research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (methanol-κO)[5,10,15,20-tetra­kis­(2-amino­phen­yl)porphyrinato-κ4N]zinc(II)–chloro­form–methanol (1/1/1)

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany, and bInstitut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118, Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 July 2018; accepted 1 August 2018; online 21 August 2018)

In the crystal structure of the title compound, [Zn(C44H32N8)(CH3OH)]·CHCl3·CH3OH, the ZnII cation is coordinated by four porphyrin N and one methanol O atom within a slightly distorted square-pyramidal environment and is shifted out of the porphyrin plane towards the direction of the methanol mol­ecule. The methyl group of the coordinating methanol mol­ecule is disordered over two sets of sites. The porphyrin backbone is nearly planar and the phenyl rings are almost perpendicular to the porphyrin plane. As is typical for picket-fence porphyrins, all four ortho substituents of the meso-phenyl groups (here the amino groups) are facing to the same side of the porphyrin mol­ecule. In the crystal structure, two neighbouring porphyrin complexes form centrosymmetric dimers that are connected via O—H⋯N hydrogen bonding. With the aid of additional N—H⋯N and C—H⋯N hydrogen bonding, these dimers are stacked into columns parallel to [010] that are finally arranged into layers parallel to (001). Between these layers channels are formed where chloro­form solvent mol­ecules are located that are connected to the porphyrin complexes by weak C—H⋯Cl hydrogen bonding. There are additional cavities in the structure where some small residual electron density is found, indicating the presence of disordered methanol mol­ecules, but a reasonable model could not be refined. Therefore the contribution of the electron density associated with the methanol solvent mol­ecule was removed with the SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] in PLATON. Nevertheless, the given chemical formula and other crystal data take into account the methanol solvent mol­ecule.

1. Chemical context

Picket-fence porphyrins have been widely used as model compounds for the investigation of oxygen binding to hemoproteins (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.], 1976[Collman, J. P., Brauman, J. I., Halbert, T. R. & Suslick, K. S. (1976). Proc. Natl Acad. Sci. USA, 73, 3333-3337.]; Tabushi et al., 1985[Tabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466-4473.]; Schappacher et al., 1989[Schappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639-4645.]). With bulky substituents in the ortho-positions of the meso-substituents, their rotation is hindered, leading to only one side of the porphyrin being accessible for axial coordination in the all-α isomer. In 1973, Collman et al. for the first time reported this behaviour on the prototype picket-fence porphyrin 5,10,15,20-tetra­kis α,α,α,α 2-pivala­mido­phenyl porphyrin (Collman et al., 1973[Collman, J. P., Gagne, R. R., Halbert, T. R., Marchon, J. C. & Reed, C. A. (1973). J. Am. Chem. Soc. 95, 7868-7870.]). Afterwards, the first crystal structure of a picket-fence porphyrin was published (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]). Since that time, several different substituted picket-fence porphyrins have been reported (Collman et al., 1983[Collman, J. P., Brauman, J. I., Doxsee, K. M., Sessler, J. L., Morris, R. M. & Gibson, Q. H. (1983). Inorg. Chem. 22, 1427-1432.], 1998[Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424-2425.]; Lee et al., 2010[Lee, J.-D., Kim, Y.-H. & Hong, J.-I. (2010). J. Org. Chem. 75, 7588-7595.]; Yu et al., 2015[Yu, Q., Li, X., Liu, D. & Li, J. (2015). Acta Cryst. C71, 545-548.]). In general, there is a risk of isomerization to the other atropisomers, but with the incorporation of zinc(II) the rotational barrier for the meso-substituents is increased, as reported by Freitag & Whitten (1983[Freitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918-3925.]). Therefore, harsher reaction conditions could be used to introduce substituents in the ortho-positions without atropisomerization. We became inter­ested in this class of compounds as receptors for oxo anions. We synthesized the title compound in a four-step synthesis using 2-nitro­benzaldehyde and pyrrole as starting material (Fig. 1[link]) as the key precursor for further functionalizations. Surprisingly, no crystal structure of this compound has been reported. We inserted ZnII into the porphyrin to stabilize its planar geometry and thus to prevent atropisomerization. Single crystals could be obtained from a methanol/chloroform solution of the zinc(II) porphyrin complex, and were characterized by single-crystal X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound 5,10,15,20-tetra­kis α,α,α,α 2-amino­phenyl zinc(II) porphyrin.

2. Structural commentary

The asymmetric unit of the solvated title compound, [Zn(C44H32N8)(CH3OH)]·CHCl3·CH3OH, consists of one ZnII cation, one substituted porphyrin, one methanol, as well as one chloro­form solvent mol­ecule, all of them located in general positions (Fig. 2[link]). The contribution of an additional methanol solvent mol­ecule to the electron density was removed with the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The methyl group of the methanol mol­ecule is disordered over two positions and was refined using a split model. All four amino groups are located on the same side of the porphyrin moiety, which shows that the α,α,α,α isomer was obtained. The porphyrin backbone is nearly planar, the largest deviation from the mean least-squares plane amounts to 0.189 (3) Å. All phenyl rings are nearly perpendicular to the porphyrin plane, with dihedral angles of 85.86 (9), 74.90 (7), 67.75 (6) and 85.17 (7)°.

[Figure 2]
Figure 2
The structure of the mol­ecular entities in the title compound with labelling and displacement elliposids drawn at the 50% probability level. The disorder of the methyl group is shown as full and open bonds.

The zinc(II) cation is coordinated by four porphyrin N atoms that are located in the basal plane, and the metal coordination is completed by the O atom of a methanol mol­ecule in apical position leading to an overall square-pyramidal environment (Fig. 3[link]). The Zn—N distances range from 2.050 (2) to 2.060 (2) Å and correspond to literature values (Table 1[link]). As expected, the apical Zn—O distance of 2.143 (2) Å is slightly longer (Table 1[link]). All angles around the ZnII cation scatter between 88.96 (8) and 89.73 (8)° for basal groups and between 92.93 (8) and 98.66 (9)° involving the apical group, which shows that the coordination polyhedron is slightly distorted (Table 1[link]). The ZnII cation is located 0.1876 (9) Å above the mean plane formed by Zn1, N1, N2, N3 and N4 and is shifted towards the direction of the methanol O atom.

Table 1
Selected geometric parameters (Å, °)

Zn1—N4 2.050 (2) Zn1—N2 2.0596 (19)
Zn1—N3 2.051 (2) Zn1—O1 2.143 (2)
Zn1—N1 2.060 (2)    
       
N4—Zn1—N3 89.73 (8) N1—Zn1—N2 88.96 (8)
N4—Zn1—N1 89.39 (8) N4—Zn1—O1 92.93 (8)
N3—Zn1—N1 164.63 (8) N3—Zn1—O1 98.66 (9)
N4—Zn1—N2 169.14 (8) N1—Zn1—O1 96.70 (9)
N3—Zn1—N2 89.03 (8) N2—Zn1—O1 97.93 (8)
[Figure 3]
Figure 3
Mol­ecular structure of a discrete complex in a view into the porphyrin plane. The disordered methyl group is shown with the major component.

3. Supra­molecular features

In the crystal structure of the title compound, each two neighbouring porphyrin complexes form dimers that are located on centers of inversion. The methanol mol­ecules are directed into the cavity of the dimer and are linked to the symmetry-related complex by inter­molecular O—H⋯N hydrogen bonding (Fig. 4[link], Table 2[link]). These dimers are stacked into columns extending parallel to [001] (Fig. 4[link]). The columns are connected by weak N—H⋯N and additional C—H⋯N inter­actions into layers parallel to (001). Between the layers channels are formed, in which the chloro­fom solvate mol­ecules are embedded. The solvent mol­ecules are linked to the porpyhrine complexes by inter­molecular C—H⋯Cl hydrogen bonding (Fig. 4[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cl3i 0.95 2.97 3.858 (3) 157
N31—H31A⋯N41ii 0.88 2.63 3.318 (4) 136
N41—H41B⋯N21ii 0.88 2.61 3.437 (4) 156
O1—H1O1⋯N31ii 0.84 2.01 2.818 (3) 162
C61—H61C⋯N2 0.98 2.68 3.256 (8) 118
C61′—H61F⋯N1 0.98 2.59 3.292 (12) 129
C71—H71⋯N2 1.00 2.62 3.408 (4) 135
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal structure of the title compound in a view along [010]. Inter­molecular O—H⋯N and C—H⋯Cl hydrogen bonds are shown as dashed lines.

4. Database survey

In 1975, Collman et al. determined the first crystal structure of a picket-fence porphyrin (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]). In the past decades, numerous other crystal structures of picket-fence porphyrins have been published (Nasri et al., 1987[Nasri, H., Fischer, J., Weiss, R., Bill, E. & Trautwein, A. (1987). J. Am. Chem. Soc. 109, 2549-2550.]; Collman et al., 1988[Collman, J. P., Brauman, J. I., Fitzgerald, J. P., Hampton, P. D., Naruta, Y., Sparapany, J. W. & Ibers, J. A. (1988). J. Am. Chem. Soc. 110, 3477-3486.]; Michaudet et al., 2000[Michaudet, L., Richard, P. & Boitrel, B. (2000). Chem. Commun. pp. 1589-1590.]; Zimmer et al., 2002[Zimmer, B., Bulach, V., Drexler, C., Erhardt, S., Hosseini, M. W. & De Cian, A. (2002). New J. Chem. 26, 43-57.]; Ruzié et al., 2006[Ruzié, C., Even, P., Ricard, D., Roisnel, T. & Boitrel, B. (2006). Inorg. Chem. 45, 1338-1348.]; Li et al., 2013[Li, J., Noll, B. C., Oliver, A. G., Schulz, C. E. & Scheidt, W. R. (2013). J. Am. Chem. Soc. 135, 15627-15641.]). For the α,β,α,β isomer of tetra­kis 2-amino­phenyl porphyrin, a crystal structure was published by Zimmer et al. (2002[Zimmer, B., Bulach, V., Drexler, C., Erhardt, S., Hosseini, M. W. & De Cian, A. (2002). New J. Chem. 26, 43-57.]). A crystal structure for the tetra­kis α,α,α,α 2-amino­phenyl porphyrin has not been reported so far.

5. Synthesis and crystallization

The metal-free 5,10,15,20-tetra­kis α,α,α,α 2-amino­phenyl porphyrin was synthesized according to procedures reported by Collman et al. (1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]) and Lindsey (1980[Lindsey, J. (1980). J. Org. Chem. 45, 5215.]). For the insertion of zinc(II), standard metallation conditions were used (Strohmeier et al., 1997[Strohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114-7120.]): 5,10,15,20-tetra­kis α,α,α,α 2-amino­phenyl porphyrin (30 mg, 44 mmol), zinc(II) acetate dihydrate (195 mg, 889 mmol) and 0.5 ml tri­ethyl­amine were stirred in 10 ml of di­chloro­methane for 24 h at room temperature. The reaction mixture was washed with water (2 × 30 ml) and dried over magnesium sulfate. After flash coloumn chromatography (cyclo­hexane / ethyl acetate, 20 to 100% ethyl acetate) 30 mg (41 mmol; 92% yield) of 5,10,15,20-tetra­kis α,α,α,α 2-amino­phenyl zinc(II) porphyrin were obtained. For crystallization, the compound was dissolved in chloro­form and precipitated with methanol.

1H NMR (500 MHz, DMSO-d6, 300 K): δ = 8.74 (s, 8H, H-β), 7.68 (dd, 3J = 7.4 Hz, 4J = 1.5 Hz, 4H, H-6), 7.50 (ddd, 3J = 8.1, 7.6 Hz, 4J = 1.6 Hz, 4H, H-4), 7.13 (dd, 3J = 8.3 Hz, 4J = 1.0 Hz, 4H, H-5), 7.00 (dt, 3J = 7.4 Hz, 4J = 1.0 Hz, 4H, H-3), 4.43 (s, 8H, NH) ppm. 13C NMR (125 MHz, DMSO-d6, 300 K): δ = 149.5 (C-α), 147.9 (C2), 134.3 (C6), 131.2 (C-β), 128.8 (C4), 126.8 (C1), 116.1 (C-meso), 115.4 (C5), 114.5 (C3) ppm. EI–MS: m/z (%) = 736.2 (100) [M]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were treated with calculated positions (methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic and 0.98 Å for methyl H atoms. The N—H and O—H hydrogen atoms were located in a difference map. Their bond lengths were set to ideal values, and finally they were refined with fixed bond lengths of N—H = 0.88 Å and O—H = 0.84 Å with Uiso(H) = 1.5Ueq(O,N) using a riding model. The methyl group of the methanol mol­ecule is disordered over two sets of sites and was refined using a split model with restraints for the bond lengths (SADI). After initial refinement of the s.o.f. it was fixed at 60:40 in the final refinement cycles. There were two weak residual electron density peaks that are located near centres of inversion, indicating for a disordered methanol solvent mol­ecule. However, a reasonable structural model could not be refined and therefore the contribution of this mol­ecule to the electronic density data was removed with the SQUEEZE proc­edure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The volume of the solvent-accessible voids amounts to 68.7 Å3, and the number of electrons within the voids to 16.2, indicating that one methanol mol­ecule per formula unit is present. The given chemical formula and other crystal data take into account this methanol solvent mol­ecule.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C44H32N8)(CH4O)]·CHCl3·CH4O
Mr 921.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 12.3880 (4), 13.2971 (4), 13.3656 (5)
α, β, γ (°) 90.159 (3), 110.550 (2), 90.800 (2)
V3) 2061.27 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.20 × 0.10 × 0.08
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 20461, 8071, 7001
Rint 0.061
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.06
No. of reflections 8071
No. of parameters 543
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.72
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(Methanol-κO)[5,10,15,20-tetrakis(2-aminophenyl)porphyrinato-κ4N]zinc(II)–chloroform–methanol (1/1/1) top
Crystal data top
[Zn(C44H32N8)(CH4O)]·CHCl3·CH4OZ = 2
Mr = 921.60F(000) = 916
Triclinic, P1Dx = 1.485 Mg m3
a = 12.3880 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2971 (4) ÅCell parameters from 20461 reflections
c = 13.3656 (5) Åθ = 1.5–26.0°
α = 90.159 (3)°µ = 0.84 mm1
β = 110.550 (2)°T = 200 K
γ = 90.800 (2)°Block, red
V = 2061.27 (12) Å30.20 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
Rint = 0.061
ω scansθmax = 26.0°, θmin = 1.5°
20461 measured reflectionsh = 1415
8071 independent reflectionsk = 1616
7001 reflections with I > 2σ(I)l = 1613
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.8654P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.018
8071 reflectionsΔρmax = 0.65 e Å3
543 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43236 (2)0.35668 (2)0.26068 (2)0.03716 (11)
N10.45369 (17)0.20660 (15)0.23529 (17)0.0392 (4)
N20.29092 (16)0.31816 (15)0.30033 (16)0.0374 (4)
N30.37962 (17)0.50321 (15)0.24521 (17)0.0385 (4)
N40.55193 (17)0.39265 (16)0.19196 (17)0.0401 (4)
C10.5373 (2)0.16696 (18)0.2019 (2)0.0398 (5)
C20.5314 (2)0.05862 (19)0.2046 (2)0.0439 (6)
H20.57860.01310.18430.053*
C30.4461 (2)0.03407 (19)0.2416 (2)0.0430 (5)
H30.42250.03200.25260.052*
C40.3976 (2)0.12672 (18)0.26130 (19)0.0375 (5)
C50.3088 (2)0.13389 (18)0.3032 (2)0.0387 (5)
C60.2598 (2)0.22319 (18)0.32034 (19)0.0383 (5)
C70.1638 (2)0.2292 (2)0.3573 (2)0.0441 (6)
H70.12630.17430.37760.053*
C80.1370 (2)0.3273 (2)0.3576 (2)0.0436 (6)
H80.07640.35410.37720.052*
C90.2173 (2)0.38384 (19)0.3227 (2)0.0385 (5)
C100.2165 (2)0.48791 (19)0.3095 (2)0.0391 (5)
C110.2886 (2)0.54284 (18)0.2684 (2)0.0385 (5)
C120.2830 (2)0.64903 (19)0.2469 (2)0.0438 (6)
H120.22700.69380.25410.053*
C130.3717 (2)0.6735 (2)0.2145 (2)0.0446 (6)
H130.39010.73850.19530.053*
C140.4331 (2)0.58211 (18)0.2149 (2)0.0389 (5)
C150.5354 (2)0.57684 (19)0.1915 (2)0.0398 (5)
C160.5888 (2)0.48839 (19)0.1807 (2)0.0409 (5)
C170.6925 (2)0.4819 (2)0.1543 (3)0.0505 (6)
H170.73690.53690.14350.061*
C180.7142 (2)0.3837 (2)0.1477 (3)0.0535 (7)
H180.77620.35660.13060.064*
C190.6263 (2)0.32731 (19)0.1714 (2)0.0423 (5)
C200.6187 (2)0.22237 (19)0.1735 (2)0.0417 (5)
C210.2652 (2)0.03777 (19)0.3352 (2)0.0433 (6)
C220.3084 (3)0.0086 (2)0.4418 (3)0.0590 (7)
N210.3864 (3)0.0707 (2)0.5193 (2)0.0769 (9)
H21A0.42850.11450.49910.115*
H21B0.41840.03280.57550.115*
C230.2686 (5)0.0817 (3)0.4704 (3)0.0911 (14)
H230.29790.10310.54260.109*
C240.1869 (4)0.1403 (3)0.3946 (4)0.0908 (14)
H240.16110.20180.41530.109*
C250.1428 (3)0.1111 (2)0.2904 (3)0.0672 (9)
H250.08550.15110.23910.081*
C260.1828 (2)0.0221 (2)0.2602 (3)0.0515 (6)
H260.15360.00200.18750.062*
C310.1304 (2)0.54603 (18)0.3423 (2)0.0402 (5)
C320.1437 (2)0.55734 (18)0.4504 (2)0.0410 (5)
N310.2392 (2)0.51753 (18)0.53272 (18)0.0490 (5)
H31A0.25800.45720.51790.074*
H31B0.22980.51340.59490.074*
C330.0628 (2)0.6129 (2)0.4776 (2)0.0478 (6)
H330.07160.62130.55070.057*
C340.0293 (2)0.6555 (2)0.4001 (3)0.0533 (7)
H340.08360.69270.42000.064*
C350.0434 (2)0.6447 (2)0.2934 (3)0.0536 (7)
H350.10670.67470.23980.064*
C360.0363 (2)0.5893 (2)0.2655 (2)0.0478 (6)
H360.02620.58100.19220.057*
C410.5929 (2)0.67416 (19)0.1812 (2)0.0443 (6)
C420.6476 (2)0.7341 (2)0.2715 (2)0.0486 (6)
N410.6512 (2)0.7034 (2)0.3725 (2)0.0605 (6)
H41A0.58940.66940.37140.091*
H41B0.66460.75840.41200.091*
C430.7059 (3)0.8215 (2)0.2602 (3)0.0645 (9)
H430.74430.86220.32120.077*
C440.7086 (3)0.8498 (2)0.1621 (4)0.0687 (10)
H440.74870.90960.15620.082*
C450.6540 (3)0.7924 (3)0.0732 (3)0.0661 (9)
H450.65520.81260.00540.079*
C460.5969 (2)0.7043 (2)0.0828 (3)0.0539 (7)
H460.55980.66390.02110.065*
C510.7054 (2)0.16490 (19)0.1419 (2)0.0426 (5)
C520.8152 (2)0.1493 (2)0.2161 (2)0.0533 (7)
N510.8467 (3)0.1884 (3)0.3194 (3)0.0885 (11)
H51A0.79070.21970.33220.133*
H51B0.91280.16830.36540.133*
C530.8949 (2)0.0959 (2)0.1844 (3)0.0591 (8)
H530.96960.08410.23480.071*
C540.8665 (3)0.0608 (2)0.0824 (3)0.0559 (7)
H540.92220.02660.06170.067*
C550.7573 (3)0.0747 (3)0.0091 (3)0.0645 (8)
H550.73680.04870.06150.077*
C560.6776 (3)0.1271 (3)0.0397 (2)0.0569 (7)
H560.60240.13700.01080.068*
O10.55695 (18)0.36589 (17)0.41938 (17)0.0589 (5)
H1O10.60910.40780.42140.088*
C610.5284 (8)0.3528 (12)0.5039 (5)0.148 (6)0.6
H61A0.50330.41680.52420.222*0.6
H61B0.59520.32880.56290.222*0.6
H61C0.46540.30300.48770.222*0.6
C61'0.5955 (13)0.2855 (9)0.4808 (9)0.113 (5)0.4
H61D0.55940.28190.53520.169*0.4
H61E0.67940.29120.51570.169*0.4
H61F0.57610.22450.43640.169*0.4
C710.0752 (3)0.2987 (3)0.0578 (3)0.0622 (8)
H710.09830.29290.13710.075*
Cl10.16172 (10)0.39208 (8)0.02947 (8)0.0849 (3)
Cl20.09745 (11)0.18359 (8)0.00662 (12)0.0989 (4)
Cl30.07064 (10)0.32776 (12)0.00537 (12)0.1104 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03244 (16)0.03754 (17)0.04684 (18)0.00091 (11)0.02067 (12)0.00504 (11)
N10.0354 (10)0.0391 (10)0.0492 (11)0.0002 (8)0.0225 (9)0.0044 (8)
N20.0314 (9)0.0389 (10)0.0462 (11)0.0003 (8)0.0191 (8)0.0057 (8)
N30.0334 (10)0.0386 (10)0.0485 (11)0.0012 (8)0.0206 (9)0.0061 (8)
N40.0362 (10)0.0392 (10)0.0516 (12)0.0008 (8)0.0239 (9)0.0050 (9)
C10.0373 (12)0.0396 (12)0.0479 (13)0.0041 (9)0.0216 (10)0.0033 (10)
C20.0410 (13)0.0415 (13)0.0552 (15)0.0041 (10)0.0242 (11)0.0044 (11)
C30.0420 (13)0.0378 (12)0.0529 (14)0.0003 (10)0.0212 (11)0.0046 (10)
C40.0347 (11)0.0371 (12)0.0431 (12)0.0009 (9)0.0166 (10)0.0033 (9)
C50.0363 (12)0.0402 (12)0.0429 (12)0.0033 (9)0.0181 (10)0.0046 (10)
C60.0331 (11)0.0413 (12)0.0433 (12)0.0048 (9)0.0174 (10)0.0067 (10)
C70.0397 (13)0.0463 (13)0.0540 (14)0.0060 (10)0.0264 (11)0.0067 (11)
C80.0383 (13)0.0455 (13)0.0549 (15)0.0025 (10)0.0262 (11)0.0087 (11)
C90.0320 (11)0.0447 (13)0.0439 (12)0.0009 (9)0.0198 (10)0.0071 (10)
C100.0328 (11)0.0430 (13)0.0437 (13)0.0001 (9)0.0163 (10)0.0082 (10)
C110.0318 (11)0.0405 (12)0.0456 (13)0.0015 (9)0.0167 (10)0.0079 (10)
C120.0379 (13)0.0410 (13)0.0556 (15)0.0036 (10)0.0202 (11)0.0022 (11)
C130.0384 (13)0.0400 (13)0.0576 (15)0.0016 (10)0.0196 (11)0.0013 (11)
C140.0358 (12)0.0372 (12)0.0463 (13)0.0015 (9)0.0176 (10)0.0042 (10)
C150.0367 (12)0.0410 (12)0.0453 (13)0.0019 (10)0.0188 (10)0.0021 (10)
C160.0362 (12)0.0416 (12)0.0506 (14)0.0028 (10)0.0223 (11)0.0023 (10)
C170.0440 (14)0.0462 (14)0.0739 (18)0.0022 (11)0.0365 (14)0.0016 (13)
C180.0468 (15)0.0487 (15)0.081 (2)0.0004 (12)0.0420 (15)0.0026 (13)
C190.0371 (12)0.0433 (13)0.0563 (14)0.0015 (10)0.0286 (11)0.0045 (11)
C200.0365 (12)0.0450 (13)0.0504 (14)0.0031 (10)0.0239 (11)0.0059 (10)
C210.0423 (13)0.0392 (12)0.0569 (15)0.0039 (10)0.0281 (12)0.0062 (11)
C220.076 (2)0.0516 (16)0.0580 (17)0.0103 (14)0.0345 (16)0.0018 (13)
N210.104 (2)0.0721 (19)0.0483 (14)0.0158 (17)0.0192 (15)0.0013 (13)
C230.141 (4)0.071 (2)0.075 (2)0.028 (3)0.056 (3)0.0063 (19)
C240.128 (4)0.058 (2)0.112 (3)0.031 (2)0.075 (3)0.005 (2)
C250.0640 (19)0.0487 (16)0.099 (3)0.0172 (14)0.0425 (19)0.0192 (17)
C260.0451 (14)0.0445 (14)0.0709 (18)0.0032 (11)0.0281 (13)0.0087 (13)
C310.0334 (12)0.0415 (12)0.0510 (14)0.0007 (9)0.0218 (10)0.0084 (10)
C320.0386 (12)0.0382 (12)0.0527 (14)0.0041 (10)0.0242 (11)0.0068 (10)
N310.0502 (13)0.0534 (13)0.0479 (12)0.0004 (10)0.0228 (10)0.0025 (10)
C330.0481 (15)0.0474 (14)0.0598 (16)0.0040 (11)0.0341 (13)0.0086 (12)
C340.0466 (15)0.0466 (14)0.080 (2)0.0024 (11)0.0388 (15)0.0082 (13)
C350.0370 (13)0.0549 (16)0.0708 (19)0.0050 (11)0.0213 (13)0.0020 (14)
C360.0387 (13)0.0532 (15)0.0533 (15)0.0029 (11)0.0183 (11)0.0050 (12)
C410.0344 (12)0.0395 (13)0.0637 (16)0.0017 (10)0.0232 (11)0.0013 (11)
C420.0410 (13)0.0389 (13)0.0684 (17)0.0023 (10)0.0224 (12)0.0038 (12)
N410.0587 (15)0.0572 (15)0.0633 (16)0.0062 (12)0.0191 (12)0.0145 (12)
C430.0491 (16)0.0405 (14)0.107 (3)0.0032 (12)0.0312 (17)0.0127 (16)
C440.0558 (18)0.0471 (16)0.118 (3)0.0042 (13)0.048 (2)0.0154 (18)
C450.0544 (17)0.0641 (19)0.093 (2)0.0103 (15)0.0413 (18)0.0259 (18)
C460.0452 (15)0.0586 (16)0.0649 (17)0.0034 (12)0.0279 (13)0.0112 (14)
C510.0384 (12)0.0404 (12)0.0587 (15)0.0009 (10)0.0293 (12)0.0051 (11)
C520.0422 (14)0.0596 (17)0.0639 (17)0.0020 (12)0.0259 (13)0.0129 (13)
N510.0580 (17)0.133 (3)0.0669 (18)0.0229 (18)0.0125 (14)0.0369 (19)
C530.0357 (14)0.0639 (18)0.079 (2)0.0021 (12)0.0223 (14)0.0158 (15)
C540.0490 (15)0.0497 (15)0.084 (2)0.0022 (12)0.0419 (15)0.0143 (14)
C550.0613 (19)0.079 (2)0.0621 (18)0.0080 (16)0.0331 (16)0.0169 (16)
C560.0487 (15)0.0716 (19)0.0554 (16)0.0109 (14)0.0245 (13)0.0073 (14)
O10.0474 (11)0.0686 (13)0.0561 (12)0.0119 (10)0.0130 (9)0.0004 (10)
C610.082 (6)0.316 (17)0.046 (4)0.090 (8)0.027 (4)0.023 (6)
C61'0.133 (12)0.112 (10)0.057 (6)0.060 (9)0.011 (7)0.025 (6)
C710.069 (2)0.0665 (19)0.0525 (17)0.0045 (15)0.0230 (15)0.0008 (14)
Cl10.0959 (7)0.0763 (6)0.0706 (5)0.0257 (5)0.0152 (5)0.0023 (4)
Cl20.1039 (8)0.0724 (6)0.1507 (11)0.0125 (5)0.0832 (8)0.0244 (6)
Cl30.0809 (7)0.1427 (11)0.1283 (10)0.0452 (7)0.0606 (7)0.0528 (9)
Geometric parameters (Å, º) top
Zn1—N42.050 (2)C25—C261.391 (4)
Zn1—N32.051 (2)C25—H250.9500
Zn1—N12.060 (2)C26—H260.9500
Zn1—N22.0596 (19)C31—C361.387 (4)
Zn1—O12.143 (2)C31—C321.403 (4)
N1—C41.372 (3)C32—C331.399 (3)
N1—C11.374 (3)C32—N311.413 (4)
N2—C61.370 (3)N31—H31A0.8801
N2—C91.378 (3)N31—H31B0.8799
N3—C141.370 (3)C33—C341.374 (4)
N3—C111.381 (3)C33—H330.9500
N4—C191.371 (3)C34—C351.381 (4)
N4—C161.373 (3)C34—H340.9500
C1—C201.397 (3)C35—C361.391 (4)
C1—C21.443 (4)C35—H350.9500
C2—C31.351 (4)C36—H360.9500
C2—H20.9500C41—C461.394 (4)
C3—C41.441 (3)C41—C421.399 (4)
C3—H30.9500C42—C431.396 (4)
C4—C51.403 (3)C42—N411.397 (4)
C5—C61.396 (3)N41—H41A0.8800
C5—C211.501 (3)N41—H41B0.8800
C6—C71.442 (3)C43—C441.376 (5)
C7—C81.351 (4)C43—H430.9500
C7—H70.9500C44—C451.367 (6)
C8—C91.442 (3)C44—H440.9500
C8—H80.9500C45—C461.390 (4)
C9—C101.395 (4)C45—H450.9500
C10—C111.401 (3)C46—H460.9500
C10—C311.509 (3)C51—C561.377 (4)
C11—C121.439 (4)C51—C521.393 (4)
C12—C131.351 (4)C52—N511.393 (4)
C12—H120.9500C52—C531.403 (4)
C13—C141.442 (3)N51—H51A0.8801
C13—H130.9500N51—H51B0.8800
C14—C151.410 (3)C53—C541.362 (5)
C15—C161.389 (4)C53—H530.9500
C15—C411.498 (3)C54—C551.379 (5)
C16—C171.451 (3)C54—H540.9500
C17—C181.346 (4)C55—C561.389 (4)
C17—H170.9500C55—H550.9500
C18—C191.438 (3)C56—H560.9500
C18—H180.9500O1—C611.307 (6)
C19—C201.398 (4)O1—C61'1.337 (10)
C20—C511.502 (3)O1—H1O10.8400
C21—C261.391 (4)C61—H61A0.9800
C21—C221.393 (4)C61—H61B0.9800
C22—C231.396 (5)C61—H61C0.9800
C22—N211.399 (4)C61'—H61D0.9800
N21—H21A0.8800C61'—H61E0.9800
N21—H21B0.8800C61'—H61F0.9800
C23—C241.382 (6)C71—Cl21.739 (4)
C23—H230.9500C71—Cl31.742 (4)
C24—C251.365 (6)C71—Cl11.757 (4)
C24—H240.9500C71—H711.0000
N4—Zn1—N389.73 (8)C25—C24—H24119.5
N4—Zn1—N189.39 (8)C23—C24—H24119.5
N3—Zn1—N1164.63 (8)C24—C25—C26119.2 (3)
N4—Zn1—N2169.14 (8)C24—C25—H25120.4
N3—Zn1—N289.03 (8)C26—C25—H25120.4
N1—Zn1—N288.96 (8)C25—C26—C21120.7 (3)
N4—Zn1—O192.93 (8)C25—C26—H26119.6
N3—Zn1—O198.66 (9)C21—C26—H26119.6
N1—Zn1—O196.70 (9)C36—C31—C32118.8 (2)
N2—Zn1—O197.93 (8)C36—C31—C10120.3 (2)
C4—N1—C1106.7 (2)C32—C31—C10120.9 (2)
C4—N1—Zn1126.70 (16)C33—C32—C31119.1 (2)
C1—N1—Zn1126.15 (16)C33—C32—N31119.1 (2)
C6—N2—C9107.12 (19)C31—C32—N31121.7 (2)
C6—N2—Zn1126.29 (16)C32—N31—H31A113.3
C9—N2—Zn1126.26 (16)C32—N31—H31B114.1
C14—N3—C11106.6 (2)H31A—N31—H31B106.7
C14—N3—Zn1125.82 (16)C34—C33—C32120.9 (3)
C11—N3—Zn1127.46 (16)C34—C33—H33119.5
C19—N4—C16107.4 (2)C32—C33—H33119.5
C19—N4—Zn1126.01 (17)C33—C34—C35120.5 (2)
C16—N4—Zn1125.19 (16)C33—C34—H34119.8
N1—C1—C20125.6 (2)C35—C34—H34119.8
N1—C1—C2109.5 (2)C34—C35—C36119.0 (3)
C20—C1—C2124.9 (2)C34—C35—H35120.5
C3—C2—C1107.1 (2)C36—C35—H35120.5
C3—C2—H2126.5C31—C36—C35121.6 (3)
C1—C2—H2126.5C31—C36—H36119.2
C2—C3—C4107.3 (2)C35—C36—H36119.2
C2—C3—H3126.4C46—C41—C42119.0 (3)
C4—C3—H3126.4C46—C41—C15120.7 (3)
N1—C4—C5125.4 (2)C42—C41—C15120.2 (2)
N1—C4—C3109.5 (2)C43—C42—N41120.4 (3)
C5—C4—C3125.1 (2)C43—C42—C41118.8 (3)
C6—C5—C4125.4 (2)N41—C42—C41120.6 (2)
C6—C5—C21117.3 (2)C42—N41—H41A113.6
C4—C5—C21117.3 (2)C42—N41—H41B105.8
N2—C6—C5125.9 (2)H41A—N41—H41B113.8
N2—C6—C7109.2 (2)C44—C43—C42121.2 (3)
C5—C6—C7124.8 (2)C44—C43—H43119.4
C8—C7—C6107.4 (2)C42—C43—H43119.4
C8—C7—H7126.3C45—C44—C43120.5 (3)
C6—C7—H7126.3C45—C44—H44119.8
C7—C8—C9107.3 (2)C43—C44—H44119.8
C7—C8—H8126.3C44—C45—C46119.4 (3)
C9—C8—H8126.3C44—C45—H45120.3
N2—C9—C10125.9 (2)C46—C45—H45120.3
N2—C9—C8109.0 (2)C45—C46—C41121.1 (3)
C10—C9—C8125.1 (2)C45—C46—H46119.4
C9—C10—C11125.6 (2)C41—C46—H46119.4
C9—C10—C31117.0 (2)C56—C51—C52119.3 (2)
C11—C10—C31117.3 (2)C56—C51—C20120.7 (2)
N3—C11—C10124.7 (2)C52—C51—C20120.0 (2)
N3—C11—C12109.1 (2)C51—C52—N51120.6 (3)
C10—C11—C12126.2 (2)C51—C52—C53118.9 (3)
C13—C12—C11107.6 (2)N51—C52—C53120.4 (3)
C13—C12—H12126.2C52—N51—H51A113.9
C11—C12—H12126.2C52—N51—H51B116.3
C12—C13—C14106.9 (2)H51A—N51—H51B128.5
C12—C13—H13126.5C54—C53—C52120.9 (3)
C14—C13—H13126.5C54—C53—H53119.5
N3—C14—C15125.8 (2)C52—C53—H53119.5
N3—C14—C13109.7 (2)C53—C54—C55120.3 (3)
C15—C14—C13124.5 (2)C53—C54—H54119.8
C16—C15—C14125.0 (2)C55—C54—H54119.8
C16—C15—C41117.6 (2)C54—C55—C56119.2 (3)
C14—C15—C41117.4 (2)C54—C55—H55120.4
N4—C16—C15126.0 (2)C56—C55—H55120.4
N4—C16—C17108.6 (2)C51—C56—C55121.3 (3)
C15—C16—C17125.5 (2)C51—C56—H56119.4
C18—C17—C16107.4 (2)C55—C56—H56119.4
C18—C17—H17126.3C61—O1—Zn1122.0 (4)
C16—C17—H17126.3C61'—O1—Zn1123.3 (5)
C17—C18—C19107.4 (2)C61—O1—H1O1119.7
C17—C18—H18126.3C61'—O1—H1O1113.6
C19—C18—H18126.3Zn1—O1—H1O1109.9
N4—C19—C20125.6 (2)O1—C61—H61A109.5
N4—C19—C18109.2 (2)O1—C61—H61B109.5
C20—C19—C18125.2 (2)H61A—C61—H61B109.5
C1—C20—C19125.6 (2)O1—C61—H61C109.5
C1—C20—C51117.6 (2)H61A—C61—H61C109.5
C19—C20—C51116.8 (2)H61B—C61—H61C109.5
C26—C21—C22119.9 (3)O1—C61'—H61D109.5
C26—C21—C5121.0 (3)O1—C61'—H61E109.5
C22—C21—C5119.1 (2)H61D—C61'—H61E109.5
C21—C22—C23118.6 (3)O1—C61'—H61F109.5
C21—C22—N21120.6 (3)H61D—C61'—H61F109.5
C23—C22—N21120.8 (3)H61E—C61'—H61F109.5
C22—N21—H21A118.7Cl2—C71—Cl3109.7 (2)
C22—N21—H21B106.3Cl2—C71—Cl1109.77 (19)
H21A—N21—H21B120.3Cl3—C71—Cl1111.85 (19)
C24—C23—C22120.6 (4)Cl2—C71—H71108.5
C24—C23—H23119.7Cl3—C71—H71108.5
C22—C23—H23119.7Cl1—C71—H71108.5
C25—C24—C23120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···Cl3i0.952.973.858 (3)157
N31—H31A···N41ii0.882.633.318 (4)136
N41—H41B···N21ii0.882.613.437 (4)156
O1—H1O1···N31ii0.842.012.818 (3)162
C61—H61C···N20.982.683.256 (8)118
C61—H61F···N10.982.593.292 (12)129
C71—H71···N21.002.623.408 (4)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 677.

References

First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollman, J. P., Brauman, J. I., Doxsee, K. M., Sessler, J. L., Morris, R. M. & Gibson, Q. H. (1983). Inorg. Chem. 22, 1427–1432.  CrossRef Google Scholar
First citationCollman, J. P., Brauman, J. I., Fitzgerald, J. P., Hampton, P. D., Naruta, Y., Sparapany, J. W. & Ibers, J. A. (1988). J. Am. Chem. Soc. 110, 3477–3486.  CrossRef Google Scholar
First citationCollman, J. P., Brauman, J. I., Halbert, T. R. & Suslick, K. S. (1976). Proc. Natl Acad. Sci. USA, 73, 3333–3337.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCollman, J. P., Gagne, R. R., Halbert, T. R., Marchon, J. C. & Reed, C. A. (1973). J. Am. Chem. Soc. 95, 7868–7870.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCollman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCollman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFreitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918–3925.  CrossRef Google Scholar
First citationLee, J.-D., Kim, Y.-H. & Hong, J.-I. (2010). J. Org. Chem. 75, 7588–7595.  CrossRef Google Scholar
First citationLi, J., Noll, B. C., Oliver, A. G., Schulz, C. E. & Scheidt, W. R. (2013). J. Am. Chem. Soc. 135, 15627–15641.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLindsey, J. (1980). J. Org. Chem. 45, 5215.  CrossRef Google Scholar
First citationMichaudet, L., Richard, P. & Boitrel, B. (2000). Chem. Commun. pp. 1589–1590.  CrossRef Google Scholar
First citationNasri, H., Fischer, J., Weiss, R., Bill, E. & Trautwein, A. (1987). J. Am. Chem. Soc. 109, 2549–2550.  CSD CrossRef CAS Web of Science Google Scholar
First citationRuzié, C., Even, P., Ricard, D., Roisnel, T. & Boitrel, B. (2006). Inorg. Chem. 45, 1338–1348.  Google Scholar
First citationSchappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639–4645.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114–7120.  CrossRef Google Scholar
First citationTabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466–4473.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Li, X., Liu, D. & Li, J. (2015). Acta Cryst. C71, 545–548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZimmer, B., Bulach, V., Drexler, C., Erhardt, S., Hosseini, M. W. & De Cian, A. (2002). New J. Chem. 26, 43–57.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds