research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a 1D coordination polymer catena-poly[[di­aqua­bis­­(nicotinamide-κN1)nickel(II)]-μ-fumarato-κ2O1:O4]

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and bDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 July 2018; accepted 13 August 2018; online 16 August 2018)

The reaction of NiCl2 with fumaric acid and nicotinamide in basic solution produces the title polymeric complex, [Ni(C4H2O4)(C6H6N2O)2(H2O)2]n. The NiII cation, located on an inversion centre, is coordinated by two O atoms of the fumarate dianions, two N atoms from nicotinamide ligands and two water mol­ecules in a distorted octa­hedral fashion. In the crystal, the fumarate dianions bridge the NiII cations, forming polymeric chains propagating along the [101] direction; the polymeric chains are further linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture. Hirshfeld surface analyses and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯O/O⋯H (35.9%), H⋯H (31.7%) and C⋯C (10.4%) inter­actions.

1. Chemical context

Metal complexes of biologically important ligands are sometimes more effective than the free ligands. Many transition and heavy metal cations play an important role in biological processes in the formation of many vitamins and drug components. An important element for biological systems is nickel. Nickel complexes have biological applications such as anti­epileptic, anti­microbial, anti­bacterial and anti­cancer activities (Bombicz et al., 2001[Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229-235.]). The metal-ion geometries of coordination compounds can be easily identified. Di­carb­oxy­lic acid ligands are utilized in the synthesis of a range of metal complexes and fumaric acid and amide have been particularly useful in creating many supra­molecular structures (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]), in particular between nicotinamide and a variety of carb­oxy­lic acid mol­ecules. We have prepared a new NiII complex, catena-poly[[di­aqua­bis(nicotinamide-κN1)nickel(II)]-μ-fumarato-κ2O1:O4], whose structure has been determined by single crystal X-ray diffraction analysis. In addition, to understand the inter­molecular inter­actions in the crystal structure, Hirshfeld surface analysis was performed.

2. Structural commentary

The mol­ecular structure of the asymmetric unit of the title compound is illustrated in Fig. 1[link]. This linear one-dimensional coordination polymer consists of a nickel centre coordinated in an octa­hedral fashion by two oxygen atoms of fumaric acid dianions, two nicotinamide nitro­gen atoms and two aqua ligands.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry codes: (i) −x + 1, −y + 2, −z + 2; (ii) −x, −y + 1, −z + 2.]

The Ni1—O2, Ni1—O3 and Ni1—N1 bond lengths are 2.0484 (12), 2.0792 (13) and 2.1187 (14) Å, respectively. The C—O bond lengths in the deprotonated carb­oxy­lic groups differ noticeably [C7—O1 = 1.248 (2) Å and C7—O2 = 1.266 (2) Å], which is typical for monodentately coordinated carboxyl­ates (Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). In the same way, the C6—O4 bond in the amide group [1.236 (2) Å] shows partial double-bond character. The values of the Ni—Owater and Ni—Npyridine bond lengths and the bond angles involving the Ni1 atom (see supporting information) are close to those reported for similar nickel(II) complexes (Krämer et al., 2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]; Bora & Das, 2011[Bora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83-88.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). The conformation of the title compound is best defined by the torsion angles C4—C5—N1—Ni1, O1—C7—O2—Ni1 and C8—C7—O2—Ni1 of 172.22 (13)°, −26.7 (2)° and 151.80 (11)°, respectively.

3. Supra­molecular features

In the crystal, the polymeric chains are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional supra­molecular architecture (Fig. 2[link]). The shortest non-hydrogen-bonding inter­molecular distances of the title compound are 2.870 (2) Å [for O3⋯O4(−x + 1, −y + 1, −z + 2)] and 2.855 (2) Å [for O3⋯O1(x + 1, y, z)]. The strongest hydrogen-bonded inter­molecular distance is 2.06 Å [H3A⋯O4(−x + 1, −y + 1, −z + 2)].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4ii 0.85 2.06 2.8699 (19) 159
O3—H3B⋯O1iii 0.85 2.17 2.8550 (19) 138
O3—H3B⋯O1i 0.85 2.30 2.9916 (18) 138
N2—H2A⋯O4iv 0.86 2.16 2.980 (2) 158
N2—H2B⋯O1v 0.86 2.10 2.929 (2) 161
C3—H3⋯O1v 0.93 2.40 3.296 (2) 162
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) -x, -y, -z+1; (v) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. Dashed lines indicate the hydrogen bonds (see Table 1[link]).

4. Hirshfeld surface analysis

The Hirshfield surface analysis was performed using the CrystalExplorer program (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Avustralia, Perth.]). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the synthesized complex. The Hirshfeld surfaces mapped over dnorm, di and de are shown in Fig. 3[link]. The red spots indicate the inter­molecular contacts associated with strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]; Sen et al., 2018[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994-997.]). For the title compound, these correspond to the near-type H⋯O contacts resulting from O—H⋯O and N—H⋯O hydrogen bonds (Figs. 3[link] and 4[link]). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed colour scale of −1.219 (red) to 1.466 (blue) a.u.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm to visualize the inter­molecular inter­actions of the title compound.

Fig. 5[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6[link]a represents the O⋯H/H⋯O contacts (35.9%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di = 1.9 Å, and two symmetrical points at the top, bottom left and right. These are characteristic of O—H⋯O and N—H⋯O hydrogen bonds. Fig. 6[link]b (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (31.7%). The graph shown in Fig. 6[link]d (C⋯H/H⋯C) shows the contact between the carbon atoms inside the surface and the hydrogen atoms outside the Hirshfeld surface and vice versa (9.5%). In addition, C⋯C (10.4%), N⋯H/H⋯N (3.6%) and Ni⋯O/O⋯Ni (3.4%) contacts contribue to the Hirshfeld surface.

[Figure 5]
Figure 5
A fingerprint plot of the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the O⋯H/H⋯O (35.9%), H⋯H (31.7%), C⋯C (10.4%) and C⋯H/H⋯C (9.5%) contacts in the title compound.

5. Synthesis and crystallization

A solution of NaOH (52 mmol, 2.07 g) was added to an aqueous solution of H2Fum (26 mmol, 3 g) with stirring. A solution of NiCl2·6H2O (26 mmol, 6.14 g) in ethanol was added. The mixture was heated at 353 K for an hour and then the pink mixture was filtered and left to dry at room temperature. The reaction mixture (0.88 mmol, 0.20 g) was dissolved in ethanol and added to a methanol solution of nicotinamide (1.76 mmol, 0.21 g). The mixture was heated at 353 K for 30 min with stirring and the resulting suspension was filtered. On slow evaporation of the filtrate, over a period of three weeks, blue block-shaped crystals of the title complex were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C4H2O4)(C6H6N2O)2(H2O)2]
Mr 453.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.3660 (5), 7.5521 (5), 8.9344 (6)
α, β, γ (°) 109.672 (2), 102.556 (2), 98.887 (2)
V3) 442.57 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.15
Crystal size (mm) 0.21 × 0.17 × 0.14
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Analytical (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.622, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20590, 2203, 2075
Rint 0.029
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.09
No. of reflections 2203
No. of parameters 134
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.51
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

catena-poly[[diaquabis(nicotinamide-κN1)nickel(II)]-µ-fumarato-κ2O1:O4] top
Crystal data top
[Ni(C4H2O4)(C6H6N2O)2(H2O)2]Z = 1
Mr = 453.05F(000) = 234
Triclinic, P1Dx = 1.700 Mg m3
a = 7.3660 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5521 (5) ÅCell parameters from 9881 reflections
c = 8.9344 (6) Åθ = 3.0–28.3°
α = 109.672 (2)°µ = 1.15 mm1
β = 102.556 (2)°T = 296 K
γ = 98.887 (2)°Block, blue
V = 442.57 (5) Å30.21 × 0.17 × 0.14 mm
Data collection top
Stoe IPDS 2
diffractometer
2075 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: analytical
(X-RED32; Stoe & Cie, 2002)
θmax = 28.4°, θmin = 2.9°
Tmin = 0.622, Tmax = 0.746h = 99
20590 measured reflectionsk = 1010
2203 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2203 reflectionsΔρmax = 0.33 e Å3
134 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000001.0000001.0000000.01693 (10)
O20.33073 (17)0.81811 (18)1.06897 (15)0.0230 (3)
O10.03134 (19)0.80242 (19)0.93228 (17)0.0288 (3)
O30.69940 (18)0.84277 (19)1.04390 (16)0.0265 (3)
H3A0.7144140.8422221.1407970.040*
H3B0.8059700.8953521.0364350.040*
O40.1845 (2)0.2218 (2)0.65461 (17)0.0365 (3)
N10.4051 (2)0.7960 (2)0.75121 (17)0.0208 (3)
N20.0821 (3)0.1382 (2)0.3790 (2)0.0344 (4)
H2A0.0300920.0206410.3626530.041*
H2B0.0758410.1730000.2961120.041*
C80.0907 (2)0.5495 (2)1.0232 (2)0.0201 (3)
H80.1851090.4985351.0690600.024*
C70.1527 (2)0.7390 (2)1.00643 (19)0.0179 (3)
C40.2550 (2)0.4705 (2)0.5543 (2)0.0201 (3)
C50.3392 (2)0.6063 (2)0.7149 (2)0.0205 (3)
H50.3505710.5636010.8019260.025*
C30.2450 (3)0.5333 (3)0.4242 (2)0.0280 (4)
H30.1904370.4461640.3147320.034*
C60.1722 (3)0.2659 (2)0.5321 (2)0.0228 (3)
C10.3942 (3)0.8543 (3)0.6243 (2)0.0258 (4)
H10.4400430.9854270.6475650.031*
C20.3180 (3)0.7284 (3)0.4605 (2)0.0317 (4)
H20.3156540.7736820.3755580.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01813 (15)0.01127 (14)0.01788 (16)0.00304 (10)0.00371 (11)0.00516 (11)
O20.0213 (6)0.0206 (6)0.0234 (6)0.0051 (5)0.0041 (5)0.0100 (5)
O10.0261 (6)0.0247 (6)0.0374 (7)0.0034 (5)0.0054 (5)0.0176 (6)
O30.0237 (6)0.0306 (7)0.0305 (7)0.0067 (5)0.0098 (5)0.0168 (6)
O40.0547 (9)0.0216 (6)0.0254 (7)0.0050 (6)0.0003 (6)0.0128 (5)
N10.0232 (7)0.0164 (6)0.0187 (6)0.0006 (5)0.0042 (5)0.0053 (5)
N20.0527 (11)0.0158 (7)0.0227 (8)0.0083 (7)0.0013 (7)0.0061 (6)
C80.0212 (8)0.0164 (7)0.0216 (8)0.0002 (6)0.0054 (6)0.0087 (6)
C70.0207 (7)0.0133 (7)0.0174 (7)0.0012 (6)0.0067 (6)0.0046 (6)
C40.0210 (8)0.0157 (7)0.0212 (8)0.0005 (6)0.0050 (6)0.0065 (6)
C50.0242 (8)0.0168 (7)0.0190 (7)0.0013 (6)0.0053 (6)0.0071 (6)
C30.0363 (10)0.0205 (8)0.0187 (8)0.0043 (7)0.0021 (7)0.0057 (7)
C60.0269 (8)0.0157 (7)0.0226 (8)0.0013 (6)0.0037 (6)0.0073 (6)
C10.0309 (9)0.0168 (8)0.0252 (9)0.0037 (7)0.0050 (7)0.0086 (7)
C20.0454 (11)0.0240 (9)0.0218 (9)0.0038 (8)0.0045 (8)0.0125 (7)
Geometric parameters (Å, º) top
Ni1—O2i2.0484 (12)N2—H2A0.8600
Ni1—O22.0484 (12)N2—H2B0.8600
Ni1—O32.0792 (13)C8—C8ii1.326 (3)
Ni1—O3i2.0792 (13)C8—C71.500 (2)
Ni1—N12.1187 (14)C8—H80.9300
Ni1—N1i2.1187 (14)C4—C51.386 (2)
O2—C71.266 (2)C4—C31.388 (2)
O1—C71.248 (2)C4—C61.500 (2)
O3—H3A0.8501C5—H50.9300
O3—H3B0.8501C3—C21.387 (3)
O4—C61.236 (2)C3—H30.9300
N1—C11.340 (2)C1—C21.379 (3)
N1—C51.341 (2)C1—H10.9300
N2—C61.327 (2)C2—H20.9300
O2i—Ni1—O2180.0C8ii—C8—C7124.0 (2)
O2i—Ni1—O396.22 (5)C8ii—C8—H8118.0
O2—Ni1—O383.78 (5)C7—C8—H8118.0
O2i—Ni1—O3i83.78 (5)O1—C7—O2126.09 (15)
O2—Ni1—O3i96.22 (5)O1—C7—C8119.43 (14)
O3—Ni1—O3i180.0O2—C7—C8114.47 (14)
O2i—Ni1—N189.41 (5)C5—C4—C3118.21 (15)
O2—Ni1—N190.59 (5)C5—C4—C6117.84 (15)
O3—Ni1—N186.92 (5)C3—C4—C6123.89 (15)
O3i—Ni1—N193.08 (5)N1—C5—C4123.40 (15)
O2i—Ni1—N1i90.59 (5)N1—C5—H5118.3
O2—Ni1—N1i89.41 (5)C4—C5—H5118.3
O3—Ni1—N1i93.08 (5)C2—C3—C4118.71 (16)
O3i—Ni1—N1i86.92 (5)C2—C3—H3120.6
N1—Ni1—N1i180.00 (8)C4—C3—H3120.6
C7—O2—Ni1128.31 (11)O4—C6—N2122.05 (16)
Ni1—O3—H3A109.5O4—C6—C4120.06 (16)
Ni1—O3—H3B109.3N2—C6—C4117.87 (15)
H3A—O3—H3B109.5N1—C1—C2122.83 (16)
C1—N1—C5117.63 (15)N1—C1—H1118.6
C1—N1—Ni1120.90 (11)C2—C1—H1118.6
C5—N1—Ni1121.25 (11)C1—C2—C3119.17 (17)
C6—N2—H2A120.0C1—C2—H2120.4
C6—N2—H2B120.0C3—C2—H2120.4
H2A—N2—H2B120.0
Ni1—O2—C7—O126.7 (2)C6—C4—C3—C2176.66 (18)
Ni1—O2—C7—C8151.80 (11)C5—C4—C6—O41.8 (3)
C8ii—C8—C7—O16.3 (3)C3—C4—C6—O4178.95 (19)
C8ii—C8—C7—O2175.1 (2)C5—C4—C6—N2176.32 (17)
C1—N1—C5—C42.4 (3)C3—C4—C6—N20.8 (3)
Ni1—N1—C5—C4172.22 (13)C5—N1—C1—C20.3 (3)
C3—C4—C5—N12.5 (3)Ni1—N1—C1—C2174.31 (16)
C6—C4—C5—N1174.83 (15)N1—C1—C2—C31.5 (3)
C5—C4—C3—C20.5 (3)C4—C3—C2—C11.4 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4iii0.852.062.8699 (19)159
O3—H3B···O1iv0.852.172.8550 (19)138
O3—H3B···O1i0.852.302.9916 (18)138
N2—H2A···O4v0.862.162.980 (2)158
N2—H2B···O1vi0.862.102.929 (2)161
C3—H3···O1vi0.932.403.296 (2)162
Symmetry codes: (i) x+1, y+2, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z; (v) x, y, z+1; (vi) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235.  Google Scholar
First citationBora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83–88.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Avustralia, Perth.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds