research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-5-phenyl-3-[(pyridin-4-yl­methyl­­idene)amino]­thia­zolidin-2-iminium bromide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 27 July 2018; accepted 4 August 2018; online 21 August 2018)

In the cation of the title salt, C15H15N4S+·Br·H2O, the central thia­zolidine ring adopts an envelope conformation with puckering parameters Q(2) = 0.279 (4) Å and φ(2) = 222.5 (9)°. The mean plane of the thia­zolidine ring makes dihedral angles of 12.4 (2) and 66.8 (3)° with the pyridine and phenyl rings, respectively. The pyridine ring in the title mol­ecule is essentially planar (r.m.s deviation = 0.005 Å). In the crystal, the cations, anions and water mol­ecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and ([\overline{1}]20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds. C—H⋯π inter­actions also help in the stabilization of the mol­ecular packing. Hirshfeld surface analysis and 2D (two-dimensional) fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (23.9%), Br⋯H/H⋯Br (16.4%), N⋯H/H⋯N (10.6%) and S⋯H/H⋯S (7.9%) inter­actions.

1. Chemical context

Schiff bases and related hydrazone compounds play an important role in coordination and medicinal chemistry due to their high coordination ability (Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauza, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Gurbanov, A. V., Rodriguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukulka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Zangrando, E., Bauza, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). CrystEngComm, 19, 3322-3330.]; Mitoraj et al., 2018[Mitoraj, M. P., Mahmoudi, G., Afkhami, F. A., Castineiras, A., Garcia-Santos, I., Gurbanov, A. V., Zubkov, F. I., Kukulka, M., Sagan, F., Szczepanik, D. W. & Safin, D. A. (2018). Inorg. Chem. 57, 4395-4408.]; Shixaliyev et al., 2013a[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Gurbanova, N. V., Nenajdenko, V. G., Muzalevskiy, V. M. & Mahmudov, K. T. (2013a). J. Mol. Struct. 1041, 213-218.]), application of those metal complexes in catalysis (Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 45410-4550.]; Gurbanov et al., 2018[Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 469, 197-201.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946-9958.]; Shixaliyev et al., 2013b[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & &Kopylovich, M. N. (2013b). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]), biological properties (Abedi et al., 2014[Abedi, M., Khandar, A. A., Gargari, M. S., Gurbanov, A. V., Hosseini, S. A. & Mahmoudi, G. (2014). Z. Anorg. Allg. Chem. 640, 2193-2197.]), etc. Inter- and intra­molecular weak inter­actions may also effect their properties (Mahmudov et al., 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54-72.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121-10138.]). Herein we found strong O—H⋯Br and N+—H⋯Br types of charge-assisted hydrogen bonds in (E)-5-phenyl-3-[(pyridin-4-yl­methylid­ene)amino]­thia­zolidin-2-iminium bromide monohy­drate.

[Scheme 1]

2. Structural commentary

The thia­zolidine ring (atoms S1/C1–C4) in the cation of the title salt (Fig. 1[link]) adopts an envelope conformation with the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.279 (4) Å and φ(2) = 222.5 (9)°. The mean plane of the thia­zolidine ring makes dihedral angles of 12.4 (2) and 66.8 (3)° with the pyridine (N4/C5–C9) and phenyl (C10–C15) rings, respectively. The pyridine ring of the title mol­ecule is essentially planar (r.m.s deviation = 0.005 Å). The N2—N1—C4—C5 bridge that links the thia­zolidine and 2,3-di­chloro­benzene rings has a torsion angle of 178.3 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features and Hirshfeld surface analysis

As shown in Figs. 2[link] and 3[link], in the crystal, the cations, anions and water mol­ecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and ([\overline{1}]20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds (Table 1[link]). Furthermore, C—H⋯π inter­actions also help in the stabilization of the mol­ecular packing (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N4/C5–C9 pyridine and C10–C15 phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯Br1 0.95 2.39 3.333 (4) 169
O1—H1D⋯Br1i 0.95 2.56 3.427 (5) 152
N3—H3A⋯Br1ii 0.90 2.45 3.333 (4) 167
N3—H3B⋯N4iii 0.90 1.99 2.840 (6) 158
C9—H9ACg2iii 0.93 2.96 3.650 (5) 132
C12—H12ACg3iv 0.93 2.82 3.565 (8) 137
C15—H15ACg3v 0.93 2.80 3.548 (6) 135
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) [-x+2, y-{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A view of the inter­molecular hydrogen bonds of the title compound along the a axis.
[Figure 3]
Figure 3
A view of the packing and inter­molecular hydrogen bonding of the title compound along the c axis.

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]), and comprised dnorm surface plots and 2D (two-dimensional) fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The plots of the Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.5782 (red) to 1.2417 a.u. (blue) is shown in Fig. 4[link]. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts, while the other weaker inter­molecular inter­actions appear as light-red spots.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound mapped over dnorm.

Fig. 5[link](a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall two-dimensional fingerprint plots and those that represent H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, N⋯H/H⋯N and S⋯H/H⋯S contacts, respectively (Figs. 5[link]b–f). The most significant inter­molecular inter­actions are the H⋯H inter­actions (35.5%) (Fig. 5[link]b). The reciprocal C⋯H/H⋯C inter­actions appear as two symmetrical broad wings with de + di ≃ 2.7 Å and contribute 23.9% to the Hirshfeld surface (Fig. 5[link]c). The reciprocal Br⋯H/H⋯Br, N⋯H/H⋯N and S⋯H/H⋯S inter­actions with 16.4, 10.6 and 7.9% contributions are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.3, 2.9 and 2.8 Å, respectively (Figs. 5[link]df). Furthermore, there are O⋯H/H⋯O (2.8%), Br⋯C/C⋯Br (1.1%), Br⋯N/N⋯Br (1.0%), Br⋯S/S⋯Br (0.6%), N⋯C/C⋯N (0.3%) and N⋯N (0.1%) contacts (Table 2[link]).

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 35.5
C⋯H/H⋯C 23.9
Br⋯H/H⋯Br 16.4
N⋯H/H⋯N 10.6
S⋯H/H⋯S 7.9
Br⋯C/C⋯Br 1.1
Br⋯N/N⋯Br 1.0
Br⋯S/S⋯Br 0.6
C⋯N/N⋯C 0.3
N⋯N/N⋯N 0.1
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Br⋯H/H⋯Br, (e) N⋯H/H⋯N and (f) S⋯H/H⋯S inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

In a recent article of ours, which on the crystal structure of (E)-3-[(2,3-di­chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), the 3-N atom of the cation carries an N substituent, as found in the title compound. In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts also contribute to the mol­ecular packing.

In addition, a search of the Cambridge Structural Database (CSD Version 5.39, November 2017 + 3 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded six hits for 2-thia­zolidiniminium compounds, with four of them reporting essentially the same cation [CSD refcodes WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Balint, M., Acs, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.])]. In all cases, the 3-N atom carries a C substituent not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(2-chloro-2-phenyl­eth­yl)-2-thia­zolidiniminium p-tolu­ene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

5. Synthesis and crystallization

To the solution of 1 mmol of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide in 20 ml ethanol was added 1 mmol of isonicotinaldehyde and the solution was refluxed for 2 h. The reaction mixture was then cooled. Reaction products were precipitated from the reaction mixture as colourless single crystals, collected by filtration and washed with cold acetone.

Yield: 57%; m.p.: 496 K. Analysis calculated for C15H15BrN4S: C 49.59, H 4.16, N 15.42%; found: C 49.52, H 4.11, N 15.35%. 1H NMR (300 MHz, DMSO-d6) : δ 4.57 (q, 1H, CH2, 3JH–H = 6.6 Hz), 4.89 (t, 1H, CH2, 3JH–H = 8.1 Hz), 5.62 (t, 1H, CH-Ar, 3JH–H = 7.5 Hz), 7.37–7.57 (m, 5H, 5 Ar-H), 8.015–7.998 (d, 2H, 2CHarom, 3JH–H = 5.1 Hz), 8.46 (s, 1H, CH=), 8.728–8.711 (d, 2H, 2CHarom, 3JH–H = 5.1 Hz), 10.52 (s, 2H, NH2=). 13C NMR (75MHz, DMSO-d6): δ 45.54, 56.00, 122.17, 127.86, 128.98, 129.16, 137.43, 140.16, 148.88, 150.31, 168.98. MS (ESI), m/z: 283.36 [C15H15N4S]+ and 79.88 Br.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.95 Å, N—H = 0.90 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O) for the H atoms of the water mol­ecule.

Table 3
Experimental details

Crystal data
Chemical formula C15H15N4S+·Br·H2O
Mr 381.30
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.8515 (8), 7.5304 (10), 18.859 (3)
β (°) 93.979 (5)
V3) 829.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.61
Crystal size (mm) 0.19 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.623, 0.698
No. of measured, independent and observed [I > 2σ(I)] reflections 12061, 3373, 3107
Rint 0.076
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.08
No. of reflections 3373
No. of parameters 199
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.47
Absolute structure Flack x determined using 1291 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (8)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-5-Phenyl-3-[(pyridin-4-ylmethylidene)amino]thiazolidin-2-iminium bromide monohydrate top
Crystal data top
C15H15N4S+·Br·H2OF(000) = 388
Mr = 381.30Dx = 1.527 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.8515 (8) ÅCell parameters from 6867 reflections
b = 7.5304 (10) Åθ = 2.9–26.4°
c = 18.859 (3) ŵ = 2.61 mm1
β = 93.979 (5)°T = 296 K
V = 829.0 (2) Å3Block, colorless
Z = 20.19 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3107 reflections with I > 2σ(I)
φ and ω scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.4°, θmin = 2.9°
Tmin = 0.623, Tmax = 0.698h = 77
12061 measured reflectionsk = 99
3373 independent reflectionsl = 2123
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.6286P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3373 reflectionsΔρmax = 0.49 e Å3
199 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack x determined using 1291 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00107 (9)0.87805 (8)0.76086 (3)0.05140 (19)
O10.4881 (7)0.6571 (7)0.7445 (3)0.0670 (13)
H1D0.6190400.7146480.7664870.100*
H1C0.3620400.7332280.7513570.100*
S10.4339 (2)0.15399 (19)0.67953 (6)0.0382 (3)
N10.8263 (6)0.3319 (5)0.8366 (2)0.0295 (9)
N20.7239 (7)0.2983 (5)0.7699 (2)0.0303 (8)
N30.4501 (6)0.1215 (6)0.8202 (2)0.0355 (9)
H3A0.3282820.0495810.8120090.043*
H3B0.5123820.1297910.8650990.043*
N41.3503 (8)0.5477 (6)1.0413 (2)0.0411 (10)
C10.8150 (8)0.3485 (7)0.7026 (2)0.0355 (11)
H1A0.9428710.2725080.6927650.043*
H1B0.8678050.4705880.7045800.043*
C20.6215 (9)0.3270 (6)0.6453 (3)0.0367 (11)
H2A0.5357510.4386910.6407700.044*
C30.5413 (7)0.1933 (6)0.7656 (2)0.0280 (9)
C41.0129 (8)0.4175 (6)0.8403 (3)0.0342 (11)
H4A1.0788210.4528190.7991190.041*
C51.1255 (8)0.4610 (6)0.9111 (2)0.0303 (9)
C61.3363 (9)0.5471 (7)0.9143 (3)0.0399 (12)
H6A1.4051810.5777080.8729990.048*
C71.4407 (9)0.5859 (8)0.9808 (3)0.0415 (12)
H7A1.5825390.6420810.9829610.050*
C81.1475 (10)0.4651 (8)1.0373 (3)0.0421 (12)
H8A1.0819800.4371421.0794570.051*
C91.0312 (8)0.4194 (6)0.9743 (3)0.0349 (11)
H9A0.8908770.3612470.9740940.042*
C100.6939 (9)0.2728 (7)0.5720 (3)0.0354 (11)
C110.8870 (10)0.1764 (8)0.5602 (3)0.0501 (14)
H11A0.9779070.1317510.5985040.060*
C120.9462 (10)0.1458 (11)0.4924 (5)0.064 (2)
H12A1.0819480.0865150.4850020.077*
C130.8064 (13)0.2022 (10)0.4350 (3)0.0626 (19)
H13A0.8467580.1801470.3890020.075*
C140.6057 (15)0.2916 (9)0.4462 (3)0.0610 (19)
H14A0.5086770.3279490.4078010.073*
C150.5505 (11)0.3266 (7)0.5146 (3)0.0450 (13)
H15A0.4157940.3869650.5222680.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0357 (2)0.0535 (3)0.0647 (4)0.0010 (3)0.0019 (2)0.0076 (4)
O10.059 (3)0.059 (3)0.084 (4)0.016 (3)0.013 (2)0.008 (3)
S10.0326 (5)0.0560 (8)0.0249 (5)0.0080 (6)0.0050 (4)0.0042 (5)
N10.0331 (19)0.029 (2)0.0250 (18)0.0004 (14)0.0079 (14)0.0049 (13)
N20.0325 (19)0.0329 (19)0.0245 (19)0.0024 (16)0.0055 (15)0.0013 (15)
N30.0296 (18)0.051 (3)0.0252 (19)0.0036 (19)0.0033 (15)0.0017 (18)
N40.043 (2)0.043 (3)0.036 (2)0.003 (2)0.0098 (18)0.0099 (19)
C10.037 (2)0.042 (3)0.028 (2)0.002 (2)0.0003 (17)0.001 (2)
C20.040 (2)0.034 (3)0.035 (3)0.0068 (19)0.002 (2)0.0006 (18)
C30.0238 (19)0.031 (2)0.028 (2)0.0050 (18)0.0030 (16)0.0005 (18)
C40.038 (2)0.037 (3)0.027 (2)0.0021 (19)0.0028 (18)0.0039 (18)
C50.032 (2)0.030 (2)0.029 (2)0.0017 (18)0.0043 (18)0.0047 (18)
C60.039 (3)0.046 (3)0.034 (3)0.009 (2)0.000 (2)0.006 (2)
C70.031 (2)0.047 (3)0.045 (3)0.003 (2)0.009 (2)0.011 (2)
C80.050 (3)0.047 (3)0.030 (3)0.000 (2)0.004 (2)0.004 (2)
C90.033 (2)0.037 (3)0.035 (2)0.0021 (18)0.0004 (18)0.0032 (18)
C100.038 (2)0.040 (3)0.027 (2)0.007 (2)0.0022 (19)0.0002 (19)
C110.044 (3)0.048 (3)0.056 (3)0.005 (3)0.014 (3)0.007 (3)
C120.045 (3)0.067 (4)0.084 (5)0.005 (4)0.018 (3)0.031 (4)
C130.093 (5)0.061 (4)0.036 (3)0.017 (4)0.026 (3)0.010 (3)
C140.103 (6)0.045 (3)0.032 (3)0.007 (4)0.019 (3)0.012 (2)
C150.051 (3)0.037 (3)0.046 (3)0.006 (2)0.005 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—H1D0.9500C5—C91.384 (7)
O1—H1C0.9500C5—C61.391 (7)
S1—C31.725 (4)C6—C71.389 (7)
S1—C21.848 (5)C6—H6A0.9300
N1—C41.266 (6)C7—H7A0.9300
N1—N21.380 (5)C8—C91.372 (7)
N2—C31.327 (6)C8—H8A0.9300
N2—C11.459 (6)C9—H9A0.9300
N3—C31.310 (6)C10—C111.374 (8)
N3—H3A0.9000C10—C151.384 (7)
N3—H3B0.9000C11—C121.367 (10)
N4—C71.322 (8)C11—H11A0.9300
N4—C81.337 (8)C12—C131.378 (11)
C1—C21.519 (6)C12—H12A0.9300
C1—H1A0.9700C13—C141.383 (11)
C1—H1B0.9700C13—H13A0.9300
C2—C101.529 (7)C14—C151.376 (9)
C2—H2A0.9800C14—H14A0.9300
C4—C51.484 (6)C15—H15A0.9300
C4—H4A0.9300
H1D—O1—H1C106.0C7—C6—C5118.0 (5)
C3—S1—C291.2 (2)C7—C6—H6A121.0
C4—N1—N2117.6 (4)C5—C6—H6A121.0
C3—N2—N1117.5 (4)N4—C7—C6123.8 (5)
C3—N2—C1116.3 (4)N4—C7—H7A118.1
N1—N2—C1125.7 (4)C6—C7—H7A118.1
C3—N3—H3A118.3N4—C8—C9123.4 (5)
C3—N3—H3B123.4N4—C8—H8A118.3
H3A—N3—H3B117.9C9—C8—H8A118.3
C7—N4—C8117.3 (4)C8—C9—C5119.0 (5)
N2—C1—C2106.9 (4)C8—C9—H9A120.5
N2—C1—H1A110.3C5—C9—H9A120.5
C2—C1—H1A110.3C11—C10—C15119.2 (5)
N2—C1—H1B110.3C11—C10—C2124.8 (5)
C2—C1—H1B110.3C15—C10—C2116.0 (5)
H1A—C1—H1B108.6C12—C11—C10120.4 (6)
C1—C2—C10115.6 (4)C12—C11—H11A119.8
C1—C2—S1104.9 (3)C10—C11—H11A119.8
C10—C2—S1109.6 (3)C11—C12—C13120.5 (6)
C1—C2—H2A108.8C11—C12—H12A119.8
C10—C2—H2A108.8C13—C12—H12A119.8
S1—C2—H2A108.8C12—C13—C14119.6 (6)
N3—C3—N2124.7 (4)C12—C13—H13A120.2
N3—C3—S1121.8 (4)C14—C13—H13A120.2
N2—C3—S1113.5 (3)C15—C14—C13119.6 (6)
N1—C4—C5119.3 (4)C15—C14—H14A120.2
N1—C4—H4A120.3C13—C14—H14A120.2
C5—C4—H4A120.3C14—C15—C10120.5 (6)
C9—C5—C6118.3 (4)C14—C15—H15A119.7
C9—C5—C4123.1 (4)C10—C15—H15A119.7
C6—C5—C4118.6 (4)
C4—N1—N2—C3173.3 (4)C8—N4—C7—C60.8 (8)
C4—N1—N2—C11.8 (7)C5—C6—C7—N40.8 (9)
C3—N2—C1—C222.4 (6)C7—N4—C8—C90.1 (8)
N1—N2—C1—C2166.1 (4)N4—C8—C9—C50.4 (8)
N2—C1—C2—C10148.0 (4)C6—C5—C9—C80.3 (7)
N2—C1—C2—S127.1 (5)C4—C5—C9—C8179.9 (5)
C3—S1—C2—C121.6 (3)C1—C2—C10—C1127.7 (7)
C3—S1—C2—C10146.3 (4)S1—C2—C10—C1190.6 (6)
N1—N2—C3—N30.9 (7)C1—C2—C10—C15152.3 (5)
C1—N2—C3—N3173.2 (5)S1—C2—C10—C1589.3 (5)
N1—N2—C3—S1177.7 (3)C15—C10—C11—C125.0 (9)
C1—N2—C3—S15.5 (5)C2—C10—C11—C12175.1 (6)
C2—S1—C3—N3171.0 (4)C10—C11—C12—C133.8 (11)
C2—S1—C3—N210.3 (4)C11—C12—C13—C140.6 (11)
N2—N1—C4—C5178.3 (4)C12—C13—C14—C151.4 (10)
N1—C4—C5—C93.0 (7)C13—C14—C15—C100.1 (9)
N1—C4—C5—C6176.7 (5)C11—C10—C15—C143.1 (9)
C9—C5—C6—C70.2 (8)C2—C10—C15—C14177.0 (5)
C4—C5—C6—C7179.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N4/C5–C9 pyridine and the C10–C15 phenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1C···Br10.952.393.333 (4)169
O1—H1D···Br1i0.952.563.427 (5)152
N3—H3A···Br1ii0.902.453.333 (4)167
N3—H3B···N4iii0.901.992.840 (6)158
C9—H9A···Cg2iii0.932.963.650 (5)132
C12—H12A···Cg3iv0.932.823.565 (8)137
C15—H15A···Cg3v0.932.803.548 (6)135
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y1/2, z+2; (iv) x+2, y1/2, z+1; (v) x+1, y+1/2, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H35.5
C···H/H···C23.9
Br···H/H···Br16.4
N···H/H···N10.6
S···H/H···S7.9
Br..C/C···Br1.1
Br..N/N···Br1.0
Br..S/S···Br0.6
C..N/N···C0.3
N..N/N···N0.1
 

Acknowledgements

This work has been partially supported by Baku State University.

References

First citationAbedi, M., Khandar, A. A., Gargari, M. S., Gurbanov, A. V., Hosseini, S. A. & Mahmoudi, G. (2014). Z. Anorg. Allg. Chem. 640, 2193–2197.  CrossRef Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 469, 197–201.  CrossRef Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 45410–4550.  Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauza, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  CrossRef Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodriguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukulka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  CrossRef Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauza, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). CrystEngComm, 19, 3322–3330.  CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarthi, K., Larsen, M., Balint, M., Acs, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CrossRef Google Scholar
First citationMitoraj, M. P., Mahmoudi, G., Afkhami, F. A., Castineiras, A., Garcia-Santos, I., Gurbanov, A. V., Zubkov, F. I., Kukulka, M., Sagan, F., Szczepanik, D. W. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  CrossRef Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Gurbanova, N. V., Nenajdenko, V. G., Muzalevskiy, V. M. & Mahmudov, K. T. (2013a). J. Mol. Struct. 1041, 213–218.  CrossRef Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & &Kopylovich, M. N. (2013b). Catal. Today, 217, 76–79.  CrossRef Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds