research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na1.85Mg1.85In1.15(PO4)3 and Ag1.69Mg1.69In1.31(PO4)3 with alluaudite-type structures

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bUniversité de Valenciennes, EA 2443 – LMCPA – Laboratoire des Matériaux Céramiques et Procédés Associés, F-59313 Valenciennes, France
*Correspondence e-mail: a_ouldsaleck@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 July 2018; accepted 20 August 2018; online 24 August 2018)

Single crystals of two new phosphates, sodium magnesium indium(III) tris­(orthophosphate) and silver magnesium indium(III) tris­(orthophosphate), were obtained from solid-state reactions. The two phosphates are isotypic and exhibit alluaudite-type structures. They are characterized by a cationic disorder of the Mg and In sites and a partial occupation of the Na and Ag sites, respectively. The structure of both phosphates is made up of chains of edge-sharing [(Mg,In)O6] octa­hedra extending parallel to [10[\overline{1}]]. Adjacent chains are linked by PO4 tetra­hedra to form a three-dimensional framework delimiting two types of channels parallel to [001] in which the monovalent cations are situated. The coordination numbers of the Na+ cations are 6 and 8, and for both Ag+ cations 6. The corresponding coordination spheres are considerably distorted.

1. Chemical context

The crystal structure of the mineral alluaudite was determined by Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]). Since then, many new members of this structure type, including phosphates, arsenates, molybdates, sulfates and, more recently, vanadates have been synthesized and structurally characterized. The growing inter­est in these kinds of materials is related to their inter­esting physical properties, in particular in electrochemistry and battery research. For example, the phosphate Na2Ni2Fe(PO4)3 (Essehli et al., 2015[Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015). Dalton Trans. 44, 7881-7886.]) is a promising cathode in sodium batteries since its electrochemical behaviour is comparable to that of LiFePO4. In this context, alluaudite-type phosphates such as Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]), Ag1.655Co1.647Fe1.352(PO4)3 (Bouraima et al., 2017[Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890-892.]) and the vanadate (Na0.7)(Na0.70, Mn0.30) (Fe3+, Fe2+)2Fe2+(VO4)3 (Benhsina et al., 2016[Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220-222.]) have been investigated by our group.

In the present work, the synthesis and structure determination of two new magnesium-based alluaudite-type phosphates with composition Na1.85Mg1.85In1.15(PO4)3 (I) and Ag1.69Mg1.69In1.31(PO4)3 (II) are reported.

2. Structural commentary

In the crystal structures of the two isotypic phosphates (I) and (II), site Na1 (Ag1) shows full occupancy and is located on an inversion centre (Wyckoff position 4b), and one mixed-occupied (Mg/In)2 site [occupancy ratio Mg:In = 0.51:0.49 for (I) and 0.314:0.686 for (II)], the second partially occupied Na2 (Ag2) site [occupancy 0.848 (9) for (I) and 0.6988 for (II)] and the P1 site are located on twofold rotation axes (4e) of space group type C2/c. There is another mixed-occupancy (Mg,In)1 site in a general position (8f) with occupancy ratios Mg:In = 0.68:0.32 for (I) and 0.687 (2):0.314 (2) for (II). This kind of cationic disorder is a characteristic feature of alluaudite-type structures. The principal building units in the crystal structures of (I) and (II) are [(Mg/In)1O6] and [(Mg,In)2O6] octa­hedra and two PO4 tetra­hedra (Figs. 1[link] and 2[link]). Two [(Mg/In)1O6] octa­hedra are linked together by a common edge into an [(Mg/In)1)2O10] dimer. These dimers are connected through edge-sharing with [(Mg/In)2O6] octa­hedra into undulating chains extending parallel to [10[\overline{1}]] (Fig. 3[link]). Adjacent chains are linked together by P1O4 and P2O4 tetra­hedra into (010) sheets, as shown in Fig. 4[link]. Neighbouring sheets are finally fused into a three-dimensional framework structure by P1O4 tetra­hedra. This framework delimits two types of hexa­gonal channels oriented parallel to [001], in which the Na+ (for (I) or Ag+ (for (II) cations are located (Fig. 5[link]). The Na—O distances fall in the range 2.307 (2)–2.960 (2) Å with coordination numbers of six for Na1 and eight for Na2, while those for Ag—O vary between 2.345 (2) and 2.963 (2) Å, with coordination numbers of six for both Ag+ cations.

[Figure 1]
Figure 1
The principal building units in the structure of Na1.85Mg1.85In1.15(PO4)3, (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x + 1, −y + 1, −z; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z; (v) −x + 1, y, −z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (vii) x, −y + 1, z + [{1\over 2}]; (viii) x, −y + 1, z − [{1\over 2}]; (ix) −x + 2, y, −z + [{3\over 2}]; (x) −x + 2, −y + 1, −z + 1; (xi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.]
[Figure 2]
Figure 2
The principal building units in the structure of Ag1.69Mg1.69In1.31(PO4)3, (II). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes are as in Fig. 1[link].
[Figure 3]
Figure 3
Edge-sharing [(Mg/In)2O6] octa­hedra and [(Mg/In)1)2O10] dimers forming an infinite chain extending parallel to [00[\overline{1}]]. Data taken from (I).
[Figure 4]
Figure 4
[(Mg/In)O6] octa­hedra and PO4 tetra­hedra forming a sheet extending parallel to (010). Data taken from (I).
[Figure 5]
Figure 5
Polyhedral representation of the crystal structure of (I) showing Na+ cations situated in the two types of channels parallel to [001].

3. Database Survey

The presence of disordered alkali metal or other cations in the channels of alluaudite-type structures is a concomitant feature of the cationic disorder at the octa­hedral sites, as observed for example in Cu1.35Fe3(PO4)3 (Warner et al., 1993[Warner, T., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301-309.]), (Na0.38,Ca0.31)MgFe2(PO4)3 (Zid et al., 2005[Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46-i48.]), K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011[Hidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.]), NaFe3.67(PO4)3 (Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.]), Na1.25Mg1.10Fe1.90(PO4)3 (Hidouri et al., 2008[Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2008). J. Alloys Compd. 450, 301-305.]), Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006[Hatert, F. (2006). Acta Cryst. C62, i1-i2.]), Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003[Hidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7-i9.]), Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]) or Ag1.655Co1.647Fe1.352(PO4)3 (Bouraima et al., 2017[Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890-892.]).

4. Synthesis and crystallization

Single crystals of (I) and (II) were grown by solid-state reactions. The starting mixtures comprising of Mg(NO3)2·6H2O (Sigma–Aldrich, 97%), InI3 (Ventron, 99%), NH4H2PO4 (Alfa Aesar, 98%), ANO3 (A = Na or Ag) (NaNO3: Acros Organics, 99%; AgNO3: Sigma–Aldrich, 99%) were weighted in molar ratios A:Zn:In:P = 2:2:1:3 and placed in a platinum cruicible. After inter­mediate grinding and temperature treatments at 573, 673, 773 and 873 K in a platinum crucible, both mixtures were heated at 1373 K above the melting temperatures. The cruicibles were then cooled slowly to 1093 K at a rate of 5 K h−1, followed by cooling to room temperature after switching off the furnace. Transparent, colourless crystals with a blocky form were isolated from the two final products. The bulk products were not checked for phase purity.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In the initial stages of the refinements the occupancies of the disordered sodium (Na2) or silver (Ag2) sites were refined freely and the mixed-occupancy (Mg/In) sites were refined under consideration of full occupancy for each of these sites. The obtained occupancy rates of Mg:In were rounded and subsequently fixed for charge-neutrality of the compounds. The maximum and minimum electron densities are located 0.55 Å from Mg2 and 0.38 Å from P1 for (I) and 0.78 and 0.59 Å, respectively, from Ag2 for (II).

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula Na1.85Mg1.85In1.15(PO4)3 Ag1.69Mg1.69In1.31(PO4)3
Mr 504.46 658.40
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 11.9796 (13), 12.6935 (13), 6.5239 (7) 12.0273 (3), 12.8120 (3), 6.5061 (2)
β (°) 114.555 (3) 114.519 (1)
V3) 902.33 (17) 912.14 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.82 7.59
Crystal size (mm) 0.31 × 0.24 × 0.20 0.30 × 0.27 × 0.23
 
Data collection
Diffractometer Bruker X8 APEXII Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.596, 0.748 0.404, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 21364, 2076, 2012 13615, 1827, 1818
Rint 0.026 0.027
(sin θ/λ)max−1) 0.819 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.29 0.022, 0.053, 1.25
No. of reflections 2076 1827
No. of parameters 97 97
Δρmax, Δρmin (e Å−3) 0.64, −0.88 2.32, −1.36
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Sodium magnesium indium(III) tris(orthophosphate) (I) top
Crystal data top
Na1.85Mg1.85In1.15(PO4)3F(000) = 960
Mr = 504.46Dx = 3.713 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.9796 (13) ÅCell parameters from 2076 reflections
b = 12.6935 (13) Åθ = 2.5–35.6°
c = 6.5239 (7) ŵ = 3.82 mm1
β = 114.555 (3)°T = 296 K
V = 902.33 (17) Å3Block, colourless
Z = 40.31 × 0.24 × 0.20 mm
Data collection top
Bruker X8 APEXII
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube2012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 35.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.596, Tmax = 0.748k = 2020
21364 measured reflectionsl = 104
Refinement top
Refinement on F297 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0082P)2 + 5.6344P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.29Δρmax = 0.64 e Å3
2076 reflectionsΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.71903 (3)0.84384 (2)0.13247 (5)0.00578 (6)0.68
In10.71903 (3)0.84384 (2)0.13247 (5)0.00578 (6)0.32
In20.5000000.73266 (2)0.2500000.00619 (6)0.51
Mg20.5000000.73266 (2)0.2500000.00619 (6)0.49
P10.76657 (4)0.60997 (4)0.37446 (8)0.00665 (8)
P20.5000000.29168 (6)0.2500000.00702 (11)
Na10.5000000.5000000.0000000.0261 (4)
Na21.0000000.4813 (2)0.7500000.0369 (8)0.848 (9)
O10.77790 (14)0.67695 (12)0.1877 (2)0.0092 (2)
O20.83997 (14)0.66480 (12)0.6061 (2)0.0096 (2)
O30.82556 (15)0.50207 (12)0.3858 (3)0.0126 (3)
O40.62982 (14)0.60255 (13)0.3291 (3)0.0128 (3)
O50.59943 (14)0.36515 (12)0.2450 (3)0.0124 (3)
O60.45840 (13)0.22035 (12)0.0372 (2)0.0099 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00607 (11)0.00594 (11)0.00620 (11)0.00056 (8)0.00342 (8)0.00092 (8)
In10.00607 (11)0.00594 (11)0.00620 (11)0.00056 (8)0.00342 (8)0.00092 (8)
In20.00700 (12)0.00580 (11)0.00657 (11)0.0000.00360 (9)0.000
Mg20.00700 (12)0.00580 (11)0.00657 (11)0.0000.00360 (9)0.000
P10.00876 (19)0.00636 (18)0.00521 (17)0.00120 (14)0.00328 (15)0.00039 (14)
P20.0072 (3)0.0077 (3)0.0054 (2)0.0000.0018 (2)0.000
Na10.0375 (9)0.0121 (6)0.0156 (6)0.0017 (6)0.0020 (6)0.0029 (5)
Na20.0228 (11)0.0569 (17)0.0235 (11)0.0000.0020 (8)0.000
O10.0121 (6)0.0098 (6)0.0062 (5)0.0004 (5)0.0044 (5)0.0014 (4)
O20.0136 (6)0.0099 (6)0.0053 (5)0.0027 (5)0.0039 (5)0.0017 (4)
O30.0189 (7)0.0062 (5)0.0135 (6)0.0003 (5)0.0077 (5)0.0009 (5)
O40.0109 (6)0.0136 (6)0.0156 (7)0.0035 (5)0.0072 (5)0.0016 (5)
O50.0090 (6)0.0111 (6)0.0155 (7)0.0012 (5)0.0036 (5)0.0053 (5)
O60.0083 (5)0.0131 (6)0.0076 (5)0.0007 (5)0.0026 (4)0.0026 (5)
Geometric parameters (Å, º) top
Mg1—O5i1.9992 (16)P2—O6v1.5558 (15)
Mg1—O3i2.0690 (16)P2—O61.5558 (15)
Mg1—O2ii2.1030 (15)Na1—O5iii2.3068 (15)
Mg1—O6iii2.1099 (15)Na1—O52.3068 (15)
Mg1—O1iv2.1207 (14)Na1—O42.4387 (16)
Mg1—O12.2144 (15)Na1—O4iii2.4388 (16)
In2—O4v2.1783 (17)Na1—O4viii2.6072 (15)
In2—O42.1784 (17)Na1—O4v2.6072 (15)
In2—O2ii2.1807 (15)Na1—O5viii2.9603 (17)
In2—O2vi2.1807 (15)Na1—O5v2.9603 (17)
In2—O6vii2.2115 (15)Na2—O32.4401 (17)
In2—O6iii2.2115 (15)Na2—O3ix2.4401 (17)
P1—O31.5287 (16)Na2—O3x2.5955 (17)
P1—O11.5373 (15)Na2—O3vii2.5955 (17)
P1—O41.5419 (16)Na2—O6xi2.856 (3)
P1—O21.5609 (15)Na2—O6xii2.856 (3)
P2—O51.5238 (16)Na2—O22.913 (3)
P2—O5v1.5238 (16)Na2—O2ix2.913 (3)
O5i—Mg1—O3i95.94 (6)O5—Na1—O4viii72.41 (6)
O5i—Mg1—O2ii111.05 (6)O4—Na1—O4viii111.56 (7)
O3i—Mg1—O2ii86.09 (6)O4iii—Na1—O4viii68.44 (7)
O5i—Mg1—O6iii162.43 (6)O5iii—Na1—O4v72.41 (6)
O3i—Mg1—O6iii99.50 (6)O5—Na1—O4v107.59 (6)
O2ii—Mg1—O6iii78.50 (6)O4—Na1—O4v68.44 (7)
O5i—Mg1—O1iv87.10 (6)O4iii—Na1—O4v111.56 (7)
O3i—Mg1—O1iv100.00 (6)O4viii—Na1—O4v180.0
O2ii—Mg1—O1iv160.31 (6)O5iii—Na1—O5viii52.70 (6)
O6iii—Mg1—O1iv82.03 (6)O5—Na1—O5viii127.30 (6)
O5i—Mg1—O181.05 (6)O4—Na1—O5viii85.86 (5)
O3i—Mg1—O1174.39 (6)O4iii—Na1—O5viii94.14 (5)
O2ii—Mg1—O190.57 (6)O4viii—Na1—O5viii66.27 (5)
O6iii—Mg1—O184.22 (6)O4v—Na1—O5viii113.73 (5)
O1iv—Mg1—O184.63 (6)O5iii—Na1—O5v127.30 (6)
O4v—In2—O481.40 (8)O5—Na1—O5v52.70 (6)
O4v—In2—O2ii165.44 (6)O4—Na1—O5v94.14 (5)
O4—In2—O2ii86.40 (6)O4iii—Na1—O5v85.86 (5)
O4v—In2—O2vi86.40 (6)O4viii—Na1—O5v113.73 (5)
O4—In2—O2vi165.44 (6)O4v—Na1—O5v66.27 (5)
O2ii—In2—O2vi106.70 (8)O5viii—Na1—O5v180.0
O4v—In2—O6vii90.87 (6)O3—Na2—O3ix167.61 (15)
O4—In2—O6vii113.19 (6)O3—Na2—O3x98.29 (5)
O2ii—In2—O6vii86.65 (5)O3ix—Na2—O3x80.70 (5)
O2vi—In2—O6vii74.72 (5)O3—Na2—O3vii80.70 (5)
O4v—In2—O6iii113.19 (6)O3ix—Na2—O3vii98.29 (5)
O4—In2—O6iii90.87 (6)O3x—Na2—O3vii170.69 (14)
O2ii—In2—O6iii74.72 (5)O3—Na2—O6xi73.60 (6)
O2vi—In2—O6iii86.65 (5)O3ix—Na2—O6xi118.42 (10)
O6vii—In2—O6iii148.70 (8)O3x—Na2—O6xi84.80 (7)
O3—P1—O1110.04 (9)O3vii—Na2—O6xi103.66 (8)
O3—P1—O4112.79 (9)O3—Na2—O6xii118.42 (10)
O1—P1—O4108.57 (9)O3ix—Na2—O6xii73.60 (6)
O3—P1—O2106.82 (9)O3x—Na2—O6xii103.66 (8)
O1—P1—O2108.72 (8)O3vii—Na2—O6xii84.80 (7)
O4—P1—O2109.83 (9)O6xi—Na2—O6xii52.60 (8)
O5—P2—O5v104.53 (13)O3—Na2—O254.35 (6)
O5—P2—O6v114.33 (8)O3ix—Na2—O2114.22 (10)
O5v—P2—O6v107.48 (9)O3x—Na2—O2109.91 (9)
O5—P2—O6107.48 (9)O3vii—Na2—O261.95 (6)
O5v—P2—O6114.33 (8)O6xi—Na2—O2126.98 (4)
O6v—P2—O6108.82 (12)O6xii—Na2—O2146.30 (5)
O5iii—Na1—O5180.0O3—Na2—O2ix114.22 (10)
O5iii—Na1—O499.83 (6)O3ix—Na2—O2ix54.35 (6)
O5—Na1—O480.17 (6)O3x—Na2—O2ix61.95 (6)
O5iii—Na1—O4iii80.17 (6)O3vii—Na2—O2ix109.91 (9)
O5—Na1—O4iii99.83 (6)O6xi—Na2—O2ix146.30 (5)
O4—Na1—O4iii180.0O6xii—Na2—O2ix126.98 (4)
O5iii—Na1—O4viii107.59 (6)O2—Na2—O2ix73.83 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z; (iv) x+3/2, y+3/2, z; (v) x+1, y, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z1/2; (ix) x+2, y, z+3/2; (x) x+2, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x+3/2, y+1/2, z+1.
Silver magnesium indium(III) tris(orthophosphate) (II) top
Crystal data top
Ag1.69Mg1.69In1.31(PO4)3F(000) = 1219
Mr = 658.40Dx = 4.794 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.0273 (3) ÅCell parameters from 1827 reflections
b = 12.8120 (3) Åθ = 2.5–33.7°
c = 6.5061 (2) ŵ = 7.59 mm1
β = 114.519 (1)°T = 296 K
V = 912.14 (4) Å3Block, colourless
Z = 40.30 × 0.27 × 0.23 mm
Data collection top
Bruker X8 APEXII
diffractometer
1827 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 33.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.404, Tmax = 0.748k = 2020
13615 measured reflectionsl = 107
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0071P)2 + 8.2996P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.053Δρmax = 2.32 e Å3
S = 1.25Δρmin = 1.36 e Å3
1827 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
97 parametersExtinction coefficient: 0.00143 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.71633 (3)0.84600 (3)0.12503 (6)0.0061 (2)0.314 (2)
Mg10.71633 (3)0.84600 (3)0.12503 (6)0.0061 (2)0.687 (2)
Mg20.5000000.73554 (2)0.2500000.00583 (9)0.314 (2)
In20.5000000.73554 (2)0.2500000.00583 (9)0.686 (2)
Ag10.5000000.5000000.0000000.02109 (10)
Ag21.0000000.48627 (5)0.7500000.03258 (15)0.6988
P10.76583 (5)0.61258 (4)0.37509 (9)0.00362 (10)
P20.5000000.29241 (6)0.2500000.00404 (13)
O10.77898 (15)0.67881 (13)0.1901 (3)0.0064 (3)
O20.84069 (15)0.66448 (13)0.6096 (3)0.0065 (3)
O30.81775 (16)0.50301 (13)0.3825 (3)0.0096 (3)
O40.62999 (15)0.60993 (13)0.3340 (3)0.0080 (3)
O50.60107 (15)0.36446 (13)0.2501 (3)0.0094 (3)
O60.45894 (15)0.22207 (13)0.0360 (3)0.0062 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00587 (16)0.00690 (16)0.00638 (17)0.00070 (10)0.00336 (11)0.00109 (10)
Mg10.00587 (16)0.00690 (16)0.00638 (17)0.00070 (10)0.00336 (11)0.00109 (10)
Mg20.00560 (13)0.00642 (13)0.00604 (13)0.0000.00297 (9)0.000
In20.00560 (13)0.00642 (13)0.00604 (13)0.0000.00297 (9)0.000
Ag10.03303 (18)0.00978 (13)0.01314 (14)0.00397 (10)0.00229 (11)0.00201 (9)
Ag20.0127 (2)0.0291 (3)0.0406 (3)0.0000.00429 (19)0.000
P10.0037 (2)0.0038 (2)0.0036 (2)0.00040 (15)0.00170 (17)0.00038 (15)
P20.0035 (3)0.0051 (3)0.0031 (3)0.0000.0010 (2)0.000
O10.0069 (6)0.0084 (6)0.0043 (6)0.0004 (5)0.0027 (5)0.0011 (5)
O20.0084 (6)0.0072 (6)0.0034 (6)0.0025 (5)0.0020 (5)0.0018 (5)
O30.0106 (7)0.0043 (6)0.0142 (8)0.0006 (5)0.0055 (6)0.0022 (5)
O40.0052 (6)0.0078 (6)0.0120 (7)0.0002 (5)0.0045 (6)0.0009 (5)
O50.0055 (6)0.0091 (7)0.0129 (8)0.0018 (5)0.0032 (6)0.0031 (6)
O60.0052 (6)0.0091 (6)0.0043 (6)0.0006 (5)0.0019 (5)0.0014 (5)
Geometric parameters (Å, º) top
In1—O5i2.0146 (17)Ag1—O5viii2.9625 (19)
In1—O3i2.0495 (17)Ag1—O5v2.9625 (19)
In1—O1ii2.0985 (16)Ag2—O32.4934 (19)
In1—O2iii2.1098 (17)Ag2—O3ix2.4934 (19)
In1—O6iv2.1140 (16)Ag2—O3x2.6713 (18)
In1—O12.2518 (17)Ag2—O3vii2.6713 (18)
Mg2—O42.1502 (17)Ag2—O2ix2.8751 (18)
Mg2—O4v2.1503 (17)Ag2—O22.8751 (18)
Mg2—O2iii2.1665 (16)Ag2—O6xi2.9558 (18)
Mg2—O2vi2.1665 (16)Ag2—O6xii2.9558 (18)
Mg2—O6vii2.1827 (16)P1—O31.5290 (17)
Mg2—O6iv2.1827 (16)P1—O11.5335 (17)
Ag1—O52.3450 (17)P1—O41.5425 (17)
Ag1—O5iv2.3451 (17)P1—O21.5624 (17)
Ag1—O4iv2.5162 (17)P2—O5v1.5261 (17)
Ag1—O42.5162 (17)P2—O51.5261 (17)
Ag1—O4viii2.6449 (17)P2—O61.5569 (17)
Ag1—O4v2.6449 (17)P2—O6v1.5569 (17)
O5i—In1—O3i93.91 (7)O4viii—Ag1—O5viii68.99 (5)
O5i—In1—O1ii86.84 (7)O4v—Ag1—O5viii111.01 (5)
O3i—In1—O1ii102.20 (7)O5—Ag1—O5v52.97 (7)
O5i—In1—O2iii110.35 (7)O5iv—Ag1—O5v127.03 (7)
O3i—In1—O2iii87.27 (7)O4iv—Ag1—O5v84.06 (5)
O1ii—In1—O2iii159.96 (6)O4—Ag1—O5v95.94 (5)
O5i—In1—O6iv160.79 (7)O4viii—Ag1—O5v111.01 (5)
O3i—In1—O6iv104.16 (7)O4v—Ag1—O5v68.99 (5)
O1ii—In1—O6iv83.05 (6)O5viii—Ag1—O5v180.0
O2iii—In1—O6iv77.49 (6)O3—Ag2—O3ix170.14 (8)
O5i—In1—O179.17 (7)O3—Ag2—O3x101.46 (5)
O3i—In1—O1170.47 (7)O3ix—Ag2—O3x78.02 (5)
O1ii—In1—O184.09 (6)O3—Ag2—O3vii78.02 (5)
O2iii—In1—O189.01 (6)O3ix—Ag2—O3vii101.46 (5)
O6iv—In1—O183.56 (6)O3x—Ag2—O3vii174.11 (7)
O4—Mg2—O4v83.10 (9)O3—Ag2—O2ix116.17 (5)
O4—Mg2—O2iii85.00 (6)O3ix—Ag2—O2ix54.71 (5)
O4v—Mg2—O2iii166.46 (6)O3x—Ag2—O2ix62.21 (5)
O4—Mg2—O2vi166.46 (6)O3vii—Ag2—O2ix112.62 (5)
O4v—Mg2—O2vi84.99 (6)O3—Ag2—O254.71 (5)
O2iii—Mg2—O2vi107.51 (9)O3ix—Ag2—O2116.17 (5)
O4—Mg2—O6vii111.55 (6)O3x—Ag2—O2112.62 (5)
O4v—Mg2—O6vii90.29 (6)O3vii—Ag2—O262.21 (5)
O2iii—Mg2—O6vii88.11 (6)O2ix—Ag2—O274.85 (7)
O2vi—Mg2—O6vii74.86 (6)O3—Ag2—O6xi73.59 (5)
O4—Mg2—O6iv90.29 (6)O3ix—Ag2—O6xi115.97 (5)
O4v—Mg2—O6iv111.55 (6)O3x—Ag2—O6xi83.88 (5)
O2iii—Mg2—O6iv74.86 (6)O3vii—Ag2—O6xi101.50 (5)
O2vi—Mg2—O6iv88.11 (6)O2ix—Ag2—O6xi145.67 (5)
O6vii—Mg2—O6iv151.18 (9)O2—Ag2—O6xi127.48 (4)
O4—Mg2—O5iv83.64 (6)O3—Ag2—O6xii115.97 (5)
O5—Ag1—O5iv180.0O3ix—Ag2—O6xii73.59 (5)
O5—Ag1—O4iv98.18 (6)O3x—Ag2—O6xii101.50 (5)
O5iv—Ag1—O4iv81.82 (6)O3vii—Ag2—O6xii83.88 (5)
O5—Ag1—O481.82 (6)O2ix—Ag2—O6xii127.48 (4)
O5iv—Ag1—O498.17 (6)O2—Ag2—O6xii145.67 (5)
O4iv—Ag1—O4180.0O6xi—Ag2—O6xii50.87 (6)
O5—Ag1—O4viii70.42 (6)O3—P1—O1111.04 (10)
O5iv—Ag1—O4viii109.58 (6)O3—P1—O4112.00 (10)
O4iv—Ag1—O4viii67.05 (7)O1—P1—O4108.85 (9)
O4—Ag1—O4viii112.95 (7)O3—P1—O2107.32 (10)
O5—Ag1—O4v109.58 (6)O1—P1—O2109.01 (9)
O5iv—Ag1—O4v70.42 (6)O4—P1—O2108.55 (10)
O4iv—Ag1—O4v112.95 (7)O5v—P2—O5105.56 (14)
O4—Ag1—O4v67.05 (7)O5v—P2—O6113.12 (9)
O4viii—Ag1—O4v180.00 (5)O5—P2—O6107.91 (9)
O5—Ag1—O5viii127.03 (7)O5v—P2—O6v107.91 (9)
O5iv—Ag1—O5viii52.97 (7)O5—P2—O6v113.12 (9)
O4iv—Ag1—O5viii95.94 (5)O6—P2—O6v109.26 (13)
O4—Ag1—O5viii84.06 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z; (iii) x+3/2, y+3/2, z+1; (iv) x+1, y+1, z; (v) x+1, y, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z1/2; (ix) x+2, y, z+3/2; (x) x+2, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray diffraction data collections and Mohammed V University in Rabat, Morocco, for financial support.

References

First citationBenhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220–222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890–892.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEssehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015). Dalton Trans. 44, 7881–7886.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F. (2006). Acta Cryst. C62, i1–i2.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7–i9.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2008). J. Alloys Compd. 450, 301–305.  CrossRef Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarner, T., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46–i48.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds