 | 2.971 (4) × 2 | 2.9610 (9) × 2 |
Ti1—Bi2 | 2.848 (1) | 2.8305 (11) |
Ti1—Bi2 | 3.074 (5) × 2 | 3.1175 (6) × 2 |
Ti1—Bi3 | 2.945 (4) | 2.9491 (11) |
Ti2—Bi1 | 2.848 (1) × 2 | 2.8488 (2) × 2 |
Ti2—Bi2 | 2.931 (1) × 4 | 2.94278 (11) × 4 |
Ti3—Bi1 | 3.122 (6) × 4 | 3.1227 (16) × 4 |
Ti3—Bi2 | 3.144 (6) × 4 | 3.1434 (16) × 4 |
Ti4—Bi1 | 2.937 (5) × 4 | 2.9398 (13) × 4 |
Ti4—Bi2 | 2.985 (5) × 4 | 2.9771 (13) × 4 |
O1—Ti1 | 1.8824 (11) × 4 |
Acknowledgements
The authors wish to thank Takashi Kamaya for performing the EPMA analysis.
Funding information
This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 16H04494) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.
References
Amano, S., Bogdanovski, D., Yamane, H., Terauchi, M. & Dronskowski, R. (2016). Angew. Chem. Int. Ed. 55, 1652–1657. Web of Science CrossRef Google Scholar
Amano, S. & Yamane, H. (2017). Inorg. Chem. 56, 11610–11618. Web of Science CrossRef Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289–296. Web of Science CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Okamoto, H. (2010). J. Phase Equilib. Diffus. 31, 314–315. CrossRef Google Scholar
Okamoto, H. (2015). J. Phase Equilib. Diffus. 36, 644–655. CrossRef Google Scholar
Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26–30. Web of Science CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamane, H. & Amano, S. (2017). J. Alloys Compd. 701, 967–974. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.