research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hirshfeld surface analysis and crystal structure of 7-meth­­oxy-5-methyl-2-phenyl-11,12-di­hydro-5,11-methano-1,2,4-triazolo[1,5-c][1,3,5]benzoxa­diazo­cine

CROSSMARK_Color_square_no_text.svg

aArtvin Coruh University, Science-Technology Research and Application Center, Artvin 08000, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 July 2018; accepted 27 July 2018; online 10 August 2018)

The title compound, C19H18N4O2, crystallizes with two independent mol­ecules in the asymmetric unit. The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one mol­ecule, and by 4.46 (13) and 86.15 (11)° in the other. In the crystal, classical N—H⋯N hydrogen bonds, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (51.4%), H⋯C/C⋯H (26.7%), H⋯O/O⋯H (8.9%) and H⋯N/N⋯H (8%) inter­actions.

1. Chemical context

One of the earliest known multi-component reactions (MCRs) is the Biginelli multi-component cyclo­condensation. Its variations are still a timely subject for research because of the near unlimited scope of this approach and the constant demand for mol­ecular diversity of small mol­ecules in many areas such as drug discovery, combinatorial and medicinal chemistry (Kappe, 2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]; Slobbe et al., 2012[Slobbe, P., Ruijter, E. & Orru, R. V. (2012). Med. Chem. Commun. 3, 1189-1218.]). As we had previously synthesized a type of oxygen-bridged Biginelli compounds derivatives, (Gümüş et al., 2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]), we decided to examine the structure of this heterocyclic system by X-ray analysis (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]; Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]). In this study, a novel Biginelli-like assembly of 3-amino-5-(phen­yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-meth­oxy­benzaldehyde has been developed to offer easy access to 7-meth­oxy-5-methyl-2-(phen­yl)-11,12-di­hydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine compounds as examples of a new class of heterocycles.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the compound contains two independent mol­ecules (Fig. 1[link]), linked by N4—H4⋯N5 and N8—H8⋯N1 hydrogen bonds, which stabilize the mol­ecular structure (Table 1[link], Fig. 1[link] and 2[link]). The C11—O1, C13—O1, C18—O2, C19—O2, C30—O3, C32—O3, C37—O4 and C38—O4 bond lengths are all in agreement with single-bond character. The C—O bond distances observed are lower than in the literature [1.364 (4), 1.390 (4), 1.428 (4) and 1.443 (4) Å; Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]). The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one mol­ecule, and by 4.46 (13) and 86.15 (11)° in the other. The ring N3/C8/N4/C9–C11 is inclined to the ring N2/C7/N1/C8/N3 by 5.80 (14)° and to the ring C9–C11/O1/C13/C14 by 86.9 (6)° [equivalent values of 6.55 (11) and 85.29 (11)°, respectively, in the other independent mol­ecule].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/N2/N3/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N5 0.86 2.18 2.958 (3) 150
N8—H8⋯N1 0.86 2.33 3.025 (2) 139
C31—H31A⋯O4i 0.96 2.59 3.471 (3) 152
C38—H38A⋯O1ii 0.96 2.56 3.489 (3) 162
C12—H12ACg1iii 0.96 2.67 3.613 (3) 172
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) -x+1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2]
Figure 2
The view of the crystal packing of C19H18N4O2. Dashed lines denote the N—H⋯N and C—H⋯O hydrogen bonds.

3. Supra­molecular features

In the crystal, weak C—H⋯O interactions link the pairs of independent molecules into layers parallel to (100) (Table 1[link]; Fig. 2[link]). The layers are further connected by weak C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure.

4. Hirshfeld surface analysis

Hirshfield surface analysis was performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]) to qu­antify the various inter­molecular inter­actions in the synthesized complex. The Hirshfeld surfaces of the title compound mapped over dnorm, di and de are illustrated in Fig. 3[link]. The red spots on the surface indicate the intermolecular contacts involved in strong hydrogen bonding and interatomic contacts (Sen et al., 2018[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994-997.]) and correspond to C—H⋯O hydrogen bonds in the title compound (Figs. 3[link] and 4[link]). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.249 (red) to 1.531 (blue) a.u..

[Figure 3]
Figure 3
Hirshfeld surfaces of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for visualizing the inter­molecular inter­actions of the title compound.

Fig. 5[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6[link]a (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.2 Å, which indicates the presence of the H⋯H contacts in this study (51.4%). The graph shown in Fig. 6[link]b (H⋯C/C⋯H) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa with two symmetrical wings on the left and right sides (26.7%). Two symmetrical points at the top, bottom left and right with de + di 2.5 Å indicate the presence of the H⋯C/C⋯H contacts. Further, there are H⋯O/O⋯H (8.9%), H⋯N/N⋯H (8%), C⋯C (3.2%) and C⋯O/O⋯C (1.0%) contacts.

[Figure 5]
Figure 5
Fingerprint plot for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the (a) H⋯H (51.4%), (b) H⋯C/C⋯H (26.7%), (c) H⋯O/O⋯H (8.9%) and (d) H⋯N/N⋯H (8%) contacts in the title compound.

The view of the three-dimensional Hirshfeld surface of the title compound plotted over the electrostatic potential energy in the range −0.083 to 0.046 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 7[link]. The donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 7]
Figure 7
The view of the three-dimensional Hirshfeld surface of the title compound plotted over the electrostatic potential energy.

5. Database survey

There are no direct precedents for the structure of the title compound in the crystallographic literature (CSD version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, there are several precedents for triazolobenzoxa­diazo­cines including 5-(2-hy­droxy­phen­yl)-7-methyl-4,5,6,7-tetra­hydro­[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (Gorobets et al., 2010[Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095-2098.]), ethyl 7-chloro­methyl-5-(2-chloro­phen­yl)-7-hy­droxy-2-methyl­sulfanyl-4,5,6,7-tetra­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate (Huang, 2009[Huang, S. (2009). Acta Cryst. E65, o2671.]), methyl 5′-(2-hy­droxy­phen­yl)-5′,6′-di­hydro-4′H-spiro­[chromene-2,7′-[1,2,4]triazolo[1,5-a]pyrimidine]-3-carboxyl­ate (Kett­mann & Světlík, 2011[Kettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92.]), 7-eth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]) and 7-meth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]).

6. Synthesis and crystallization

The synthesis (Fig. 8[link]) of the title compound was described by Gümüş et al. (2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]). 3-Amino-5-(phen­yl)-1,2,4-triazole (1.0 mmol), 2-hy­droxy-3-meth­oxy­benzaldehyde (1.0 mmol), acetone (0.22 mL, 3.0 mmol), and abs. EtOH (2.0 mL) were mixed in a microwave process vial, after which a 4 N solution of HCl in dioxane (0.07 mL, 0.3 mmol) was added. The mixture was irradiated at 423 K for 30 min. The reaction mixture was cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the product. The precipitate was filtered off, washed with EtOH (1.0 mL) and Et2O (3 × 1.0 mL), and dried. The compound was obtained in the form of a white solid with %53 yields. It was recrystallized from ethanol.

[Figure 8]
Figure 8
The synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 and C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(N,C).

Table 2
Experimental details

Crystal data
Chemical formula C19H18N4O2
Mr 334.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.9787 (9), 21.5654 (12), 11.6625 (8)
β (°) 111.639 (5)
V3) 3268.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.57 × 0.43 × 0.30
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.959, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 18118, 5769, 3357
Rint 0.060
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 0.91
No. of reflections 5769
No. of parameters 451
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), ORTEP-3 for Windows and WinGX (Farrugia, 1999[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

6-Methoxy-9-methyl-12-phenyl-8-oxa-10,11,13,15-tetraazatetracyclo[7.6.1.02,7.010,14]hexadeca-2(7),3,5,11,13-pentaene top
Crystal data top
C19H18N4O2F(000) = 1408
Mr = 334.37Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9787 (9) ÅCell parameters from 15386 reflections
b = 21.5654 (12) Åθ = 1.8–27.5°
c = 11.6625 (8) ŵ = 0.09 mm1
β = 111.639 (5)°T = 296 K
V = 3268.0 (4) Å3Prism, yellow
Z = 80.57 × 0.43 × 0.30 mm
Data collection top
Stoe IPDS 2
diffractometer
5769 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3357 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.060
rotation method scansθmax = 25.1°, θmin = 1.8°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1616
Tmin = 0.959, Tmax = 0.988k = 2525
18118 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.047P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
5769 reflectionsΔρmax = 0.29 e Å3
451 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57191 (11)0.54141 (7)0.85374 (13)0.0513 (4)
O30.05290 (11)0.70675 (7)0.16610 (13)0.0504 (4)
O40.12345 (12)0.62171 (7)0.00529 (15)0.0609 (4)
O20.65831 (13)0.60242 (8)1.05519 (15)0.0693 (5)
N20.56434 (13)0.59962 (8)0.60236 (17)0.0476 (4)
N70.02141 (13)0.69913 (8)0.38048 (16)0.0480 (4)
N30.49670 (13)0.56839 (8)0.64341 (16)0.0466 (4)
N50.12284 (13)0.63678 (8)0.52233 (16)0.0480 (5)
N10.40245 (13)0.63875 (8)0.51364 (16)0.0458 (4)
N60.04391 (14)0.66487 (8)0.41952 (17)0.0495 (5)
N80.19756 (13)0.70519 (8)0.41385 (16)0.0515 (5)
H80.2606780.7042390.4638860.062*
N40.32207 (14)0.57046 (9)0.61530 (17)0.0558 (5)
H40.2590420.5781110.5699320.067*
C80.40190 (16)0.59300 (10)0.58996 (19)0.0451 (5)
C70.50387 (17)0.64037 (10)0.52610 (19)0.0448 (5)
C270.11950 (16)0.68042 (10)0.4408 (2)0.0458 (5)
C320.01999 (16)0.67411 (10)0.13675 (19)0.0456 (5)
C260.02015 (16)0.62878 (10)0.5035 (2)0.0451 (5)
C330.12485 (16)0.68567 (10)0.19011 (19)0.0467 (5)
C370.01936 (17)0.62810 (10)0.0473 (2)0.0483 (5)
C60.54385 (17)0.68468 (10)0.4582 (2)0.0474 (5)
C130.50606 (17)0.57244 (10)0.8977 (2)0.0492 (5)
C280.16447 (17)0.73388 (10)0.2910 (2)0.0503 (6)
H280.2223220.7562870.2821060.060*
C250.01654 (18)0.58212 (10)0.5693 (2)0.0494 (6)
C110.52605 (17)0.51710 (10)0.7309 (2)0.0471 (5)
C300.01415 (17)0.74234 (10)0.2777 (2)0.0483 (5)
C90.35099 (17)0.53199 (11)0.7259 (2)0.0555 (6)
H90.2897520.5111530.7292010.067*
C140.40010 (18)0.57065 (11)0.8413 (2)0.0534 (6)
C340.19025 (18)0.65033 (11)0.1511 (2)0.0548 (6)
H340.2608940.6570010.1856760.066*
C290.07890 (17)0.77909 (10)0.2817 (2)0.0543 (6)
H29A0.1005120.8066380.3524640.065*
H29B0.0623200.8039950.2076450.065*
C180.55385 (19)0.60704 (11)1.0052 (2)0.0556 (6)
C360.04709 (19)0.59434 (11)0.0098 (2)0.0567 (6)
H360.0218540.5639770.0505590.068*
C120.60649 (19)0.47693 (11)0.7120 (2)0.0605 (6)
H12A0.5797010.4593490.6306390.091*
H12B0.6661410.5014760.7210560.091*
H12C0.6251360.4442400.7720710.091*
C100.42693 (18)0.48407 (10)0.7174 (2)0.0574 (6)
H10A0.3996730.4629800.6384320.069*
H10B0.4394910.4534580.7822460.069*
C350.15170 (19)0.60569 (11)0.0620 (2)0.0588 (6)
H350.1965580.5827580.0363740.071*
C50.64853 (19)0.69075 (12)0.4875 (2)0.0670 (7)
H5A0.6938350.6661940.5493370.080*
C10.4784 (2)0.72152 (11)0.3660 (2)0.0609 (6)
H10.4076760.7182240.3450980.073*
C310.10430 (18)0.77995 (11)0.2792 (2)0.0613 (6)
H31A0.0834480.8050980.3522060.092*
H31B0.1283210.8061490.2076100.092*
H31C0.1586670.7526150.2786160.092*
C200.0495 (2)0.54167 (12)0.6515 (2)0.0645 (7)
H200.1198010.5448430.6687640.077*
C240.12103 (19)0.57611 (12)0.5459 (2)0.0637 (7)
H240.1675860.6028790.4904340.076*
C150.3415 (2)0.60652 (13)0.8898 (3)0.0688 (7)
H150.2701320.6060840.8525240.083*
C170.4942 (2)0.64257 (12)1.0508 (2)0.0676 (7)
H170.5250660.6665831.1211050.081*
C380.1696 (2)0.57518 (13)0.0835 (3)0.0798 (8)
H38A0.2427700.5758370.1048230.120*
H38B0.1541600.5828020.1559710.120*
H38C0.1430440.5353380.0500020.120*
C230.1563 (2)0.53131 (14)0.6036 (3)0.0762 (8)
H230.2264060.5281060.5874500.091*
C160.3881 (2)0.64250 (13)0.9919 (3)0.0750 (8)
H160.3481240.6671681.0220980.090*
C40.6866 (2)0.73270 (14)0.4262 (3)0.0808 (8)
H4A0.7572870.7362880.4470000.097*
C190.7121 (2)0.64069 (14)1.1580 (3)0.0842 (9)
H19A0.7845920.6328941.1840310.126*
H19B0.6984880.6834631.1349210.126*
H19C0.6893870.6315691.2244820.126*
C220.0888 (3)0.49106 (13)0.6851 (3)0.0756 (8)
H220.1130750.4603980.7234570.091*
C20.5172 (2)0.76332 (12)0.3045 (3)0.0734 (8)
H20.4722950.7876800.2419270.088*
C30.6211 (3)0.76918 (13)0.3349 (3)0.0758 (8)
H30.6470280.7976720.2938500.091*
C210.0138 (2)0.49632 (12)0.7093 (3)0.0753 (8)
H210.0599450.4693570.7648100.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (9)0.0642 (9)0.0441 (9)0.0040 (7)0.0120 (7)0.0015 (8)
O30.0413 (9)0.0561 (9)0.0489 (9)0.0062 (7)0.0109 (8)0.0038 (8)
O40.0468 (10)0.0702 (10)0.0618 (10)0.0085 (8)0.0152 (8)0.0175 (9)
O20.0586 (11)0.0860 (12)0.0571 (11)0.0089 (9)0.0139 (9)0.0156 (9)
N20.0389 (10)0.0547 (11)0.0478 (11)0.0005 (9)0.0144 (9)0.0001 (9)
N70.0377 (10)0.0567 (11)0.0464 (11)0.0050 (9)0.0119 (9)0.0040 (9)
N30.0371 (10)0.0518 (10)0.0480 (11)0.0030 (9)0.0123 (9)0.0039 (9)
N50.0426 (11)0.0547 (11)0.0447 (11)0.0012 (9)0.0137 (9)0.0006 (9)
N10.0385 (11)0.0512 (10)0.0440 (10)0.0010 (8)0.0111 (9)0.0011 (9)
N60.0414 (11)0.0572 (11)0.0507 (11)0.0015 (9)0.0179 (10)0.0004 (10)
N80.0368 (10)0.0665 (12)0.0450 (11)0.0043 (9)0.0080 (9)0.0059 (9)
N40.0343 (10)0.0705 (12)0.0549 (12)0.0032 (9)0.0075 (9)0.0133 (10)
C80.0379 (13)0.0495 (12)0.0428 (13)0.0001 (10)0.0091 (11)0.0018 (11)
C70.0417 (13)0.0506 (13)0.0399 (12)0.0005 (10)0.0125 (11)0.0059 (11)
C270.0412 (13)0.0512 (12)0.0421 (12)0.0017 (11)0.0120 (11)0.0016 (11)
C320.0438 (13)0.0502 (13)0.0432 (13)0.0048 (10)0.0166 (11)0.0055 (11)
C260.0412 (13)0.0526 (13)0.0411 (12)0.0001 (11)0.0146 (11)0.0043 (11)
C330.0442 (13)0.0498 (12)0.0460 (13)0.0000 (10)0.0164 (11)0.0069 (11)
C370.0458 (14)0.0527 (13)0.0455 (13)0.0007 (11)0.0158 (11)0.0014 (11)
C60.0472 (14)0.0494 (12)0.0454 (13)0.0025 (11)0.0169 (11)0.0059 (11)
C130.0490 (14)0.0554 (13)0.0456 (13)0.0051 (11)0.0203 (12)0.0068 (11)
C280.0436 (13)0.0534 (13)0.0507 (14)0.0037 (11)0.0137 (11)0.0077 (11)
C250.0521 (14)0.0550 (13)0.0430 (13)0.0030 (11)0.0200 (12)0.0063 (11)
C110.0438 (13)0.0487 (12)0.0430 (13)0.0026 (10)0.0090 (11)0.0013 (11)
C300.0478 (13)0.0473 (12)0.0437 (13)0.0055 (11)0.0096 (11)0.0016 (11)
C90.0420 (14)0.0609 (15)0.0599 (15)0.0041 (11)0.0144 (12)0.0128 (12)
C140.0483 (14)0.0624 (14)0.0519 (14)0.0024 (12)0.0213 (12)0.0121 (12)
C340.0430 (13)0.0642 (15)0.0592 (15)0.0020 (11)0.0213 (12)0.0075 (13)
C290.0550 (15)0.0459 (13)0.0552 (14)0.0009 (11)0.0123 (12)0.0029 (11)
C180.0574 (16)0.0635 (15)0.0480 (14)0.0015 (12)0.0221 (13)0.0029 (12)
C360.0606 (16)0.0562 (14)0.0560 (15)0.0013 (12)0.0246 (13)0.0027 (12)
C120.0595 (16)0.0558 (14)0.0598 (16)0.0117 (12)0.0146 (13)0.0031 (12)
C100.0533 (15)0.0523 (13)0.0578 (15)0.0061 (12)0.0101 (12)0.0056 (12)
C350.0576 (16)0.0606 (15)0.0672 (16)0.0066 (13)0.0334 (14)0.0001 (13)
C50.0531 (16)0.0833 (18)0.0658 (17)0.0021 (13)0.0234 (14)0.0112 (14)
C10.0578 (16)0.0613 (15)0.0627 (16)0.0028 (12)0.0211 (14)0.0049 (13)
C310.0545 (15)0.0592 (14)0.0627 (16)0.0116 (12)0.0128 (13)0.0082 (12)
C200.0599 (16)0.0727 (16)0.0649 (16)0.0024 (14)0.0276 (14)0.0071 (14)
C240.0527 (15)0.0824 (17)0.0585 (16)0.0047 (13)0.0234 (13)0.0025 (14)
C150.0570 (16)0.0872 (19)0.0704 (18)0.0086 (15)0.0331 (15)0.0132 (16)
C170.081 (2)0.0726 (17)0.0567 (16)0.0002 (15)0.0342 (16)0.0012 (13)
C380.0663 (18)0.0786 (18)0.089 (2)0.0166 (15)0.0226 (16)0.0311 (17)
C230.0673 (19)0.101 (2)0.0685 (19)0.0221 (17)0.0345 (16)0.0049 (17)
C160.079 (2)0.0835 (19)0.078 (2)0.0133 (16)0.0480 (18)0.0033 (17)
C40.0661 (19)0.100 (2)0.085 (2)0.0130 (17)0.0382 (18)0.0117 (19)
C190.081 (2)0.104 (2)0.0644 (18)0.0348 (17)0.0222 (16)0.0262 (17)
C220.097 (2)0.0745 (18)0.0685 (19)0.0187 (17)0.0453 (19)0.0053 (15)
C20.090 (2)0.0661 (16)0.0674 (19)0.0051 (15)0.0335 (17)0.0144 (14)
C30.093 (2)0.0706 (17)0.079 (2)0.0091 (17)0.0497 (19)0.0045 (16)
C210.095 (2)0.0693 (17)0.0699 (19)0.0095 (16)0.0395 (18)0.0153 (15)
Geometric parameters (Å, º) top
O1—C131.380 (2)C9—H90.9800
O1—C111.436 (3)C14—C151.389 (3)
O3—C321.381 (2)C34—C351.373 (3)
O3—C301.434 (3)C34—H340.9300
O4—C371.360 (3)C29—H29A0.9700
O4—C381.415 (3)C29—H29B0.9700
O2—C181.362 (3)C18—C171.376 (3)
O2—C191.421 (3)C36—C351.383 (3)
N2—C71.313 (3)C36—H360.9300
N2—N31.382 (2)C12—H12A0.9600
N7—C271.351 (3)C12—H12B0.9600
N7—N61.376 (2)C12—H12C0.9600
N7—C301.454 (3)C10—H10A0.9700
N3—C81.348 (3)C10—H10B0.9700
N3—C111.457 (3)C35—H350.9300
N5—C271.326 (3)C5—C41.376 (3)
N5—C261.381 (3)C5—H5A0.9300
N1—C81.331 (3)C1—C21.381 (3)
N1—C71.371 (3)C1—H10.9300
N6—C261.312 (3)C31—H31A0.9600
N8—C271.352 (3)C31—H31B0.9600
N8—C281.470 (3)C31—H31C0.9600
N8—H80.8600C20—C211.381 (3)
N4—C81.346 (3)C20—H200.9300
N4—C91.460 (3)C24—C231.368 (3)
N4—H40.8600C24—H240.9300
C7—C61.476 (3)C15—C161.369 (4)
C32—C331.387 (3)C15—H150.9300
C32—C371.397 (3)C17—C161.386 (4)
C26—C251.468 (3)C17—H170.9300
C33—C341.390 (3)C38—H38A0.9600
C33—C281.514 (3)C38—H38B0.9600
C37—C361.373 (3)C38—H38C0.9600
C6—C11.378 (3)C23—C221.373 (4)
C6—C51.381 (3)C23—H230.9300
C13—C141.382 (3)C16—H160.9300
C13—C181.399 (3)C4—C31.368 (4)
C28—C291.516 (3)C4—H4A0.9300
C28—H280.9800C19—H19A0.9600
C25—C201.371 (3)C19—H19B0.9600
C25—C241.390 (3)C19—H19C0.9600
C11—C121.499 (3)C22—C211.361 (4)
C11—C101.514 (3)C22—H220.9300
C30—C311.504 (3)C2—C31.369 (4)
C30—C291.509 (3)C2—H20.9300
C9—C101.511 (3)C3—H30.9300
C9—C141.515 (3)C21—H210.9300
C13—O1—C11115.72 (17)C28—C29—H29A110.1
C32—O3—C30115.55 (16)C30—C29—H29B110.1
C37—O4—C38118.28 (19)C28—C29—H29B110.1
C18—O2—C19118.0 (2)H29A—C29—H29B108.4
C7—N2—N3102.06 (16)O2—C18—C17125.6 (2)
C27—N7—N6109.69 (17)O2—C18—C13115.3 (2)
C27—N7—C30126.41 (18)C17—C18—C13119.1 (2)
N6—N7—C30123.39 (17)C37—C36—C35119.7 (2)
C8—N3—N2109.23 (17)C37—C36—H36120.1
C8—N3—C11126.70 (18)C35—C36—H36120.1
N2—N3—C11124.07 (17)C11—C12—H12A109.5
C27—N5—C26102.41 (18)C11—C12—H12B109.5
C8—N1—C7102.05 (17)H12A—C12—H12B109.5
C26—N6—N7102.24 (17)C11—C12—H12C109.5
C27—N8—C28113.71 (18)H12A—C12—H12C109.5
C27—N8—H8123.1H12B—C12—H12C109.5
C28—N8—H8123.1C9—C10—C11108.04 (18)
C8—N4—C9114.67 (18)C9—C10—H10A110.1
C8—N4—H4122.7C11—C10—H10A110.1
C9—N4—H4122.7C9—C10—H10B110.1
N1—C8—N4128.6 (2)C11—C10—H10B110.1
N1—C8—N3110.74 (18)H10A—C10—H10B108.4
N4—C8—N3120.62 (19)C34—C35—C36120.9 (2)
N2—C7—N1115.91 (19)C34—C35—H35119.5
N2—C7—C6121.35 (19)C36—C35—H35119.5
N1—C7—C6122.74 (19)C4—C5—C6120.8 (3)
N5—C27—N7110.24 (18)C4—C5—H5A119.6
N5—C27—N8129.0 (2)C6—C5—H5A119.6
N7—C27—N8120.78 (19)C6—C1—C2120.5 (2)
O3—C32—C33123.44 (19)C6—C1—H1119.8
O3—C32—C37115.06 (19)C2—C1—H1119.8
C33—C32—C37121.50 (19)C30—C31—H31A109.5
N6—C26—N5115.36 (19)C30—C31—H31B109.5
N6—C26—C25121.54 (19)H31A—C31—H31B109.5
N5—C26—C25123.1 (2)C30—C31—H31C109.5
C32—C33—C34117.9 (2)H31A—C31—H31C109.5
C32—C33—C28119.68 (19)H31B—C31—H31C109.5
C34—C33—C28122.3 (2)C25—C20—C21121.4 (2)
O4—C37—C36126.2 (2)C25—C20—H20119.3
O4—C37—C32114.56 (19)C21—C20—H20119.3
C36—C37—C32119.2 (2)C23—C24—C25120.8 (3)
C1—C6—C5118.4 (2)C23—C24—H24119.6
C1—C6—C7121.2 (2)C25—C24—H24119.6
C5—C6—C7120.3 (2)C16—C15—C14120.5 (3)
O1—C13—C14123.7 (2)C16—C15—H15119.8
O1—C13—C18115.3 (2)C14—C15—H15119.8
C14—C13—C18121.0 (2)C18—C17—C16119.8 (3)
N8—C28—C33111.22 (17)C18—C17—H17120.1
N8—C28—C29107.28 (18)C16—C17—H17120.1
C33—C28—C29109.47 (19)O4—C38—H38A109.5
N8—C28—H28109.6O4—C38—H38B109.5
C33—C28—H28109.6H38A—C38—H38B109.5
C29—C28—H28109.6O4—C38—H38C109.5
C20—C25—C24117.7 (2)H38A—C38—H38C109.5
C20—C25—C26121.8 (2)H38B—C38—H38C109.5
C24—C25—C26120.4 (2)C24—C23—C22120.4 (3)
O1—C11—N3109.16 (16)C24—C23—H23119.8
O1—C11—C12105.96 (18)C22—C23—H23119.8
N3—C11—C12111.61 (18)C15—C16—C17120.7 (3)
O1—C11—C10109.30 (18)C15—C16—H16119.6
N3—C11—C10105.88 (18)C17—C16—H16119.6
C12—C11—C10114.85 (18)C3—C4—C5120.5 (3)
O3—C30—N7107.77 (16)C3—C4—H4A119.8
O3—C30—C31105.15 (18)C5—C4—H4A119.8
N7—C30—C31111.67 (18)O2—C19—H19A109.5
O3—C30—C29110.02 (18)O2—C19—H19B109.5
N7—C30—C29106.40 (18)H19A—C19—H19B109.5
C31—C30—C29115.63 (18)O2—C19—H19C109.5
N4—C9—C10107.63 (19)H19A—C19—H19C109.5
N4—C9—C14111.05 (18)H19B—C19—H19C109.5
C10—C9—C14109.61 (19)C21—C22—C23119.6 (3)
N4—C9—H9109.5C21—C22—H22120.2
C10—C9—H9109.5C23—C22—H22120.2
C14—C9—H9109.5C3—C2—C1120.6 (3)
C13—C14—C15118.7 (2)C3—C2—H2119.7
C13—C14—C9119.5 (2)C1—C2—H2119.7
C15—C14—C9121.7 (2)C4—C3—C2119.3 (3)
C35—C34—C33120.7 (2)C4—C3—H3120.3
C35—C34—H34119.6C2—C3—H3120.3
C33—C34—H34119.6C22—C21—C20120.0 (3)
C30—C29—C28108.22 (17)C22—C21—H21120.0
C30—C29—H29A110.1C20—C21—H21120.0
C7—N2—N3—C80.6 (2)N2—N3—C11—C10161.78 (18)
C7—N2—N3—C11179.45 (18)C32—O3—C30—N768.6 (2)
C27—N7—N6—C261.6 (2)C32—O3—C30—C31172.12 (17)
C30—N7—N6—C26173.82 (18)C32—O3—C30—C2947.0 (2)
C7—N1—C8—N4179.8 (2)C27—N7—C30—O397.7 (2)
C7—N1—C8—N30.7 (2)N6—N7—C30—O373.2 (2)
C9—N4—C8—N1164.4 (2)C27—N7—C30—C31147.3 (2)
C9—N4—C8—N316.5 (3)N6—N7—C30—C3141.8 (3)
N2—N3—C8—N10.9 (2)C27—N7—C30—C2920.3 (3)
C11—N3—C8—N1179.18 (17)N6—N7—C30—C29168.82 (18)
N2—N3—C8—N4179.95 (18)C8—N4—C9—C1050.3 (2)
C11—N3—C8—N40.0 (3)C8—N4—C9—C1469.7 (2)
N3—N2—C7—N10.1 (2)O1—C13—C14—C15176.4 (2)
N3—N2—C7—C6179.56 (18)C18—C13—C14—C153.3 (3)
C8—N1—C7—N20.3 (2)O1—C13—C14—C91.1 (3)
C8—N1—C7—C6179.96 (19)C18—C13—C14—C9179.18 (19)
C26—N5—C27—N72.3 (2)N4—C9—C14—C1399.0 (2)
C26—N5—C27—N8176.9 (2)C10—C9—C14—C1319.8 (3)
N6—N7—C27—N52.6 (2)N4—C9—C14—C1578.5 (3)
C30—N7—C27—N5174.52 (18)C10—C9—C14—C15162.7 (2)
N6—N7—C27—N8176.73 (18)C32—C33—C34—C350.3 (3)
C30—N7—C27—N84.8 (3)C28—C33—C34—C35178.0 (2)
C28—N8—C27—N5157.9 (2)O3—C30—C29—C2866.0 (2)
C28—N8—C27—N721.2 (3)N7—C30—C29—C2850.4 (2)
C30—O3—C32—C3315.9 (3)C31—C30—C29—C28175.05 (19)
C30—O3—C32—C37164.59 (18)N8—C28—C29—C3069.0 (2)
N7—N6—C26—N50.1 (2)C33—C28—C29—C3051.8 (2)
N7—N6—C26—C25178.34 (18)C19—O2—C18—C174.9 (4)
C27—N5—C26—N61.4 (2)C19—O2—C18—C13174.5 (2)
C27—N5—C26—C25176.84 (19)O1—C13—C18—O23.6 (3)
O3—C32—C33—C34178.85 (19)C14—C13—C18—O2176.7 (2)
C37—C32—C33—C340.6 (3)O1—C13—C18—C17175.9 (2)
O3—C32—C33—C283.5 (3)C14—C13—C18—C173.8 (3)
C37—C32—C33—C28177.07 (19)O4—C37—C36—C35179.4 (2)
C38—O4—C37—C361.7 (3)C32—C37—C36—C350.9 (3)
C38—O4—C37—C32178.6 (2)N4—C9—C10—C1169.0 (2)
O3—C32—C37—O41.5 (3)C14—C9—C10—C1151.9 (2)
C33—C32—C37—O4179.01 (19)O1—C11—C10—C966.9 (2)
O3—C32—C37—C36178.25 (19)N3—C11—C10—C950.6 (2)
C33—C32—C37—C361.3 (3)C12—C11—C10—C9174.19 (19)
N2—C7—C6—C1171.0 (2)C33—C34—C35—C360.6 (4)
N1—C7—C6—C18.7 (3)C37—C36—C35—C340.0 (4)
N2—C7—C6—C510.1 (3)C1—C6—C5—C40.1 (4)
N1—C7—C6—C5170.2 (2)C7—C6—C5—C4178.8 (2)
C11—O1—C13—C1412.7 (3)C5—C6—C1—C20.2 (4)
C11—O1—C13—C18166.98 (18)C7—C6—C1—C2179.1 (2)
C27—N8—C28—C3367.2 (2)C24—C25—C20—C210.1 (4)
C27—N8—C28—C2952.5 (2)C26—C25—C20—C21177.4 (2)
C32—C33—C28—N895.9 (2)C20—C25—C24—C230.1 (3)
C34—C33—C28—N881.7 (2)C26—C25—C24—C23177.7 (2)
C32—C33—C28—C2922.5 (3)C13—C14—C15—C160.5 (4)
C34—C33—C28—C29159.9 (2)C9—C14—C15—C16178.0 (2)
N6—C26—C25—C20175.8 (2)O2—C18—C17—C16179.1 (2)
N5—C26—C25—C202.2 (3)C13—C18—C17—C161.5 (4)
N6—C26—C25—C241.6 (3)C25—C24—C23—C220.5 (4)
N5—C26—C25—C24179.7 (2)C14—C15—C16—C171.8 (4)
C13—O1—C11—N369.0 (2)C18—C17—C16—C151.2 (4)
C13—O1—C11—C12170.65 (17)C6—C5—C4—C30.1 (4)
C13—O1—C11—C1046.4 (2)C24—C23—C22—C210.7 (4)
C8—N3—C11—O199.3 (2)C6—C1—C2—C30.6 (4)
N2—N3—C11—O180.7 (2)C5—C4—C3—C20.3 (4)
C8—N3—C11—C12143.9 (2)C1—C2—C3—C40.7 (4)
N2—N3—C11—C1236.1 (3)C23—C22—C21—C200.4 (4)
C8—N3—C11—C1018.3 (3)C25—C20—C21—C220.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C7/N2/N3/C8 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···N50.862.182.958 (3)150
N8—H8···N10.862.333.025 (2)139
C31—H31A···O4i0.962.593.471 (3)152
C38—H38A···O1ii0.962.563.489 (3)162
C12—H12A···Cg1iii0.962.673.613 (3)172
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.  Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationHuang, S. (2009). Acta Cryst. E65, o2671.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlobbe, P., Ruijter, E. & Orru, R. V. (2012). Med. Chem. Commun. 3, 1189–1218.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds