research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isomorphous di­ethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate and its 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-substituted analogue obeying the chloro–methyl exchange rule

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 July 2018; accepted 10 August 2018; online 16 August 2018)

Accurate studies on the effect of substituents on the crystal packing are essential for understanding the inter­molecular inter­actions and thus paving the way to crystal structure prediction. The crystal structures of diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thiazine-1,3-di­carboxyl­ate, C26H29Cl2NO6S, (I), and its isomorphous pair diethyl 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate, C28H35NO6S, (II), are described. The mol­ecular aggregation patterns appear to be strikingly similar despite changes in the substituents, with a Cl atom in (I) being replaced by a methyl group in (II). Inspite of the chemical modifications, the structures of (I) and (I) are isomorphous, isostructural and found to obey the chlorine–methyl exchange rule. Both the structures feature C—H⋯O hydrogen bonding. However, a distinguishing feature between (I) and (II) is observed in the conformation of the pyrrole rings where the twist occurs on different C—N bonds. Hirshfeld analysis of both structures is presented and discussed.

1. Chemical context

Crystal structure determinations of small mol­ecules have often revealed inter­esting features that have direct relationships to their predicted structures. In this context, the display of chlorine–methyl and benzene–thio­phene exchange rules in the close-packing model of organic mol­ecules (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]) may be regarded as crucial to crystal engineering studies. In the present study, the crystal structures of two closely related heterocyclic analogues which differ only by a chlorine-methyl substituent, viz. diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate (I)[link] and its isomorphous pair diethyl 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thiazine-1,3-di­carboxyl­ate (II)[link] have been determined. Inter­estingly, (I)[link] and (II)[link] are found to obey the chorine–methyl exchange rule and hence are isomorphous and isostructural. While there is evidence that the Cl–Me rule based solely on the size of the substituent need not always be valid (Jones et al., 1981[Jones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594-2597.]; Gnanaguru et al., 1984[Gnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255-258.]), it has been observed as a valid proposition for large, irregularly shaped mol­ecules (Desiraju & Sarma, 1986[Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599-605.]). Although crystal-packing inter­actions in large irregularly shaped mol­ecules such as (I)[link] and (II)[link] are not entirely based on geometrical considerations, the role of inter­molecular inter­actions in such pairs of structures seems far from being complex with striking similarities involving the strongest among them. In some of our earlier structure determinations to ascertain the validity of exchange rules, two obeying the chloro–phenyl exchange (Rajni Swamy et al., 2013[Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412-415.]; Rajni Swamy, 2016[Rajni Swamy, V. (2016). PhD thesis, Madurai Kamraj University, India.]) and another obeying the benzene–thio­phene exchange (Rajni Swamy, 2016[Rajni Swamy, V. (2016). PhD thesis, Madurai Kamraj University, India.]) have been observed.

[Scheme 1]

Both (I)[link] and (II)[link] are thia­zine derivatives that may potentially exhibit pharmacological activities in view of the presence of nitro­gen and sulfur atoms as constituents of the fused pyrrolo­thia­zine ring (Moriyama et al., 2004[Moriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930-1938.]; Koketsu et al., 2002[Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307-310.]; Rai et al., 2013[Rai, V. K., Rai, P. & Thakur, Y. (2013). Tetrahedron Lett. 54, 6469-6473.]). Derivatives of thia­zine have been shown to exhibit calcium antagonist activities (Erker, 1998[Erker, T. (1998). J. Heterocycl. Chem. 35, 1521-1526.]) and various inhibitory activities on central nervous system (Grandolini et al., 1997[Grandolini, G., Ambrogi, V., Perioli, L., D'Eramo, D., Bernardini, C. & Giampietri, A. (1997). Farmaco, 52, 379-384.]; Malinka et al., 2002[Malinka, W., Kaczmarz, M., Filipek, B., Sapa, J. & Glod, B. (2002). Farmaco, 57, 737-746.]). Pyrrolo­thia­zine derivatives have been employed as anti-inflammatory, anti-fungal and anti-microbial agents (Armenise et al., 1991[Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco, 46, 1023-1032.]; Armenise et al., 1998[Armenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 54-58.]). The present work reports the detailed description of the crystal structures of (I)[link] and (II)[link] along with Hirshfeld surface analysis of their respective inter­molecular inter­actions.

2. Structural commentary

The mol­ecular structures of the title compounds differ from each other only by a chlorine atom in (I)[link] being replaced by a methyl group in (II)[link]. The replacement has not effected changes in their unit-cell parameters, lattice type and space group, indicating that structures (I)[link] and (II)[link] are isomorphous in nature (Figs. 1[link] and 2[link]). The pyrrolo ring (N1/C2–C5) in compound (I)[link] adopts a twisted conformation on N1—C2 with puckering parameters Q(2) = 0.3604 (19) Å and φ = 191.2 (4)°. However, in compound (II)[link] the twisted conformation is observed on the C5—N1 bond with Q(2) = 0.377 (2) Å and φ(2) = 169.3 (4)°. The Cremer and Pople puckering parameters of the six-membered heterocyclic ring in (I)[link] are Q = 0.6441 (15) Å, θ = 8.51 (14)° and φ = 95.8 (8)°, close to a chair conformation (1C4), which is comparable with the values of Q = 0.6511 (16) Å, θ = 9.53 (15)° and φ = 97.5 (7)° for (II)[link]. The dihedral angle between the planes of the thia­zine and pyrrolo rings is 6.68 (10)° in compound (I)[link] compared with 8.06 (11)° in (II)[link]. Similarly the thia­zine ring and the chloro-substituted benzyl ring (C21–C26) in (I)[link] subtend a dihedral angle of 78.61 (9)° [79.48 (9)° for the methyl-substituted benzyl ring (II)]. The terminal methyl carbon atom C10 deviates from the plane involving the carboxyl group (C7/C8/O3/O4/C9) by 1.371 (3) Å in compound (I)[link] and 1.409 (3) Å in compound (II)[link]. Similarly the methyl­carbon atom C19 deviates from the C1/C17/O5/O6/C18 plane by 1.246 (3) Å in (I)[link] and 1.203 (3) Å in (II)[link]. The dihedral angles between these two planes are 12.73 (10) and 12.07 10)° in compounds (I)[link] and (II)[link], respectively.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of title compound (I)[link], showing the atom-labelling scheme.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability level) of title compound (II)[link], showing the atom-labelling scheme.

3. Supra­molecular features

The crystal packing of both compounds (Figs. 3[link] and 4[link]) features C—H⋯O hydrogen bonding (Tables 1[link] and 2[link]) and ππ inter­actions. The C—H⋯O inter­actions, which are similar in strength and geometry, involve only one of the two dioxo oxygen atoms, viz. O1. The non participation of the other oxygen atom (O2) cannot be explained from the viewpoint of inter­molecular inter­actions whereas the absence of such inter­actions involving O3 and O5 may be attributed to steric factors arising from an unfavourable packing geometry. In both crystals, mol­ecules are connected into inversion dimers via pairs of weak C—H⋯O hydrogen bonds, forming R22(14) graph-set motifs. These dimers are further connected via weak C—H⋯O inter­actions into chains running along [011]. A parallel-displaced ππ stacking inter­action is observed in both compounds between the C21–C26 benzyl rings. In (I)[link], CgCg(1 − x, −y, 2 − z) = 4.0485 (13) Å, with a slippage of 1.749 Å [for (II)[link], CgCg(1 − x, 2 − y, 2 − z) = 4.0554 (14) Å, slippage of 1.711 Å] where Cg is the ring centroid.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.50 3.335 (2) 149
C18—H18A⋯O1ii 0.97 2.45 3.397 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.57 3.406 (2) 150
C18—H18B⋯O1ii 0.97 2.40 3.333 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of an R22(14) ring. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
[Figure 4]
Figure 4
Part of the crystal structure of compound (II)[link], showing the formation of an R22(14) ring. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

4. Hirshfeld Surface Analysis

Hirshfeld surface analysis is a graphical tool to investigate the packing modes and nature of prominent inter­molecular inter­actions in crystal structures. The Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots were generated using CrystalExplorer 3.0 software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). In the present work, the nature of the inter­molecular inter­actions in the two structures is similar because of their isomorphism. The Hirshfeld surfaces mapped with shape-index together with decomposed fingerprint plots for (I)[link] and (II)[link] are shown in Figs. 5[link] and 6[link], respectively. In both the structures, the mol­ecules participate in weak C—H⋯O hydrogen bonds, which are indicated by red spots on the surface plots. The O⋯H/H⋯O inter­molecular inter­actions appear as distinct sharp spikes in the fingerprint plots. The area between the spikes corresponds to the H⋯H contacts, which account for nearly 46.7% of the surface in (I)[link] and 70.6% in (II)[link]. The Cl⋯H/H⋯Cl inter­action, shown by two wing-like projections in (I)[link], is obviously absent in (II)[link]. The Hirshfeld surfaces of the two compounds show striking similarities in the relative contributions of the inter­actions and a noteworthy difference, accounted for by the presence of Cl⋯H/H⋯Cl inter­actions in (I)[link] and their absence in (II)[link].

[Figure 5]
Figure 5
Hirshfeld surface of compound (I)[link] mapped over shape-index and decomposed finger print plots of dominant inter­actions showing (a) all, (b) O⋯H, (c) Cl⋯H, (d) H⋯H and (e) C⋯H inter­actions.
[Figure 6]
Figure 6
Hirshfeld surface of compound (II)[link] mapped over shape-index and decomposed finger print plots of dominant inter­actions showing (a) all, (b) O⋯H, (c) H⋯H and (d) C⋯H inter­actions.

5. Database survey

A search in the Cambridge Structural Database (CSD Version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the skeleton of the title compound without chlorine or methyl substitution for which 3D coordinates were determined with no disorder, no ions and no other errors, with R factors less than 0.05 revealed only one structure, with refcode EXIYAM (Chitradevi, et al., 2011[Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268.]). A search on 4-thio­morpholine-1,1-dione gave five hits with refcodes EXIYAM, IDOGIT (Chitradevi et al., 2013[Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706-o707.]), IJULAB (Sugumar et al., 2011[Sugumar, P., Edayadulla, N., Ramesh, P., Ramesh, P. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o305.]), NEVCUN (Indumathi et al.,2007[Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411-1416.]) and ZEXYEG (Krishnaiah et al., 1995[Krishnaiah, M., Jagadeesh Kumar, N., Bhaskar Reddy, D., Muralidhar Reddy, M., Soriano, M., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2426-2428.]).

6. Synthesis and crystallization

A mixture of ethyl 2-[(2-eth­oxy-2-oxo-eth­yl)sulfon­yl]acetate (1.6 mmol), aromatic aldehyde (3.2 mmol) and pyrrolidine (1.6mmol) was dissolved in ethanol (10 mL), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as eluent (Indumathi et al., 2007[Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411-1416.]).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both compounds, the carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C26H29Cl2NO6S C28H35NO6S
Mr 554.46 513.63
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 11.6596 (4), 14.5734 (4), 15.7000 (5) 11.8641 (5), 14.4765 (6), 15.8654 (7)
β (°) 104.635 (2) 104.960 (2)
V3) 2581.19 (14) 2632.5 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.38 0.17
Crystal size (mm) 0.30 × 0.22 × 0.20 0.26 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.858, 1.000 0.863, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36335, 8631, 5838 34960, 7985, 5294
Rint 0.027 0.032
(sin θ/λ)max−1) 0.737 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.03 0.051, 0.163, 1.03
No. of reflections 8631 7985
No. of parameters 325 325
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.25 0.36, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) for (I); SHELXL2018 (Sheldrick, 2015) for (II). For both structures, molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) top
Crystal data top
C26H29Cl2NO6SF(000) = 1160
Mr = 554.46Dx = 1.427 Mg m3
Dm = 1.43 Mg m3
Dm measured by floatation method
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6596 (4) ÅCell parameters from 5292 reflections
b = 14.5734 (4) Åθ = 5.0–57.6°
c = 15.7000 (5) ŵ = 0.38 mm1
β = 104.635 (2)°T = 293 K
V = 2581.19 (14) Å3Block, colorless
Z = 40.30 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5838 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ and ω scansθmax = 31.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.858, Tmax = 1.000k = 2120
36335 measured reflectionsl = 2323
8631 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.608P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
8631 reflectionsΔρmax = 0.37 e Å3
325 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32800 (3)0.34179 (3)1.03337 (2)0.03295 (10)
Cl10.00585 (5)0.85049 (4)0.91942 (4)0.06627 (16)
Cl20.38130 (7)0.10569 (4)1.17052 (5)0.0853 (2)
O10.45439 (10)0.35292 (9)1.05844 (8)0.0442 (3)
O20.27381 (11)0.29006 (8)1.09012 (7)0.0432 (3)
O30.39736 (13)0.53038 (12)1.13297 (10)0.0674 (4)
O40.20861 (13)0.52151 (10)1.13778 (9)0.0590 (4)
O50.08678 (11)0.31457 (9)0.91571 (9)0.0515 (3)
O60.14113 (12)0.21823 (10)0.82265 (8)0.0532 (3)
N10.26062 (11)0.45390 (9)0.86029 (8)0.0362 (3)
C10.29435 (13)0.29532 (11)0.92235 (9)0.0344 (3)
C20.33387 (15)0.37130 (11)0.86656 (10)0.0390 (3)
H20.4160420.3879250.8950850.047*
C30.3266 (2)0.34621 (15)0.77102 (12)0.0634 (6)
H3A0.3999360.3182380.7656400.076*
H3B0.2618240.3038850.7485230.076*
C40.3057 (2)0.43494 (17)0.72276 (13)0.0691 (6)
H4A0.2368770.4304650.6730750.083*
H4B0.3738950.4510280.7009580.083*
C50.28580 (19)0.50628 (14)0.78658 (11)0.0508 (4)
H5A0.3557940.5441580.8068920.061*
H5B0.2193250.5453920.7593680.061*
C60.28676 (13)0.50771 (10)0.94154 (9)0.0343 (3)
H60.3709720.5242060.9574560.041*
C70.25832 (13)0.45226 (10)1.01733 (9)0.0334 (3)
H70.1722990.4436401.0045680.040*
C80.29875 (16)0.50547 (11)1.10326 (10)0.0411 (3)
C90.2340 (3)0.57919 (17)1.21645 (15)0.0740 (7)
H9A0.3049410.5566641.2577280.089*
H9B0.1689400.5744611.2443800.089*
C100.2512 (3)0.67602 (17)1.19685 (18)0.0808 (7)
H10A0.2675830.7109431.2504220.121*
H10B0.3166320.6813081.1703430.121*
H10C0.1806360.6991051.1569950.121*
C110.21287 (14)0.59445 (11)0.93111 (10)0.0362 (3)
C120.08995 (15)0.59070 (13)0.90414 (12)0.0467 (4)
H120.0527150.5344800.8887830.056*
C130.02241 (16)0.66873 (13)0.89977 (13)0.0495 (4)
H130.0598300.6656650.8813910.059*
C140.07868 (16)0.75169 (12)0.92311 (11)0.0440 (4)
C150.19989 (17)0.75719 (12)0.94920 (13)0.0493 (4)
H150.2368480.8135790.9641600.059*
C160.26658 (15)0.67846 (12)0.95307 (12)0.0448 (4)
H160.3488240.6820660.9707230.054*
C170.16167 (15)0.27789 (11)0.88911 (10)0.0382 (3)
C180.01724 (19)0.20457 (18)0.77497 (14)0.0667 (6)
H18A0.0136830.1856060.7151360.080*
H18B0.0250210.2622590.7722710.080*
C190.0413 (2)0.13481 (18)0.8174 (2)0.0801 (8)
H19A0.1221840.1277820.7842980.120*
H19B0.0006160.0773090.8191370.120*
H19C0.0392940.1539130.8762350.120*
C200.37399 (16)0.21008 (12)0.92377 (11)0.0431 (4)
H20A0.3531510.1832370.8653390.052*
H20B0.4552970.2312030.9345930.052*
C210.37065 (15)0.13484 (11)0.98875 (11)0.0415 (3)
C220.27325 (18)0.07926 (13)0.98202 (13)0.0523 (4)
H220.2047240.0909840.9380800.063*
C230.2745 (2)0.00668 (13)1.03865 (14)0.0571 (5)
H230.2074760.0295981.0335200.069*
C240.3756 (2)0.01102 (13)1.10227 (14)0.0547 (5)
C250.4723 (2)0.04360 (18)1.11285 (17)0.0731 (7)
H250.5396520.0321881.1579840.088*
C260.47006 (18)0.11658 (16)1.05584 (16)0.0635 (6)
H260.5365480.1538451.0628870.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03340 (18)0.03586 (19)0.02935 (16)0.00057 (14)0.00751 (13)0.00005 (13)
Cl10.0653 (3)0.0548 (3)0.0799 (4)0.0222 (2)0.0206 (3)0.0083 (2)
Cl20.1097 (5)0.0584 (4)0.0927 (4)0.0177 (3)0.0348 (4)0.0280 (3)
O10.0329 (6)0.0545 (7)0.0421 (6)0.0022 (5)0.0037 (4)0.0009 (5)
O20.0529 (7)0.0419 (6)0.0376 (5)0.0011 (5)0.0168 (5)0.0049 (5)
O30.0503 (8)0.0792 (10)0.0645 (9)0.0028 (7)0.0005 (7)0.0298 (8)
O40.0737 (9)0.0586 (8)0.0534 (7)0.0123 (7)0.0323 (7)0.0186 (6)
O50.0390 (6)0.0577 (8)0.0591 (7)0.0067 (5)0.0149 (5)0.0205 (6)
O60.0480 (7)0.0621 (8)0.0435 (6)0.0037 (6)0.0003 (5)0.0200 (6)
N10.0392 (7)0.0397 (7)0.0301 (6)0.0000 (5)0.0095 (5)0.0021 (5)
C10.0376 (7)0.0366 (7)0.0306 (6)0.0006 (6)0.0113 (6)0.0020 (5)
C20.0431 (8)0.0424 (8)0.0349 (7)0.0000 (7)0.0162 (6)0.0007 (6)
C30.1002 (17)0.0582 (12)0.0410 (9)0.0006 (11)0.0350 (10)0.0019 (8)
C40.0897 (17)0.0819 (16)0.0406 (9)0.0261 (13)0.0251 (10)0.0129 (10)
C50.0609 (11)0.0547 (11)0.0379 (8)0.0010 (9)0.0148 (8)0.0113 (7)
C60.0314 (7)0.0361 (7)0.0342 (7)0.0021 (6)0.0058 (5)0.0017 (6)
C70.0333 (7)0.0348 (7)0.0312 (6)0.0005 (6)0.0065 (5)0.0028 (5)
C80.0484 (9)0.0382 (8)0.0346 (7)0.0022 (7)0.0064 (7)0.0016 (6)
C90.114 (2)0.0633 (13)0.0550 (11)0.0095 (13)0.0410 (12)0.0196 (10)
C100.107 (2)0.0549 (13)0.0810 (16)0.0131 (13)0.0248 (15)0.0163 (12)
C110.0346 (7)0.0370 (8)0.0362 (7)0.0006 (6)0.0074 (6)0.0043 (6)
C120.0371 (8)0.0443 (9)0.0542 (10)0.0027 (7)0.0034 (7)0.0002 (7)
C130.0358 (8)0.0561 (11)0.0536 (10)0.0043 (7)0.0059 (7)0.0047 (8)
C140.0475 (9)0.0433 (9)0.0426 (8)0.0104 (7)0.0141 (7)0.0071 (7)
C150.0502 (10)0.0360 (9)0.0607 (11)0.0019 (7)0.0121 (8)0.0010 (7)
C160.0361 (8)0.0408 (9)0.0552 (10)0.0026 (7)0.0074 (7)0.0026 (7)
C170.0413 (8)0.0383 (8)0.0340 (7)0.0017 (6)0.0075 (6)0.0022 (6)
C180.0517 (11)0.0873 (16)0.0486 (10)0.0048 (11)0.0106 (9)0.0256 (11)
C190.0570 (13)0.0634 (14)0.107 (2)0.0067 (11)0.0032 (13)0.0201 (14)
C200.0455 (9)0.0421 (9)0.0447 (8)0.0061 (7)0.0168 (7)0.0029 (7)
C210.0433 (9)0.0363 (8)0.0461 (8)0.0057 (6)0.0132 (7)0.0055 (6)
C220.0509 (10)0.0435 (9)0.0558 (10)0.0004 (8)0.0010 (8)0.0016 (8)
C230.0606 (12)0.0406 (10)0.0678 (12)0.0057 (8)0.0119 (10)0.0026 (8)
C240.0657 (12)0.0417 (10)0.0597 (11)0.0113 (9)0.0216 (9)0.0065 (8)
C250.0526 (12)0.0780 (16)0.0804 (15)0.0089 (11)0.0011 (11)0.0285 (13)
C260.0415 (10)0.0639 (13)0.0795 (14)0.0003 (9)0.0047 (9)0.0156 (11)
Geometric parameters (Å, º) top
S1—O21.4303 (12)C9—H9A0.9700
S1—O11.4352 (12)C9—H9B0.9700
S1—C71.7921 (15)C10—H10A0.9600
S1—C11.8181 (14)C10—H10B0.9600
Cl1—C141.7375 (17)C10—H10C0.9600
Cl2—C241.738 (2)C11—C161.379 (2)
O3—C81.183 (2)C11—C121.389 (2)
O4—C81.319 (2)C12—C131.375 (3)
O4—C91.461 (2)C12—H120.9300
O5—C171.186 (2)C13—C141.380 (3)
O6—C171.3326 (19)C13—H130.9300
O6—C181.463 (2)C14—C151.371 (3)
N1—C61.4623 (19)C15—C161.379 (3)
N1—C21.465 (2)C15—H150.9300
N1—C51.476 (2)C16—H160.9300
C1—C171.524 (2)C18—C191.474 (4)
C1—C201.548 (2)C18—H18A0.9700
C1—C21.552 (2)C18—H18B0.9700
C2—C31.525 (2)C19—H19A0.9600
C2—H20.9800C19—H19B0.9600
C3—C41.487 (3)C19—H19C0.9600
C3—H3A0.9700C20—C211.505 (2)
C3—H3B0.9700C20—H20A0.9700
C4—C51.502 (3)C20—H20B0.9700
C4—H4A0.9700C21—C221.377 (3)
C4—H4B0.9700C21—C261.381 (3)
C5—H5A0.9700C22—C231.380 (3)
C5—H5B0.9700C22—H220.9300
C6—C111.515 (2)C23—C241.363 (3)
C6—C71.542 (2)C23—H230.9300
C6—H60.9800C24—C251.356 (3)
C7—C81.524 (2)C25—C261.386 (3)
C7—H70.9800C25—H250.9300
C9—C101.469 (4)C26—H260.9300
O2—S1—O1118.25 (7)C9—C10—H10B109.5
O2—S1—C7107.77 (7)H10A—C10—H10B109.5
O1—S1—C7109.55 (7)C9—C10—H10C109.5
O2—S1—C1112.24 (7)H10A—C10—H10C109.5
O1—S1—C1105.24 (7)H10B—C10—H10C109.5
C7—S1—C1102.68 (7)C16—C11—C12118.66 (15)
C8—O4—C9115.89 (17)C16—C11—C6120.26 (14)
C17—O6—C18116.64 (14)C12—C11—C6120.98 (14)
C6—N1—C2113.12 (12)C13—C12—C11121.09 (17)
C6—N1—C5111.57 (13)C13—C12—H12119.5
C2—N1—C5104.44 (13)C11—C12—H12119.5
C17—C1—C20115.13 (13)C12—C13—C14118.91 (16)
C17—C1—C2110.24 (12)C12—C13—H13120.5
C20—C1—C2108.55 (12)C14—C13—H13120.5
C17—C1—S1110.17 (10)C15—C14—C13121.04 (16)
C20—C1—S1107.57 (10)C15—C14—Cl1119.66 (14)
C2—C1—S1104.61 (10)C13—C14—Cl1119.30 (14)
N1—C2—C3104.15 (14)C14—C15—C16119.46 (17)
N1—C2—C1111.90 (12)C14—C15—H15120.3
C3—C2—C1115.67 (14)C16—C15—H15120.3
N1—C2—H2108.3C15—C16—C11120.84 (16)
C3—C2—H2108.3C15—C16—H16119.6
C1—C2—H2108.3C11—C16—H16119.6
C4—C3—C2104.70 (16)O5—C17—O6124.55 (15)
C4—C3—H3A110.8O5—C17—C1125.33 (14)
C2—C3—H3A110.8O6—C17—C1110.05 (13)
C4—C3—H3B110.8O6—C18—C19111.90 (19)
C2—C3—H3B110.8O6—C18—H18A109.2
H3A—C3—H3B108.9C19—C18—H18A109.2
C3—C4—C5107.14 (15)O6—C18—H18B109.2
C3—C4—H4A110.3C19—C18—H18B109.2
C5—C4—H4A110.3H18A—C18—H18B107.9
C3—C4—H4B110.3C18—C19—H19A109.5
C5—C4—H4B110.3C18—C19—H19B109.5
H4A—C4—H4B108.5H19A—C19—H19B109.5
N1—C5—C4105.07 (16)C18—C19—H19C109.5
N1—C5—H5A110.7H19A—C19—H19C109.5
C4—C5—H5A110.7H19B—C19—H19C109.5
N1—C5—H5B110.7C21—C20—C1118.45 (13)
C4—C5—H5B110.7C21—C20—H20A107.7
H5A—C5—H5B108.8C1—C20—H20A107.7
N1—C6—C11111.45 (12)C21—C20—H20B107.7
N1—C6—C7110.73 (12)C1—C20—H20B107.7
C11—C6—C7107.06 (12)H20A—C20—H20B107.1
N1—C6—H6109.2C22—C21—C26117.53 (18)
C11—C6—H6109.2C22—C21—C20122.59 (16)
C7—C6—H6109.2C26—C21—C20119.80 (17)
C8—C7—C6109.74 (12)C21—C22—C23121.82 (18)
C8—C7—S1107.75 (10)C21—C22—H22119.1
C6—C7—S1113.64 (10)C23—C22—H22119.1
C8—C7—H7108.5C24—C23—C22118.9 (2)
C6—C7—H7108.5C24—C23—H23120.5
S1—C7—H7108.5C22—C23—H23120.5
O3—C8—O4125.41 (16)C25—C24—C23121.14 (19)
O3—C8—C7123.87 (16)C25—C24—Cl2119.31 (17)
O4—C8—C7110.70 (14)C23—C24—Cl2119.54 (17)
O4—C9—C10112.64 (19)C24—C25—C26119.5 (2)
O4—C9—H9A109.1C24—C25—H25120.3
C10—C9—H9A109.1C26—C25—H25120.3
O4—C9—H9B109.1C21—C26—C25121.1 (2)
C10—C9—H9B109.1C21—C26—H26119.5
H9A—C9—H9B107.8C25—C26—H26119.5
C9—C10—H10A109.5
O2—S1—C1—C1748.56 (13)S1—C7—C8—O366.9 (2)
O1—S1—C1—C17178.45 (11)C6—C7—C8—O4121.01 (15)
C7—S1—C1—C1766.91 (12)S1—C7—C8—O4114.79 (13)
O2—S1—C1—C2077.67 (12)C8—O4—C9—C1072.6 (3)
O1—S1—C1—C2052.23 (12)N1—C6—C11—C16127.69 (16)
C7—S1—C1—C20166.86 (11)C7—C6—C11—C16111.09 (16)
O2—S1—C1—C2167.03 (10)N1—C6—C11—C1255.95 (19)
O1—S1—C1—C263.07 (11)C7—C6—C11—C1265.28 (18)
C7—S1—C1—C251.56 (11)C16—C11—C12—C130.4 (3)
C6—N1—C2—C3159.98 (14)C6—C11—C12—C13176.01 (16)
C5—N1—C2—C338.47 (17)C11—C12—C13—C140.3 (3)
C6—N1—C2—C174.37 (16)C12—C13—C14—C150.9 (3)
C5—N1—C2—C1164.12 (13)C12—C13—C14—Cl1179.04 (15)
C17—C1—C2—N151.72 (16)C13—C14—C15—C160.7 (3)
C20—C1—C2—N1178.67 (12)Cl1—C14—C15—C16179.20 (15)
S1—C1—C2—N166.71 (14)C14—C15—C16—C110.0 (3)
C17—C1—C2—C367.33 (19)C12—C11—C16—C150.6 (3)
C20—C1—C2—C359.6 (2)C6—C11—C16—C15175.87 (16)
S1—C1—C2—C3174.25 (14)C18—O6—C17—O55.9 (3)
N1—C2—C3—C428.0 (2)C18—O6—C17—C1171.25 (16)
C1—C2—C3—C4151.21 (18)C20—C1—C17—O5144.79 (17)
C2—C3—C4—C57.1 (3)C2—C1—C17—O592.02 (19)
C6—N1—C5—C4156.59 (15)S1—C1—C17—O522.9 (2)
C2—N1—C5—C434.06 (19)C20—C1—C17—O638.06 (18)
C3—C4—C5—N116.2 (2)C2—C1—C17—O685.14 (16)
C2—N1—C6—C11177.61 (12)S1—C1—C17—O6159.90 (12)
C5—N1—C6—C1160.20 (17)C17—O6—C18—C1986.0 (2)
C2—N1—C6—C763.33 (16)C17—C1—C20—C2168.67 (19)
C5—N1—C6—C7179.26 (13)C2—C1—C20—C21167.23 (14)
N1—C6—C7—C8173.85 (12)S1—C1—C20—C2154.56 (18)
C11—C6—C7—C864.47 (15)C1—C20—C21—C2269.0 (2)
N1—C6—C7—S153.15 (14)C1—C20—C21—C26114.3 (2)
C11—C6—C7—S1174.82 (10)C26—C21—C22—C231.3 (3)
O2—S1—C7—C871.37 (12)C20—C21—C22—C23175.54 (18)
O1—S1—C7—C858.51 (12)C21—C22—C23—C240.8 (3)
C1—S1—C7—C8169.97 (11)C22—C23—C24—C252.8 (3)
O2—S1—C7—C6166.81 (10)C22—C23—C24—Cl2176.68 (16)
O1—S1—C7—C663.30 (12)C23—C24—C25—C262.6 (4)
C1—S1—C7—C648.16 (12)Cl2—C24—C25—C26176.9 (2)
C9—O4—C8—O33.5 (3)C22—C21—C26—C251.5 (3)
C9—O4—C8—C7174.77 (16)C20—C21—C26—C25175.4 (2)
C6—C7—C8—O357.3 (2)C24—C25—C26—C210.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.503.335 (2)149
C18—H18A···O1ii0.972.453.397 (2)166
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+1/2, z1/2.
Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) top
Crystal data top
C28H35NO6SF(000) = 1096
Mr = 513.63Dx = 1.296 Mg m3
Dm = 1.29 Mg m3
Dm measured by floatation method
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8641 (5) ÅCell parameters from 5161 reflections
b = 14.4765 (6) Åθ = 4.8–59.1°
c = 15.8654 (7) ŵ = 0.17 mm1
β = 104.960 (2)°T = 293 K
V = 2632.5 (2) Å3Block, colorless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5294 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
φ and ω scansθmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.863, Tmax = 1.000k = 2019
34960 measured reflectionsl = 2219
7985 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.5606P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
7985 reflectionsΔρmax = 0.36 e Å3
325 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33590 (3)0.66176 (3)1.04119 (2)0.03672 (12)
O10.45970 (10)0.64748 (9)1.06758 (8)0.0481 (3)
O20.28369 (11)0.71408 (8)1.09751 (8)0.0470 (3)
O30.39277 (12)0.46595 (12)1.13588 (10)0.0692 (4)
O40.20861 (13)0.48525 (10)1.13971 (9)0.0614 (4)
O50.10131 (11)0.69708 (10)0.92535 (9)0.0544 (3)
O60.15751 (12)0.78342 (10)0.82750 (8)0.0569 (4)
N10.26795 (12)0.55299 (10)0.86792 (8)0.0389 (3)
C10.30621 (14)0.71013 (11)0.93172 (10)0.0375 (3)
C20.34466 (15)0.63369 (12)0.87672 (11)0.0414 (4)
H20.4237740.6142480.9072950.050*
C30.3446 (2)0.65906 (15)0.78307 (13)0.0601 (5)
H3A0.2946140.7119600.7631650.072*
H3B0.4228830.6736870.7792290.072*
C40.2993 (3)0.57610 (18)0.73004 (14)0.0774 (7)
H4A0.3523410.5575780.6957100.093*
H4B0.2235470.5888100.6908020.093*
C50.28986 (19)0.50135 (15)0.79370 (12)0.0536 (5)
H5A0.2258720.4597080.7687920.064*
H5B0.3616180.4660660.8112930.064*
C60.28984 (13)0.49651 (11)0.94697 (10)0.0374 (3)
H60.3718730.4774390.9633650.045*
C70.26332 (13)0.55239 (11)1.02239 (10)0.0360 (3)
H70.1790240.5633481.0086560.043*
C80.29827 (15)0.49644 (12)1.10607 (11)0.0422 (4)
C90.2268 (3)0.42380 (17)1.21509 (16)0.0785 (7)
H9A0.1652740.4337031.2442320.094*
H9B0.3005630.4386521.2560260.094*
C100.2273 (3)0.32666 (18)1.1897 (2)0.0920 (9)
H10A0.2393830.2884041.2407310.138*
H10B0.1538080.3114461.1500540.138*
H10C0.2889940.3163921.1618390.138*
C110.21321 (14)0.41175 (12)0.93370 (11)0.0390 (3)
C120.09207 (15)0.41939 (13)0.91062 (13)0.0486 (4)
H120.0576680.4774420.9004770.058*
C130.02312 (16)0.34248 (14)0.90269 (13)0.0505 (4)
H130.0575650.3492630.8871890.061*
C140.07066 (16)0.25490 (13)0.91721 (12)0.0470 (4)
C14A0.0061 (2)0.17109 (16)0.90913 (17)0.0671 (6)
H14A0.0864630.1898200.8933540.101*
H14B0.0083290.1308760.8649510.101*
H14C0.0107260.1390170.9639300.101*
C150.19089 (17)0.24754 (13)0.93940 (13)0.0507 (4)
H150.2252350.1894370.9491290.061*
C160.26104 (15)0.32506 (12)0.94740 (13)0.0463 (4)
H160.3417200.3182980.9622600.056*
C170.17625 (15)0.72887 (12)0.89707 (11)0.0402 (4)
C180.03628 (19)0.79511 (19)0.77812 (14)0.0709 (7)
H18A0.0047470.7370540.7775010.085*
H18B0.0339850.8108620.7182770.085*
C190.0236 (2)0.86713 (19)0.8148 (2)0.0895 (9)
H19A0.1027750.8723320.7802770.134*
H19B0.0230440.8512480.8736150.134*
H19C0.0156810.9250410.8144030.134*
C200.38532 (16)0.79579 (13)0.93554 (12)0.0463 (4)
H20A0.4655230.7744550.9496830.056*
H20B0.3685090.8220130.8773560.056*
C210.37805 (16)0.87256 (12)0.99772 (12)0.0452 (4)
C220.2812 (2)0.92793 (15)0.98748 (15)0.0625 (5)
H220.2153410.9153920.9424590.075*
C230.2791 (2)1.00134 (15)1.04211 (17)0.0671 (6)
H230.2117761.0367931.0338490.080*
C240.3747 (2)1.02312 (15)1.10852 (15)0.0600 (5)
C24A0.3743 (3)1.10687 (18)1.1650 (2)0.0882 (8)
H24A0.2996921.1368191.1472690.132*
H24B0.3887621.0881171.2248620.132*
H24C0.4341141.1489741.1587400.132*
C250.4700 (2)0.96798 (19)1.11975 (17)0.0748 (7)
H250.5356440.9808261.1648380.090*
C260.47207 (18)0.89356 (17)1.06612 (16)0.0661 (6)
H260.5384500.8567241.0763910.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0372 (2)0.0420 (2)0.0315 (2)0.00073 (16)0.00974 (15)0.00117 (16)
O10.0367 (6)0.0609 (8)0.0442 (7)0.0017 (5)0.0060 (5)0.0021 (6)
O20.0586 (7)0.0470 (7)0.0399 (6)0.0019 (6)0.0207 (6)0.0029 (5)
O30.0511 (8)0.0829 (11)0.0668 (9)0.0067 (7)0.0029 (7)0.0315 (8)
O40.0788 (10)0.0605 (8)0.0567 (8)0.0195 (7)0.0390 (7)0.0217 (7)
O50.0416 (7)0.0645 (8)0.0600 (8)0.0097 (6)0.0181 (6)0.0242 (7)
O60.0516 (7)0.0703 (9)0.0440 (7)0.0039 (6)0.0034 (6)0.0224 (7)
N10.0397 (7)0.0451 (8)0.0331 (7)0.0017 (6)0.0115 (5)0.0002 (6)
C10.0382 (8)0.0418 (9)0.0347 (8)0.0003 (7)0.0132 (6)0.0038 (7)
C20.0437 (8)0.0476 (9)0.0370 (8)0.0004 (7)0.0179 (7)0.0004 (7)
C30.0853 (15)0.0619 (12)0.0424 (10)0.0003 (11)0.0333 (10)0.0024 (9)
C40.1073 (19)0.0896 (17)0.0390 (10)0.0316 (15)0.0258 (11)0.0069 (11)
C50.0622 (11)0.0620 (12)0.0393 (9)0.0029 (9)0.0180 (8)0.0099 (8)
C60.0336 (7)0.0414 (8)0.0369 (8)0.0031 (6)0.0085 (6)0.0002 (7)
C70.0356 (7)0.0395 (8)0.0329 (7)0.0028 (6)0.0087 (6)0.0048 (6)
C80.0478 (9)0.0408 (9)0.0360 (8)0.0017 (7)0.0071 (7)0.0025 (7)
C90.121 (2)0.0677 (14)0.0610 (13)0.0211 (14)0.0495 (14)0.0257 (12)
C100.121 (2)0.0649 (16)0.091 (2)0.0210 (15)0.0281 (18)0.0176 (14)
C110.0367 (8)0.0443 (9)0.0362 (8)0.0014 (7)0.0100 (6)0.0013 (7)
C120.0389 (9)0.0482 (10)0.0560 (11)0.0053 (7)0.0072 (7)0.0027 (9)
C130.0359 (8)0.0604 (12)0.0539 (11)0.0007 (8)0.0092 (7)0.0024 (9)
C140.0499 (9)0.0504 (10)0.0427 (9)0.0069 (8)0.0154 (8)0.0078 (8)
C14A0.0636 (13)0.0617 (13)0.0794 (15)0.0170 (10)0.0246 (12)0.0110 (11)
C150.0523 (10)0.0405 (9)0.0595 (11)0.0019 (8)0.0151 (9)0.0057 (8)
C160.0378 (8)0.0462 (10)0.0553 (10)0.0040 (7)0.0125 (7)0.0035 (8)
C170.0438 (8)0.0401 (8)0.0367 (8)0.0027 (7)0.0104 (7)0.0042 (7)
C180.0547 (12)0.0952 (18)0.0518 (12)0.0029 (12)0.0064 (9)0.0278 (12)
C190.0639 (15)0.0751 (17)0.114 (2)0.0094 (13)0.0057 (14)0.0259 (16)
C200.0463 (9)0.0505 (10)0.0460 (9)0.0052 (8)0.0189 (7)0.0042 (8)
C210.0478 (9)0.0427 (9)0.0474 (10)0.0062 (8)0.0166 (8)0.0055 (8)
C220.0625 (12)0.0504 (11)0.0657 (13)0.0049 (9)0.0007 (10)0.0013 (10)
C230.0714 (14)0.0505 (12)0.0778 (15)0.0126 (10)0.0165 (12)0.0022 (11)
C240.0737 (14)0.0489 (11)0.0644 (13)0.0112 (10)0.0304 (11)0.0026 (10)
C24A0.116 (2)0.0635 (15)0.096 (2)0.0161 (15)0.0468 (17)0.0197 (14)
C250.0598 (13)0.0840 (17)0.0761 (16)0.0124 (12)0.0094 (11)0.0278 (14)
C260.0445 (10)0.0749 (15)0.0757 (15)0.0011 (10)0.0098 (10)0.0146 (12)
Geometric parameters (Å, º) top
S1—O21.4287 (12)C11—C161.371 (2)
S1—O11.4345 (12)C11—C121.393 (2)
S1—C71.7901 (17)C12—C131.368 (3)
S1—C11.8208 (16)C12—H120.9300
O3—C81.184 (2)C13—C141.383 (3)
O4—C81.317 (2)C13—H130.9300
O4—C91.461 (2)C14—C151.382 (3)
O5—C171.187 (2)C14—C14A1.503 (3)
O6—C171.328 (2)C14A—H14A0.9600
O6—C181.459 (2)C14A—H14B0.9600
N1—C61.463 (2)C14A—H14C0.9600
N1—C21.465 (2)C15—C161.383 (3)
N1—C51.474 (2)C15—H150.9300
C1—C171.522 (2)C16—H160.9300
C1—C201.547 (2)C18—C191.464 (4)
C1—C21.549 (2)C18—H18A0.9700
C2—C31.530 (2)C18—H18B0.9700
C2—H20.9800C19—H19A0.9600
C3—C41.485 (3)C19—H19B0.9600
C3—H3A0.9700C19—H19C0.9600
C3—H3B0.9700C20—C211.503 (3)
C4—C51.504 (3)C20—H20A0.9700
C4—H4A0.9700C20—H20B0.9700
C4—H4B0.9700C21—C261.374 (3)
C5—H5A0.9700C21—C221.376 (3)
C5—H5B0.9700C22—C231.375 (3)
C6—C111.509 (2)C22—H220.9300
C6—C71.543 (2)C23—C241.370 (3)
C6—H60.9800C23—H230.9300
C7—C81.519 (2)C24—C251.358 (3)
C7—H70.9800C24—C24A1.508 (3)
C9—C101.463 (4)C24A—H24A0.9600
C9—H9A0.9700C24A—H24B0.9600
C9—H9B0.9700C24A—H24C0.9600
C10—H10A0.9600C25—C261.377 (3)
C10—H10B0.9600C25—H250.9300
C10—H10C0.9600C26—H260.9300
O2—S1—O1118.06 (8)C16—C11—C6120.81 (15)
O2—S1—C7107.80 (8)C12—C11—C6121.04 (15)
O1—S1—C7109.48 (8)C13—C12—C11120.77 (17)
O2—S1—C1112.60 (8)C13—C12—H12119.6
O1—S1—C1105.37 (7)C11—C12—H12119.6
C7—S1—C1102.41 (7)C12—C13—C14121.50 (17)
C8—O4—C9116.26 (17)C12—C13—H13119.3
C17—O6—C18116.44 (15)C14—C13—H13119.3
C6—N1—C2113.30 (13)C15—C14—C13117.57 (17)
C6—N1—C5111.88 (14)C15—C14—C14A121.49 (19)
C2—N1—C5104.32 (13)C13—C14—C14A120.93 (18)
C17—C1—C20114.78 (14)C14—C14A—H14A109.5
C17—C1—C2110.01 (13)C14—C14A—H14B109.5
C20—C1—C2109.32 (13)H14A—C14A—H14B109.5
C17—C1—S1109.98 (11)C14—C14A—H14C109.5
C20—C1—S1107.75 (11)H14A—C14A—H14C109.5
C2—C1—S1104.48 (11)H14B—C14A—H14C109.5
N1—C2—C3104.72 (15)C14—C15—C16121.18 (17)
N1—C2—C1110.93 (12)C14—C15—H15119.4
C3—C2—C1116.68 (15)C16—C15—H15119.4
N1—C2—H2108.1C11—C16—C15120.89 (16)
C3—C2—H2108.1C11—C16—H16119.6
C1—C2—H2108.1C15—C16—H16119.6
C4—C3—C2105.40 (16)O5—C17—O6124.30 (16)
C4—C3—H3A110.7O5—C17—C1125.60 (15)
C2—C3—H3A110.7O6—C17—C1110.05 (14)
C4—C3—H3B110.7O6—C18—C19112.4 (2)
C2—C3—H3B110.7O6—C18—H18A109.1
H3A—C3—H3B108.8C19—C18—H18A109.1
C3—C4—C5106.27 (17)O6—C18—H18B109.1
C3—C4—H4A110.5C19—C18—H18B109.1
C5—C4—H4A110.5H18A—C18—H18B107.8
C3—C4—H4B110.5C18—C19—H19A109.5
C5—C4—H4B110.5C18—C19—H19B109.5
H4A—C4—H4B108.7H19A—C19—H19B109.5
N1—C5—C4103.34 (17)C18—C19—H19C109.5
N1—C5—H5A111.1H19A—C19—H19C109.5
C4—C5—H5A111.1H19B—C19—H19C109.5
N1—C5—H5B111.1C21—C20—C1118.77 (14)
C4—C5—H5B111.1C21—C20—H20A107.6
H5A—C5—H5B109.1C1—C20—H20A107.6
N1—C6—C11111.57 (13)C21—C20—H20B107.6
N1—C6—C7110.19 (13)C1—C20—H20B107.6
C11—C6—C7107.37 (13)H20A—C20—H20B107.1
N1—C6—H6109.2C26—C21—C22116.57 (19)
C11—C6—H6109.2C26—C21—C20120.61 (18)
C7—C6—H6109.2C22—C21—C20122.74 (18)
C8—C7—C6109.52 (13)C23—C22—C21121.7 (2)
C8—C7—S1108.36 (11)C23—C22—H22119.1
C6—C7—S1114.05 (11)C21—C22—H22119.1
C8—C7—H7108.3C24—C23—C22121.1 (2)
C6—C7—H7108.3C24—C23—H23119.4
S1—C7—H7108.3C22—C23—H23119.4
O3—C8—O4124.95 (17)C25—C24—C23117.5 (2)
O3—C8—C7124.37 (16)C25—C24—C24A121.7 (2)
O4—C8—C7110.67 (14)C23—C24—C24A120.8 (2)
O4—C9—C10111.7 (2)C24—C24A—H24A109.5
O4—C9—H9A109.3C24—C24A—H24B109.5
C10—C9—H9A109.3H24A—C24A—H24B109.5
O4—C9—H9B109.3C24—C24A—H24C109.5
C10—C9—H9B109.3H24A—C24A—H24C109.5
H9A—C9—H9B107.9H24B—C24A—H24C109.5
C9—C10—H10A109.5C24—C25—C26121.7 (2)
C9—C10—H10B109.5C24—C25—H25119.1
H10A—C10—H10B109.5C26—C25—H25119.1
C9—C10—H10C109.5C21—C26—C25121.4 (2)
H10A—C10—H10C109.5C21—C26—H26119.3
H10B—C10—H10C109.5C25—C26—H26119.3
C16—C11—C12118.10 (16)
O2—S1—C1—C1749.60 (14)S1—C7—C8—O369.1 (2)
O1—S1—C1—C17179.61 (11)C6—C7—C8—O4122.94 (15)
C7—S1—C1—C1765.90 (13)S1—C7—C8—O4112.09 (14)
O2—S1—C1—C2076.17 (13)C8—O4—C9—C1074.8 (3)
O1—S1—C1—C2053.83 (13)N1—C6—C11—C16122.88 (17)
C7—S1—C1—C20168.32 (11)C7—C6—C11—C16116.29 (17)
O2—S1—C1—C2167.63 (10)N1—C6—C11—C1259.7 (2)
O1—S1—C1—C262.36 (12)C7—C6—C11—C1261.13 (19)
C7—S1—C1—C252.13 (12)C16—C11—C12—C130.6 (3)
C6—N1—C2—C3157.61 (14)C6—C11—C12—C13176.90 (17)
C5—N1—C2—C335.70 (18)C11—C12—C13—C140.0 (3)
C6—N1—C2—C175.69 (17)C12—C13—C14—C150.5 (3)
C5—N1—C2—C1162.40 (14)C12—C13—C14—C14A179.4 (2)
C17—C1—C2—N150.27 (17)C13—C14—C15—C160.5 (3)
C20—C1—C2—N1177.16 (14)C14A—C14—C15—C16179.5 (2)
S1—C1—C2—N167.73 (14)C12—C11—C16—C150.7 (3)
C17—C1—C2—C369.51 (19)C6—C11—C16—C15176.82 (17)
C20—C1—C2—C357.4 (2)C14—C15—C16—C110.2 (3)
S1—C1—C2—C3172.48 (14)C18—O6—C17—O57.4 (3)
N1—C2—C3—C417.1 (2)C18—O6—C17—C1170.01 (17)
C1—C2—C3—C4140.19 (19)C20—C1—C17—O5139.09 (19)
C2—C3—C4—C57.5 (3)C2—C1—C17—O597.1 (2)
C6—N1—C5—C4163.15 (16)S1—C1—C17—O517.4 (2)
C2—N1—C5—C440.30 (19)C20—C1—C17—O643.57 (19)
C3—C4—C5—N129.2 (3)C2—C1—C17—O680.20 (17)
C2—N1—C6—C11177.18 (13)S1—C1—C17—O6165.25 (12)
C5—N1—C6—C1159.59 (17)C17—O6—C18—C1984.3 (2)
C2—N1—C6—C763.65 (16)C17—C1—C20—C2166.2 (2)
C5—N1—C6—C7178.76 (14)C2—C1—C20—C21169.65 (15)
N1—C6—C7—C8174.19 (12)S1—C1—C20—C2156.66 (18)
C11—C6—C7—C864.12 (16)C1—C20—C21—C26115.4 (2)
N1—C6—C7—S152.58 (15)C1—C20—C21—C2267.9 (2)
C11—C6—C7—S1174.27 (11)C26—C21—C22—C230.9 (3)
O2—S1—C7—C870.91 (12)C20—C21—C22—C23175.9 (2)
O1—S1—C7—C858.70 (13)C21—C22—C23—C240.9 (4)
C1—S1—C7—C8170.15 (11)C22—C23—C24—C251.8 (4)
O2—S1—C7—C6166.85 (11)C22—C23—C24—C24A176.5 (2)
O1—S1—C7—C663.55 (13)C23—C24—C25—C260.8 (4)
C1—S1—C7—C647.91 (12)C24A—C24—C25—C26177.5 (2)
C9—O4—C8—O35.5 (3)C22—C21—C26—C251.9 (3)
C9—O4—C8—C7173.31 (17)C20—C21—C26—C25175.0 (2)
C6—C7—C8—O355.9 (2)C24—C25—C26—C211.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.573.406 (2)150
C18—H18B···O1ii0.972.403.333 (2)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai for the data collection and the Management of Thiagarajar College, Madurai, for their financial support in establishing the Cambridge Structural Database facility.

References

First citationArmenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco, 46, 1023–1032.  PubMed CAS Web of Science Google Scholar
First citationArmenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 54–58.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706–o707.  CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599–605.  CrossRef CAS Google Scholar
First citationErker, T. (1998). J. Heterocycl. Chem. 35, 1521–1526.  Web of Science CrossRef CAS Google Scholar
First citationGnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255–258.  CrossRef CAS Web of Science Google Scholar
First citationGrandolini, G., Ambrogi, V., Perioli, L., D'Eramo, D., Bernardini, C. & Giampietri, A. (1997). Farmaco, 52, 379–384.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411–1416.  Web of Science CrossRef Google Scholar
First citationJones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594–2597.  CSD CrossRef CAS Web of Science Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationKoketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrishnaiah, M., Jagadeesh Kumar, N., Bhaskar Reddy, D., Muralidhar Reddy, M., Soriano, M., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2426–2428.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMalinka, W., Kaczmarz, M., Filipek, B., Sapa, J. & Glod, B. (2002). Farmaco, 57, 737–746.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, V. K., Rai, P. & Thakur, Y. (2013). Tetrahedron Lett. 54, 6469–6473.  Web of Science CrossRef Google Scholar
First citationRajni Swamy, V. (2016). PhD thesis, Madurai Kamraj University, India.  Google Scholar
First citationRajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugumar, P., Edayadulla, N., Ramesh, P., Ramesh, P. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o305.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds