research communications
Synthesis, catena-poly[[diaquabis(nicotinamide-κN1)nickel(II)]-μ-fumarato-κ2O1:O4]
and Hirshfeld surface analysis of a 1D coordination polymeraOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and bDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
The reaction of NiCl2 with fumaric acid and nicotinamide in basic solution produces the title polymeric complex, [Ni(C4H2O4)(C6H6N2O)2(H2O)2]n. The NiII cation, located on an inversion centre, is coordinated by two O atoms of the fumarate dianions, two N atoms from nicotinamide ligands and two water molecules in a distorted octahedral fashion. In the crystal, the fumarate dianions bridge the NiII cations, forming polymeric chains propagating along the [101] direction; the polymeric chains are further linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analyses and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯O/O⋯H (35.9%), H⋯H (31.7%) and C⋯C (10.4%) interactions.
Keywords: crystal structure; fumaric acid; nicotinamide; nickel(II); Hirshfeld surfaces.
CCDC reference: 1563283
1. Chemical context
Metal complexes of biologically important ligands are sometimes more effective than the free ligands. Many transition and heavy metal cations play an important role in biological processes in the formation of many vitamins and drug components. An important element for biological systems is nickel. Nickel complexes have biological applications such as antiepileptic, antimicrobial, antibacterial and anticancer activities (Bombicz et al., 2001). The metal-ion geometries of coordination compounds can be easily identified. Dicarboxylic acid ligands are utilized in the synthesis of a range of metal complexes and fumaric acid and amide have been particularly useful in creating many supramolecular structures (Pavlishchuk et al., 2011; Ostrowska et al., 2016), in particular between nicotinamide and a variety of carboxylic acid molecules. We have prepared a new NiII complex, catena-poly[[diaquabis(nicotinamide-κN1)nickel(II)]-μ-fumarato-κ2O1:O4], whose structure has been determined by single crystal X-ray In addition, to understand the intermolecular interactions in the Hirshfeld surface analysis was performed.
2. Structural commentary
The molecular structure of the . This linear one-dimensional coordination polymer consists of a nickel centre coordinated in an octahedral fashion by two oxygen atoms of fumaric acid dianions, two nicotinamide nitrogen atoms and two aqua ligands.
of the title compound is illustrated in Fig. 1The Ni1—O2, Ni1—O3 and Ni1—N1 bond lengths are 2.0484 (12), 2.0792 (13) and 2.1187 (14) Å, respectively. The C—O bond lengths in the deprotonated carboxylic groups differ noticeably [C7—O1 = 1.248 (2) Å and C7—O2 = 1.266 (2) Å], which is typical for monodentately coordinated carboxylates (Gumienna-Kontecka et al., 2007; Pavlishchuk et al., 2010; Penkova et al., 2010). In the same way, the C6—O4 bond in the amide group [1.236 (2) Å] shows partial double-bond character. The values of the Ni—Owater and Ni—Npyridine bond lengths and the bond angles involving the Ni1 atom (see supporting information) are close to those reported for similar nickel(II) complexes (Krämer et al., 2002; Bora & Das, 2011; Moroz et al., 2012). The conformation of the title compound is best defined by the torsion angles C4—C5—N1—Ni1, O1—C7—O2—Ni1 and C8—C7—O2—Ni1 of 172.22 (13)°, −26.7 (2)° and 151.80 (11)°, respectively.
3. Supramolecular features
In the crystal, the polymeric chains are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (Table 1), forming a three-dimensional supramolecular architecture (Fig. 2). The shortest non-hydrogen-bonding intermolecular distances of the title compound are 2.870 (2) Å [for O3⋯O4(−x + 1, −y + 1, −z + 2)] and 2.855 (2) Å [for O3⋯O1(x + 1, y, z)]. The strongest hydrogen-bonded intermolecular distance is 2.06 Å [H3A⋯O4(−x + 1, −y + 1, −z + 2)].
4. Hirshfeld surface analysis
The Hirshfield surface analysis was performed using the CrystalExplorer program (Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the synthesized complex. The Hirshfeld surfaces mapped over dnorm, di and de are shown in Fig. 3. The red spots indicate the intermolecular contacts associated with strong hydrogen bonds and interatomic contacts (Gümüş et al., 2018; Kansız & Dege, 2018; Sen et al., 2018). For the title compound, these correspond to the near-type H⋯O contacts resulting from O—H⋯O and N—H⋯O hydrogen bonds (Figs. 3 and 4). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed colour scale of −1.219 (red) to 1.466 (blue) a.u.
Fig. 5 shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6a represents the O⋯H/H⋯O contacts (35.9%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di = 1.9 Å, and two symmetrical points at the top, bottom left and right. These are characteristic of O—H⋯O and N—H⋯O hydrogen bonds. Fig. 6b (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (31.7%). The graph shown in Fig. 6d (C⋯H/H⋯C) shows the contact between the carbon atoms inside the surface and the hydrogen atoms outside the Hirshfeld surface and vice versa (9.5%). In addition, C⋯C (10.4%), N⋯H/H⋯N (3.6%) and Ni⋯O/O⋯Ni (3.4%) contacts contribue to the Hirshfeld surface.
5. Synthesis and crystallization
A solution of NaOH (52 mmol, 2.07 g) was added to an aqueous solution of H2Fum (26 mmol, 3 g) with stirring. A solution of NiCl2·6H2O (26 mmol, 6.14 g) in ethanol was added. The mixture was heated at 353 K for an hour and then the pink mixture was filtered and left to dry at room temperature. The reaction mixture (0.88 mmol, 0.20 g) was dissolved in ethanol and added to a methanol solution of nicotinamide (1.76 mmol, 0.21 g). The mixture was heated at 353 K for 30 min with stirring and the resulting suspension was filtered. On slow evaporation of the filtrate, over a period of three weeks, blue block-shaped crystals of the title complex were obtained.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1563283
https://doi.org/10.1107/S2056989018011489/xu5933sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011489/xu5933Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Ni(C4H2O4)(C6H6N2O)2(H2O)2] | Z = 1 |
Mr = 453.05 | F(000) = 234 |
Triclinic, P1 | Dx = 1.700 Mg m−3 |
a = 7.3660 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.5521 (5) Å | Cell parameters from 9881 reflections |
c = 8.9344 (6) Å | θ = 3.0–28.3° |
α = 109.672 (2)° | µ = 1.15 mm−1 |
β = 102.556 (2)° | T = 296 K |
γ = 98.887 (2)° | Block, blue |
V = 442.57 (5) Å3 | 0.21 × 0.17 × 0.14 mm |
Stoe IPDS 2 diffractometer | 2075 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: analytical (X-RED32; Stoe & Cie, 2002) | θmax = 28.4°, θmin = 2.9° |
Tmin = 0.622, Tmax = 0.746 | h = −9→9 |
20590 measured reflections | k = −10→10 |
2203 independent reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.3311P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2203 reflections | Δρmax = 0.33 e Å−3 |
134 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 1.000000 | 1.000000 | 0.01693 (10) | |
O2 | 0.33073 (17) | 0.81811 (18) | 1.06897 (15) | 0.0230 (3) | |
O1 | 0.03134 (19) | 0.80242 (19) | 0.93228 (17) | 0.0288 (3) | |
O3 | 0.69940 (18) | 0.84277 (19) | 1.04390 (16) | 0.0265 (3) | |
H3A | 0.714414 | 0.842222 | 1.140797 | 0.040* | |
H3B | 0.805970 | 0.895352 | 1.036435 | 0.040* | |
O4 | 0.1845 (2) | 0.2218 (2) | 0.65461 (17) | 0.0365 (3) | |
N1 | 0.4051 (2) | 0.7960 (2) | 0.75121 (17) | 0.0208 (3) | |
N2 | 0.0821 (3) | 0.1382 (2) | 0.3790 (2) | 0.0344 (4) | |
H2A | 0.030092 | 0.020641 | 0.362653 | 0.041* | |
H2B | 0.075841 | 0.173000 | 0.296112 | 0.041* | |
C8 | 0.0907 (2) | 0.5495 (2) | 1.0232 (2) | 0.0201 (3) | |
H8 | 0.185109 | 0.498535 | 1.069060 | 0.024* | |
C7 | 0.1527 (2) | 0.7390 (2) | 1.00643 (19) | 0.0179 (3) | |
C4 | 0.2550 (2) | 0.4705 (2) | 0.5543 (2) | 0.0201 (3) | |
C5 | 0.3392 (2) | 0.6063 (2) | 0.7149 (2) | 0.0205 (3) | |
H5 | 0.350571 | 0.563601 | 0.801926 | 0.025* | |
C3 | 0.2450 (3) | 0.5333 (3) | 0.4242 (2) | 0.0280 (4) | |
H3 | 0.190437 | 0.446164 | 0.314732 | 0.034* | |
C6 | 0.1722 (3) | 0.2659 (2) | 0.5321 (2) | 0.0228 (3) | |
C1 | 0.3942 (3) | 0.8543 (3) | 0.6243 (2) | 0.0258 (4) | |
H1 | 0.440043 | 0.985427 | 0.647565 | 0.031* | |
C2 | 0.3180 (3) | 0.7284 (3) | 0.4605 (2) | 0.0317 (4) | |
H2 | 0.315654 | 0.773682 | 0.375558 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01813 (15) | 0.01127 (14) | 0.01788 (16) | −0.00304 (10) | 0.00371 (11) | 0.00516 (11) |
O2 | 0.0213 (6) | 0.0206 (6) | 0.0234 (6) | −0.0051 (5) | 0.0041 (5) | 0.0100 (5) |
O1 | 0.0261 (6) | 0.0247 (6) | 0.0374 (7) | 0.0034 (5) | 0.0054 (5) | 0.0176 (6) |
O3 | 0.0237 (6) | 0.0306 (7) | 0.0305 (7) | 0.0067 (5) | 0.0098 (5) | 0.0168 (6) |
O4 | 0.0547 (9) | 0.0216 (6) | 0.0254 (7) | −0.0050 (6) | 0.0003 (6) | 0.0128 (5) |
N1 | 0.0232 (7) | 0.0164 (6) | 0.0187 (6) | −0.0006 (5) | 0.0042 (5) | 0.0053 (5) |
N2 | 0.0527 (11) | 0.0158 (7) | 0.0227 (8) | −0.0083 (7) | 0.0013 (7) | 0.0061 (6) |
C8 | 0.0212 (8) | 0.0164 (7) | 0.0216 (8) | −0.0002 (6) | 0.0054 (6) | 0.0087 (6) |
C7 | 0.0207 (7) | 0.0133 (7) | 0.0174 (7) | −0.0012 (6) | 0.0067 (6) | 0.0046 (6) |
C4 | 0.0210 (8) | 0.0157 (7) | 0.0212 (8) | 0.0005 (6) | 0.0050 (6) | 0.0065 (6) |
C5 | 0.0242 (8) | 0.0168 (7) | 0.0190 (7) | 0.0013 (6) | 0.0053 (6) | 0.0071 (6) |
C3 | 0.0363 (10) | 0.0205 (8) | 0.0187 (8) | −0.0043 (7) | 0.0021 (7) | 0.0057 (7) |
C6 | 0.0269 (8) | 0.0157 (7) | 0.0226 (8) | 0.0013 (6) | 0.0037 (6) | 0.0073 (6) |
C1 | 0.0309 (9) | 0.0168 (8) | 0.0252 (9) | −0.0037 (7) | 0.0050 (7) | 0.0086 (7) |
C2 | 0.0454 (11) | 0.0240 (9) | 0.0218 (9) | −0.0038 (8) | 0.0045 (8) | 0.0125 (7) |
Ni1—O2i | 2.0484 (12) | N2—H2A | 0.8600 |
Ni1—O2 | 2.0484 (12) | N2—H2B | 0.8600 |
Ni1—O3 | 2.0792 (13) | C8—C8ii | 1.326 (3) |
Ni1—O3i | 2.0792 (13) | C8—C7 | 1.500 (2) |
Ni1—N1 | 2.1187 (14) | C8—H8 | 0.9300 |
Ni1—N1i | 2.1187 (14) | C4—C5 | 1.386 (2) |
O2—C7 | 1.266 (2) | C4—C3 | 1.388 (2) |
O1—C7 | 1.248 (2) | C4—C6 | 1.500 (2) |
O3—H3A | 0.8501 | C5—H5 | 0.9300 |
O3—H3B | 0.8501 | C3—C2 | 1.387 (3) |
O4—C6 | 1.236 (2) | C3—H3 | 0.9300 |
N1—C1 | 1.340 (2) | C1—C2 | 1.379 (3) |
N1—C5 | 1.341 (2) | C1—H1 | 0.9300 |
N2—C6 | 1.327 (2) | C2—H2 | 0.9300 |
O2i—Ni1—O2 | 180.0 | C8ii—C8—C7 | 124.0 (2) |
O2i—Ni1—O3 | 96.22 (5) | C8ii—C8—H8 | 118.0 |
O2—Ni1—O3 | 83.78 (5) | C7—C8—H8 | 118.0 |
O2i—Ni1—O3i | 83.78 (5) | O1—C7—O2 | 126.09 (15) |
O2—Ni1—O3i | 96.22 (5) | O1—C7—C8 | 119.43 (14) |
O3—Ni1—O3i | 180.0 | O2—C7—C8 | 114.47 (14) |
O2i—Ni1—N1 | 89.41 (5) | C5—C4—C3 | 118.21 (15) |
O2—Ni1—N1 | 90.59 (5) | C5—C4—C6 | 117.84 (15) |
O3—Ni1—N1 | 86.92 (5) | C3—C4—C6 | 123.89 (15) |
O3i—Ni1—N1 | 93.08 (5) | N1—C5—C4 | 123.40 (15) |
O2i—Ni1—N1i | 90.59 (5) | N1—C5—H5 | 118.3 |
O2—Ni1—N1i | 89.41 (5) | C4—C5—H5 | 118.3 |
O3—Ni1—N1i | 93.08 (5) | C2—C3—C4 | 118.71 (16) |
O3i—Ni1—N1i | 86.92 (5) | C2—C3—H3 | 120.6 |
N1—Ni1—N1i | 180.00 (8) | C4—C3—H3 | 120.6 |
C7—O2—Ni1 | 128.31 (11) | O4—C6—N2 | 122.05 (16) |
Ni1—O3—H3A | 109.5 | O4—C6—C4 | 120.06 (16) |
Ni1—O3—H3B | 109.3 | N2—C6—C4 | 117.87 (15) |
H3A—O3—H3B | 109.5 | N1—C1—C2 | 122.83 (16) |
C1—N1—C5 | 117.63 (15) | N1—C1—H1 | 118.6 |
C1—N1—Ni1 | 120.90 (11) | C2—C1—H1 | 118.6 |
C5—N1—Ni1 | 121.25 (11) | C1—C2—C3 | 119.17 (17) |
C6—N2—H2A | 120.0 | C1—C2—H2 | 120.4 |
C6—N2—H2B | 120.0 | C3—C2—H2 | 120.4 |
H2A—N2—H2B | 120.0 | ||
Ni1—O2—C7—O1 | −26.7 (2) | C6—C4—C3—C2 | 176.66 (18) |
Ni1—O2—C7—C8 | 151.80 (11) | C5—C4—C6—O4 | −1.8 (3) |
C8ii—C8—C7—O1 | −6.3 (3) | C3—C4—C6—O4 | −178.95 (19) |
C8ii—C8—C7—O2 | 175.1 (2) | C5—C4—C6—N2 | 176.32 (17) |
C1—N1—C5—C4 | −2.4 (3) | C3—C4—C6—N2 | −0.8 (3) |
Ni1—N1—C5—C4 | 172.22 (13) | C5—N1—C1—C2 | 0.3 (3) |
C3—C4—C5—N1 | 2.5 (3) | Ni1—N1—C1—C2 | −174.31 (16) |
C6—C4—C5—N1 | −174.83 (15) | N1—C1—C2—C3 | 1.5 (3) |
C5—C4—C3—C2 | −0.5 (3) | C4—C3—C2—C1 | −1.4 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4iii | 0.85 | 2.06 | 2.8699 (19) | 159 |
O3—H3B···O1iv | 0.85 | 2.17 | 2.8550 (19) | 138 |
O3—H3B···O1i | 0.85 | 2.30 | 2.9916 (18) | 138 |
N2—H2A···O4v | 0.86 | 2.16 | 2.980 (2) | 158 |
N2—H2B···O1vi | 0.86 | 2.10 | 2.929 (2) | 161 |
C3—H3···O1vi | 0.93 | 2.40 | 3.296 (2) | 162 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z+2; (iv) x+1, y, z; (v) −x, −y, −z+1; (vi) −x, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235. Google Scholar
Bora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83–88. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290. Google Scholar
Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51. Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332. Web of Science CrossRef CAS Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CSD CrossRef CAS Google Scholar
Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Avustralia, Perth. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.