research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3′-bi­pyridine-2′,6′-dicarbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDivision of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 13 August 2018; accepted 15 August 2018; online 21 August 2018)

The title compound, C12H6N4, crystallizes with four independent mol­ecules (A, B, C and D) in the asymmetric unit. The dihedral angles between the two pyridine rings in each mol­ecule are 25.25 (8)° in A, 5.51 (9)° in B, 11.11 (9)° in C and 16.24 (8)° in D. In the crystal, mol­ecules A and B are linked by C—H⋯N hydrogen bonds to form layers extending parallel to the ab plane, while mol­ecules C and D are linked by C—H⋯N hydrogen bonds forming –CDCD– chains propagating along the b-axis direction. The layers and the chains are stacked alternately along the c axis through offset ππ and C≡N⋯π [N-to-pyridine-centroid distance = 3.882 (2) Å] inter­actions, resulting in the formation of a supra­molecular framework.

1. Chemical context

Bi­pyridine ligands with the C[^\wedge]N chelating mode to transition metal ions, such as 2,3′-bi­pyridine, are considered to be strong candidates for the synthesis of blue phospho­rescent heavy transition metal complexes because of their larger triplet energy (T1) compared with phenyl­pyridine-based C[^\wedge]N chelating ligands (Reddy & Bejoymohandas, 2016[Reddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29-47.]). In particular, the triplet energy of fluorine-functionalized 2,3′-bi­pyridine (T1: 2.82 eV) is larger than that of alk­oxy-functionalized analogue, 2′,6′-dimeth­oxy-2,3′-bi­pyridine (T1: 2.70 eV) (Lee et al., 2017[Lee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378-383.]; Kim et al., 2018[Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703-706.]). Therefore, the introduction of electron-withdrawing groups into the C-coordinating pyridine group is highly desirable in order to develop blue phospho­rescent metal complexes. To design a suitable ligand possessing a large triplet energy is still a main issue in the organic light-emitting diodes (OLEDs) research area because developing blue phospho­rescent materials remains a problem that has not been solved so far. Although there are a number of advantages in 2,3′-bi­pyridine ligands, incorporating the substituents into the ligand framework is difficult owing to the low selectivity and reactivity of the pyridine ring (Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). In addition, structural examples of bi­pyridine-bearing electron-withdrawing groups are very scarce.

[Scheme 1]

Herein, for potential applications for the development of blue phospho­rescent materials, we describe the synthesis and crystal structure of the title compound, 2,3′-bi­pyridine-2′,6′-dicarbo­nitrile.

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit of the title compound contains four crystallographically independent mol­ecules (A, B, C and D). The dihedral angles between the two pyridine rings in each mol­ecule are 25.25 (8)° in A, 5.51 (9)° in B, 11.11 (9)° in C and 16.24 (8)° in D. In order to investigate the conformational similarity between the four mol­ecules, the r.m.s. overlay fits of the 16 non-H atoms of each mol­ecule were calculated using the AutoMolFit routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). As shown in Fig. 2[link], and as expected in view of the values of the dihedral angles, the largest overlay fit of 0.197 Å is observed for mol­ecules A and B, while the smallest r.m.s. overlay fit of 0.060 Å is observed for mol­ecules C and D.

[Figure 1]
Figure 1
The mol­ecular structure of the four independent mol­ecules (A, B, C and D) of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The overlay fits of the various mol­ecules in the asymmetric unit of the title compound.

3. Supra­molecular features

In the crystal, mol­ecules A and B are linked via C—H⋯N hydrogen bonds (C3—H3⋯N3i, C3B—H3B⋯N3Bii and C10B—H10B⋯N3, Table 1[link] and Fig. 3[link]a), forming layers extending parallel to the ab plane, while the C and D mol­ecules are connected through C—H⋯N hydrogen bonds (C3C—H3C⋯N3Diii and C3D–-H3D⋯N3C, Table 1[link] and Fig. 3[link]b) to from –CDCD– chains propagating along the b-axis direction. The layers and chains stack alternately along the c axis, linked by inter­molecular ππ stacking inter­actions, resulting in the formation of a supra­molecular framework, as shown in Fig. 4[link] [Cg1⋯Cg2Di = 3.6741 (9) Å; Cg1⋯Cg2Div = 3.6546 (9) Å; Cg2⋯Cg1Div = 3.5888 (9) Å; Cg2BCg1Civ = 3.8196 (10) Å; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6-C10 rings. Atoms and centroids labelled with suffixes B, C and D represent those of the mol­ecules B, C and D, respectively]. In addition, inter­molecular C≡N⋯π inter­actions between the cyano N atom of the D mol­ecule and the N1B-containing pyridine ring of mol­ecule B [N4DCg1Bvi = 3.882 (2) Å; Cg1B is the centroid of the N1B/C1B–C5B ring; symmetry code: (vi) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]], contribute to the stabilization of the framework.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.95 2.42 3.343 (2) 164
C3B—H3B⋯N3Bii 0.95 2.34 3.281 (2) 169
C10B—H10B⋯N3 0.95 2.57 3.269 (2) 130
C3C—H3C⋯N3Diii 0.95 2.46 3.379 (2) 164
C3D—H3D⋯N3C 0.95 2.56 3.397 (2) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 3]
Figure 3
(a) View along the c axis of the layer formed by C—H⋯N hydrogen bonds between mol­ecules A and B; (b) view along the c axis of the chains formed by C—H⋯N hydrogen bonds between mol­ecules C and D [symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]; (iii) x, y + 1, z; colour codes: grey = carbon, blue = nitro­gen and white = hydrogen].
[Figure 4]
Figure 4
The supra­molecular framework formed via inter­molecular π-π stacking (black dashed lines) and C≡N⋯π (yellow dashed lines) inter­actions involving the four independent mol­ecules (colour codes: gray = mol­ecule A, red = mol­ecule B, blue = mol­ecule C and green = mol­ecule D). All H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2′,6′-disubstituted 2,3′-bi­pyridines, gave a number of hits. The majority of them involve iridium or platinum complexes of the di­fluoro and dimeth­oxy analogues of the title compound. As explained in the Chemical context, such compounds, particularly blue iridium complexes of 2′,6′-di­fluoro-2,3′-bi­pyridine, have been synthesized to study their phospho­rescence (e.g. Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]) and electroluminescence (e.g. Xu et al., 2015[Xu, Q.-L., Liang, X., Jiang, L., Zhao, Y. & Zheng, Y.-X. (2015). RSC Adv. 5, 89218-89225.]) efficiency. As there are no reports of the crystal structures of either 2′,6′-di­fluoro-2,3′-bi­pyridine nor 2′,6′-dimeth­oxy-2,3′-bi­pyridine, it is not possible to compare their conformations with those of the four independent mol­ecules of the title compound.

5. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Avance 300 MHz spectrometer. The fluorinated bi­pyridine, 2′,6′-di­fluoro-2,3′-bi­pyridine, was synthesized according to previous reports (Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]). Then 2′,6′-di­fluoro-2,3′-bi­pyridine (2.0 g, 10.4 mmol) and sodium cyanide (1.02 g, 20.8 mmol) were dissolved in DMSO (10 ml). The reaction mixture was stirred overnight at 308 K. All the volatile components were removed under reduced pressure. The resulting mixture was poured into CH2Cl2 (20 × 3 ml), and then washed with water (3 × 50 ml) to remove any remaining sodium cyanide. Silica gel column purification with EtOAc and hexane gave a yellow powder in 60% yield. Colourless crystals suitable for X-ray crystallography analysis were obtained from a CH2Cl2/hexane solution under slow evaporation. 1H NMR (300 MHz, CDCl3, δ): 8.78 (dd, J = 3.6, 1.2 Hz, 1H), 8.40 (d, J = 8.4 Hz, 1H), 7.93–7.84 (m, 3H), 7.42 (td, J = 5.1, 1.5 Hz, 1H). IR(KBr, pellet): νCN = 2239 cm−1. Mass spectrum m/z (EI): 206 for [M]+ (calculated, 206).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H6N4
Mr 206.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 22.5144 (5), 13.1601 (3), 13.2652 (3)
β (°) 93.4509 (11)
V3) 3923.24 (15)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.33 × 0.29
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39169, 9671, 6997
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.05
No. of reflections 9671
No. of parameters 578
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

2,3'-Bipyridine-2',6'-dicarbonitrile top
Crystal data top
C12H6N4F(000) = 1696
Mr = 206.21Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.5144 (5) ÅCell parameters from 9514 reflections
b = 13.1601 (3) Åθ = 2.3–28.3°
c = 13.2652 (3) ŵ = 0.09 mm1
β = 93.4509 (11)°T = 173 K
V = 3923.24 (15) Å3Block, colourless
Z = 160.40 × 0.33 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
6997 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 0.9°
Tmin = 0.696, Tmax = 0.746h = 2929
39169 measured reflectionsk = 1517
9671 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.2183P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
9671 reflectionsΔρmax = 0.29 e Å3
578 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00078 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49910 (5)0.74057 (9)0.26760 (10)0.0280 (3)
N20.67745 (5)0.83351 (10)0.29072 (11)0.0346 (3)
N30.62263 (6)0.61415 (10)0.24069 (12)0.0376 (3)
N40.35033 (6)0.75276 (12)0.29544 (15)0.0533 (4)
C10.55555 (6)0.77161 (10)0.26223 (11)0.0259 (3)
C20.45846 (6)0.81336 (11)0.27582 (12)0.0297 (3)
C30.47099 (7)0.91693 (11)0.27679 (13)0.0338 (3)
H30.44020.96580.28150.041*
C40.52920 (6)0.94626 (11)0.27070 (12)0.0322 (3)
H40.53911.01650.27140.039*
C50.57391 (6)0.87387 (11)0.26354 (11)0.0271 (3)
C60.63739 (6)0.90300 (11)0.25798 (12)0.0285 (3)
C70.65339 (7)0.99737 (11)0.22031 (12)0.0332 (3)
H70.62391.04530.19830.040*
C80.71324 (7)1.01972 (12)0.21571 (13)0.0363 (4)
H80.72551.08380.19130.044*
C90.75478 (7)0.94792 (12)0.24703 (13)0.0361 (4)
H90.79610.96080.24330.043*
C100.73499 (7)0.85668 (12)0.28397 (14)0.0376 (4)
H100.76390.80750.30590.045*
C110.59619 (6)0.68697 (11)0.25145 (12)0.0282 (3)
C120.39805 (7)0.77851 (12)0.28566 (14)0.0374 (4)
N1B1.00098 (5)0.66865 (10)0.25099 (11)0.0328 (3)
N2B0.82233 (6)0.58423 (10)0.23869 (13)0.0426 (4)
N3B0.87912 (6)0.79976 (11)0.21706 (16)0.0595 (5)
N4B1.15222 (6)0.65194 (11)0.28236 (15)0.0522 (4)
C1B0.94394 (6)0.63854 (11)0.24219 (12)0.0302 (3)
C2B1.04188 (7)0.59585 (12)0.26116 (14)0.0368 (4)
C3B1.02892 (7)0.49305 (13)0.26150 (17)0.0497 (5)
H3B1.05970.44370.26770.060*
C4B0.97019 (7)0.46449 (13)0.25256 (16)0.0477 (5)
H4B0.96020.39430.25250.057*
C5B0.92501 (7)0.53684 (11)0.24356 (13)0.0331 (3)
C6B0.86123 (7)0.50763 (11)0.23825 (12)0.0325 (3)
C7B0.84293 (7)0.40674 (12)0.23460 (13)0.0364 (4)
H7B0.87130.35340.23360.044*
C8B0.78279 (7)0.38510 (12)0.23251 (13)0.0381 (4)
H8B0.76940.31660.23100.046*
C9B0.74263 (7)0.46356 (13)0.23266 (13)0.0372 (4)
H9B0.70110.45070.23100.045*
C10B0.76432 (7)0.56175 (13)0.23535 (15)0.0421 (4)
H10B0.73660.61620.23480.051*
C11B0.90390 (7)0.72465 (12)0.22910 (15)0.0396 (4)
C12B1.10337 (7)0.62904 (12)0.27276 (15)0.0408 (4)
N1C0.25051 (5)0.53772 (10)0.02073 (10)0.0328 (3)
N2C0.07122 (6)0.62043 (11)0.00555 (15)0.0522 (4)
N3C0.13060 (6)0.40241 (12)0.02803 (17)0.0616 (5)
N4C0.40066 (6)0.55328 (12)0.01479 (14)0.0520 (4)
C1C0.19315 (6)0.56632 (11)0.02102 (12)0.0307 (3)
C2C0.29079 (7)0.61155 (12)0.02084 (13)0.0340 (3)
C3C0.27729 (7)0.71403 (13)0.02209 (15)0.0429 (4)
H3C0.30780.76390.02380.051*
C4C0.21814 (7)0.74172 (13)0.02080 (15)0.0422 (4)
H4C0.20770.81160.02060.051*
C5C0.17368 (7)0.66812 (12)0.01976 (12)0.0325 (3)
C6C0.10958 (7)0.69596 (12)0.01452 (12)0.0322 (3)
C7C0.09100 (7)0.79532 (13)0.02696 (15)0.0420 (4)
H7C0.11920.84790.04150.050*
C8C0.03076 (7)0.81675 (13)0.01785 (15)0.0445 (4)
H8C0.01700.88440.02570.053*
C9C0.00892 (7)0.73939 (13)0.00260 (14)0.0402 (4)
H9C0.05050.75220.00940.048*
C10C0.01307 (7)0.64306 (14)0.01301 (18)0.0527 (5)
H10C0.01450.58930.02630.063*
C11C0.15421 (7)0.47900 (12)0.02419 (15)0.0400 (4)
C12C0.35214 (7)0.57814 (12)0.01809 (14)0.0396 (4)
N1D0.25087 (5)0.03678 (9)0.02181 (10)0.0312 (3)
N2D0.42958 (5)0.11479 (9)0.00983 (11)0.0328 (3)
N3D0.37265 (6)0.09144 (10)0.07125 (13)0.0432 (4)
N4D0.10036 (6)0.04871 (12)0.00311 (15)0.0545 (5)
C1D0.30810 (6)0.06558 (11)0.02102 (11)0.0274 (3)
C2D0.21010 (6)0.10823 (12)0.00026 (12)0.0325 (3)
C3D0.22322 (7)0.20789 (12)0.02331 (14)0.0383 (4)
H3D0.19250.25610.03820.046*
C4D0.28232 (7)0.23508 (12)0.02402 (13)0.0360 (4)
H4D0.29260.30300.03980.043*
C5D0.32714 (6)0.16403 (11)0.00185 (11)0.0281 (3)
C6D0.39103 (6)0.19201 (11)0.00522 (11)0.0274 (3)
C7D0.40905 (7)0.29331 (11)0.00522 (12)0.0312 (3)
H7D0.38080.34640.00030.037*
C8D0.46879 (7)0.31533 (12)0.01251 (12)0.0336 (3)
H8D0.48210.38380.01350.040*
C9D0.50870 (7)0.23649 (12)0.01824 (12)0.0335 (3)
H9D0.54990.24950.02410.040*
C10D0.48740 (7)0.13777 (12)0.01523 (13)0.0354 (4)
H10D0.51520.08350.01710.042*
C11D0.34799 (6)0.01830 (11)0.04801 (12)0.0316 (3)
C12D0.14866 (7)0.07449 (13)0.00158 (15)0.0408 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0254 (6)0.0296 (6)0.0288 (7)0.0007 (5)0.0007 (5)0.0007 (5)
N20.0283 (6)0.0308 (6)0.0447 (8)0.0002 (5)0.0013 (6)0.0033 (6)
N30.0288 (6)0.0296 (7)0.0544 (9)0.0026 (5)0.0009 (6)0.0007 (6)
N40.0313 (7)0.0405 (8)0.0889 (14)0.0008 (6)0.0094 (8)0.0011 (8)
C10.0251 (6)0.0272 (7)0.0252 (7)0.0023 (5)0.0006 (5)0.0008 (6)
C20.0249 (7)0.0305 (7)0.0338 (8)0.0020 (5)0.0014 (6)0.0012 (6)
C30.0298 (7)0.0295 (7)0.0421 (9)0.0059 (6)0.0019 (7)0.0009 (6)
C40.0312 (7)0.0253 (7)0.0399 (9)0.0008 (6)0.0013 (6)0.0000 (6)
C50.0284 (7)0.0267 (7)0.0259 (8)0.0010 (5)0.0000 (6)0.0013 (6)
C60.0284 (7)0.0266 (7)0.0303 (8)0.0017 (5)0.0010 (6)0.0022 (6)
C70.0327 (8)0.0286 (7)0.0381 (9)0.0006 (6)0.0014 (7)0.0009 (6)
C80.0378 (8)0.0307 (8)0.0408 (10)0.0074 (6)0.0056 (7)0.0003 (7)
C90.0280 (7)0.0379 (8)0.0425 (10)0.0050 (6)0.0035 (7)0.0059 (7)
C100.0275 (7)0.0352 (8)0.0495 (11)0.0003 (6)0.0013 (7)0.0013 (7)
C110.0247 (6)0.0269 (7)0.0328 (8)0.0013 (5)0.0003 (6)0.0023 (6)
C120.0301 (8)0.0306 (8)0.0515 (11)0.0036 (6)0.0035 (7)0.0012 (7)
N1B0.0271 (6)0.0304 (6)0.0407 (8)0.0020 (5)0.0013 (5)0.0014 (5)
N2B0.0306 (7)0.0301 (7)0.0675 (11)0.0003 (5)0.0044 (7)0.0042 (7)
N3B0.0304 (7)0.0296 (7)0.1174 (17)0.0005 (6)0.0046 (8)0.0034 (8)
N4B0.0302 (7)0.0396 (8)0.0866 (13)0.0031 (6)0.0030 (8)0.0004 (8)
C1B0.0276 (7)0.0283 (7)0.0346 (9)0.0028 (6)0.0008 (6)0.0017 (6)
C2B0.0276 (7)0.0343 (8)0.0485 (10)0.0038 (6)0.0022 (7)0.0033 (7)
C3B0.0324 (8)0.0307 (8)0.0859 (16)0.0071 (7)0.0016 (9)0.0053 (9)
C4B0.0365 (9)0.0276 (8)0.0789 (15)0.0030 (7)0.0010 (9)0.0052 (8)
C5B0.0309 (7)0.0281 (7)0.0403 (9)0.0005 (6)0.0010 (7)0.0028 (6)
C6B0.0312 (7)0.0296 (7)0.0367 (9)0.0006 (6)0.0026 (6)0.0033 (6)
C7B0.0369 (8)0.0294 (7)0.0426 (10)0.0004 (6)0.0009 (7)0.0019 (7)
C8B0.0403 (9)0.0318 (8)0.0421 (10)0.0063 (7)0.0026 (7)0.0005 (7)
C9B0.0324 (8)0.0414 (9)0.0381 (9)0.0054 (7)0.0048 (7)0.0006 (7)
C10B0.0311 (8)0.0365 (9)0.0589 (12)0.0004 (6)0.0051 (8)0.0026 (8)
C11B0.0258 (7)0.0299 (8)0.0628 (12)0.0014 (6)0.0004 (7)0.0010 (7)
C12B0.0326 (8)0.0313 (8)0.0584 (12)0.0066 (6)0.0022 (8)0.0019 (7)
N1C0.0265 (6)0.0347 (7)0.0373 (8)0.0035 (5)0.0023 (5)0.0045 (6)
N2C0.0299 (7)0.0340 (8)0.0930 (14)0.0011 (6)0.0061 (8)0.0108 (8)
N3C0.0309 (7)0.0359 (8)0.1179 (17)0.0034 (6)0.0041 (9)0.0105 (9)
N4C0.0310 (7)0.0441 (9)0.0810 (13)0.0046 (6)0.0042 (7)0.0110 (8)
C1C0.0274 (7)0.0320 (7)0.0327 (8)0.0036 (6)0.0021 (6)0.0008 (6)
C2C0.0274 (7)0.0362 (8)0.0384 (9)0.0044 (6)0.0022 (6)0.0024 (7)
C3C0.0317 (8)0.0364 (9)0.0607 (12)0.0098 (7)0.0035 (8)0.0051 (8)
C4C0.0351 (8)0.0315 (8)0.0605 (12)0.0036 (6)0.0051 (8)0.0065 (8)
C5C0.0302 (7)0.0321 (7)0.0353 (9)0.0025 (6)0.0029 (6)0.0029 (6)
C6C0.0304 (7)0.0322 (8)0.0344 (9)0.0009 (6)0.0048 (6)0.0023 (6)
C7C0.0356 (8)0.0345 (8)0.0554 (12)0.0010 (7)0.0009 (8)0.0032 (8)
C8C0.0389 (9)0.0346 (8)0.0599 (12)0.0052 (7)0.0024 (8)0.0014 (8)
C9C0.0315 (8)0.0403 (9)0.0491 (11)0.0026 (7)0.0050 (7)0.0010 (8)
C10C0.0287 (8)0.0405 (10)0.0892 (16)0.0020 (7)0.0051 (9)0.0084 (10)
C11C0.0261 (7)0.0348 (8)0.0592 (12)0.0004 (6)0.0035 (7)0.0040 (8)
C12C0.0310 (8)0.0367 (8)0.0512 (11)0.0067 (6)0.0021 (7)0.0064 (7)
N1D0.0237 (6)0.0334 (6)0.0364 (8)0.0002 (5)0.0019 (5)0.0001 (5)
N2D0.0270 (6)0.0299 (6)0.0414 (8)0.0011 (5)0.0003 (5)0.0011 (6)
N3D0.0279 (6)0.0343 (7)0.0671 (11)0.0000 (5)0.0006 (7)0.0067 (7)
N4D0.0283 (7)0.0475 (9)0.0878 (14)0.0010 (6)0.0033 (8)0.0088 (8)
C1D0.0248 (7)0.0286 (7)0.0286 (8)0.0018 (5)0.0001 (6)0.0009 (6)
C2D0.0241 (7)0.0347 (8)0.0384 (9)0.0023 (6)0.0003 (6)0.0026 (7)
C3D0.0285 (7)0.0330 (8)0.0526 (11)0.0054 (6)0.0042 (7)0.0016 (7)
C4D0.0328 (8)0.0280 (7)0.0464 (10)0.0016 (6)0.0050 (7)0.0006 (7)
C5D0.0268 (7)0.0298 (7)0.0276 (8)0.0001 (6)0.0006 (6)0.0030 (6)
C6D0.0268 (7)0.0294 (7)0.0256 (8)0.0007 (5)0.0011 (6)0.0008 (6)
C7D0.0323 (7)0.0309 (7)0.0304 (8)0.0016 (6)0.0010 (6)0.0004 (6)
C8D0.0362 (8)0.0314 (7)0.0330 (9)0.0073 (6)0.0007 (6)0.0010 (6)
C9D0.0284 (7)0.0386 (8)0.0332 (9)0.0053 (6)0.0000 (6)0.0008 (7)
C10D0.0260 (7)0.0361 (8)0.0438 (10)0.0009 (6)0.0008 (7)0.0009 (7)
C11D0.0234 (7)0.0313 (8)0.0401 (9)0.0036 (6)0.0011 (6)0.0007 (6)
C12D0.0291 (8)0.0388 (9)0.0545 (11)0.0043 (7)0.0019 (7)0.0028 (8)
Geometric parameters (Å, º) top
N1—C21.3338 (18)N1C—C2C1.3290 (19)
N1—C11.3410 (18)N1C—C1C1.3454 (19)
N2—C61.3384 (18)N2C—C6C1.333 (2)
N2—C101.3392 (19)N2C—C10C1.341 (2)
N3—C111.1416 (19)N3C—C11C1.142 (2)
N4—C121.141 (2)N4C—C12C1.144 (2)
C1—C51.4077 (19)C1C—C5C1.409 (2)
C1—C111.4540 (19)C1C—C11C1.448 (2)
C2—C31.392 (2)C2C—C3C1.383 (2)
C2—C121.449 (2)C2C—C12C1.452 (2)
C3—C41.373 (2)C3C—C4C1.380 (2)
C3—H30.9500C3C—H3C0.9500
C4—C51.393 (2)C4C—C5C1.392 (2)
C4—H40.9500C4C—H4C0.9500
C5—C61.486 (2)C5C—C6C1.486 (2)
C6—C71.394 (2)C6C—C7C1.386 (2)
C7—C81.384 (2)C7C—C8C1.383 (2)
C7—H70.9500C7C—H7C0.9500
C8—C91.376 (2)C8C—C9C1.371 (2)
C8—H80.9500C8C—H8C0.9500
C9—C101.381 (2)C9C—C10C1.371 (2)
C9—H90.9500C9C—H9C0.9500
C10—H100.9500C10C—H10C0.9500
N1B—C2B1.3301 (19)N1D—C2D1.3342 (18)
N1B—C1B1.3424 (18)N1D—C1D1.3437 (18)
N2B—C6B1.336 (2)N2D—C6D1.3403 (19)
N2B—C10B1.337 (2)N2D—C10D1.3424 (19)
N3B—C11B1.142 (2)N3D—C11D1.1443 (19)
N4B—C12B1.140 (2)N4D—C12D1.140 (2)
C1B—C5B1.405 (2)C1D—C5D1.404 (2)
C1B—C11B1.452 (2)C1D—C11D1.454 (2)
C2B—C3B1.384 (2)C2D—C3D1.383 (2)
C2B—C12B1.451 (2)C2D—C12D1.454 (2)
C3B—C4B1.373 (2)C3D—C4D1.378 (2)
C3B—H3B0.9500C3D—H3D0.9500
C4B—C5B1.393 (2)C4D—C5D1.394 (2)
C4B—H4B0.9500C4D—H4D0.9500
C5B—C6B1.484 (2)C5D—C6D1.4879 (19)
C6B—C7B1.390 (2)C6D—C7D1.394 (2)
C7B—C8B1.382 (2)C7D—C8D1.385 (2)
C7B—H7B0.9500C7D—H7D0.9500
C8B—C9B1.373 (2)C8D—C9D1.378 (2)
C8B—H8B0.9500C8D—H8D0.9500
C9B—C10B1.381 (2)C9D—C10D1.386 (2)
C9B—H9B0.9500C9D—H9D0.9500
C10B—H10B0.9500C10D—H10D0.9500
C2—N1—C1116.28 (12)C2C—N1C—C1C116.78 (13)
C6—N2—C10117.29 (13)C6C—N2C—C10C117.86 (14)
N1—C1—C5124.69 (13)N1C—C1C—C5C124.31 (13)
N1—C1—C11112.09 (12)N1C—C1C—C11C111.17 (13)
C5—C1—C11123.20 (12)C5C—C1C—C11C124.51 (13)
N1—C2—C3124.35 (13)N1C—C2C—C3C124.24 (14)
N1—C2—C12115.62 (13)N1C—C2C—C12C115.38 (14)
C3—C2—C12120.02 (13)C3C—C2C—C12C120.38 (14)
C4—C3—C2117.93 (13)C4C—C3C—C2C118.04 (15)
C4—C3—H3121.0C4C—C3C—H3C121.0
C2—C3—H3121.0C2C—C3C—H3C121.0
C3—C4—C5120.52 (14)C3C—C4C—C5C120.61 (15)
C3—C4—H4119.7C3C—C4C—H4C119.7
C5—C4—H4119.7C5C—C4C—H4C119.7
C4—C5—C1116.21 (13)C4C—C5C—C1C115.99 (14)
C4—C5—C6121.87 (13)C4C—C5C—C6C121.63 (14)
C1—C5—C6121.92 (12)C1C—C5C—C6C122.35 (13)
N2—C6—C7122.78 (13)N2C—C6C—C7C122.05 (14)
N2—C6—C5116.04 (13)N2C—C6C—C5C116.17 (14)
C7—C6—C5121.18 (13)C7C—C6C—C5C121.75 (14)
C8—C7—C6118.58 (14)C8C—C7C—C6C118.90 (15)
C8—C7—H7120.7C8C—C7C—H7C120.6
C6—C7—H7120.7C6C—C7C—H7C120.6
C9—C8—C7119.12 (15)C9C—C8C—C7C119.33 (16)
C9—C8—H8120.4C9C—C8C—H8C120.3
C7—C8—H8120.4C7C—C8C—H8C120.3
C8—C9—C10118.45 (14)C8C—C9C—C10C118.14 (15)
C8—C9—H9120.8C8C—C9C—H9C120.9
C10—C9—H9120.8C10C—C9C—H9C120.9
N2—C10—C9123.76 (15)N2C—C10C—C9C123.71 (16)
N2—C10—H10118.1N2C—C10C—H10C118.1
C9—C10—H10118.1C9C—C10C—H10C118.1
N3—C11—C1172.44 (15)N3C—C11C—C1C170.50 (17)
N4—C12—C2178.2 (2)N4C—C12C—C2C178.75 (19)
C2B—N1B—C1B116.69 (13)C2D—N1D—C1D116.55 (13)
C6B—N2B—C10B118.18 (14)C6D—N2D—C10D117.67 (13)
N1B—C1B—C5B124.70 (13)N1D—C1D—C5D124.58 (13)
N1B—C1B—C11B111.34 (13)N1D—C1D—C11D111.24 (12)
C5B—C1B—C11B123.95 (13)C5D—C1D—C11D124.17 (12)
N1B—C2B—C3B124.03 (14)N1D—C2D—C3D124.30 (13)
N1B—C2B—C12B116.38 (14)N1D—C2D—C12D115.07 (14)
C3B—C2B—C12B119.59 (14)C3D—C2D—C12D120.63 (14)
C4B—C3B—C2B118.00 (15)C4D—C3D—C2D117.84 (14)
C4B—C3B—H3B121.0C4D—C3D—H3D121.1
C2B—C3B—H3B121.0C2D—C3D—H3D121.1
C3B—C4B—C5B120.98 (15)C3D—C4D—C5D120.75 (14)
C3B—C4B—H4B119.5C3D—C4D—H4D119.6
C5B—C4B—H4B119.5C5D—C4D—H4D119.6
C4B—C5B—C1B115.57 (14)C4D—C5D—C1D115.97 (13)
C4B—C5B—C6B121.77 (14)C4D—C5D—C6D121.10 (13)
C1B—C5B—C6B122.64 (13)C1D—C5D—C6D122.91 (13)
N2B—C6B—C7B121.87 (14)N2D—C6D—C7D122.40 (13)
N2B—C6B—C5B115.92 (13)N2D—C6D—C5D116.34 (12)
C7B—C6B—C5B122.20 (14)C7D—C6D—C5D121.25 (13)
C8B—C7B—C6B119.04 (15)C8D—C7D—C6D118.96 (14)
C8B—C7B—H7B120.5C8D—C7D—H7D120.5
C6B—C7B—H7B120.5C6D—C7D—H7D120.5
C9B—C8B—C7B119.30 (15)C9D—C8D—C7D119.06 (14)
C9B—C8B—H8B120.3C9D—C8D—H8D120.5
C7B—C8B—H8B120.3C7D—C8D—H8D120.5
C8B—C9B—C10B118.17 (15)C8D—C9D—C10D118.44 (14)
C8B—C9B—H9B120.9C8D—C9D—H9D120.8
C10B—C9B—H9B120.9C10D—C9D—H9D120.8
N2B—C10B—C9B123.44 (15)N2D—C10D—C9D123.43 (14)
N2B—C10B—H10B118.3N2D—C10D—H10D118.3
C9B—C10B—H10B118.3C9D—C10D—H10D118.3
N3B—C11B—C1B170.85 (17)N3D—C11D—C1D170.90 (15)
N4B—C12B—C2B177.79 (17)N4D—C12D—C2D179.5 (2)
C2—N1—C1—C50.7 (2)C2C—N1C—C1C—C5C1.1 (2)
C2—N1—C1—C11178.87 (13)C2C—N1C—C1C—C11C178.13 (15)
C1—N1—C2—C31.5 (2)C1C—N1C—C2C—C3C0.6 (3)
C1—N1—C2—C12177.60 (14)C1C—N1C—C2C—C12C178.59 (14)
N1—C2—C3—C41.2 (3)N1C—C2C—C3C—C4C1.6 (3)
C12—C2—C3—C4177.83 (15)C12C—C2C—C3C—C4C177.56 (17)
C2—C3—C4—C50.2 (2)C2C—C3C—C4C—C5C0.9 (3)
C3—C4—C5—C10.5 (2)C3C—C4C—C5C—C1C0.5 (3)
C3—C4—C5—C6179.31 (15)C3C—C4C—C5C—C6C177.69 (17)
N1—C1—C5—C40.2 (2)N1C—C1C—C5C—C4C1.6 (2)
C11—C1—C5—C4177.73 (14)C11C—C1C—C5C—C4C177.49 (17)
N1—C1—C5—C6179.60 (14)N1C—C1C—C5C—C6C176.61 (15)
C11—C1—C5—C62.5 (2)C11C—C1C—C5C—C6C4.3 (3)
C10—N2—C6—C71.6 (2)C10C—N2C—C6C—C7C0.4 (3)
C10—N2—C6—C5178.21 (14)C10C—N2C—C6C—C5C178.60 (18)
C4—C5—C6—N2154.51 (15)C4C—C5C—C6C—N2C167.51 (17)
C1—C5—C6—N225.3 (2)C1C—C5C—C6C—N2C10.6 (2)
C4—C5—C6—C725.7 (2)C4C—C5C—C6C—C7C10.7 (3)
C1—C5—C6—C7154.52 (15)C1C—C5C—C6C—C7C171.18 (17)
N2—C6—C7—C80.6 (2)N2C—C6C—C7C—C8C0.3 (3)
C5—C6—C7—C8179.14 (14)C5C—C6C—C7C—C8C177.86 (17)
C6—C7—C8—C90.9 (2)C6C—C7C—C8C—C9C0.4 (3)
C7—C8—C9—C101.3 (3)C7C—C8C—C9C—C10C0.1 (3)
C6—N2—C10—C91.1 (3)C6C—N2C—C10C—C9C1.0 (3)
C8—C9—C10—N20.4 (3)C8C—C9C—C10C—N2C0.8 (3)
C2B—N1B—C1B—C5B0.3 (2)C2D—N1D—C1D—C5D0.5 (2)
C2B—N1B—C1B—C11B178.58 (15)C2D—N1D—C1D—C11D178.94 (14)
C1B—N1B—C2B—C3B1.1 (3)C1D—N1D—C2D—C3D0.0 (2)
C1B—N1B—C2B—C12B178.75 (15)C1D—N1D—C2D—C12D179.83 (15)
N1B—C2B—C3B—C4B1.2 (3)N1D—C2D—C3D—C4D0.3 (3)
C12B—C2B—C3B—C4B178.61 (19)C12D—C2D—C3D—C4D179.86 (16)
C2B—C3B—C4B—C5B0.1 (3)C2D—C3D—C4D—C5D0.2 (3)
C3B—C4B—C5B—C1B1.3 (3)C3D—C4D—C5D—C1D0.2 (2)
C3B—C4B—C5B—C6B177.33 (18)C3D—C4D—C5D—C6D178.30 (15)
N1B—C1B—C5B—C4B1.5 (3)N1D—C1D—C5D—C4D0.6 (2)
C11B—C1B—C5B—C4B177.32 (18)C11D—C1D—C5D—C4D178.73 (15)
N1B—C1B—C5B—C6B177.12 (15)N1D—C1D—C5D—C6D177.91 (14)
C11B—C1B—C5B—C6B4.1 (3)C11D—C1D—C5D—C6D2.8 (2)
C10B—N2B—C6B—C7B0.1 (3)C10D—N2D—C6D—C7D0.4 (2)
C10B—N2B—C6B—C5B179.15 (16)C10D—N2D—C6D—C5D178.54 (14)
C4B—C5B—C6B—N2B174.30 (17)C4D—C5D—C6D—N2D162.62 (15)
C1B—C5B—C6B—N2B4.2 (2)C1D—C5D—C6D—N2D15.8 (2)
C4B—C5B—C6B—C7B4.7 (3)C4D—C5D—C6D—C7D16.4 (2)
C1B—C5B—C6B—C7B176.74 (16)C1D—C5D—C6D—C7D165.21 (15)
N2B—C6B—C7B—C8B0.7 (3)N2D—C6D—C7D—C8D1.5 (2)
C5B—C6B—C7B—C8B178.25 (16)C5D—C6D—C7D—C8D177.44 (14)
C6B—C7B—C8B—C9B0.9 (3)C6D—C7D—C8D—C9D0.8 (2)
C7B—C8B—C9B—C10B0.3 (3)C7D—C8D—C9D—C10D0.8 (2)
C6B—N2B—C10B—C9B0.8 (3)C6D—N2D—C10D—C9D1.3 (2)
C8B—C9B—C10B—N2B0.6 (3)C8D—C9D—C10D—N2D1.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.952.423.343 (2)164
C3B—H3B···N3Bii0.952.343.281 (2)169
C10B—H10B···N30.952.573.269 (2)130
C3C—H3C···N3Diii0.952.463.379 (2)164
C3D—H3D···N3C0.952.563.397 (2)145
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z.
 

Funding information

Funding for this research was provided by: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706.  CrossRef Google Scholar
First citationLee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.  Web of Science CrossRef Google Scholar
First citationLee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29–47.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Q.-L., Liang, X., Jiang, L., Zhao, Y. & Zheng, Y.-X. (2015). RSC Adv. 5, 89218–89225.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds