research communications
E)-5-phenyl-3-[(pyridin-4-ylmethylidene)amino]thiazolidin-2-iminium bromide monohydrate
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the cation of the title salt, C15H15N4S+·Br−·H2O, the central thiazolidine ring adopts an with puckering parameters Q(2) = 0.279 (4) Å and φ(2) = 222.5 (9)°. The mean plane of the thiazolidine ring makes dihedral angles of 12.4 (2) and 66.8 (3)° with the pyridine and phenyl rings, respectively. The pyridine ring in the title molecule is essentially planar (r.m.s deviation = 0.005 Å). In the crystal, the cations, anions and water molecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and (20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds. C—H⋯π interactions also help in the stabilization of the molecular packing. Hirshfeld surface analysis and 2D (two-dimensional) fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (23.9%), Br⋯H/H⋯Br (16.4%), N⋯H/H⋯N (10.6%) and S⋯H/H⋯S (7.9%) interactions.
Keywords: crystal structure; charge-assisted hydrogen bonding; pyridine ring; thiazolidine ring; Hirshfeld surface analysis.
CCDC reference: 1837127
1. Chemical context
et al., 2017a,b,c; Mitoraj et al., 2018; Shixaliyev et al., 2013a), application of those metal complexes in catalysis (Jlassi et al., 2014; Gurbanov et al., 2018; Mahmudov et al., 2014; Shixaliyev et al., 2013b, 2014), biological properties (Abedi et al., 2014), etc. Inter- and intramolecular weak interactions may also effect their properties (Mahmudov et al., 2016, 2017a,b). Herein we found strong O—H⋯Br− and N+—H⋯Br− types of charge-assisted hydrogen bonds in (E)-5-phenyl-3-[(pyridin-4-ylmethylidene)amino]thiazolidin-2-iminium bromide monohydrate.
and related hydrazone compounds play an important role in coordination and medicinal chemistry due to their high coordination ability (Mahmoudi2. Structural commentary
The thiazolidine ring (atoms S1/C1–C4) in the cation of the title salt (Fig. 1) adopts an with the puckering parameters (Cremer & Pople, 1975) Q(2) = 0.279 (4) Å and φ(2) = 222.5 (9)°. The mean plane of the thiazolidine ring makes dihedral angles of 12.4 (2) and 66.8 (3)° with the pyridine (N4/C5–C9) and phenyl (C10–C15) rings, respectively. The pyridine ring of the title molecule is essentially planar (r.m.s deviation = 0.005 Å). The N2—N1—C4—C5 bridge that links the thiazolidine and 2,3-dichlorobenzene rings has a torsion angle of 178.3 (4)°.
3. Supramolecular features and Hirshfeld surface analysis
As shown in Figs. 2 and 3, in the crystal, the cations, anions and water molecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and (20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds (Table 1). Furthermore, C—H⋯π interactions also help in the stabilization of the molecular packing (Table 1).
Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and intermolecular interactions in the ) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012), and comprised dnorm surface plots and 2D (two-dimensional) fingerprint plots (Spackman & McKinnon, 2002). The plots of the Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.5782 (red) to 1.2417 a.u. (blue) is shown in Fig. 4. This plot was generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts, while the other weaker intermolecular interactions appear as light-red spots.
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009Fig. 5(a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall two-dimensional fingerprint plots and those that represent H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, N⋯H/H⋯N and S⋯H/H⋯S contacts, respectively (Figs. 5b–f). The most significant intermolecular interactions are the H⋯H interactions (35.5%) (Fig. 5b). The reciprocal C⋯H/H⋯C interactions appear as two symmetrical broad wings with de + di ≃ 2.7 Å and contribute 23.9% to the Hirshfeld surface (Fig. 5c). The reciprocal Br⋯H/H⋯Br, N⋯H/H⋯N and S⋯H/H⋯S interactions with 16.4, 10.6 and 7.9% contributions are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.3, 2.9 and 2.8 Å, respectively (Figs. 5d–f). Furthermore, there are O⋯H/H⋯O (2.8%), Br⋯C/C⋯Br (1.1%), Br⋯N/N⋯Br (1.0%), Br⋯S/S⋯Br (0.6%), N⋯C/C⋯N (0.3%) and N⋯N (0.1%) contacts (Table 2).
|
4. Database survey
In a recent article of ours, which on the E)-3-[(2,3-dichlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide (Akkurt et al., 2018), the 3-N atom of the cation carries an N substituent, as found in the title compound. In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts also contribute to the molecular packing.
of (In addition, a search of the Cambridge Structural Database (CSD Version 5.39, November 2017 + 3 updates; Groom et al., 2016) yielded six hits for 2-thiazolidiniminium compounds, with four of them reporting essentially the same cation [CSD refcodes WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995)]. In all cases, the 3-N atom carries a C substituent not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2-chloro-2-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a) is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro- and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
5. Synthesis and crystallization
To the solution of 1 mmol of 3-amino-5-phenylthiazolidin-2-iminium bromide in 20 ml ethanol was added 1 mmol of isonicotinaldehyde and the solution was refluxed for 2 h. The reaction mixture was then cooled. Reaction products were precipitated from the reaction mixture as colourless single crystals, collected by filtration and washed with cold acetone.
Yield: 57%; m.p.: 496 K. Analysis calculated for C15H15BrN4S: C 49.59, H 4.16, N 15.42%; found: C 49.52, H 4.11, N 15.35%. 1H NMR (300 MHz, DMSO-d6) : δ 4.57 (q, 1H, CH2, 3JH–H = 6.6 Hz), 4.89 (t, 1H, CH2, 3JH–H = 8.1 Hz), 5.62 (t, 1H, CH-Ar, 3JH–H = 7.5 Hz), 7.37–7.57 (m, 5H, 5 Ar-H), 8.015–7.998 (d, 2H, 2CHarom, 3JH–H = 5.1 Hz), 8.46 (s, 1H, CH=), 8.728–8.711 (d, 2H, 2CHarom, 3JH–H = 5.1 Hz), 10.52 (s, 2H, NH2=). 13C NMR (75MHz, DMSO-d6): δ 45.54, 56.00, 122.17, 127.86, 128.98, 129.16, 137.43, 140.16, 148.88, 150.31, 168.98. MS (ESI), m/z: 283.36 [C15H15N4S]+ and 79.88 Br−.
6. details
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.95 Å, N—H = 0.90 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O) for the H atoms of the water molecule.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1837127
https://doi.org/10.1107/S2056989018011155/xu5936sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011155/xu5936Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C15H15N4S+·Br−·H2O | F(000) = 388 |
Mr = 381.30 | Dx = 1.527 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.8515 (8) Å | Cell parameters from 6867 reflections |
b = 7.5304 (10) Å | θ = 2.9–26.4° |
c = 18.859 (3) Å | µ = 2.61 mm−1 |
β = 93.979 (5)° | T = 296 K |
V = 829.0 (2) Å3 | Block, colorless |
Z = 2 | 0.19 × 0.15 × 0.14 mm |
Bruker APEXII CCD diffractometer | 3107 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.076 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | θmax = 26.4°, θmin = 2.9° |
Tmin = 0.623, Tmax = 0.698 | h = −7→7 |
12061 measured reflections | k = −9→9 |
3373 independent reflections | l = −21→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0256P)2 + 0.6286P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3373 reflections | Δρmax = 0.49 e Å−3 |
199 parameters | Δρmin = −0.47 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1291 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.00107 (9) | 0.87805 (8) | 0.76086 (3) | 0.05140 (19) | |
O1 | 0.4881 (7) | 0.6571 (7) | 0.7445 (3) | 0.0670 (13) | |
H1D | 0.619040 | 0.714648 | 0.766487 | 0.100* | |
H1C | 0.362040 | 0.733228 | 0.751357 | 0.100* | |
S1 | 0.4339 (2) | 0.15399 (19) | 0.67953 (6) | 0.0382 (3) | |
N1 | 0.8263 (6) | 0.3319 (5) | 0.8366 (2) | 0.0295 (9) | |
N2 | 0.7239 (7) | 0.2983 (5) | 0.7699 (2) | 0.0303 (8) | |
N3 | 0.4501 (6) | 0.1215 (6) | 0.8202 (2) | 0.0355 (9) | |
H3A | 0.328282 | 0.049581 | 0.812009 | 0.043* | |
H3B | 0.512382 | 0.129791 | 0.865099 | 0.043* | |
N4 | 1.3503 (8) | 0.5477 (6) | 1.0413 (2) | 0.0411 (10) | |
C1 | 0.8150 (8) | 0.3485 (7) | 0.7026 (2) | 0.0355 (11) | |
H1A | 0.942871 | 0.272508 | 0.692765 | 0.043* | |
H1B | 0.867805 | 0.470588 | 0.704580 | 0.043* | |
C2 | 0.6215 (9) | 0.3270 (6) | 0.6453 (3) | 0.0367 (11) | |
H2A | 0.535751 | 0.438691 | 0.640770 | 0.044* | |
C3 | 0.5413 (7) | 0.1933 (6) | 0.7656 (2) | 0.0280 (9) | |
C4 | 1.0129 (8) | 0.4175 (6) | 0.8403 (3) | 0.0342 (11) | |
H4A | 1.078821 | 0.452819 | 0.799119 | 0.041* | |
C5 | 1.1255 (8) | 0.4610 (6) | 0.9111 (2) | 0.0303 (9) | |
C6 | 1.3363 (9) | 0.5471 (7) | 0.9143 (3) | 0.0399 (12) | |
H6A | 1.405181 | 0.577708 | 0.872999 | 0.048* | |
C7 | 1.4407 (9) | 0.5859 (8) | 0.9808 (3) | 0.0415 (12) | |
H7A | 1.582539 | 0.642081 | 0.982961 | 0.050* | |
C8 | 1.1475 (10) | 0.4651 (8) | 1.0373 (3) | 0.0421 (12) | |
H8A | 1.081980 | 0.437142 | 1.079457 | 0.051* | |
C9 | 1.0312 (8) | 0.4194 (6) | 0.9743 (3) | 0.0349 (11) | |
H9A | 0.890877 | 0.361247 | 0.974094 | 0.042* | |
C10 | 0.6939 (9) | 0.2728 (7) | 0.5720 (3) | 0.0354 (11) | |
C11 | 0.8870 (10) | 0.1764 (8) | 0.5602 (3) | 0.0501 (14) | |
H11A | 0.977907 | 0.131751 | 0.598504 | 0.060* | |
C12 | 0.9462 (10) | 0.1458 (11) | 0.4924 (5) | 0.064 (2) | |
H12A | 1.081948 | 0.086515 | 0.485002 | 0.077* | |
C13 | 0.8064 (13) | 0.2022 (10) | 0.4350 (3) | 0.0626 (19) | |
H13A | 0.846758 | 0.180147 | 0.389002 | 0.075* | |
C14 | 0.6057 (15) | 0.2916 (9) | 0.4462 (3) | 0.0610 (19) | |
H14A | 0.508677 | 0.327949 | 0.407801 | 0.073* | |
C15 | 0.5505 (11) | 0.3266 (7) | 0.5146 (3) | 0.0450 (13) | |
H15A | 0.415794 | 0.386965 | 0.522268 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0357 (2) | 0.0535 (3) | 0.0647 (4) | 0.0010 (3) | 0.0019 (2) | −0.0076 (4) |
O1 | 0.059 (3) | 0.059 (3) | 0.084 (4) | 0.016 (3) | 0.013 (2) | −0.008 (3) |
S1 | 0.0326 (5) | 0.0560 (8) | 0.0249 (5) | −0.0080 (6) | −0.0050 (4) | −0.0042 (5) |
N1 | 0.0331 (19) | 0.029 (2) | 0.0250 (18) | −0.0004 (14) | −0.0079 (14) | −0.0049 (13) |
N2 | 0.0325 (19) | 0.0329 (19) | 0.0245 (19) | −0.0024 (16) | −0.0055 (15) | −0.0013 (15) |
N3 | 0.0296 (18) | 0.051 (3) | 0.0252 (19) | −0.0036 (19) | −0.0033 (15) | 0.0017 (18) |
N4 | 0.043 (2) | 0.043 (3) | 0.036 (2) | 0.003 (2) | −0.0098 (18) | −0.0099 (19) |
C1 | 0.037 (2) | 0.042 (3) | 0.028 (2) | −0.002 (2) | −0.0003 (17) | −0.001 (2) |
C2 | 0.040 (2) | 0.034 (3) | 0.035 (3) | 0.0068 (19) | −0.002 (2) | −0.0006 (18) |
C3 | 0.0238 (19) | 0.031 (2) | 0.028 (2) | 0.0050 (18) | −0.0030 (16) | −0.0005 (18) |
C4 | 0.038 (2) | 0.037 (3) | 0.027 (2) | −0.0021 (19) | −0.0028 (18) | −0.0039 (18) |
C5 | 0.032 (2) | 0.030 (2) | 0.029 (2) | −0.0017 (18) | −0.0043 (18) | −0.0047 (18) |
C6 | 0.039 (3) | 0.046 (3) | 0.034 (3) | −0.009 (2) | 0.000 (2) | −0.006 (2) |
C7 | 0.031 (2) | 0.047 (3) | 0.045 (3) | −0.003 (2) | −0.009 (2) | −0.011 (2) |
C8 | 0.050 (3) | 0.047 (3) | 0.030 (3) | 0.000 (2) | 0.004 (2) | −0.004 (2) |
C9 | 0.033 (2) | 0.037 (3) | 0.035 (2) | −0.0021 (18) | −0.0004 (18) | −0.0032 (18) |
C10 | 0.038 (2) | 0.040 (3) | 0.027 (2) | −0.007 (2) | −0.0022 (19) | 0.0002 (19) |
C11 | 0.044 (3) | 0.048 (3) | 0.056 (3) | 0.005 (3) | −0.014 (3) | −0.007 (3) |
C12 | 0.045 (3) | 0.067 (4) | 0.084 (5) | −0.005 (4) | 0.018 (3) | −0.031 (4) |
C13 | 0.093 (5) | 0.061 (4) | 0.036 (3) | −0.017 (4) | 0.026 (3) | −0.010 (3) |
C14 | 0.103 (6) | 0.045 (3) | 0.032 (3) | −0.007 (4) | −0.019 (3) | 0.012 (2) |
C15 | 0.051 (3) | 0.037 (3) | 0.046 (3) | 0.006 (2) | −0.005 (2) | −0.003 (2) |
O1—H1D | 0.9500 | C5—C9 | 1.384 (7) |
O1—H1C | 0.9500 | C5—C6 | 1.391 (7) |
S1—C3 | 1.725 (4) | C6—C7 | 1.389 (7) |
S1—C2 | 1.848 (5) | C6—H6A | 0.9300 |
N1—C4 | 1.266 (6) | C7—H7A | 0.9300 |
N1—N2 | 1.380 (5) | C8—C9 | 1.372 (7) |
N2—C3 | 1.327 (6) | C8—H8A | 0.9300 |
N2—C1 | 1.459 (6) | C9—H9A | 0.9300 |
N3—C3 | 1.310 (6) | C10—C11 | 1.374 (8) |
N3—H3A | 0.9000 | C10—C15 | 1.384 (7) |
N3—H3B | 0.9000 | C11—C12 | 1.367 (10) |
N4—C7 | 1.322 (8) | C11—H11A | 0.9300 |
N4—C8 | 1.337 (8) | C12—C13 | 1.378 (11) |
C1—C2 | 1.519 (6) | C12—H12A | 0.9300 |
C1—H1A | 0.9700 | C13—C14 | 1.383 (11) |
C1—H1B | 0.9700 | C13—H13A | 0.9300 |
C2—C10 | 1.529 (7) | C14—C15 | 1.376 (9) |
C2—H2A | 0.9800 | C14—H14A | 0.9300 |
C4—C5 | 1.484 (6) | C15—H15A | 0.9300 |
C4—H4A | 0.9300 | ||
H1D—O1—H1C | 106.0 | C7—C6—C5 | 118.0 (5) |
C3—S1—C2 | 91.2 (2) | C7—C6—H6A | 121.0 |
C4—N1—N2 | 117.6 (4) | C5—C6—H6A | 121.0 |
C3—N2—N1 | 117.5 (4) | N4—C7—C6 | 123.8 (5) |
C3—N2—C1 | 116.3 (4) | N4—C7—H7A | 118.1 |
N1—N2—C1 | 125.7 (4) | C6—C7—H7A | 118.1 |
C3—N3—H3A | 118.3 | N4—C8—C9 | 123.4 (5) |
C3—N3—H3B | 123.4 | N4—C8—H8A | 118.3 |
H3A—N3—H3B | 117.9 | C9—C8—H8A | 118.3 |
C7—N4—C8 | 117.3 (4) | C8—C9—C5 | 119.0 (5) |
N2—C1—C2 | 106.9 (4) | C8—C9—H9A | 120.5 |
N2—C1—H1A | 110.3 | C5—C9—H9A | 120.5 |
C2—C1—H1A | 110.3 | C11—C10—C15 | 119.2 (5) |
N2—C1—H1B | 110.3 | C11—C10—C2 | 124.8 (5) |
C2—C1—H1B | 110.3 | C15—C10—C2 | 116.0 (5) |
H1A—C1—H1B | 108.6 | C12—C11—C10 | 120.4 (6) |
C1—C2—C10 | 115.6 (4) | C12—C11—H11A | 119.8 |
C1—C2—S1 | 104.9 (3) | C10—C11—H11A | 119.8 |
C10—C2—S1 | 109.6 (3) | C11—C12—C13 | 120.5 (6) |
C1—C2—H2A | 108.8 | C11—C12—H12A | 119.8 |
C10—C2—H2A | 108.8 | C13—C12—H12A | 119.8 |
S1—C2—H2A | 108.8 | C12—C13—C14 | 119.6 (6) |
N3—C3—N2 | 124.7 (4) | C12—C13—H13A | 120.2 |
N3—C3—S1 | 121.8 (4) | C14—C13—H13A | 120.2 |
N2—C3—S1 | 113.5 (3) | C15—C14—C13 | 119.6 (6) |
N1—C4—C5 | 119.3 (4) | C15—C14—H14A | 120.2 |
N1—C4—H4A | 120.3 | C13—C14—H14A | 120.2 |
C5—C4—H4A | 120.3 | C14—C15—C10 | 120.5 (6) |
C9—C5—C6 | 118.3 (4) | C14—C15—H15A | 119.7 |
C9—C5—C4 | 123.1 (4) | C10—C15—H15A | 119.7 |
C6—C5—C4 | 118.6 (4) | ||
C4—N1—N2—C3 | 173.3 (4) | C8—N4—C7—C6 | 0.8 (8) |
C4—N1—N2—C1 | 1.8 (7) | C5—C6—C7—N4 | −0.8 (9) |
C3—N2—C1—C2 | 22.4 (6) | C7—N4—C8—C9 | −0.1 (8) |
N1—N2—C1—C2 | −166.1 (4) | N4—C8—C9—C5 | −0.4 (8) |
N2—C1—C2—C10 | −148.0 (4) | C6—C5—C9—C8 | 0.3 (7) |
N2—C1—C2—S1 | −27.1 (5) | C4—C5—C9—C8 | −179.9 (5) |
C3—S1—C2—C1 | 21.6 (3) | C1—C2—C10—C11 | 27.7 (7) |
C3—S1—C2—C10 | 146.3 (4) | S1—C2—C10—C11 | −90.6 (6) |
N1—N2—C3—N3 | 0.9 (7) | C1—C2—C10—C15 | −152.3 (5) |
C1—N2—C3—N3 | 173.2 (5) | S1—C2—C10—C15 | 89.3 (5) |
N1—N2—C3—S1 | −177.7 (3) | C15—C10—C11—C12 | 5.0 (9) |
C1—N2—C3—S1 | −5.5 (5) | C2—C10—C11—C12 | −175.1 (6) |
C2—S1—C3—N3 | 171.0 (4) | C10—C11—C12—C13 | −3.8 (11) |
C2—S1—C3—N2 | −10.3 (4) | C11—C12—C13—C14 | 0.6 (11) |
N2—N1—C4—C5 | 178.3 (4) | C12—C13—C14—C15 | 1.4 (10) |
N1—C4—C5—C9 | −3.0 (7) | C13—C14—C15—C10 | −0.1 (9) |
N1—C4—C5—C6 | 176.7 (5) | C11—C10—C15—C14 | −3.1 (9) |
C9—C5—C6—C7 | 0.2 (8) | C2—C10—C15—C14 | 177.0 (5) |
C4—C5—C6—C7 | −179.6 (5) |
Cg2 and Cg3 are the centroids of the N4/C5–C9 pyridine and the C10–C15 phenyl ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···Br1 | 0.95 | 2.39 | 3.333 (4) | 169 |
O1—H1D···Br1i | 0.95 | 2.56 | 3.427 (5) | 152 |
N3—H3A···Br1ii | 0.90 | 2.45 | 3.333 (4) | 167 |
N3—H3B···N4iii | 0.90 | 1.99 | 2.840 (6) | 158 |
C9—H9A···Cg2iii | 0.93 | 2.96 | 3.650 (5) | 132 |
C12—H12A···Cg3iv | 0.93 | 2.82 | 3.565 (8) | 137 |
C15—H15A···Cg3v | 0.93 | 2.80 | 3.548 (6) | 135 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+2, y−1/2, −z+2; (iv) −x+2, y−1/2, −z+1; (v) −x+1, y+1/2, −z+1. |
Contact | Percentage contribution |
H···H | 35.5 |
C···H/H···C | 23.9 |
Br···H/H···Br | 16.4 |
N···H/H···N | 10.6 |
S···H/H···S | 7.9 |
Br..C/C···Br | 1.1 |
Br..N/N···Br | 1.0 |
Br..S/S···Br | 0.6 |
C..N/N···C | 0.3 |
N..N/N···N | 0.1 |
Acknowledgements
This work has been partially supported by Baku State University.
References
Abedi, M., Khandar, A. A., Gargari, M. S., Gurbanov, A. V., Hosseini, S. A. & Mahmoudi, G. (2014). Z. Anorg. Allg. Chem. 640, 2193–2197. CrossRef Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 469, 197–201. CrossRef Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 45410–4550. Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauza, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. CrossRef Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodriguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukulka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. CrossRef Google Scholar
Mahmoudi, G., Zangrando, E., Bauza, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). CrystEngComm, 19, 3322–3330. CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958. Web of Science CrossRef Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Marthi, K., Larsen, M., Balint, M., Acs, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CrossRef Google Scholar
Mitoraj, M. P., Mahmoudi, G., Afkhami, F. A., Castineiras, A., Garcia-Santos, I., Gurbanov, A. V., Zubkov, F. I., Kukulka, M., Sagan, F., Szczepanik, D. W. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. CrossRef Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Gurbanova, N. V., Nenajdenko, V. G., Muzalevskiy, V. M. & Mahmudov, K. T. (2013a). J. Mol. Struct. 1041, 213–218. CrossRef Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & &Kopylovich, M. N. (2013b). Catal. Today, 217, 76–79. CrossRef Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.