research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Ti8Bi9O0.25 containing inter­stitial oxygen atoms

CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: hisanori.yamane.a1@tohoku.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 July 2018; accepted 21 August 2018; online 24 August 2018)

Single crystals of Ti8Bi9O0.25, titanium bis­muth oxide (8/9/0.25), were obtained from a sample prepared by heating a mixture of Ti, TiO2 and Bi powders in an Ar atmosphere. Single-crystal X-ray analysis revealed that the introduction of O atoms into the structure of Ti8Bi9 retains the space-group type P4/nmm. The oxygen site is located within a Ti4 tetra­hedron (point group symmetry [\overline{4}]m2) that is vacant in the Ti8Bi9 crystal structure. The occupancy of this site is 0.25 (4), and the O—Ti distance is 1.8824 (11) Å.

1. Chemical context

The crystal structure of Ti8Bi9, having the tetra­gonal space group P4/nmm, a = 10.277 (1) Å, c = 7.375 (1) Å, Z = 2, was determined by Richter and Jeitschko (1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]). This compound was identified in Ti–Bi binary phase diagrams (Okamoto, 2010[Okamoto, H. (2010). J. Phase Equilib. Diffus. 31, 314-315.], 2015[Okamoto, H. (2015). J. Phase Equilib. Diffus. 36, 644-655.]), and was also confirmed by powder X-ray diffraction (PXRD) in a study of the Ti–Bi phase diagram (Maruyama et al., 2013[Maruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289-296.]). Recently, the use of a Bi flux has enabled single-crystal growth of a new polymorph of TiO (-phase; Amano et al., 2016[Amano, S., Bogdanovski, D., Yamane, H., Terauchi, M. & Dronskowski, R. (2016). Angew. Chem. Int. Ed. 55, 1652-1657.]) and some new suboxides: Ti8(SnxBi1–x)O7, Ti11.17(Sn0.85Bi0.15)3O10 and Ti12–δGaxBi3–xO10 (Amano & Yamane, 2017[Amano, S. & Yamane, H. (2017). Inorg. Chem. 56, 11610-11618.]; Yamane & Amano, 2017[Yamane, H. & Amano, S. (2017). J. Alloys Compd. 701, 967-974.]). While exploring new suboxides containing Ti using a Bi flux, we also found the title compound, Ti8Bi9O0.25 where inter­stitial O sites are partly occupied.

In the present communication, details of single-crystal growth of Ti8Bi9O0.25 and its comparison with the crystal structure of Ti8Bi9 (Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]) are reported.

2. Structural commentary

Reflections from a single crystal of Ti8Bi9O0.25 could be indexed with a primitive tetra­gonal cell similar to that of the oxygen-free compound Ti8Bi9 (Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]). The differences in the lengths of the a and c axes and in the cell volume from those of Ti8Bi9 were +1.0%, −0.09% and +0.74%, respectively. The reflection conditions observed for the new compound were the same as for Ti8Bi9, revealing space group P4/nmm.

The crystal structure and atomic arrangement for Ti8Bi9O0.25 are depicted in Figs. 1[link] and 2[link], respectively. In the crystal structure of Ti8Bi9 (Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]), the Ti2 site is in a trigonal anti­prism (point group symmetry. .2/m) made up from Bi atoms with Bi—Ti distances of 2.848 (1) and 2.931 (1) Å (Table 1[link]). The Ti3 and Ti4 sites are situated in square anti­prisms in which the Bi—Ti distances range from 2.937 (5) to 3.144 (6) Å. The Ti3- and Ti4-centered Bi14Bi24 square anti­prisms both exhibit point group symmetry 4mm and are arranged along the c axis by sharing the square planes. The Bi1Bi22 triangle plane is shared by the Ti2-centered Bi12Bi24 trigonal anti­prism and the Ti3-centered Bi14Bi24 square anti­prism. In the crystal structure of Ti8Bi9, only the Ti1 site forms a Ti polyhedron. The Ti1—Ti1 distances of the Ti14 tetra­hedron are 2.934 (6) and 3.074 (3) Å. In addition to the three Ti1 sites, each Ti1 site is surrounded by six Bi atoms at distances of 2.945 (4)–3.074 (5) Å, and by two Ti2 sites at a distance of 3.017 (2) Å. The O atom of Ti8Bi9O0.25 is located in the Ti14 tetra­hedron at a site with symmetry [\overline{4}]m2 and with a site occupancy of 0.25 (4). The partial occupation by the O atoms changes the Ti1—Ti1 distances in the tetra­hedron to 2.992 (2) and 3.1142 (19) Å, representing increases of 1.9% and 1.3%, respectively. The Ti1—Bi2 distance is also increased by 1.4%, although the changes in the Ti3—Bi and Ti4—Bi distances are both less than 0.4%.

Table 1
Selected inter­atomic distances (Å) for Ti8Bi9 (Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]) and Ti8Bi9O0.25 (this study)

  Ti8Bi9 Ti8Bi9O0.25
Ti1—Ti1 2.934 (6) 2.992 (2)
Ti1—Ti1 3.074 (3) × 2 3.1142 (19) × 2
Ti1—Ti2 3.017 (2) × 2 3.0228 (6) × 2
Ti1—Bi1 2.971 (4) × 2 2.9610 (9) × 2
Ti1—Bi2 2.848 (1) 2.8305 (11)
Ti1—Bi2 3.074 (5) × 2 3.1175 (6) × 2
Ti1—Bi3 2.945 (4) 2.9491 (11)
Ti2—Bi1 2.848 (1) × 2 2.8488 (2) × 2
Ti2—Bi2 2.931 (1) × 4 2.94278 (11) × 4
Ti3—Bi1 3.122 (6) × 4 3.1227 (16) × 4
Ti3—Bi2 3.144 (6) × 4 3.1434 (16) × 4
Ti4—Bi1 2.937 (5) × 4 2.9398 (13) × 4
Ti4—Bi2 2.985 (5) × 4 2.9771 (13) × 4
O1—Ti1   1.8824 (11) × 4
[Figure 1]
Figure 1
Crystal structure of Ti8Bi9O0.25 drawn with Ti- and O-centered Bi polyhedra. The red part of the O1 sphere in the Ti14 tetra­hedron shows the occupancy.
[Figure 2]
Figure 2
Atomic arrangement around Ti and Bi atoms in the structure of Ti8Bi9O0.25. Displacement ellipsoids are drawn at the 99% probability level. [Symmetry codes: (i) −y, −x + [{1\over 2}], −z; (ii) y + 1, −x + [{1\over 2}], z − 1; (iii) −x + [{1\over 2}], −y + [{1\over 2}], z − 1; (iv) y, −x + [{1\over 2}], z; (v) −x + [{1\over 2}], −y + [{1\over 2}], z; (vi) −x + [{1\over 2}], −y + [{1\over 2}], z − 1; (vii) −x + 1, −y + 1, -z; (viii) −y, x + [{1\over 2}], −z + 1; (ix) x + [{1\over 2}], y − [{1\over 2}], −z; (x) −y + [{3\over 2}], x, z; (xi) −y + [{1\over 2}], x, z − 1; (xii) y, −x + [{1\over 2}], z − 1; (xiii) x + [{1\over 2}], y − [{1\over 2}], −z + 1; (xiv) x, y, z − 1; (xv) −y + [{1\over 2}], x, z.]

The O1—Ti1 distance of 1.8824 (11) Å is inter­mediate between the sums of ionic radii for Ti3+ and O2− (1.91 Å) and Ti2+—O2− (1.845 Å), based on ionic radii of 0.67 and 0.605 Å for Ti3+ and Ti2+, respectively, in sixfold coordination, and an O2− radius of 1.24 Å in fourfold coordination (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The bond-valence sums (BVSs) calculated for the O1 site in the Ti14 tetra­hedron using bond-valence parameters (R0) for Ti4+ (1.815 Å), Ti3+ (1.815 Å) and Ti2+ (1.734 Å) and B = 0.37 (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]; Amano & Yamane, 2017[Amano, S. & Yamane, H. (2017). Inorg. Chem. 56, 11610-11618.]) are 3.33, 3.12 and 2.68 valence units (v.u.), respectively. All of these values are considerably greater than the expected valence value of 2 for an O atom, which may suggest that the O1 site is not fully occupied, or that bond-valence parameters for titanium in lower oxidation states (and/or tetra­hedral coordination) need revision. Complete occupation of O atoms in tetra­hedral sites surrounded by Ti atoms has been reported for the crystal structures of Ti12-δGaxBi3–xO10. In these structures, the Ti—O distances range from 1.957 (3) to 2.291 (3) Å, all of which exceed the value of 1.8824 (11) Å for O1—Ti1 in Ti8Bi9O0.25. The BVSs calculated for the O sites in Ti12–δGaxBi3–xO10 using the parameters for Ti3+ and Ti2+ were found to be in the ranges 2.18–2.21 and 1.87–1.89 v.u., respectively (Amano & Yamane, 2017[Amano, S. & Yamane, H. (2017). Inorg. Chem. 56, 11610-11618.]).

3. Synthesis and crystallization

A sample containing the title compound was prepared by combining 0.85 mmol Ti powder (99.99%, Mitsuwa Chemical Co., Ltd), 0.125 mol TiO2 powder (rutile, 99.99%, Rare Metallic Co., Ltd) and 1.5 mmol Bi powder (99.999%, Mitsuwa Chemical Co., Ltd) in an agate mortar and subsequent pressing into a pellet (Ø 6 mm) under atmospheric conditions. The pellet was placed in a Ta boat that was then transferred into a stainless-steel tube and sealed with a cap in an Ar-filled glove box (MBRAUN; O2 and H2O < 1 ppm). The sealed stainless-steel tube was heated to 1073 K at a rate of approximately 400 K h−1, maintained at this temperature for 10 h, and subsequently cooled to 723 K at a rate of 10 K h−1. Below 723 K, the sample was cooled to room temperature by shutting off the electric power to the heater of the furnace. The resulting sample was crushed and single-crystal fragments of Ti8Bi9O0.25 were extracted. A single crystal for XRD analysis was sealed in a glass capillary. The crushed sample was also analyzed by electron probe microanalysis (EPMA, JEOL, JXA-8200). Only Bi, Ti and O were found in the bulk. The O concentration was greater than the expected values, indicating that some oxidation had occurred while transferring the specimens to the EPMA instrument. In addition to fragments with a Ti:Bi atomic ratio of approximately 8:9, some Bi-rich (>85%) portions and fragments with a Ti:Bi ratio of approximately 3:2 were also identified.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The diffraction data of Ti8Bi9O0.25 were initially analyzed using the Ti8Bi9 model (Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]), and a residual electron density of 8.4 e Å−3 was observed at (3/4, 1/4, 0), which corresponds to the 2a site in the Ti14 tetra­hedron. The O-atom occupancy of this site was refined to be 0.25 (4), resulting in a decrease in R[F2 > 2σ (F2)] from 0.045 to 0.020. For this site an isotropic atomic displacement parameter was considered.

Table 2
Experimental details

Crystal data
Chemical formula Ti8Bi9O0.25
Mr 2267.94
Crystal system, space group Tetragonal, P4/nmm
Temperature (K) 301
a, c (Å) 10.3198 (2), 7.3684 (1)
V3) 784.72 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 104.26
Crystal size (mm) 0.10 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.011, 0.075
No. of measured, independent and observed [I > 2σ(I)] reflections 14767, 1101, 1079
Rint 0.059
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.36
No. of reflections 1101
No. of parameters 34
Δρmax, Δρmin (e Å−3) 1.55, −1.61
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Titanium bismuth oxide (8/9/0.25) top
Crystal data top
Ti8Bi9O0.25Dx = 9.598 Mg m3
Mr = 2267.94Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 9927 reflections
a = 10.3198 (2) Åθ = 2.8–36.3°
c = 7.3684 (1) ŵ = 104.26 mm1
V = 784.72 (3) Å3T = 301 K
Z = 2Granule, black
F(000) = 18500.10 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1101 independent reflections
Radiation source: micro focus sealed tube1079 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.059
ω– and φ–scansθmax = 36.3°, θmin = 2.8°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.011, Tmax = 0.075k = 1617
14767 measured reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 5.5451P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.044Δρmax = 1.55 e Å3
S = 1.36Δρmin = 1.61 e Å3
1101 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
34 parametersExtinction coefficient: 0.00132 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.25000.60505 (11)0.15508 (15)0.00985 (18)
Ti20.00000.00000.00000.0082 (2)
Ti30.25000.25000.0782 (3)0.0161 (4)
Ti40.25000.25000.5769 (3)0.0094 (3)
Bi10.08500 (2)0.08500 (2)0.34804 (3)0.00996 (6)
Bi20.25000.01379 (2)0.80886 (3)0.00990 (6)
Bi30.75000.25000.50000.01392 (9)
O10.75000.25000.00000.001 (6)*0.25 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0095 (4)0.0098 (4)0.0102 (4)0.0000.0000.0005 (3)
Ti20.0073 (3)0.0073 (3)0.0099 (6)0.0006 (4)0.0002 (3)0.0002 (3)
Ti30.0180 (6)0.0180 (6)0.0122 (9)0.0000.0000.000
Ti40.0081 (5)0.0081 (5)0.0119 (8)0.0000.0000.000
Bi10.01015 (7)0.01015 (7)0.00956 (10)0.00054 (6)0.00099 (4)0.00099 (4)
Bi20.00785 (9)0.01194 (10)0.00990 (10)0.0000.0000.00110 (6)
Bi30.01626 (13)0.01626 (13)0.00924 (17)0.0000.0000.000
Geometric parameters (Å, º) top
Ti1—O1i1.8824 (11)Ti4—Bi1v2.9398 (13)
Ti1—Bi2ii2.8305 (11)Ti4—Bi12.9399 (13)
Ti1—Bi3iii2.9491 (11)Ti4—Bi2xviii2.9771 (13)
Ti1—Bi1iv2.9610 (9)Ti4—Bi2v2.9771 (13)
Ti1—Bi1v2.9610 (9)Ti4—Bi2iv2.9771 (13)
Ti1—Ti1vi2.992 (2)Ti4—Bi22.9771 (13)
Ti1—Ti2iv3.0228 (6)Bi1—Ti1xviii2.9610 (9)
Ti1—Ti2v3.0227 (6)Bi1—Ti1v2.9610 (9)
Ti1—Ti1vii3.1142 (19)Bi1—Bi1xiv3.3423 (4)
Ti1—Ti1viii3.1142 (19)Bi1—Bi1iv3.4054 (3)
Ti1—Bi2ix3.1175 (6)Bi1—Bi1xviii3.4054 (3)
Ti1—Bi2x3.1175 (6)Bi2—Ti1xx2.8305 (11)
Ti2—Bi12.8488 (2)Bi2—Ti2xxi2.9428 (1)
Ti2—Bi1xi2.8488 (2)Bi2—Ti2xxii2.9428 (1)
Ti2—Bi2xii2.9428 (1)Bi2—Ti1xxiii3.1175 (6)
Ti2—Bi2xiii2.9428 (1)Bi2—Ti1xxiv3.1175 (6)
Ti2—Bi2xiv2.9428 (1)Bi2—Ti3xxii3.1434 (16)
Ti2—Bi2xv2.9428 (1)Bi2—Bi2xviii3.4474 (3)
Ti2—Ti1xvi3.0228 (6)Bi2—Bi2iv3.4474 (3)
Ti2—Ti1v3.0228 (6)Bi2—Bi3xxv3.5482 (2)
Ti2—Ti1xvii3.0228 (6)Bi3—Ti1iv2.9491 (11)
Ti2—Ti1xviii3.0228 (6)Bi3—Ti1iii2.9491 (11)
Ti3—Bi1v3.1227 (16)Bi3—Ti1xxvi2.9491 (11)
Ti3—Bi1iv3.1227 (16)Bi3—Ti1xxvii2.9491 (11)
Ti3—Bi1xviii3.1227 (16)Bi3—Bi2xxviii3.5482 (2)
Ti3—Bi13.1228 (16)Bi3—Bi2xxv3.5482 (2)
Ti3—Bi2xiii3.1434 (16)Bi3—Bi2xxix3.5482 (2)
Ti3—Bi2xv3.1434 (16)Bi3—Bi2xviii3.5482 (2)
Ti3—Bi2ii3.1434 (16)O1—Ti1xxvii1.8824 (11)
Ti3—Bi2xix3.1434 (16)O1—Ti1xxx1.8824 (11)
Ti4—Bi1iv2.9398 (13)O1—Ti1iv1.8824 (11)
Ti4—Bi1xviii2.9398 (13)O1—Ti1i1.8824 (11)
O1i—Ti1—Bi2ii78.30 (4)Bi2xv—Ti3—Bi2xix66.51 (4)
O1i—Ti1—Bi3iii96.90 (4)Bi2ii—Ti3—Bi2xix66.51 (4)
Bi2ii—Ti1—Bi3iii175.19 (4)Bi1iv—Ti4—Bi1xviii109.99 (7)
O1i—Ti1—Bi1iv144.872 (13)Bi1iv—Ti4—Bi1v70.79 (4)
Bi2ii—Ti1—Bi1iv98.38 (3)Bi1xviii—Ti4—Bi1v70.79 (4)
Bi3iii—Ti1—Bi1iv85.54 (3)Bi1iv—Ti4—Bi170.79 (4)
O1i—Ti1—Bi1v144.872 (13)Bi1xviii—Ti4—Bi170.79 (4)
Bi2ii—Ti1—Bi1v98.38 (3)Bi1v—Ti4—Bi1109.99 (7)
Bi3iii—Ti1—Bi1v85.54 (3)Bi1iv—Ti4—Bi2xviii143.472 (1)
Bi1iv—Ti1—Bi1v70.21 (3)Bi1xviii—Ti4—Bi2xviii81.667 (5)
O1i—Ti1—Ti1vi37.37 (3)Bi1v—Ti4—Bi2xviii81.667 (5)
Bi2ii—Ti1—Ti1vi115.67 (2)Bi1—Ti4—Bi2xviii143.471 (2)
Bi3iii—Ti1—Ti1vi59.52 (2)Bi1iv—Ti4—Bi2v81.667 (5)
Bi1iv—Ti1—Ti1vi131.482 (19)Bi1xviii—Ti4—Bi2v143.472 (1)
Bi1v—Ti1—Ti1vi131.482 (19)Bi1v—Ti4—Bi2v81.667 (5)
O1i—Ti1—Ti2iv93.18 (3)Bi1—Ti4—Bi2v143.471 (1)
Bi2ii—Ti1—Ti2iv60.259 (18)Bi2xviii—Ti4—Bi2v70.76 (4)
Bi3iii—Ti1—Ti2iv120.510 (18)Bi1iv—Ti4—Bi2iv81.667 (5)
Bi1iv—Ti1—Ti2iv56.850 (12)Bi1xviii—Ti4—Bi2iv143.472 (1)
Bi1v—Ti1—Ti2iv115.77 (3)Bi1v—Ti4—Bi2iv143.472 (1)
Ti1vi—Ti1—Ti2iv111.02 (2)Bi1—Ti4—Bi2iv81.667 (5)
O1i—Ti1—Ti2v93.18 (3)Bi2xviii—Ti4—Bi2iv109.93 (7)
Bi2ii—Ti1—Ti2v60.259 (18)Bi2v—Ti4—Bi2iv70.76 (4)
Bi3iii—Ti1—Ti2v120.510 (18)Bi1iv—Ti4—Bi2143.472 (1)
Bi1iv—Ti1—Ti2v115.77 (3)Bi1xviii—Ti4—Bi281.668 (5)
Bi1v—Ti1—Ti2v56.850 (12)Bi1v—Ti4—Bi2143.472 (2)
Ti1vi—Ti1—Ti2v111.02 (2)Bi1—Ti4—Bi281.667 (5)
Ti2iv—Ti1—Ti2v117.19 (4)Bi2xviii—Ti4—Bi270.76 (4)
O1i—Ti1—Ti1vii34.188 (17)Bi2v—Ti4—Bi2109.93 (7)
Bi2ii—Ti1—Ti1vii63.05 (3)Bi2iv—Ti4—Bi270.76 (4)
Bi3iii—Ti1—Ti1vii112.88 (4)Ti2—Bi1—Ti4150.82 (4)
Bi1iv—Ti1—Ti1vii113.225 (13)Ti2—Bi1—Ti1xviii62.668 (16)
Bi1v—Ti1—Ti1vii161.22 (5)Ti4—Bi1—Ti1xviii109.028 (19)
Ti1vi—Ti1—Ti1vii61.29 (2)Ti2—Bi1—Ti1v62.668 (16)
Ti2iv—Ti1—Ti1vii58.99 (2)Ti4—Bi1—Ti1v109.028 (19)
Ti2v—Ti1—Ti1vii107.75 (4)Ti1xviii—Bi1—Ti1v122.09 (4)
O1i—Ti1—Ti1viii34.188 (17)Ti2—Bi1—Ti376.27 (4)
Bi2ii—Ti1—Ti1viii63.05 (3)Ti4—Bi1—Ti374.55 (5)
Bi3iii—Ti1—Ti1viii112.88 (4)Ti1xviii—Bi1—Ti375.04 (2)
Bi1iv—Ti1—Ti1viii161.22 (5)Ti1v—Bi1—Ti375.04 (2)
Bi1v—Ti1—Ti1viii113.225 (13)Ti2—Bi1—Bi1xiv106.253 (10)
Ti1vi—Ti1—Ti1viii61.29 (2)Ti4—Bi1—Bi1xiv102.93 (4)
Ti2iv—Ti1—Ti1viii107.75 (4)Ti1xviii—Bi1—Bi1xiv106.02 (2)
Ti2v—Ti1—Ti1viii58.99 (2)Ti1v—Bi1—Bi1xiv106.02 (2)
Ti1vii—Ti1—Ti1viii57.42 (4)Ti3—Bi1—Bi1xiv177.48 (4)
O1i—Ti1—Bi2ix70.76 (2)Ti2—Bi1—Bi1iv107.934 (3)
Bi2ii—Ti1—Bi2ix106.54 (2)Ti4—Bi1—Bi1iv54.606 (18)
Bi3iii—Ti1—Bi2ix71.53 (2)Ti1xviii—Bi1—Bi1iv54.897 (13)
Bi1iv—Ti1—Bi2ix141.17 (3)Ti1v—Bi1—Bi1iv131.480 (19)
Bi1v—Ti1—Bi2ix76.984 (10)Ti3—Bi1—Bi1iv56.957 (19)
Ti1vi—Ti1—Bi2ix61.325 (18)Bi1xiv—Bi1—Bi1iv121.663 (4)
Ti2iv—Ti1—Bi2ix161.73 (4)Ti2—Bi1—Bi1xviii107.934 (3)
Ti2v—Ti1—Bi2ix57.249 (4)Ti4—Bi1—Bi1xviii54.606 (18)
Ti1vii—Ti1—Bi2ix104.57 (2)Ti1xviii—Bi1—Bi1xviii131.480 (19)
Ti1viii—Ti1—Bi2ix54.03 (3)Ti1v—Bi1—Bi1xviii54.897 (13)
O1i—Ti1—Bi2x70.76 (2)Ti3—Bi1—Bi1xviii56.957 (19)
Bi2ii—Ti1—Bi2x106.54 (2)Bi1xiv—Bi1—Bi1xviii121.663 (4)
Bi3iii—Ti1—Bi2x71.53 (2)Bi1iv—Bi1—Bi1xviii90.0
Bi1iv—Ti1—Bi2x76.984 (10)Ti1xx—Bi2—Ti2xxi63.110 (6)
Bi1v—Ti1—Bi2x141.17 (3)Ti1xx—Bi2—Ti2xxii63.110 (6)
Ti1vi—Ti1—Bi2x61.325 (18)Ti2xxi—Bi2—Ti2xxii122.496 (7)
Ti2iv—Ti1—Bi2x57.249 (5)Ti1xx—Bi2—Ti4150.71 (4)
Ti2v—Ti1—Bi2x161.73 (4)Ti2xxi—Bi2—Ti4108.320 (15)
Ti1vii—Ti1—Bi2x54.03 (3)Ti2xxii—Bi2—Ti4108.320 (14)
Ti1viii—Ti1—Bi2x104.57 (2)Ti1xx—Bi2—Ti1xxiii62.93 (4)
Bi2ix—Ti1—Bi2x121.67 (4)Ti2xxi—Bi2—Ti1xxiii109.73 (2)
Bi1—Ti2—Bi1xi180.0Ti2xxii—Bi2—Ti1xxiii59.756 (18)
Bi1—Ti2—Bi2xii81.606 (5)Ti4—Bi2—Ti1xxiii139.81 (3)
Bi1xi—Ti2—Bi2xii98.393 (5)Ti1xx—Bi2—Ti1xxiv62.93 (4)
Bi1—Ti2—Bi2xiii98.394 (5)Ti2xxi—Bi2—Ti1xxiv59.756 (18)
Bi1xi—Ti2—Bi2xiii81.607 (5)Ti2xxii—Bi2—Ti1xxiv109.73 (2)
Bi2xii—Ti2—Bi2xiii180.0Ti4—Bi2—Ti1xxiv139.81 (3)
Bi1—Ti2—Bi2xiv81.606 (5)Ti1xxiii—Bi2—Ti1xxiv57.35 (4)
Bi1xi—Ti2—Bi2xiv98.393 (5)Ti1xx—Bi2—Ti3xxii76.52 (4)
Bi2xii—Ti2—Bi2xiv71.710 (9)Ti2xxi—Bi2—Ti3xxii74.653 (16)
Bi2xiii—Ti2—Bi2xiv108.290 (9)Ti2xxii—Bi2—Ti3xxii74.653 (16)
Bi1—Ti2—Bi2xv98.394 (5)Ti4—Bi2—Ti3xxii74.19 (5)
Bi1xi—Ti2—Bi2xv81.607 (5)Ti1xxiii—Bi2—Ti3xxii128.56 (3)
Bi2xii—Ti2—Bi2xv108.290 (9)Ti1xxiv—Bi2—Ti3xxii128.56 (3)
Bi2xiii—Ti2—Bi2xv71.710 (9)Ti1xx—Bi2—Bi2xviii107.841 (15)
Bi2xiv—Ti2—Bi2xv180.0Ti2xxi—Bi2—Bi2xviii54.145 (4)
Bi1—Ti2—Ti1xvi119.52 (2)Ti2xxii—Bi2—Bi2xviii130.853 (4)
Bi1xi—Ti2—Ti1xvi60.48 (2)Ti4—Bi2—Bi2xviii54.621 (18)
Bi2xii—Ti2—Ti1xvi117.005 (19)Ti1xxiii—Bi2—Bi2xviii163.087 (18)
Bi2xiii—Ti2—Ti1xvi62.995 (19)Ti1xxiv—Bi2—Bi2xviii106.151 (18)
Bi2xiv—Ti2—Ti1xvi56.632 (18)Ti3xxii—Bi2—Bi2xviii56.746 (19)
Bi2xv—Ti2—Ti1xvi123.369 (18)Ti1xx—Bi2—Bi2iv107.841 (15)
Bi1—Ti2—Ti1v60.48 (2)Ti2xxi—Bi2—Bi2iv130.853 (4)
Bi1xi—Ti2—Ti1v119.52 (2)Ti2xxii—Bi2—Bi2iv54.145 (4)
Bi2xii—Ti2—Ti1v62.995 (19)Ti4—Bi2—Bi2iv54.621 (18)
Bi2xiii—Ti2—Ti1v117.005 (19)Ti1xxiii—Bi2—Bi2iv106.151 (18)
Bi2xiv—Ti2—Ti1v123.369 (18)Ti1xxiv—Bi2—Bi2iv163.087 (18)
Bi2xv—Ti2—Ti1v56.632 (18)Ti3xxii—Bi2—Bi2iv56.746 (19)
Ti1xvi—Ti2—Ti1v180.00 (4)Bi2xviii—Bi2—Bi2iv90.0
Bi1—Ti2—Ti1xvii119.52 (2)Ti1xx—Bi2—Bi3xxv104.22 (2)
Bi1xi—Ti2—Ti1xvii60.48 (2)Ti2xxi—Bi2—Bi3xxv105.657 (5)
Bi2xii—Ti2—Ti1xvii56.631 (18)Ti2xxii—Bi2—Bi3xxv105.657 (5)
Bi2xiii—Ti2—Ti1xvii123.369 (18)Ti4—Bi2—Bi3xxv105.07 (4)
Bi2xiv—Ti2—Ti1xvii117.005 (19)Ti1xxiii—Bi2—Bi3xxv52.029 (19)
Bi2xv—Ti2—Ti1xvii62.995 (19)Ti1xxiv—Bi2—Bi3xxv52.029 (19)
Ti1xvi—Ti2—Ti1xvii117.99 (4)Ti3xxii—Bi2—Bi3xxv179.25 (4)
Ti1v—Ti2—Ti1xvii62.01 (4)Bi2xviii—Bi2—Bi3xxv122.853 (2)
Bi1—Ti2—Ti1xviii60.48 (2)Bi2iv—Bi2—Bi3xxv122.853 (2)
Bi1xi—Ti2—Ti1xviii119.52 (2)Ti1iv—Bi3—Ti1iii137.96 (3)
Bi2xii—Ti2—Ti1xviii123.369 (18)Ti1iv—Bi3—Ti1xxvi137.96 (3)
Bi2xiii—Ti2—Ti1xviii56.631 (18)Ti1iii—Bi3—Ti1xxvi60.96 (4)
Bi2xiv—Ti2—Ti1xviii62.995 (19)Ti1iv—Bi3—Ti1xxvii60.96 (4)
Bi2xv—Ti2—Ti1xviii117.005 (19)Ti1iii—Bi3—Ti1xxvii137.96 (3)
Ti1xvi—Ti2—Ti1xviii62.01 (4)Ti1xxvi—Bi3—Ti1xxvii137.96 (3)
Ti1v—Ti2—Ti1xviii117.99 (4)Ti1iv—Bi3—Bi2xxviii160.38 (2)
Ti1xvii—Ti2—Ti1xviii180.00 (4)Ti1iii—Bi3—Bi2xxviii56.443 (9)
Bi1v—Ti3—Bi1iv66.09 (4)Ti1xxvi—Bi3—Bi2xxviii56.443 (9)
Bi1v—Ti3—Bi1xviii66.09 (4)Ti1xxvii—Bi3—Bi2xxviii99.42 (2)
Bi1iv—Ti3—Bi1xviii100.91 (7)Ti1iv—Bi3—Bi2xxv56.443 (9)
Bi1v—Ti3—Bi1100.91 (7)Ti1iii—Bi3—Bi2xxv160.38 (2)
Bi1iv—Ti3—Bi166.09 (4)Ti1xxvi—Bi3—Bi2xxv99.42 (2)
Bi1xviii—Ti3—Bi166.09 (4)Ti1xxvii—Bi3—Bi2xxv56.443 (9)
Bi1v—Ti3—Bi2xiii145.571 (2)Bi2xxviii—Bi3—Bi2xxv114.292 (4)
Bi1iv—Ti3—Bi2xiii88.805 (5)Ti1iv—Bi3—Bi2xxix56.443 (9)
Bi1xviii—Ti3—Bi2xiii145.571 (2)Ti1iii—Bi3—Bi2xxix99.42 (2)
Bi1—Ti3—Bi2xiii88.805 (5)Ti1xxvi—Bi3—Bi2xxix160.38 (2)
Bi1v—Ti3—Bi2xv145.571 (2)Ti1xxvii—Bi3—Bi2xxix56.443 (9)
Bi1iv—Ti3—Bi2xv145.571 (2)Bi2xxviii—Bi3—Bi2xxix114.292 (4)
Bi1xviii—Ti3—Bi2xv88.805 (5)Bi2xxv—Bi3—Bi2xxix100.208 (7)
Bi1—Ti3—Bi2xv88.805 (5)Ti1iv—Bi3—Bi2xviii99.42 (2)
Bi2xiii—Ti3—Bi2xv66.51 (4)Ti1iii—Bi3—Bi2xviii56.443 (9)
Bi1v—Ti3—Bi2ii88.805 (5)Ti1xxvi—Bi3—Bi2xviii56.443 (9)
Bi1iv—Ti3—Bi2ii88.805 (5)Ti1xxvii—Bi3—Bi2xviii160.38 (2)
Bi1xviii—Ti3—Bi2ii145.571 (2)Bi2xxviii—Bi3—Bi2xviii100.208 (7)
Bi1—Ti3—Bi2ii145.571 (2)Bi2xxv—Bi3—Bi2xviii114.292 (4)
Bi2xiii—Ti3—Bi2ii66.51 (4)Bi2xxix—Bi3—Bi2xviii114.292 (4)
Bi2xv—Ti3—Bi2ii101.70 (7)Ti1xxvii—O1—Ti1xxx111.62 (3)
Bi1v—Ti3—Bi2xix88.805 (5)Ti1xxvii—O1—Ti1iv105.25 (7)
Bi1iv—Ti3—Bi2xix145.571 (2)Ti1xxx—O1—Ti1iv111.62 (3)
Bi1xviii—Ti3—Bi2xix88.805 (5)Ti1xxvii—O1—Ti1i111.62 (3)
Bi1—Ti3—Bi2xix145.571 (2)Ti1xxx—O1—Ti1i105.25 (7)
Bi2xiii—Ti3—Bi2xix101.70 (7)Ti1iv—O1—Ti1i111.62 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z1; (iii) x+1, y+1, z+1; (iv) y, x+1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+3/2, z; (vii) y1/2, x+1, z; (viii) y+1, x+1/2, z; (ix) y+1/2, x+1, z+1; (x) y, x+1/2, z+1; (xi) x, y, z; (xii) y, x1/2, z+1; (xiii) y, x+1/2, z1; (xiv) x, y, z+1; (xv) x, y, z1; (xvi) x1/2, y1/2, z; (xvii) y1/2, x, z; (xviii) y+1/2, x, z; (xix) y+1/2, x, z1; (xx) x+1/2, y+1/2, z+1; (xxi) y+1/2, x, z+1; (xxii) x, y, z+1; (xxiii) y1/2, x, z+1; (xxiv) y+1, x1/2, z+1; (xxv) x+1, y, z+1; (xxvi) x+1/2, y1/2, z+1; (xxvii) y+3/2, x, z; (xxviii) y+1, x+1/2, z; (xxix) x+1/2, y+1/2, z+1; (xxx) x+1/2, y1/2, z.
Selected interatomic distances (Å) for Ti8Bi9 (Richter &amp; Jeitschko, 1997) and Ti8Bi9O0.25 (this study) top
Ti8Bi9Ti8Bi9O0.25
Ti1—Ti12.934 (6)2.992 (2)
Ti1—Ti13.074 (3) × 23.1142 (19) × 2
Ti1—Ti23.017 (2) × 23.0228 (6) × 2
Ti1—Bi12.971 (4) × 22.9610 (9) × 2
Ti1—Bi22.848 (1)2.8305 (11)
Ti1—Bi23.074 (5) × 23.1175 (6) × 2
Ti1—Bi32.945 (4)2.9491 (11)
Ti2—Bi12.848 (1) × 22.8488 (2) × 2
Ti2—Bi22.931 (1) × 42.94278 (11) × 4
Ti3—Bi13.122 (6) × 43.1227 (16) × 4
Ti3—Bi23.144 (6) × 43.1434 (16) × 4
Ti4—Bi12.937 (5) × 42.9398 (13) × 4
Ti4—Bi22.985 (5) × 42.9771 (13) × 4
O1—Ti11.8824 (11) × 4
 

Acknowledgements

The authors wish to thank Takashi Kamaya for performing the EPMA analysis.

Funding information

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 16H04494) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

References

First citationAmano, S., Bogdanovski, D., Yamane, H., Terauchi, M. & Dronskowski, R. (2016). Angew. Chem. Int. Ed. 55, 1652–1657.  Web of Science CrossRef Google Scholar
First citationAmano, S. & Yamane, H. (2017). Inorg. Chem. 56, 11610–11618.  Web of Science CrossRef Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289–296.  Web of Science CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, H. (2010). J. Phase Equilib. Diffus. 31, 314–315.  CrossRef Google Scholar
First citationOkamoto, H. (2015). J. Phase Equilib. Diffus. 36, 644–655.  CrossRef Google Scholar
First citationRichter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26–30.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamane, H. & Amano, S. (2017). J. Alloys Compd. 701, 967–974.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds