research communications
Na1.85Mg1.85In1.15(PO4)3 and Ag1.69Mg1.69In1.31(PO4)3 with alluaudite-type structures
aLaboratoire de Chimie Appliquée des Matériaux, Centre Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bUniversité de Valenciennes, EA 2443 – LMCPA – Laboratoire des Matériaux Céramiques et Procédés Associés, F-59313 Valenciennes, France
*Correspondence e-mail: a_ouldsaleck@yahoo.fr
Single crystals of two new phosphates, sodium magnesium indium(III) tris(orthophosphate) and silver magnesium indium(III) tris(orthophosphate), were obtained from solid-state reactions. The two phosphates are isotypic and exhibit alluaudite-type structures. They are characterized by a cationic disorder of the Mg and In sites and a partial occupation of the Na and Ag sites, respectively. The structure of both phosphates is made up of chains of edge-sharing [(Mg,In)O6] octahedra extending parallel to [10]. Adjacent chains are linked by PO4 tetrahedra to form a three-dimensional framework delimiting two types of channels parallel to [001] in which the monovalent cations are situated. The coordination numbers of the Na+ cations are 6 and 8, and for both Ag+ cations 6. The corresponding coordination spheres are considerably distorted.
Keywords: crystal structure; mixed-metal phosphate; solid-state reaction; disorder; alluaudite.
1. Chemical context
The ). Since then, many new members of this structure type, including phosphates, arsenates, molybdates, sulfates and, more recently, vanadates have been synthesized and structurally characterized. The growing interest in these kinds of materials is related to their interesting physical properties, in particular in electrochemistry and battery research. For example, the phosphate Na2Ni2Fe(PO4)3 (Essehli et al., 2015) is a promising cathode in sodium batteries since its electrochemical behaviour is comparable to that of LiFePO4. In this context, alluaudite-type phosphates such as Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015), Ag1.655Co1.647Fe1.352(PO4)3 (Bouraima et al., 2017) and the vanadate (Na0.7)(Na0.70, Mn0.30) (Fe3+, Fe2+)2Fe2+(VO4)3 (Benhsina et al., 2016) have been investigated by our group.
of the mineral alluaudite was determined by Moore (1971In the present work, the synthesis and 1.85Mg1.85In1.15(PO4)3 (I) and Ag1.69Mg1.69In1.31(PO4)3 (II) are reported.
of two new magnesium-based alluaudite-type phosphates with composition Na2. Structural commentary
In the crystal structures of the two isotypic phosphates (I) and (II), site Na1 (Ag1) shows full occupancy and is located on an inversion centre (Wyckoff position 4b), and one mixed-occupied (Mg/In)2 site [occupancy ratio Mg:In = 0.51:0.49 for (I) and 0.314:0.686 for (II)], the second partially occupied Na2 (Ag2) site [occupancy 0.848 (9) for (I) and 0.6988 for (II)] and the P1 site are located on twofold rotation axes (4e) of type C2/c. There is another mixed-occupancy (Mg,In)1 site in a general position (8f) with occupancy ratios Mg:In = 0.68:0.32 for (I) and 0.687 (2):0.314 (2) for (II). This kind of cationic disorder is a characteristic feature of alluaudite-type structures. The principal building units in the crystal structures of (I) and (II) are [(Mg/In)1O6] and [(Mg,In)2O6] octahedra and two PO4 tetrahedra (Figs. 1 and 2). Two [(Mg/In)1O6] octahedra are linked together by a common edge into an [(Mg/In)1)2O10] dimer. These dimers are connected through edge-sharing with [(Mg/In)2O6] octahedra into undulating chains extending parallel to [10] (Fig. 3). Adjacent chains are linked together by P1O4 and P2O4 tetrahedra into (010) sheets, as shown in Fig. 4. Neighbouring sheets are finally fused into a three-dimensional framework structure by P1O4 tetrahedra. This framework delimits two types of hexagonal channels oriented parallel to [001], in which the Na+ (for (I) or Ag+ (for (II) cations are located (Fig. 5). The Na—O distances fall in the range 2.307 (2)–2.960 (2) Å with coordination numbers of six for Na1 and eight for Na2, while those for Ag—O vary between 2.345 (2) and 2.963 (2) Å, with coordination numbers of six for both Ag+ cations.
3. Database Survey
The presence of disordered alkali metal or other cations in the channels of alluaudite-type structures is a concomitant feature of the cationic disorder at the octahedral sites, as observed for example in Cu1.35Fe3(PO4)3 (Warner et al., 1993), (Na0.38,Ca0.31)MgFe2(PO4)3 (Zid et al., 2005), K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011), NaFe3.67(PO4)3 (Korzenski et al., 1998), Na1.25Mg1.10Fe1.90(PO4)3 (Hidouri et al., 2008), Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006), Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003), Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015) or Ag1.655Co1.647Fe1.352(PO4)3 (Bouraima et al., 2017).
4. Synthesis and crystallization
Single crystals of (I) and (II) were grown by solid-state reactions. The starting mixtures comprising of Mg(NO3)2·6H2O (Sigma–Aldrich, 97%), InI3 (Ventron, 99%), NH4H2PO4 (Alfa Aesar, 98%), ANO3 (A = Na or Ag) (NaNO3: Acros Organics, 99%; AgNO3: Sigma–Aldrich, 99%) were weighted in molar ratios A:Zn:In:P = 2:2:1:3 and placed in a platinum cruicible. After intermediate grinding and temperature treatments at 573, 673, 773 and 873 K in a platinum crucible, both mixtures were heated at 1373 K above the melting temperatures. The cruicibles were then cooled slowly to 1093 K at a rate of 5 K h−1, followed by cooling to room temperature after switching off the furnace. Transparent, colourless crystals with a blocky form were isolated from the two final products. The bulk products were not checked for phase purity.
5. Refinement
Crystal data, data collection and structure . In the initial stages of the refinements the occupancies of the disordered sodium (Na2) or silver (Ag2) sites were refined freely and the mixed-occupancy (Mg/In) sites were refined under consideration of full occupancy for each of these sites. The obtained occupancy rates of Mg:In were rounded and subsequently fixed for charge-neutrality of the compounds. The maximum and minimum electron densities are located 0.55 Å from Mg2 and 0.38 Å from P1 for (I) and 0.78 and 0.59 Å, respectively, from Ag2 for (II).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989018011799/wm5457sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011799/wm5457Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018011799/wm5457IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Na1.85Mg1.85In1.15(PO4)3 | F(000) = 960 |
Mr = 504.46 | Dx = 3.713 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9796 (13) Å | Cell parameters from 2076 reflections |
b = 12.6935 (13) Å | θ = 2.5–35.6° |
c = 6.5239 (7) Å | µ = 3.82 mm−1 |
β = 114.555 (3)° | T = 296 K |
V = 902.33 (17) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.24 × 0.20 mm |
Bruker X8 APEXII diffractometer | 2076 independent reflections |
Radiation source: fine-focus sealed tube | 2012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 35.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −19→19 |
Tmin = 0.596, Tmax = 0.748 | k = −20→20 |
21364 measured reflections | l = −10→4 |
Refinement on F2 | 97 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0082P)2 + 5.6344P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = 0.001 |
S = 1.29 | Δρmax = 0.64 e Å−3 |
2076 reflections | Δρmin = −0.88 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.71903 (3) | 0.84384 (2) | 0.13247 (5) | 0.00578 (6) | 0.68 |
In1 | 0.71903 (3) | 0.84384 (2) | 0.13247 (5) | 0.00578 (6) | 0.32 |
In2 | 0.500000 | 0.73266 (2) | 0.250000 | 0.00619 (6) | 0.51 |
Mg2 | 0.500000 | 0.73266 (2) | 0.250000 | 0.00619 (6) | 0.49 |
P1 | 0.76657 (4) | 0.60997 (4) | 0.37446 (8) | 0.00665 (8) | |
P2 | 0.500000 | 0.29168 (6) | 0.250000 | 0.00702 (11) | |
Na1 | 0.500000 | 0.500000 | 0.000000 | 0.0261 (4) | |
Na2 | 1.000000 | 0.4813 (2) | 0.750000 | 0.0369 (8) | 0.848 (9) |
O1 | 0.77790 (14) | 0.67695 (12) | 0.1877 (2) | 0.0092 (2) | |
O2 | 0.83997 (14) | 0.66480 (12) | 0.6061 (2) | 0.0096 (2) | |
O3 | 0.82556 (15) | 0.50207 (12) | 0.3858 (3) | 0.0126 (3) | |
O4 | 0.62982 (14) | 0.60255 (13) | 0.3291 (3) | 0.0128 (3) | |
O5 | 0.59943 (14) | 0.36515 (12) | 0.2450 (3) | 0.0124 (3) | |
O6 | 0.45840 (13) | 0.22035 (12) | 0.0372 (2) | 0.0099 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00607 (11) | 0.00594 (11) | 0.00620 (11) | −0.00056 (8) | 0.00342 (8) | −0.00092 (8) |
In1 | 0.00607 (11) | 0.00594 (11) | 0.00620 (11) | −0.00056 (8) | 0.00342 (8) | −0.00092 (8) |
In2 | 0.00700 (12) | 0.00580 (11) | 0.00657 (11) | 0.000 | 0.00360 (9) | 0.000 |
Mg2 | 0.00700 (12) | 0.00580 (11) | 0.00657 (11) | 0.000 | 0.00360 (9) | 0.000 |
P1 | 0.00876 (19) | 0.00636 (18) | 0.00521 (17) | −0.00120 (14) | 0.00328 (15) | −0.00039 (14) |
P2 | 0.0072 (3) | 0.0077 (3) | 0.0054 (2) | 0.000 | 0.0018 (2) | 0.000 |
Na1 | 0.0375 (9) | 0.0121 (6) | 0.0156 (6) | 0.0017 (6) | −0.0020 (6) | 0.0029 (5) |
Na2 | 0.0228 (11) | 0.0569 (17) | 0.0235 (11) | 0.000 | 0.0020 (8) | 0.000 |
O1 | 0.0121 (6) | 0.0098 (6) | 0.0062 (5) | −0.0004 (5) | 0.0044 (5) | 0.0014 (4) |
O2 | 0.0136 (6) | 0.0099 (6) | 0.0053 (5) | −0.0027 (5) | 0.0039 (5) | −0.0017 (4) |
O3 | 0.0189 (7) | 0.0062 (5) | 0.0135 (6) | 0.0003 (5) | 0.0077 (5) | −0.0009 (5) |
O4 | 0.0109 (6) | 0.0136 (6) | 0.0156 (7) | −0.0035 (5) | 0.0072 (5) | −0.0016 (5) |
O5 | 0.0090 (6) | 0.0111 (6) | 0.0155 (7) | −0.0012 (5) | 0.0036 (5) | 0.0053 (5) |
O6 | 0.0083 (5) | 0.0131 (6) | 0.0076 (5) | 0.0007 (5) | 0.0026 (4) | −0.0026 (5) |
Mg1—O5i | 1.9992 (16) | P2—O6v | 1.5558 (15) |
Mg1—O3i | 2.0690 (16) | P2—O6 | 1.5558 (15) |
Mg1—O2ii | 2.1030 (15) | Na1—O5iii | 2.3068 (15) |
Mg1—O6iii | 2.1099 (15) | Na1—O5 | 2.3068 (15) |
Mg1—O1iv | 2.1207 (14) | Na1—O4 | 2.4387 (16) |
Mg1—O1 | 2.2144 (15) | Na1—O4iii | 2.4388 (16) |
In2—O4v | 2.1783 (17) | Na1—O4viii | 2.6072 (15) |
In2—O4 | 2.1784 (17) | Na1—O4v | 2.6072 (15) |
In2—O2ii | 2.1807 (15) | Na1—O5viii | 2.9603 (17) |
In2—O2vi | 2.1807 (15) | Na1—O5v | 2.9603 (17) |
In2—O6vii | 2.2115 (15) | Na2—O3 | 2.4401 (17) |
In2—O6iii | 2.2115 (15) | Na2—O3ix | 2.4401 (17) |
P1—O3 | 1.5287 (16) | Na2—O3x | 2.5955 (17) |
P1—O1 | 1.5373 (15) | Na2—O3vii | 2.5955 (17) |
P1—O4 | 1.5419 (16) | Na2—O6xi | 2.856 (3) |
P1—O2 | 1.5609 (15) | Na2—O6xii | 2.856 (3) |
P2—O5 | 1.5238 (16) | Na2—O2 | 2.913 (3) |
P2—O5v | 1.5238 (16) | Na2—O2ix | 2.913 (3) |
O5i—Mg1—O3i | 95.94 (6) | O5—Na1—O4viii | 72.41 (6) |
O5i—Mg1—O2ii | 111.05 (6) | O4—Na1—O4viii | 111.56 (7) |
O3i—Mg1—O2ii | 86.09 (6) | O4iii—Na1—O4viii | 68.44 (7) |
O5i—Mg1—O6iii | 162.43 (6) | O5iii—Na1—O4v | 72.41 (6) |
O3i—Mg1—O6iii | 99.50 (6) | O5—Na1—O4v | 107.59 (6) |
O2ii—Mg1—O6iii | 78.50 (6) | O4—Na1—O4v | 68.44 (7) |
O5i—Mg1—O1iv | 87.10 (6) | O4iii—Na1—O4v | 111.56 (7) |
O3i—Mg1—O1iv | 100.00 (6) | O4viii—Na1—O4v | 180.0 |
O2ii—Mg1—O1iv | 160.31 (6) | O5iii—Na1—O5viii | 52.70 (6) |
O6iii—Mg1—O1iv | 82.03 (6) | O5—Na1—O5viii | 127.30 (6) |
O5i—Mg1—O1 | 81.05 (6) | O4—Na1—O5viii | 85.86 (5) |
O3i—Mg1—O1 | 174.39 (6) | O4iii—Na1—O5viii | 94.14 (5) |
O2ii—Mg1—O1 | 90.57 (6) | O4viii—Na1—O5viii | 66.27 (5) |
O6iii—Mg1—O1 | 84.22 (6) | O4v—Na1—O5viii | 113.73 (5) |
O1iv—Mg1—O1 | 84.63 (6) | O5iii—Na1—O5v | 127.30 (6) |
O4v—In2—O4 | 81.40 (8) | O5—Na1—O5v | 52.70 (6) |
O4v—In2—O2ii | 165.44 (6) | O4—Na1—O5v | 94.14 (5) |
O4—In2—O2ii | 86.40 (6) | O4iii—Na1—O5v | 85.86 (5) |
O4v—In2—O2vi | 86.40 (6) | O4viii—Na1—O5v | 113.73 (5) |
O4—In2—O2vi | 165.44 (6) | O4v—Na1—O5v | 66.27 (5) |
O2ii—In2—O2vi | 106.70 (8) | O5viii—Na1—O5v | 180.0 |
O4v—In2—O6vii | 90.87 (6) | O3—Na2—O3ix | 167.61 (15) |
O4—In2—O6vii | 113.19 (6) | O3—Na2—O3x | 98.29 (5) |
O2ii—In2—O6vii | 86.65 (5) | O3ix—Na2—O3x | 80.70 (5) |
O2vi—In2—O6vii | 74.72 (5) | O3—Na2—O3vii | 80.70 (5) |
O4v—In2—O6iii | 113.19 (6) | O3ix—Na2—O3vii | 98.29 (5) |
O4—In2—O6iii | 90.87 (6) | O3x—Na2—O3vii | 170.69 (14) |
O2ii—In2—O6iii | 74.72 (5) | O3—Na2—O6xi | 73.60 (6) |
O2vi—In2—O6iii | 86.65 (5) | O3ix—Na2—O6xi | 118.42 (10) |
O6vii—In2—O6iii | 148.70 (8) | O3x—Na2—O6xi | 84.80 (7) |
O3—P1—O1 | 110.04 (9) | O3vii—Na2—O6xi | 103.66 (8) |
O3—P1—O4 | 112.79 (9) | O3—Na2—O6xii | 118.42 (10) |
O1—P1—O4 | 108.57 (9) | O3ix—Na2—O6xii | 73.60 (6) |
O3—P1—O2 | 106.82 (9) | O3x—Na2—O6xii | 103.66 (8) |
O1—P1—O2 | 108.72 (8) | O3vii—Na2—O6xii | 84.80 (7) |
O4—P1—O2 | 109.83 (9) | O6xi—Na2—O6xii | 52.60 (8) |
O5—P2—O5v | 104.53 (13) | O3—Na2—O2 | 54.35 (6) |
O5—P2—O6v | 114.33 (8) | O3ix—Na2—O2 | 114.22 (10) |
O5v—P2—O6v | 107.48 (9) | O3x—Na2—O2 | 109.91 (9) |
O5—P2—O6 | 107.48 (9) | O3vii—Na2—O2 | 61.95 (6) |
O5v—P2—O6 | 114.33 (8) | O6xi—Na2—O2 | 126.98 (4) |
O6v—P2—O6 | 108.82 (12) | O6xii—Na2—O2 | 146.30 (5) |
O5iii—Na1—O5 | 180.0 | O3—Na2—O2ix | 114.22 (10) |
O5iii—Na1—O4 | 99.83 (6) | O3ix—Na2—O2ix | 54.35 (6) |
O5—Na1—O4 | 80.17 (6) | O3x—Na2—O2ix | 61.95 (6) |
O5iii—Na1—O4iii | 80.17 (6) | O3vii—Na2—O2ix | 109.91 (9) |
O5—Na1—O4iii | 99.83 (6) | O6xi—Na2—O2ix | 146.30 (5) |
O4—Na1—O4iii | 180.0 | O6xii—Na2—O2ix | 126.98 (4) |
O5iii—Na1—O4viii | 107.59 (6) | O2—Na2—O2ix | 73.83 (9) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+3/2, −y+3/2, −z; (v) −x+1, y, −z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) x, −y+1, z+1/2; (viii) x, −y+1, z−1/2; (ix) −x+2, y, −z+3/2; (x) −x+2, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+3/2, −y+1/2, −z+1. |
Ag1.69Mg1.69In1.31(PO4)3 | F(000) = 1219 |
Mr = 658.40 | Dx = 4.794 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0273 (3) Å | Cell parameters from 1827 reflections |
b = 12.8120 (3) Å | θ = 2.5–33.7° |
c = 6.5061 (2) Å | µ = 7.59 mm−1 |
β = 114.519 (1)° | T = 296 K |
V = 912.14 (4) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.27 × 0.23 mm |
Bruker X8 APEXII diffractometer | 1827 independent reflections |
Radiation source: fine-focus sealed tube | 1818 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 33.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −18→18 |
Tmin = 0.404, Tmax = 0.748 | k = −20→20 |
13615 measured reflections | l = −10→7 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0071P)2 + 8.2996P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.022 | (Δ/σ)max = 0.001 |
wR(F2) = 0.053 | Δρmax = 2.32 e Å−3 |
S = 1.25 | Δρmin = −1.36 e Å−3 |
1827 reflections | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
97 parameters | Extinction coefficient: 0.00143 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
In1 | 0.71633 (3) | 0.84600 (3) | 0.12503 (6) | 0.0061 (2) | 0.314 (2) |
Mg1 | 0.71633 (3) | 0.84600 (3) | 0.12503 (6) | 0.0061 (2) | 0.687 (2) |
Mg2 | 0.500000 | 0.73554 (2) | 0.250000 | 0.00583 (9) | 0.314 (2) |
In2 | 0.500000 | 0.73554 (2) | 0.250000 | 0.00583 (9) | 0.686 (2) |
Ag1 | 0.500000 | 0.500000 | 0.000000 | 0.02109 (10) | |
Ag2 | 1.000000 | 0.48627 (5) | 0.750000 | 0.03258 (15) | 0.6988 |
P1 | 0.76583 (5) | 0.61258 (4) | 0.37509 (9) | 0.00362 (10) | |
P2 | 0.500000 | 0.29241 (6) | 0.250000 | 0.00404 (13) | |
O1 | 0.77898 (15) | 0.67881 (13) | 0.1901 (3) | 0.0064 (3) | |
O2 | 0.84069 (15) | 0.66448 (13) | 0.6096 (3) | 0.0065 (3) | |
O3 | 0.81775 (16) | 0.50301 (13) | 0.3825 (3) | 0.0096 (3) | |
O4 | 0.62999 (15) | 0.60993 (13) | 0.3340 (3) | 0.0080 (3) | |
O5 | 0.60107 (15) | 0.36446 (13) | 0.2501 (3) | 0.0094 (3) | |
O6 | 0.45894 (15) | 0.22207 (13) | 0.0360 (3) | 0.0062 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
In1 | 0.00587 (16) | 0.00690 (16) | 0.00638 (17) | −0.00070 (10) | 0.00336 (11) | −0.00109 (10) |
Mg1 | 0.00587 (16) | 0.00690 (16) | 0.00638 (17) | −0.00070 (10) | 0.00336 (11) | −0.00109 (10) |
Mg2 | 0.00560 (13) | 0.00642 (13) | 0.00604 (13) | 0.000 | 0.00297 (9) | 0.000 |
In2 | 0.00560 (13) | 0.00642 (13) | 0.00604 (13) | 0.000 | 0.00297 (9) | 0.000 |
Ag1 | 0.03303 (18) | 0.00978 (13) | 0.01314 (14) | 0.00397 (10) | 0.00229 (11) | 0.00201 (9) |
Ag2 | 0.0127 (2) | 0.0291 (3) | 0.0406 (3) | 0.000 | −0.00429 (19) | 0.000 |
P1 | 0.0037 (2) | 0.0038 (2) | 0.0036 (2) | −0.00040 (15) | 0.00170 (17) | −0.00038 (15) |
P2 | 0.0035 (3) | 0.0051 (3) | 0.0031 (3) | 0.000 | 0.0010 (2) | 0.000 |
O1 | 0.0069 (6) | 0.0084 (6) | 0.0043 (6) | −0.0004 (5) | 0.0027 (5) | 0.0011 (5) |
O2 | 0.0084 (6) | 0.0072 (6) | 0.0034 (6) | −0.0025 (5) | 0.0020 (5) | −0.0018 (5) |
O3 | 0.0106 (7) | 0.0043 (6) | 0.0142 (8) | 0.0006 (5) | 0.0055 (6) | −0.0022 (5) |
O4 | 0.0052 (6) | 0.0078 (6) | 0.0120 (7) | 0.0002 (5) | 0.0045 (6) | 0.0009 (5) |
O5 | 0.0055 (6) | 0.0091 (7) | 0.0129 (8) | −0.0018 (5) | 0.0032 (6) | 0.0031 (6) |
O6 | 0.0052 (6) | 0.0091 (6) | 0.0043 (6) | −0.0006 (5) | 0.0019 (5) | −0.0014 (5) |
In1—O5i | 2.0146 (17) | Ag1—O5viii | 2.9625 (19) |
In1—O3i | 2.0495 (17) | Ag1—O5v | 2.9625 (19) |
In1—O1ii | 2.0985 (16) | Ag2—O3 | 2.4934 (19) |
In1—O2iii | 2.1098 (17) | Ag2—O3ix | 2.4934 (19) |
In1—O6iv | 2.1140 (16) | Ag2—O3x | 2.6713 (18) |
In1—O1 | 2.2518 (17) | Ag2—O3vii | 2.6713 (18) |
Mg2—O4 | 2.1502 (17) | Ag2—O2ix | 2.8751 (18) |
Mg2—O4v | 2.1503 (17) | Ag2—O2 | 2.8751 (18) |
Mg2—O2iii | 2.1665 (16) | Ag2—O6xi | 2.9558 (18) |
Mg2—O2vi | 2.1665 (16) | Ag2—O6xii | 2.9558 (18) |
Mg2—O6vii | 2.1827 (16) | P1—O3 | 1.5290 (17) |
Mg2—O6iv | 2.1827 (16) | P1—O1 | 1.5335 (17) |
Ag1—O5 | 2.3450 (17) | P1—O4 | 1.5425 (17) |
Ag1—O5iv | 2.3451 (17) | P1—O2 | 1.5624 (17) |
Ag1—O4iv | 2.5162 (17) | P2—O5v | 1.5261 (17) |
Ag1—O4 | 2.5162 (17) | P2—O5 | 1.5261 (17) |
Ag1—O4viii | 2.6449 (17) | P2—O6 | 1.5569 (17) |
Ag1—O4v | 2.6449 (17) | P2—O6v | 1.5569 (17) |
O5i—In1—O3i | 93.91 (7) | O4viii—Ag1—O5viii | 68.99 (5) |
O5i—In1—O1ii | 86.84 (7) | O4v—Ag1—O5viii | 111.01 (5) |
O3i—In1—O1ii | 102.20 (7) | O5—Ag1—O5v | 52.97 (7) |
O5i—In1—O2iii | 110.35 (7) | O5iv—Ag1—O5v | 127.03 (7) |
O3i—In1—O2iii | 87.27 (7) | O4iv—Ag1—O5v | 84.06 (5) |
O1ii—In1—O2iii | 159.96 (6) | O4—Ag1—O5v | 95.94 (5) |
O5i—In1—O6iv | 160.79 (7) | O4viii—Ag1—O5v | 111.01 (5) |
O3i—In1—O6iv | 104.16 (7) | O4v—Ag1—O5v | 68.99 (5) |
O1ii—In1—O6iv | 83.05 (6) | O5viii—Ag1—O5v | 180.0 |
O2iii—In1—O6iv | 77.49 (6) | O3—Ag2—O3ix | 170.14 (8) |
O5i—In1—O1 | 79.17 (7) | O3—Ag2—O3x | 101.46 (5) |
O3i—In1—O1 | 170.47 (7) | O3ix—Ag2—O3x | 78.02 (5) |
O1ii—In1—O1 | 84.09 (6) | O3—Ag2—O3vii | 78.02 (5) |
O2iii—In1—O1 | 89.01 (6) | O3ix—Ag2—O3vii | 101.46 (5) |
O6iv—In1—O1 | 83.56 (6) | O3x—Ag2—O3vii | 174.11 (7) |
O4—Mg2—O4v | 83.10 (9) | O3—Ag2—O2ix | 116.17 (5) |
O4—Mg2—O2iii | 85.00 (6) | O3ix—Ag2—O2ix | 54.71 (5) |
O4v—Mg2—O2iii | 166.46 (6) | O3x—Ag2—O2ix | 62.21 (5) |
O4—Mg2—O2vi | 166.46 (6) | O3vii—Ag2—O2ix | 112.62 (5) |
O4v—Mg2—O2vi | 84.99 (6) | O3—Ag2—O2 | 54.71 (5) |
O2iii—Mg2—O2vi | 107.51 (9) | O3ix—Ag2—O2 | 116.17 (5) |
O4—Mg2—O6vii | 111.55 (6) | O3x—Ag2—O2 | 112.62 (5) |
O4v—Mg2—O6vii | 90.29 (6) | O3vii—Ag2—O2 | 62.21 (5) |
O2iii—Mg2—O6vii | 88.11 (6) | O2ix—Ag2—O2 | 74.85 (7) |
O2vi—Mg2—O6vii | 74.86 (6) | O3—Ag2—O6xi | 73.59 (5) |
O4—Mg2—O6iv | 90.29 (6) | O3ix—Ag2—O6xi | 115.97 (5) |
O4v—Mg2—O6iv | 111.55 (6) | O3x—Ag2—O6xi | 83.88 (5) |
O2iii—Mg2—O6iv | 74.86 (6) | O3vii—Ag2—O6xi | 101.50 (5) |
O2vi—Mg2—O6iv | 88.11 (6) | O2ix—Ag2—O6xi | 145.67 (5) |
O6vii—Mg2—O6iv | 151.18 (9) | O2—Ag2—O6xi | 127.48 (4) |
O4—Mg2—O5iv | 83.64 (6) | O3—Ag2—O6xii | 115.97 (5) |
O5—Ag1—O5iv | 180.0 | O3ix—Ag2—O6xii | 73.59 (5) |
O5—Ag1—O4iv | 98.18 (6) | O3x—Ag2—O6xii | 101.50 (5) |
O5iv—Ag1—O4iv | 81.82 (6) | O3vii—Ag2—O6xii | 83.88 (5) |
O5—Ag1—O4 | 81.82 (6) | O2ix—Ag2—O6xii | 127.48 (4) |
O5iv—Ag1—O4 | 98.17 (6) | O2—Ag2—O6xii | 145.67 (5) |
O4iv—Ag1—O4 | 180.0 | O6xi—Ag2—O6xii | 50.87 (6) |
O5—Ag1—O4viii | 70.42 (6) | O3—P1—O1 | 111.04 (10) |
O5iv—Ag1—O4viii | 109.58 (6) | O3—P1—O4 | 112.00 (10) |
O4iv—Ag1—O4viii | 67.05 (7) | O1—P1—O4 | 108.85 (9) |
O4—Ag1—O4viii | 112.95 (7) | O3—P1—O2 | 107.32 (10) |
O5—Ag1—O4v | 109.58 (6) | O1—P1—O2 | 109.01 (9) |
O5iv—Ag1—O4v | 70.42 (6) | O4—P1—O2 | 108.55 (10) |
O4iv—Ag1—O4v | 112.95 (7) | O5v—P2—O5 | 105.56 (14) |
O4—Ag1—O4v | 67.05 (7) | O5v—P2—O6 | 113.12 (9) |
O4viii—Ag1—O4v | 180.00 (5) | O5—P2—O6 | 107.91 (9) |
O5—Ag1—O5viii | 127.03 (7) | O5v—P2—O6v | 107.91 (9) |
O5iv—Ag1—O5viii | 52.97 (7) | O5—P2—O6v | 113.12 (9) |
O4iv—Ag1—O5viii | 95.94 (5) | O6—P2—O6v | 109.26 (13) |
O4—Ag1—O5viii | 84.06 (5) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, −y+3/2, −z; (iii) −x+3/2, −y+3/2, −z+1; (iv) −x+1, −y+1, −z; (v) −x+1, y, −z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) x, −y+1, z+1/2; (viii) x, −y+1, z−1/2; (ix) −x+2, y, −z+3/2; (x) −x+2, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+3/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray diffraction data collections and Mohammed V University in Rabat, Morocco, for financial support.
References
Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220–222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890–892. CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015). Dalton Trans. 44, 7881–7886. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hatert, F. (2006). Acta Cryst. C62, i1–i2. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1. Web of Science CrossRef IUCr Journals Google Scholar
Hidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7–i9. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2008). J. Alloys Compd. 450, 301–305. CrossRef Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moore, P. B. (1971). Am. Mineral. 56, 1955–1975. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Warner, T., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46–i48. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.