research communications
κO)[5,10,15,20-tetrakis(2-aminophenyl)porphyrinato-κ4N]zinc(II)–chloroform–methanol (1/1/1)
of (methanol-aInstitut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany, and bInstitut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118, Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de
In the 44H32N8)(CH3OH)]·CHCl3·CH3OH, the ZnII cation is coordinated by four porphyrin N and one methanol O atom within a slightly distorted square-pyramidal environment and is shifted out of the porphyrin plane towards the direction of the methanol molecule. The methyl group of the coordinating methanol molecule is disordered over two sets of sites. The porphyrin backbone is nearly planar and the phenyl rings are almost perpendicular to the porphyrin plane. As is typical for picket-fence all four ortho substituents of the meso-phenyl groups (here the amino groups) are facing to the same side of the porphyrin molecule. In the two neighbouring porphyrin complexes form centrosymmetric dimers that are connected via O—H⋯N hydrogen bonding. With the aid of additional N—H⋯N and C—H⋯N hydrogen bonding, these dimers are stacked into columns parallel to [010] that are finally arranged into layers parallel to (001). Between these layers channels are formed where chloroform solvent molecules are located that are connected to the porphyrin complexes by weak C—H⋯Cl hydrogen bonding. There are additional cavities in the structure where some small residual electron density is found, indicating the presence of disordered methanol molecules, but a reasonable model could not be refined. Therefore the contribution of the electron density associated with the methanol solvent molecule was removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. Nevertheless, the given chemical formula and other crystal data take into account the methanol solvent molecule.
of the title compound, [Zn(CCCDC reference: 1859612
1. Chemical context
Picket-fence et al., 1975, 1976; Tabushi et al., 1985; Schappacher et al., 1989). With bulky substituents in the ortho-positions of the meso-substituents, their rotation is hindered, leading to only one side of the porphyrin being accessible for axial coordination in the all-α isomer. In 1973, Collman et al. for the first time reported this behaviour on the prototype picket-fence porphyrin 5,10,15,20-tetrakis α,α,α,α 2-pivalamidophenyl porphyrin (Collman et al., 1973). Afterwards, the first of a picket-fence porphyrin was published (Collman et al., 1975). Since that time, several different substituted picket-fence have been reported (Collman et al., 1983, 1998; Lee et al., 2010; Yu et al., 2015). In general, there is a risk of isomerization to the other atropisomers, but with the incorporation of zinc(II) the for the meso-substituents is increased, as reported by Freitag & Whitten (1983). Therefore, harsher reaction conditions could be used to introduce substituents in the ortho-positions without atropisomerization. We became interested in this class of compounds as receptors for oxo anions. We synthesized the title compound in a four-step synthesis using 2-nitrobenzaldehyde and pyrrole as starting material (Fig. 1) as the key precursor for further functionalizations. Surprisingly, no of this compound has been reported. We inserted ZnII into the porphyrin to stabilize its planar geometry and thus to prevent atropisomerization. Single crystals could be obtained from a methanol/chloroform solution of the zinc(II) porphyrin complex, and were characterized by single-crystal X-ray diffraction.
have been widely used as model compounds for the investigation of oxygen binding to hemoproteins (Collman2. Structural commentary
The 44H32N8)(CH3OH)]·CHCl3·CH3OH, consists of one ZnII cation, one substituted porphyrin, one methanol, as well as one chloroform solvent molecule, all of them located in general positions (Fig. 2). The contribution of an additional methanol solvent molecule to the electron density was removed with the SQUEEZE procedure in PLATON (Spek, 2015). The methyl group of the methanol molecule is disordered over two positions and was refined using a split model. All four amino groups are located on the same side of the porphyrin moiety, which shows that the α,α,α,α isomer was obtained. The porphyrin backbone is nearly planar, the largest deviation from the mean least-squares plane amounts to 0.189 (3) Å. All phenyl rings are nearly perpendicular to the porphyrin plane, with dihedral angles of 85.86 (9), 74.90 (7), 67.75 (6) and 85.17 (7)°.
of the solvated title compound, [Zn(CThe zinc(II) cation is coordinated by four porphyrin N atoms that are located in the basal plane, and the metal coordination is completed by the O atom of a methanol molecule in apical position leading to an overall square-pyramidal environment (Fig. 3). The Zn—N distances range from 2.050 (2) to 2.060 (2) Å and correspond to literature values (Table 1). As expected, the apical Zn—O distance of 2.143 (2) Å is slightly longer (Table 1). All angles around the ZnII cation scatter between 88.96 (8) and 89.73 (8)° for basal groups and between 92.93 (8) and 98.66 (9)° involving the apical group, which shows that the is slightly distorted (Table 1). The ZnII cation is located 0.1876 (9) Å above the mean plane formed by Zn1, N1, N2, N3 and N4 and is shifted towards the direction of the methanol O atom.
|
3. Supramolecular features
In the , Table 2). These dimers are stacked into columns extending parallel to [001] (Fig. 4). The columns are connected by weak N—H⋯N and additional C—H⋯N interactions into layers parallel to (001). Between the layers channels are formed, in which the chlorofom solvate molecules are embedded. The solvent molecules are linked to the porpyhrine complexes by intermolecular C—H⋯Cl hydrogen bonding (Fig. 4, Table 2).
of the title compound, each two neighbouring porphyrin complexes form dimers that are located on centers of inversion. The methanol molecules are directed into the cavity of the dimer and are linked to the symmetry-related complex by intermolecular O—H⋯N hydrogen bonding (Fig. 44. Database survey
In 1975, Collman et al. determined the first of a picket-fence porphyrin (Collman et al., 1975). In the past decades, numerous other crystal structures of picket-fence have been published (Nasri et al., 1987; Collman et al., 1988; Michaudet et al., 2000; Zimmer et al., 2002; Ruzié et al., 2006; Li et al., 2013). For the α,β,α,β isomer of tetrakis 2-aminophenyl porphyrin, a was published by Zimmer et al. (2002). A for the tetrakis α,α,α,α 2-aminophenyl porphyrin has not been reported so far.
5. Synthesis and crystallization
The metal-free 5,10,15,20-tetrakis α,α,α,α 2-aminophenyl porphyrin was synthesized according to procedures reported by Collman et al. (1975) and Lindsey (1980). For the insertion of zinc(II), standard metallation conditions were used (Strohmeier et al., 1997): 5,10,15,20-tetrakis α,α,α,α 2-aminophenyl porphyrin (30 mg, 44 mmol), zinc(II) acetate dihydrate (195 mg, 889 mmol) and 0.5 ml triethylamine were stirred in 10 ml of dichloromethane for 24 h at room temperature. The reaction mixture was washed with water (2 × 30 ml) and dried over magnesium sulfate. After flash coloumn (cyclohexane / ethyl acetate, 20 to 100% ethyl acetate) 30 mg (41 mmol; 92% yield) of 5,10,15,20-tetrakis α,α,α,α 2-aminophenyl zinc(II) porphyrin were obtained. For crystallization, the compound was dissolved in chloroform and precipitated with methanol.
1H NMR (500 MHz, DMSO-d6, 300 K): δ = 8.74 (s, 8H, H-β), 7.68 (dd, 3J = 7.4 Hz, 4J = 1.5 Hz, 4H, H-6), 7.50 (ddd, 3J = 8.1, 7.6 Hz, 4J = 1.6 Hz, 4H, H-4), 7.13 (dd, 3J = 8.3 Hz, 4J = 1.0 Hz, 4H, H-5), 7.00 (dt, 3J = 7.4 Hz, 4J = 1.0 Hz, 4H, H-3), 4.43 (s, 8H, NH) ppm. 13C NMR (125 MHz, DMSO-d6, 300 K): δ = 149.5 (C-α), 147.9 (C2), 134.3 (C6), 131.2 (C-β), 128.8 (C4), 126.8 (C1), 116.1 (C-meso), 115.4 (C5), 114.5 (C3) ppm. EI–MS: m/z (%) = 736.2 (100) [M]+.
6. Refinement
Crystal data, data collection and structure . The C—H hydrogen atoms were treated with calculated positions (methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic and 0.98 Å for methyl H atoms. The N—H and O—H hydrogen atoms were located in a difference map. Their bond lengths were set to ideal values, and finally they were refined with fixed bond lengths of N—H = 0.88 Å and O—H = 0.84 Å with Uiso(H) = 1.5Ueq(O,N) using a riding model. The methyl group of the methanol molecule is disordered over two sets of sites and was refined using a split model with restraints for the bond lengths (SADI). After initial of the s.o.f. it was fixed at 60:40 in the final cycles. There were two weak residual electron density peaks that are located near centres of inversion, indicating for a disordered methanol solvent molecule. However, a reasonable structural model could not be refined and therefore the contribution of this molecule to the electronic density data was removed with the SQUEEZE procedure in PLATON (Spek, 2015). The volume of the solvent-accessible voids amounts to 68.7 Å3, and the number of electrons within the voids to 16.2, indicating that one methanol molecule per formula unit is present. The given chemical formula and other crystal data take into account this methanol solvent molecule.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1859612
https://doi.org/10.1107/S205698901801099X/wm5458sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801099X/wm5458Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C44H32N8)(CH4O)]·CHCl3·CH4O | Z = 2 |
Mr = 921.60 | F(000) = 916 |
Triclinic, P1 | Dx = 1.485 Mg m−3 |
a = 12.3880 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.2971 (4) Å | Cell parameters from 20461 reflections |
c = 13.3656 (5) Å | θ = 1.5–26.0° |
α = 90.159 (3)° | µ = 0.84 mm−1 |
β = 110.550 (2)° | T = 200 K |
γ = 90.800 (2)° | Block, red |
V = 2061.27 (12) Å3 | 0.20 × 0.10 × 0.08 mm |
Stoe IPDS-2 diffractometer | Rint = 0.061 |
ω scans | θmax = 26.0°, θmin = 1.5° |
20461 measured reflections | h = −14→15 |
8071 independent reflections | k = −16→16 |
7001 reflections with I > 2σ(I) | l = −16→13 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0778P)2 + 0.8654P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.018 |
8071 reflections | Δρmax = 0.65 e Å−3 |
543 parameters | Δρmin = −0.71 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.43236 (2) | 0.35668 (2) | 0.26068 (2) | 0.03716 (11) | |
N1 | 0.45369 (17) | 0.20660 (15) | 0.23529 (17) | 0.0392 (4) | |
N2 | 0.29092 (16) | 0.31816 (15) | 0.30033 (16) | 0.0374 (4) | |
N3 | 0.37962 (17) | 0.50321 (15) | 0.24521 (17) | 0.0385 (4) | |
N4 | 0.55193 (17) | 0.39265 (16) | 0.19196 (17) | 0.0401 (4) | |
C1 | 0.5373 (2) | 0.16696 (18) | 0.2019 (2) | 0.0398 (5) | |
C2 | 0.5314 (2) | 0.05862 (19) | 0.2046 (2) | 0.0439 (6) | |
H2 | 0.5786 | 0.0131 | 0.1843 | 0.053* | |
C3 | 0.4461 (2) | 0.03407 (19) | 0.2416 (2) | 0.0430 (5) | |
H3 | 0.4225 | −0.0320 | 0.2526 | 0.052* | |
C4 | 0.3976 (2) | 0.12672 (18) | 0.26130 (19) | 0.0375 (5) | |
C5 | 0.3088 (2) | 0.13389 (18) | 0.3032 (2) | 0.0387 (5) | |
C6 | 0.2598 (2) | 0.22319 (18) | 0.32034 (19) | 0.0383 (5) | |
C7 | 0.1638 (2) | 0.2292 (2) | 0.3573 (2) | 0.0441 (6) | |
H7 | 0.1263 | 0.1743 | 0.3776 | 0.053* | |
C8 | 0.1370 (2) | 0.3273 (2) | 0.3576 (2) | 0.0436 (6) | |
H8 | 0.0764 | 0.3541 | 0.3772 | 0.052* | |
C9 | 0.2173 (2) | 0.38384 (19) | 0.3227 (2) | 0.0385 (5) | |
C10 | 0.2165 (2) | 0.48791 (19) | 0.3095 (2) | 0.0391 (5) | |
C11 | 0.2886 (2) | 0.54284 (18) | 0.2684 (2) | 0.0385 (5) | |
C12 | 0.2830 (2) | 0.64903 (19) | 0.2469 (2) | 0.0438 (6) | |
H12 | 0.2270 | 0.6938 | 0.2541 | 0.053* | |
C13 | 0.3717 (2) | 0.6735 (2) | 0.2145 (2) | 0.0446 (6) | |
H13 | 0.3901 | 0.7385 | 0.1953 | 0.053* | |
C14 | 0.4331 (2) | 0.58211 (18) | 0.2149 (2) | 0.0389 (5) | |
C15 | 0.5354 (2) | 0.57684 (19) | 0.1915 (2) | 0.0398 (5) | |
C16 | 0.5888 (2) | 0.48839 (19) | 0.1807 (2) | 0.0409 (5) | |
C17 | 0.6925 (2) | 0.4819 (2) | 0.1543 (3) | 0.0505 (6) | |
H17 | 0.7369 | 0.5369 | 0.1435 | 0.061* | |
C18 | 0.7142 (2) | 0.3837 (2) | 0.1477 (3) | 0.0535 (7) | |
H18 | 0.7762 | 0.3566 | 0.1306 | 0.064* | |
C19 | 0.6263 (2) | 0.32731 (19) | 0.1714 (2) | 0.0423 (5) | |
C20 | 0.6187 (2) | 0.22237 (19) | 0.1735 (2) | 0.0417 (5) | |
C21 | 0.2652 (2) | 0.03777 (19) | 0.3352 (2) | 0.0433 (6) | |
C22 | 0.3084 (3) | 0.0086 (2) | 0.4418 (3) | 0.0590 (7) | |
N21 | 0.3864 (3) | 0.0707 (2) | 0.5193 (2) | 0.0769 (9) | |
H21A | 0.4285 | 0.1145 | 0.4991 | 0.115* | |
H21B | 0.4184 | 0.0328 | 0.5755 | 0.115* | |
C23 | 0.2686 (5) | −0.0817 (3) | 0.4704 (3) | 0.0911 (14) | |
H23 | 0.2979 | −0.1031 | 0.5426 | 0.109* | |
C24 | 0.1869 (4) | −0.1403 (3) | 0.3946 (4) | 0.0908 (14) | |
H24 | 0.1611 | −0.2018 | 0.4153 | 0.109* | |
C25 | 0.1428 (3) | −0.1111 (2) | 0.2904 (3) | 0.0672 (9) | |
H25 | 0.0855 | −0.1511 | 0.2391 | 0.081* | |
C26 | 0.1828 (2) | −0.0221 (2) | 0.2602 (3) | 0.0515 (6) | |
H26 | 0.1536 | −0.0020 | 0.1875 | 0.062* | |
C31 | 0.1304 (2) | 0.54603 (18) | 0.3423 (2) | 0.0402 (5) | |
C32 | 0.1437 (2) | 0.55734 (18) | 0.4504 (2) | 0.0410 (5) | |
N31 | 0.2392 (2) | 0.51753 (18) | 0.53272 (18) | 0.0490 (5) | |
H31A | 0.2580 | 0.4572 | 0.5179 | 0.074* | |
H31B | 0.2298 | 0.5134 | 0.5949 | 0.074* | |
C33 | 0.0628 (2) | 0.6129 (2) | 0.4776 (2) | 0.0478 (6) | |
H33 | 0.0716 | 0.6213 | 0.5507 | 0.057* | |
C34 | −0.0293 (2) | 0.6555 (2) | 0.4001 (3) | 0.0533 (7) | |
H34 | −0.0836 | 0.6927 | 0.4200 | 0.064* | |
C35 | −0.0434 (2) | 0.6447 (2) | 0.2934 (3) | 0.0536 (7) | |
H35 | −0.1067 | 0.6747 | 0.2398 | 0.064* | |
C36 | 0.0363 (2) | 0.5893 (2) | 0.2655 (2) | 0.0478 (6) | |
H36 | 0.0262 | 0.5810 | 0.1922 | 0.057* | |
C41 | 0.5929 (2) | 0.67416 (19) | 0.1812 (2) | 0.0443 (6) | |
C42 | 0.6476 (2) | 0.7341 (2) | 0.2715 (2) | 0.0486 (6) | |
N41 | 0.6512 (2) | 0.7034 (2) | 0.3725 (2) | 0.0605 (6) | |
H41A | 0.5894 | 0.6694 | 0.3714 | 0.091* | |
H41B | 0.6646 | 0.7584 | 0.4120 | 0.091* | |
C43 | 0.7059 (3) | 0.8215 (2) | 0.2602 (3) | 0.0645 (9) | |
H43 | 0.7443 | 0.8622 | 0.3212 | 0.077* | |
C44 | 0.7086 (3) | 0.8498 (2) | 0.1621 (4) | 0.0687 (10) | |
H44 | 0.7487 | 0.9096 | 0.1562 | 0.082* | |
C45 | 0.6540 (3) | 0.7924 (3) | 0.0732 (3) | 0.0661 (9) | |
H45 | 0.6552 | 0.8126 | 0.0054 | 0.079* | |
C46 | 0.5969 (2) | 0.7043 (2) | 0.0828 (3) | 0.0539 (7) | |
H46 | 0.5598 | 0.6639 | 0.0211 | 0.065* | |
C51 | 0.7054 (2) | 0.16490 (19) | 0.1419 (2) | 0.0426 (5) | |
C52 | 0.8152 (2) | 0.1493 (2) | 0.2161 (2) | 0.0533 (7) | |
N51 | 0.8467 (3) | 0.1884 (3) | 0.3194 (3) | 0.0885 (11) | |
H51A | 0.7907 | 0.2197 | 0.3322 | 0.133* | |
H51B | 0.9128 | 0.1683 | 0.3654 | 0.133* | |
C53 | 0.8949 (2) | 0.0959 (2) | 0.1844 (3) | 0.0591 (8) | |
H53 | 0.9696 | 0.0841 | 0.2348 | 0.071* | |
C54 | 0.8665 (3) | 0.0608 (2) | 0.0824 (3) | 0.0559 (7) | |
H54 | 0.9222 | 0.0266 | 0.0617 | 0.067* | |
C55 | 0.7573 (3) | 0.0747 (3) | 0.0091 (3) | 0.0645 (8) | |
H55 | 0.7368 | 0.0487 | −0.0615 | 0.077* | |
C56 | 0.6776 (3) | 0.1271 (3) | 0.0397 (2) | 0.0569 (7) | |
H56 | 0.6024 | 0.1370 | −0.0108 | 0.068* | |
O1 | 0.55695 (18) | 0.36589 (17) | 0.41938 (17) | 0.0589 (5) | |
H1O1 | 0.6091 | 0.4078 | 0.4214 | 0.088* | |
C61 | 0.5284 (8) | 0.3528 (12) | 0.5039 (5) | 0.148 (6) | 0.6 |
H61A | 0.5033 | 0.4168 | 0.5242 | 0.222* | 0.6 |
H61B | 0.5952 | 0.3288 | 0.5629 | 0.222* | 0.6 |
H61C | 0.4654 | 0.3030 | 0.4877 | 0.222* | 0.6 |
C61' | 0.5955 (13) | 0.2855 (9) | 0.4808 (9) | 0.113 (5) | 0.4 |
H61D | 0.5594 | 0.2819 | 0.5352 | 0.169* | 0.4 |
H61E | 0.6794 | 0.2912 | 0.5157 | 0.169* | 0.4 |
H61F | 0.5761 | 0.2245 | 0.4364 | 0.169* | 0.4 |
C71 | 0.0752 (3) | 0.2987 (3) | 0.0578 (3) | 0.0622 (8) | |
H71 | 0.0983 | 0.2929 | 0.1371 | 0.075* | |
Cl1 | 0.16172 (10) | 0.39208 (8) | 0.02947 (8) | 0.0849 (3) | |
Cl2 | 0.09745 (11) | 0.18359 (8) | 0.00662 (12) | 0.0989 (4) | |
Cl3 | −0.07064 (10) | 0.32776 (12) | 0.00537 (12) | 0.1104 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03244 (16) | 0.03754 (17) | 0.04684 (18) | −0.00091 (11) | 0.02067 (12) | −0.00504 (11) |
N1 | 0.0354 (10) | 0.0391 (10) | 0.0492 (11) | −0.0002 (8) | 0.0225 (9) | −0.0044 (8) |
N2 | 0.0314 (9) | 0.0389 (10) | 0.0462 (11) | 0.0003 (8) | 0.0191 (8) | −0.0057 (8) |
N3 | 0.0334 (10) | 0.0386 (10) | 0.0485 (11) | −0.0012 (8) | 0.0206 (9) | −0.0061 (8) |
N4 | 0.0362 (10) | 0.0392 (10) | 0.0516 (12) | −0.0008 (8) | 0.0239 (9) | −0.0050 (9) |
C1 | 0.0373 (12) | 0.0396 (12) | 0.0479 (13) | 0.0041 (9) | 0.0216 (10) | −0.0033 (10) |
C2 | 0.0410 (13) | 0.0415 (13) | 0.0552 (15) | 0.0041 (10) | 0.0242 (11) | −0.0044 (11) |
C3 | 0.0420 (13) | 0.0378 (12) | 0.0529 (14) | −0.0003 (10) | 0.0212 (11) | −0.0046 (10) |
C4 | 0.0347 (11) | 0.0371 (12) | 0.0431 (12) | −0.0009 (9) | 0.0166 (10) | −0.0033 (9) |
C5 | 0.0363 (12) | 0.0402 (12) | 0.0429 (12) | −0.0033 (9) | 0.0181 (10) | −0.0046 (10) |
C6 | 0.0331 (11) | 0.0413 (12) | 0.0433 (12) | −0.0048 (9) | 0.0174 (10) | −0.0067 (10) |
C7 | 0.0397 (13) | 0.0463 (13) | 0.0540 (14) | −0.0060 (10) | 0.0264 (11) | −0.0067 (11) |
C8 | 0.0383 (13) | 0.0455 (13) | 0.0549 (15) | −0.0025 (10) | 0.0262 (11) | −0.0087 (11) |
C9 | 0.0320 (11) | 0.0447 (13) | 0.0439 (12) | −0.0009 (9) | 0.0198 (10) | −0.0071 (10) |
C10 | 0.0328 (11) | 0.0430 (13) | 0.0437 (13) | −0.0001 (9) | 0.0163 (10) | −0.0082 (10) |
C11 | 0.0318 (11) | 0.0405 (12) | 0.0456 (13) | 0.0015 (9) | 0.0167 (10) | −0.0079 (10) |
C12 | 0.0379 (13) | 0.0410 (13) | 0.0556 (15) | 0.0036 (10) | 0.0202 (11) | −0.0022 (11) |
C13 | 0.0384 (13) | 0.0400 (13) | 0.0576 (15) | 0.0016 (10) | 0.0196 (11) | −0.0013 (11) |
C14 | 0.0358 (12) | 0.0372 (12) | 0.0463 (13) | −0.0015 (9) | 0.0176 (10) | −0.0042 (10) |
C15 | 0.0367 (12) | 0.0410 (12) | 0.0453 (13) | −0.0019 (10) | 0.0188 (10) | −0.0021 (10) |
C16 | 0.0362 (12) | 0.0416 (12) | 0.0506 (14) | −0.0028 (10) | 0.0223 (11) | −0.0023 (10) |
C17 | 0.0440 (14) | 0.0462 (14) | 0.0739 (18) | −0.0022 (11) | 0.0365 (14) | −0.0016 (13) |
C18 | 0.0468 (15) | 0.0487 (15) | 0.081 (2) | 0.0004 (12) | 0.0420 (15) | −0.0026 (13) |
C19 | 0.0371 (12) | 0.0433 (13) | 0.0563 (14) | 0.0015 (10) | 0.0286 (11) | −0.0045 (11) |
C20 | 0.0365 (12) | 0.0450 (13) | 0.0504 (14) | 0.0031 (10) | 0.0239 (11) | −0.0059 (10) |
C21 | 0.0423 (13) | 0.0392 (12) | 0.0569 (15) | −0.0039 (10) | 0.0281 (12) | −0.0062 (11) |
C22 | 0.076 (2) | 0.0516 (16) | 0.0580 (17) | −0.0103 (14) | 0.0345 (16) | −0.0018 (13) |
N21 | 0.104 (2) | 0.0721 (19) | 0.0483 (14) | −0.0158 (17) | 0.0192 (15) | −0.0013 (13) |
C23 | 0.141 (4) | 0.071 (2) | 0.075 (2) | −0.028 (3) | 0.056 (3) | 0.0063 (19) |
C24 | 0.128 (4) | 0.058 (2) | 0.112 (3) | −0.031 (2) | 0.075 (3) | −0.005 (2) |
C25 | 0.0640 (19) | 0.0487 (16) | 0.099 (3) | −0.0172 (14) | 0.0425 (19) | −0.0192 (17) |
C26 | 0.0451 (14) | 0.0445 (14) | 0.0709 (18) | −0.0032 (11) | 0.0281 (13) | −0.0087 (13) |
C31 | 0.0334 (12) | 0.0415 (12) | 0.0510 (14) | −0.0007 (9) | 0.0218 (10) | −0.0084 (10) |
C32 | 0.0386 (12) | 0.0382 (12) | 0.0527 (14) | −0.0041 (10) | 0.0242 (11) | −0.0068 (10) |
N31 | 0.0502 (13) | 0.0534 (13) | 0.0479 (12) | −0.0004 (10) | 0.0228 (10) | −0.0025 (10) |
C33 | 0.0481 (15) | 0.0474 (14) | 0.0598 (16) | −0.0040 (11) | 0.0341 (13) | −0.0086 (12) |
C34 | 0.0466 (15) | 0.0466 (14) | 0.080 (2) | 0.0024 (11) | 0.0388 (15) | −0.0082 (13) |
C35 | 0.0370 (13) | 0.0549 (16) | 0.0708 (19) | 0.0050 (11) | 0.0213 (13) | −0.0020 (14) |
C36 | 0.0387 (13) | 0.0532 (15) | 0.0533 (15) | 0.0029 (11) | 0.0183 (11) | −0.0050 (12) |
C41 | 0.0344 (12) | 0.0395 (13) | 0.0637 (16) | 0.0017 (10) | 0.0232 (11) | 0.0013 (11) |
C42 | 0.0410 (13) | 0.0389 (13) | 0.0684 (17) | 0.0023 (10) | 0.0224 (12) | −0.0038 (12) |
N41 | 0.0587 (15) | 0.0572 (15) | 0.0633 (16) | −0.0062 (12) | 0.0191 (12) | −0.0145 (12) |
C43 | 0.0491 (16) | 0.0405 (14) | 0.107 (3) | −0.0032 (12) | 0.0312 (17) | −0.0127 (16) |
C44 | 0.0558 (18) | 0.0471 (16) | 0.118 (3) | 0.0042 (13) | 0.048 (2) | 0.0154 (18) |
C45 | 0.0544 (17) | 0.0641 (19) | 0.093 (2) | 0.0103 (15) | 0.0413 (18) | 0.0259 (18) |
C46 | 0.0452 (15) | 0.0586 (16) | 0.0649 (17) | 0.0034 (12) | 0.0279 (13) | 0.0112 (14) |
C51 | 0.0384 (12) | 0.0404 (12) | 0.0587 (15) | 0.0009 (10) | 0.0293 (12) | −0.0051 (11) |
C52 | 0.0422 (14) | 0.0596 (17) | 0.0639 (17) | 0.0020 (12) | 0.0259 (13) | −0.0129 (13) |
N51 | 0.0580 (17) | 0.133 (3) | 0.0669 (18) | 0.0229 (18) | 0.0125 (14) | −0.0369 (19) |
C53 | 0.0357 (14) | 0.0639 (18) | 0.079 (2) | 0.0021 (12) | 0.0223 (14) | −0.0158 (15) |
C54 | 0.0490 (15) | 0.0497 (15) | 0.084 (2) | −0.0022 (12) | 0.0419 (15) | −0.0143 (14) |
C55 | 0.0613 (19) | 0.079 (2) | 0.0621 (18) | 0.0080 (16) | 0.0331 (16) | −0.0169 (16) |
C56 | 0.0487 (15) | 0.0716 (19) | 0.0554 (16) | 0.0109 (14) | 0.0245 (13) | −0.0073 (14) |
O1 | 0.0474 (11) | 0.0686 (13) | 0.0561 (12) | −0.0119 (10) | 0.0130 (9) | −0.0004 (10) |
C61 | 0.082 (6) | 0.316 (17) | 0.046 (4) | −0.090 (8) | 0.027 (4) | −0.023 (6) |
C61' | 0.133 (12) | 0.112 (10) | 0.057 (6) | −0.060 (9) | −0.011 (7) | 0.025 (6) |
C71 | 0.069 (2) | 0.0665 (19) | 0.0525 (17) | 0.0045 (15) | 0.0230 (15) | 0.0008 (14) |
Cl1 | 0.0959 (7) | 0.0763 (6) | 0.0706 (5) | −0.0257 (5) | 0.0152 (5) | −0.0023 (4) |
Cl2 | 0.1039 (8) | 0.0724 (6) | 0.1507 (11) | −0.0125 (5) | 0.0832 (8) | −0.0244 (6) |
Cl3 | 0.0809 (7) | 0.1427 (11) | 0.1283 (10) | 0.0452 (7) | 0.0606 (7) | 0.0528 (9) |
Zn1—N4 | 2.050 (2) | C25—C26 | 1.391 (4) |
Zn1—N3 | 2.051 (2) | C25—H25 | 0.9500 |
Zn1—N1 | 2.060 (2) | C26—H26 | 0.9500 |
Zn1—N2 | 2.0596 (19) | C31—C36 | 1.387 (4) |
Zn1—O1 | 2.143 (2) | C31—C32 | 1.403 (4) |
N1—C4 | 1.372 (3) | C32—C33 | 1.399 (3) |
N1—C1 | 1.374 (3) | C32—N31 | 1.413 (4) |
N2—C6 | 1.370 (3) | N31—H31A | 0.8801 |
N2—C9 | 1.378 (3) | N31—H31B | 0.8799 |
N3—C14 | 1.370 (3) | C33—C34 | 1.374 (4) |
N3—C11 | 1.381 (3) | C33—H33 | 0.9500 |
N4—C19 | 1.371 (3) | C34—C35 | 1.381 (4) |
N4—C16 | 1.373 (3) | C34—H34 | 0.9500 |
C1—C20 | 1.397 (3) | C35—C36 | 1.391 (4) |
C1—C2 | 1.443 (4) | C35—H35 | 0.9500 |
C2—C3 | 1.351 (4) | C36—H36 | 0.9500 |
C2—H2 | 0.9500 | C41—C46 | 1.394 (4) |
C3—C4 | 1.441 (3) | C41—C42 | 1.399 (4) |
C3—H3 | 0.9500 | C42—C43 | 1.396 (4) |
C4—C5 | 1.403 (3) | C42—N41 | 1.397 (4) |
C5—C6 | 1.396 (3) | N41—H41A | 0.8800 |
C5—C21 | 1.501 (3) | N41—H41B | 0.8800 |
C6—C7 | 1.442 (3) | C43—C44 | 1.376 (5) |
C7—C8 | 1.351 (4) | C43—H43 | 0.9500 |
C7—H7 | 0.9500 | C44—C45 | 1.367 (6) |
C8—C9 | 1.442 (3) | C44—H44 | 0.9500 |
C8—H8 | 0.9500 | C45—C46 | 1.390 (4) |
C9—C10 | 1.395 (4) | C45—H45 | 0.9500 |
C10—C11 | 1.401 (3) | C46—H46 | 0.9500 |
C10—C31 | 1.509 (3) | C51—C56 | 1.377 (4) |
C11—C12 | 1.439 (4) | C51—C52 | 1.393 (4) |
C12—C13 | 1.351 (4) | C52—N51 | 1.393 (4) |
C12—H12 | 0.9500 | C52—C53 | 1.403 (4) |
C13—C14 | 1.442 (3) | N51—H51A | 0.8801 |
C13—H13 | 0.9500 | N51—H51B | 0.8800 |
C14—C15 | 1.410 (3) | C53—C54 | 1.362 (5) |
C15—C16 | 1.389 (4) | C53—H53 | 0.9500 |
C15—C41 | 1.498 (3) | C54—C55 | 1.379 (5) |
C16—C17 | 1.451 (3) | C54—H54 | 0.9500 |
C17—C18 | 1.346 (4) | C55—C56 | 1.389 (4) |
C17—H17 | 0.9500 | C55—H55 | 0.9500 |
C18—C19 | 1.438 (3) | C56—H56 | 0.9500 |
C18—H18 | 0.9500 | O1—C61 | 1.307 (6) |
C19—C20 | 1.398 (4) | O1—C61' | 1.337 (10) |
C20—C51 | 1.502 (3) | O1—H1O1 | 0.8400 |
C21—C26 | 1.391 (4) | C61—H61A | 0.9800 |
C21—C22 | 1.393 (4) | C61—H61B | 0.9800 |
C22—C23 | 1.396 (5) | C61—H61C | 0.9800 |
C22—N21 | 1.399 (4) | C61'—H61D | 0.9800 |
N21—H21A | 0.8800 | C61'—H61E | 0.9800 |
N21—H21B | 0.8800 | C61'—H61F | 0.9800 |
C23—C24 | 1.382 (6) | C71—Cl2 | 1.739 (4) |
C23—H23 | 0.9500 | C71—Cl3 | 1.742 (4) |
C24—C25 | 1.365 (6) | C71—Cl1 | 1.757 (4) |
C24—H24 | 0.9500 | C71—H71 | 1.0000 |
N4—Zn1—N3 | 89.73 (8) | C25—C24—H24 | 119.5 |
N4—Zn1—N1 | 89.39 (8) | C23—C24—H24 | 119.5 |
N3—Zn1—N1 | 164.63 (8) | C24—C25—C26 | 119.2 (3) |
N4—Zn1—N2 | 169.14 (8) | C24—C25—H25 | 120.4 |
N3—Zn1—N2 | 89.03 (8) | C26—C25—H25 | 120.4 |
N1—Zn1—N2 | 88.96 (8) | C25—C26—C21 | 120.7 (3) |
N4—Zn1—O1 | 92.93 (8) | C25—C26—H26 | 119.6 |
N3—Zn1—O1 | 98.66 (9) | C21—C26—H26 | 119.6 |
N1—Zn1—O1 | 96.70 (9) | C36—C31—C32 | 118.8 (2) |
N2—Zn1—O1 | 97.93 (8) | C36—C31—C10 | 120.3 (2) |
C4—N1—C1 | 106.7 (2) | C32—C31—C10 | 120.9 (2) |
C4—N1—Zn1 | 126.70 (16) | C33—C32—C31 | 119.1 (2) |
C1—N1—Zn1 | 126.15 (16) | C33—C32—N31 | 119.1 (2) |
C6—N2—C9 | 107.12 (19) | C31—C32—N31 | 121.7 (2) |
C6—N2—Zn1 | 126.29 (16) | C32—N31—H31A | 113.3 |
C9—N2—Zn1 | 126.26 (16) | C32—N31—H31B | 114.1 |
C14—N3—C11 | 106.6 (2) | H31A—N31—H31B | 106.7 |
C14—N3—Zn1 | 125.82 (16) | C34—C33—C32 | 120.9 (3) |
C11—N3—Zn1 | 127.46 (16) | C34—C33—H33 | 119.5 |
C19—N4—C16 | 107.4 (2) | C32—C33—H33 | 119.5 |
C19—N4—Zn1 | 126.01 (17) | C33—C34—C35 | 120.5 (2) |
C16—N4—Zn1 | 125.19 (16) | C33—C34—H34 | 119.8 |
N1—C1—C20 | 125.6 (2) | C35—C34—H34 | 119.8 |
N1—C1—C2 | 109.5 (2) | C34—C35—C36 | 119.0 (3) |
C20—C1—C2 | 124.9 (2) | C34—C35—H35 | 120.5 |
C3—C2—C1 | 107.1 (2) | C36—C35—H35 | 120.5 |
C3—C2—H2 | 126.5 | C31—C36—C35 | 121.6 (3) |
C1—C2—H2 | 126.5 | C31—C36—H36 | 119.2 |
C2—C3—C4 | 107.3 (2) | C35—C36—H36 | 119.2 |
C2—C3—H3 | 126.4 | C46—C41—C42 | 119.0 (3) |
C4—C3—H3 | 126.4 | C46—C41—C15 | 120.7 (3) |
N1—C4—C5 | 125.4 (2) | C42—C41—C15 | 120.2 (2) |
N1—C4—C3 | 109.5 (2) | C43—C42—N41 | 120.4 (3) |
C5—C4—C3 | 125.1 (2) | C43—C42—C41 | 118.8 (3) |
C6—C5—C4 | 125.4 (2) | N41—C42—C41 | 120.6 (2) |
C6—C5—C21 | 117.3 (2) | C42—N41—H41A | 113.6 |
C4—C5—C21 | 117.3 (2) | C42—N41—H41B | 105.8 |
N2—C6—C5 | 125.9 (2) | H41A—N41—H41B | 113.8 |
N2—C6—C7 | 109.2 (2) | C44—C43—C42 | 121.2 (3) |
C5—C6—C7 | 124.8 (2) | C44—C43—H43 | 119.4 |
C8—C7—C6 | 107.4 (2) | C42—C43—H43 | 119.4 |
C8—C7—H7 | 126.3 | C45—C44—C43 | 120.5 (3) |
C6—C7—H7 | 126.3 | C45—C44—H44 | 119.8 |
C7—C8—C9 | 107.3 (2) | C43—C44—H44 | 119.8 |
C7—C8—H8 | 126.3 | C44—C45—C46 | 119.4 (3) |
C9—C8—H8 | 126.3 | C44—C45—H45 | 120.3 |
N2—C9—C10 | 125.9 (2) | C46—C45—H45 | 120.3 |
N2—C9—C8 | 109.0 (2) | C45—C46—C41 | 121.1 (3) |
C10—C9—C8 | 125.1 (2) | C45—C46—H46 | 119.4 |
C9—C10—C11 | 125.6 (2) | C41—C46—H46 | 119.4 |
C9—C10—C31 | 117.0 (2) | C56—C51—C52 | 119.3 (2) |
C11—C10—C31 | 117.3 (2) | C56—C51—C20 | 120.7 (2) |
N3—C11—C10 | 124.7 (2) | C52—C51—C20 | 120.0 (2) |
N3—C11—C12 | 109.1 (2) | C51—C52—N51 | 120.6 (3) |
C10—C11—C12 | 126.2 (2) | C51—C52—C53 | 118.9 (3) |
C13—C12—C11 | 107.6 (2) | N51—C52—C53 | 120.4 (3) |
C13—C12—H12 | 126.2 | C52—N51—H51A | 113.9 |
C11—C12—H12 | 126.2 | C52—N51—H51B | 116.3 |
C12—C13—C14 | 106.9 (2) | H51A—N51—H51B | 128.5 |
C12—C13—H13 | 126.5 | C54—C53—C52 | 120.9 (3) |
C14—C13—H13 | 126.5 | C54—C53—H53 | 119.5 |
N3—C14—C15 | 125.8 (2) | C52—C53—H53 | 119.5 |
N3—C14—C13 | 109.7 (2) | C53—C54—C55 | 120.3 (3) |
C15—C14—C13 | 124.5 (2) | C53—C54—H54 | 119.8 |
C16—C15—C14 | 125.0 (2) | C55—C54—H54 | 119.8 |
C16—C15—C41 | 117.6 (2) | C54—C55—C56 | 119.2 (3) |
C14—C15—C41 | 117.4 (2) | C54—C55—H55 | 120.4 |
N4—C16—C15 | 126.0 (2) | C56—C55—H55 | 120.4 |
N4—C16—C17 | 108.6 (2) | C51—C56—C55 | 121.3 (3) |
C15—C16—C17 | 125.5 (2) | C51—C56—H56 | 119.4 |
C18—C17—C16 | 107.4 (2) | C55—C56—H56 | 119.4 |
C18—C17—H17 | 126.3 | C61—O1—Zn1 | 122.0 (4) |
C16—C17—H17 | 126.3 | C61'—O1—Zn1 | 123.3 (5) |
C17—C18—C19 | 107.4 (2) | C61—O1—H1O1 | 119.7 |
C17—C18—H18 | 126.3 | C61'—O1—H1O1 | 113.6 |
C19—C18—H18 | 126.3 | Zn1—O1—H1O1 | 109.9 |
N4—C19—C20 | 125.6 (2) | O1—C61—H61A | 109.5 |
N4—C19—C18 | 109.2 (2) | O1—C61—H61B | 109.5 |
C20—C19—C18 | 125.2 (2) | H61A—C61—H61B | 109.5 |
C1—C20—C19 | 125.6 (2) | O1—C61—H61C | 109.5 |
C1—C20—C51 | 117.6 (2) | H61A—C61—H61C | 109.5 |
C19—C20—C51 | 116.8 (2) | H61B—C61—H61C | 109.5 |
C26—C21—C22 | 119.9 (3) | O1—C61'—H61D | 109.5 |
C26—C21—C5 | 121.0 (3) | O1—C61'—H61E | 109.5 |
C22—C21—C5 | 119.1 (2) | H61D—C61'—H61E | 109.5 |
C21—C22—C23 | 118.6 (3) | O1—C61'—H61F | 109.5 |
C21—C22—N21 | 120.6 (3) | H61D—C61'—H61F | 109.5 |
C23—C22—N21 | 120.8 (3) | H61E—C61'—H61F | 109.5 |
C22—N21—H21A | 118.7 | Cl2—C71—Cl3 | 109.7 (2) |
C22—N21—H21B | 106.3 | Cl2—C71—Cl1 | 109.77 (19) |
H21A—N21—H21B | 120.3 | Cl3—C71—Cl1 | 111.85 (19) |
C24—C23—C22 | 120.6 (4) | Cl2—C71—H71 | 108.5 |
C24—C23—H23 | 119.7 | Cl3—C71—H71 | 108.5 |
C22—C23—H23 | 119.7 | Cl1—C71—H71 | 108.5 |
C25—C24—C23 | 120.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cl3i | 0.95 | 2.97 | 3.858 (3) | 157 |
N31—H31A···N41ii | 0.88 | 2.63 | 3.318 (4) | 136 |
N41—H41B···N21ii | 0.88 | 2.61 | 3.437 (4) | 156 |
O1—H1O1···N31ii | 0.84 | 2.01 | 2.818 (3) | 162 |
C61—H61C···N2 | 0.98 | 2.68 | 3.256 (8) | 118 |
C61′—H61F···N1 | 0.98 | 2.59 | 3.292 (12) | 129 |
C71—H71···N2 | 1.00 | 2.62 | 3.408 (4) | 135 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.
Funding information
The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 677.
References
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Collman, J. P., Brauman, J. I., Doxsee, K. M., Sessler, J. L., Morris, R. M. & Gibson, Q. H. (1983). Inorg. Chem. 22, 1427–1432. CrossRef Google Scholar
Collman, J. P., Brauman, J. I., Fitzgerald, J. P., Hampton, P. D., Naruta, Y., Sparapany, J. W. & Ibers, J. A. (1988). J. Am. Chem. Soc. 110, 3477–3486. CrossRef Google Scholar
Collman, J. P., Brauman, J. I., Halbert, T. R. & Suslick, K. S. (1976). Proc. Natl Acad. Sci. USA, 73, 3333–3337. CrossRef PubMed CAS Web of Science Google Scholar
Collman, J. P., Gagne, R. R., Halbert, T. R., Marchon, J. C. & Reed, C. A. (1973). J. Am. Chem. Soc. 95, 7868–7870. CrossRef CAS PubMed Web of Science Google Scholar
Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439. CrossRef PubMed CAS Web of Science Google Scholar
Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425. Web of Science CrossRef PubMed CAS Google Scholar
Freitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918–3925. CrossRef Google Scholar
Lee, J.-D., Kim, Y.-H. & Hong, J.-I. (2010). J. Org. Chem. 75, 7588–7595. CrossRef Google Scholar
Li, J., Noll, B. C., Oliver, A. G., Schulz, C. E. & Scheidt, W. R. (2013). J. Am. Chem. Soc. 135, 15627–15641. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lindsey, J. (1980). J. Org. Chem. 45, 5215. CrossRef Google Scholar
Michaudet, L., Richard, P. & Boitrel, B. (2000). Chem. Commun. pp. 1589–1590. CrossRef Google Scholar
Nasri, H., Fischer, J., Weiss, R., Bill, E. & Trautwein, A. (1987). J. Am. Chem. Soc. 109, 2549–2550. CSD CrossRef CAS Web of Science Google Scholar
Ruzié, C., Even, P., Ricard, D., Roisnel, T. & Boitrel, B. (2006). Inorg. Chem. 45, 1338–1348. Google Scholar
Schappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639–4645. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Strohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114–7120. CrossRef Google Scholar
Tabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466–4473. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Q., Li, X., Liu, D. & Li, J. (2015). Acta Cryst. C71, 545–548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zimmer, B., Bulach, V., Drexler, C., Erhardt, S., Hosseini, M. W. & De Cian, A. (2002). New J. Chem. 26, 43–57. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.