research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new structural model for NiFe hydrogenases: an unsaturated analogue of a classic hydrogenase model leads to more enzyme-like Ni—Fe distance and inter­planar fold

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: ulrich.fekl@utoronto.ca

Edited by M. Zeller, Purdue University, USA (Received 26 July 2018; accepted 30 July 2018; online 14 August 2018)

The complex cation in the title compound, (carbonyl-1κC)(1η5-penta­methyl­cyclo­penta­dien­yl)(μ-2,3,9,10-tetra­methyl-1,4,8,11-tetra­thia­undeca-2,9-diene-1,11-diido-1κ2S,S′′′:2κ4S,S′,S′′,S′′′)ironnickel(FeNi) hexa­fluoro­phosphate, [FeNi(C10H15)(C11H18S4)(CO)]PF6 or [Ni(L′)FeCp*(CO)]PF6, is composed of the nickel complex fragment [Ni(L′)] coordinated as a metalloligand (using S1 and S4) to the [FeCp*(CO)]+ fragment, where (L′)2− is [S—C(Me)=C(Me)—S—(CH2)3—S—C(Me)=C(Me)—S]2− and where Cp* is cyclo-C5(Me)5 (penta­methyl­cyclo­penta­dien­yl). The ratio of hexa­fluoro­phosphate anion per complex cation is 1:1. The structure at 150 K has ortho­rhom­bic (Pbcn) symmetry. The atoms of the complex cation are located on general positions (multiplicity = 8), whereas there are two independent hexa­fluoro­phosphate anions, each located on a twofold axis (Wyckoff position 4c; multiplicity = 4). The structure of the new dimetallic cation [Ni(L′)FeCp*(CO)]+ can be described as containing a three-legged piano-stool environment for iron [Cp*Fe(CO)`S2'] and an approximately square-planar `S4' environment for Ni. The NiS2Fe diamond-shaped substructure is notably folded at the S—S hinge: the angle between the NiS2 plane and the FeS2 plane normals is 64.85 (6)°. Largely because of this fold, the nickel–iron distance is relatively short, at 2.9195 (8) Å. The structural data for the complex cation, which contains a new unsaturated `S4' ligand (two C=C double bonds), provide an inter­esting comparison with the known NiFe hydrogenase models containing a saturated `S4'-ligand analogue having the same number of carbon atoms in the ligand backbone, namely with the structures of [Ni(L)FeCp(CO)]+ (as the PF6 salt, CH2Cl2 solvate) and [Ni(L)FeCp*(CO)]+ (as the PF6 salt), where (L)2− is [S—CH2—CH2—S—(CH2)3—S—CH2—CH2—S]2− and Cp is cyclo­penta­dienyl. The saturated analogues [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ have similar Ni—Fe distances: 3.1727 (6), 3.1529 (7) Å (two independent mol­ecules in the unit cell) and 3.111 (5) Å, respectively, for the two complexes, whereas [Ni(L′)FeCp*(CO)]+ described here stands out with a much shorter Ni—Fe distance [2.9196 (8) Å]. Also, [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ show inter­planar fold angles that are similar between the two: 39.56 (5), 41.99 (5) (independent mol­ecules in the unit cell) and 47.22 (9) °, respectively, whereas [Ni(L′)FeCp*(CO)]+ possesses a much more pronounced fold [64.85 (6)°]. Given that larger fold angles and shorter Ni—Fe distances are considered to be structurally closer to the enzyme, unsaturation in an `S4'-ligand of the type (S—C2—S—C3—S—C2—S)2− seems to increase structural resemblance to the enzyme for structural models of the type [Ni(`S4')FeCpR(CO)]+ (CpR = Cp or Cp*).

1. Chemical context

Since the discovery and structural elucidation of nickel–iron hydrogenases, synthetic chemists have worked towards closer and closer structural models for the NiFe hydrogen-splitting active site (Lubitz et al., 2014[Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. (2014). Chem. Rev. 114, 4081-4148.]). This active site contains two terminal sulfur donors and two bridging sulfur donors coordinated to nickel, as well as a pseudo-octa­hedal coordination sphere around iron, which is completed by cyano and carbonyl ligands (Fig. 1[link], left). Several closely related models of the active site have been prepared by combining an Ni(`S4') fragment (`S4' = dianionic tetra­dentate sulfur ligand) with an [FeCpR(CO)]+ fragment (CpR = Cp, C5H5 or Cp*, C5Me5), as illustrated in Fig. 1[link] (right) (Canaguier et al., 2010[Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876-5878.]; Yang et al., 2015[Yang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965-2973.]; Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]). These complexes have an overall mono-cationic charge, consistent with formal NiII and FeII oxidations states. The first `S4' ligand used in this capacity featured a saturated two–three–two carbon linker, in L2− = [S—CH2—CH2—S—(CH2)3—S—CH2—CH2—S]2− (Fig. 2[link], left) (Yang et al., 2015[Yang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965-2973.]; Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]).

[Scheme 1]
[Figure 1]
Figure 1
Structure of the NiFe hydrogenase active site (left) and general model of the type [Ni(`S4')Fe(CpR)(CO)]+ (right; `S4' = synthetic tetra­sulfur donor ligand).
[Figure 2]
Figure 2
`S4' ligands used for the structurally characterized NiFe hydrogenase models of the type [Ni(`S4')Fe(CpR)(CO)]+.

Here, we present a new [Ni(`S4')FeCpR(CO)]+ model based on an analogous but unsaturated `S4' ligand, namely L2− = [S—C(Me)=C(Me)—S—(CH2)3—S—C(Me)=C(Me)—S]2− (Fig. 2[link], middle), and assess the structural consequences of incorporating the unsaturated ligand. For comparison, we will also discuss a literature [Ni(`S4')Fe(CpR)(CO)]+ complex in which the `S4' ligand has a four-carbon linker in the remote portion of the backbone (L′′2−, Fig. 2[link], right) (Canaguier et al., 2010[Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876-5878.]).

2. Structural commentary

[Ni(L′)FeCp*(CO)]+ was obtained as solvent-free crystals containing the PF6 counter-ion. A drawing showing both cation and anion in this salt is shown below (see Supramol­ecular features), and the intra­molecular structural features of the cation are discussed first. The structure of [Ni(L′)FeCp*(CO)]+ is shown in Fig. 3[link]. It contains a three-legged piano stool environment for iron and an approximately square-planar `S4' environment for Ni (sum of bond angles around Ni1 = 359.83°). Selected metal–ligand distances are Ni1—S1 = 2.1616 (11), Ni1—S2 = 2.1530 (12), Ni1—S3 = 2.1507 (11), Ni1—S4 = 2.1563 (12) Å, and Fe1—S1 = 2.3309 (12), Fe1—S4 = 2.3602 (12), Fe1—C11 = 1.768 (5), Fe1—C1 = 2.080 (4), Fe1—C2 = 2.107 (4), Fe1—C3 = 2.126 (4), Fe1—C4 = 2.138 (4), Fe1—C5 = 2.098 (4) Å. The inter­metallic (Ni1—Fe1) distance is relatively short, i.e. 2.9195 (8) Å. The NiS2Fe diamond is markedly folded at the S—S hinge: the angle between the NiS2 plane and the FeS2 plane normals (dihedral angle; 180° − hinge angle) is 64.85 (6)°, and this fold largely accounts for the short nickel–iron distance.

[Figure 3]
Figure 3
Displacement ellipsoid (30% probability) drawing for [Ni(L′)FeCp*(CO)]+, as observed in the structure of [Ni(L′)FeCp*(CO)][PF6]. Generated using ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

In the following discussion, we compare the structural features obtained with the unsaturated ligand L2− with those of literature complexes using the saturated ligand L2−. The structures of [Ni(L)FeCp(CO)]+, as the PF6 salt/ CH2Cl2 solvate (Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]), and [Ni(L)FeCp*(CO)]+, as the PF6 salt (Yang et al., 2015[Yang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965-2973.]), are known. Both saturated analogues [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ show Ni—Fe distances that are similar for the two, 3.1727 (6)/3.1529 (7) Å (two independent mol­ecules in the unit cell) and 3.111 (5) Å, respectively, for the two complexes. The [Ni(L′)FeCp*(CO)]+ complex, on the other hand, has a much shorter Ni—Fe distance [2.9195 (8), see above]. Also, [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ show inter­planar fold angles that are similar for the two, 39.56 (5)/41.99 (5)° (two independent mol­ecules in the unit cell) and 47.22 (9)°, respectively, while [Ni(L′)FeCp*(CO)]+ has a much larger fold angle of 64.85 (6)° (see above). The large fold angle and short Ni—Fe distance observed in the complex with the unsaturated ligand L′ match the structure of the enzymatic active site more closely than the angles/distances of the complexes containing the saturated ligand L. For eight structurally characterized enzymes, the dihedral angles range from 59 to 99° and the Ni—Fe distances range from 2.53 to 2.97 Å (one outlier being desulfovibrio fructosovorans with 46° and 3.23 Å; Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]). We have thus provided evidence that unsaturation in an `S4'-ligand of the type (S—C2—S—C3—S—C2—S)2− can increase structural resemblance to the enzyme in models of the type [Ni(`S4')FeCpR(CO)]+. Structural similarity to the enzyme in models was, in alternative approaches, also favoured when additional donor atoms were incorporated into the ligand chain (such as `S3N2') or where two bidentate chelate ligands were used instead of one large `S4' ligand. (Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]) Within the context of linear `S4' ligands, an [Ni(L′′)FeCp*(CO)]+ model with four carbon atoms, instead of three, in the remote portion of the backbone (see L′′2− in Fig. 2[link], right) provided an Ni—Fe distance and fold angle very similar to those of the L′ analogue, of 2.9611 (8) Å and 62.48 (4)°, respectively (Canaguier et al., 2010[Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876-5878.]). In terms of activity, [Ni(L′′)FeCp*(CO)]+ was shown to be active as a hydrogen-production catalyst (Canaguier et al., 2010[Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876-5878.]), which suggests that the [Ni(L′)Cp*(CO)]+ complex, with the unsat­urated `S4' ligand L′, might warrant deeper investigation. We conclude that the introduction of unsaturation in the `S4' ligand led to a better structural model relative to the unsaturated ligand, highlighting a new variant of the classic [Ni('S4')FeCpR(CO)]+-type hydrogenase model.

3. Supra­molecular features

The structure results from packing of discrete cations [Ni(L′)FeCp*(CO)]+ with hexa­fluoro­phosphate anions, without solvent mol­ecules and without any solvent-accessible void. The ratio of hexa­fluoro­phosphate anion per complex cation is 1:1. The atoms of the complex cation are situated on general positions (multiplicity = 8), whereas there are two independent hexa­fluoro­phosphate anions, each situated on a twofold axis (Wyckoff position 4c in Pbcn; multiplicity = 4). A picture of the packing is shown in Fig. 4[link] (top, 30% probability ellipsoids), along with labeling of all non-H atoms in the unit cell (bottom). There are no classical hydrogen bonds but there are C—H⋯F hydrogen bonds to hexa­fluoro­phosphate (C6—H6B⋯F4 = 2.55 Å; C15—H15B⋯F3i = 2.55 Å; C21—H21C⋯F4ii = 2.48 Å; C22—H22C⋯F1iii = 2.52 Å) and a C—H⋯O short contact (C14—H14A⋯O1 = 2.41 Å) [symmetry codes: (i) −x + 2, y, −z + [3 \over 2]; (ii) −x + 1, y, −z + [3 \over 2]; (iii) −x + [3 \over 2], y + [1 \over 2], z].

[Figure 4]
Figure 4
Drawings for packing (top) and labeling (bottom) of all non-H atoms in [Ni(L′)FeCp*(CO)][PF6]. Generated using Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). For the anion in the bottom part, generic atom labels without symmetry codes have been used.

4. Database survey

The Cambridge Crystallographic Database (version 5.39 including updates up to February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was surveyed. A search was performed aimed at finding Ni1Fe1 complexes that contain at least one (possibly substituted) cyclo­penta­dienyl unit, at least one carbonyl (CO) coordinated to iron, and a nickel center bonded to at least four sulfurs. The substructure that was used for the search contained a cyclo-C5 unit (any type of bond allowed), a nickel atom bonded to four sulfur atoms (any type of bond allowed), as well as an Fe–C–O unit (any type of bond for Fe—C and for C—O). Out of the six hits, RULQEV, RULQOF and RULQUL are trimetallic (instead of dimetallic) complexes (and also do not contain a cyclo­penta­dienyl but rather a saturated five-membered ring within a polycyclic structure). Since they are not very close analogues of [Ni(L′)FeCp*(CO)]+, they are not discussed further. LAZVUE (Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]) contains [Ni(L)FeCp(CO)]+ (as the PF6 salt, CH2Cl2 solvate), MUDXOA (Yang et al., 2015[Yang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965-2973.]) contains [Ni(L)FeCp*(CO)]+ (as the PF6 salt), and SUWWAJ (Canaguier et al., 2010[Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876-5878.]) contains [Ni(L′′)FeCp*(CO)]+ (as the BF4 salt, CH2Cl2 solvate). These three complex cations are discussed in detail above.

5. Synthesis and crystallization

The syntheses were performed in dried solvents under an inert atmosphere (nitro­gen or argon; vacuum) using standard glove-box (MBraun) and Schlenk techniques. Deuterated NMR solvents were from Cambridge Isotopes. [Cp*Fe(CO)2]2 was acquired from Alfa Aesar. All other chemicals were obtained from Sigma–Aldrich. Photolysis was performed using a 160 W mercury vapour lamp (model: Westron Mega-Ray Self-Ballasted Zoologist).

Ni(S2C2Me2)2: This precursor for the nickel part of the complex was prepared as described in the literature (Schrauzer & Mayweg, 1965[Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483-1489.]).

Ni(L′): Ni(L′), i.e. Ni(S—C(Me)=C(Me)—S—(CH2)3—S—C(Me)=C(Me)—S) was prepared by alkyl­ation of Na2[Ni(S2C2Me2)2] using 1,3-di­bromo­propane. Na2[Ni(S2C2Me2)] was prepared from Ni(S2C2Me2)2 by reduction with excess sodium in THF (344 K, 18h, in sealed vessel), until the colour had changed from deep purple to brown–yellow. The subsequent alkyl­ation of [Ni(S2C2Me2)]2− using 1,3-di­bromo­propane was performed analogously to the procedure described by Schrauzer and co-workers for the closely related Ni(S—C(Ph)=C(Ph)—S—(CH2)3—S—C(Ph)=C(Ph)—S). (Zhang et al., 1992[Zhang, C., Reddy, H. K., Chadha, R. K. & Schrauzer, G. N. (1992). J. Coord. Chem. 26, 117-126.])

[Cp*Fe(CO)2(NCMe)][PF6]: This precursor for the iron part of the complex was prepared according to the general procedure for [Cp*Fe(CO)2(solvent)]+ given by Catheline & Astruc (1984[Catheline, D. & Astruc, D. (1984). Organometallics, 3, 1094-1100.]), using MeCN (acetontrile) as the solvent.

[Ni(L′)FeCp*(CO/NCMe)][PF6]: Crude [Cp*Fe(CO)2(NCMe)][PF6] (210 mg, 0.48 mmol) was combined with 6 ml of aceto­nitrile and filtered through a glass filter frit. While purging with argon, the reaction was irradiated with UV–visible light (160 W, see above) for 16 h. Under an inert atmosphere, a solution of 155 mg (0.46 mmol) of Ni(L′) in ca 7 ml of di­chloro­methane was added. The reaction mixture was heated under active argon flow to 325 K for 2 h. After cooling to room temperature, the volatiles were slowly removed under vacuum. The solid was dried under vacuum and stored in the glove-box. Yield of crude product: 253 mg (75%). 1H NMR (200 MHz, 298 K, CD3CN) δ 1.60 [s, (CH3)5C5]; δ 1.91 (s, CH3—C—S); δ 1.96 (s, CH3—C—S); δ 2.31 (s, br, CH3CN—Fe); δ 2.0–3.7 [m, br, S—(CH2)3—S]. Note that the sample thus prepared showed a 1H NMR signal for metal-coordinated aceto­nitrile. The purpose of the prolonged photolysis was to remove all CO from iron, in order to selectively prepare [Ni(L′)FeCp*(NCMe)][PF6]. However, the sample obtained appeared to be a mixture of [Ni(L′)FeCp*(CO)][PF6] and [Ni(L′)FeCp*(NCMe)][PF6] and is thus referred to as [Ni(L′)FeCp*(CO/NCMe)][PF6]. Yet, crystallization from acetone yielded exclusively [Ni(L′)FeCp*(CO)][PF6], in crystalline form.

Crystallization of [Ni(L′)FeCp*(CO)][PF6]: 11 mg of [Ni(L′)FeCp*(CO/NCMe)][PF6] were dissolved in 1.5 ml of acetone and filtered through 1 cm of Celite. Through solvent vapor diffusion, by placing the loosely capped vial into a larger vessel containing diethyl ether vapour (and some liquid), crystals of [Ni(L′)FeCp*(CO)][PF6] were grown within two days at 308 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in calculated positions and included in the refinment in a riding-model approximation with C—H distances of 0.98 and 0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 1
Experimental details

Crystal data
Chemical formula [FeNi(C10H15)(C11H18S4)(CO)]PF6
Mr 701.25
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 150
a, b, c (Å) 15.4081 (3), 18.3762 (3), 19.2154 (3)
V3) 5440.69 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.65
Crystal size (mm) 0.20 × 0.18 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.759, 0.850
No. of measured, independent and observed [I > 2σ(I)] reflections 38285, 6224, 3874
Rint 0.079
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.07
No. of reflections 6224
No. of parameters 335
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.73
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Carbonyl-1κC)(1η5-pentamethylcyclopentadienyl)(µ-2,3,9,10-tetramethyl-1,4,8,11-tetrathiaundeca-2,9-diene-1,11-diido-1κ2S,S''':2κ4S,S',S'',S''')ironnickel(FeNi) hexafluorophosphate top
Crystal data top
[FeNi(C10H15)(C11H18S4)(CO)]PF6Dx = 1.712 Mg m3
Mr = 701.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 38285 reflections
a = 15.4081 (3) Åθ = 2.6–27.5°
b = 18.3762 (3) ŵ = 1.65 mm1
c = 19.2154 (3) ÅT = 150 K
V = 5440.69 (16) Å3Block, green
Z = 80.20 × 0.18 × 0.12 mm
F(000) = 2880
Data collection top
Nonius KappaCCD
diffractometer
6224 independent reflections
Radiation source: fine-focus sealed tube3874 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.079
φ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1919
Tmin = 0.759, Tmax = 0.850k = 2323
38285 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0765P)2 + 2.0266P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
6224 reflectionsΔρmax = 1.12 e Å3
335 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74296 (4)0.67056 (3)0.52192 (3)0.02311 (16)
Fe10.56172 (4)0.71009 (3)0.49879 (3)0.02225 (17)
S10.68117 (7)0.70012 (6)0.42497 (5)0.0256 (3)
S20.79921 (7)0.57496 (6)0.47542 (5)0.0281 (3)
S30.79344 (7)0.64527 (6)0.62343 (5)0.0268 (3)
S40.67593 (7)0.76476 (6)0.56176 (5)0.0256 (3)
O10.5610 (2)0.55947 (17)0.54595 (17)0.0398 (8)
C10.4278 (3)0.7053 (2)0.5115 (2)0.0248 (9)
C20.4585 (3)0.7723 (2)0.5392 (2)0.0265 (10)
C30.4983 (3)0.8115 (2)0.4831 (2)0.0303 (10)
C40.4907 (3)0.7698 (2)0.4222 (2)0.0316 (10)
C50.4483 (3)0.7029 (2)0.4388 (2)0.0276 (10)
C60.3751 (3)0.6504 (2)0.5513 (2)0.0353 (11)
H6A0.3132570.6613740.5459160.053*
H6B0.3907910.6525740.6006900.053*
H6C0.3870780.6015600.5332560.053*
C70.4426 (3)0.7979 (3)0.6122 (2)0.0357 (11)
H7A0.3800570.8037630.6196630.054*
H7B0.4717900.8446040.6194910.054*
H7C0.4654440.7618950.6450620.054*
C80.5361 (3)0.8871 (2)0.4870 (3)0.0452 (13)
H8A0.4923330.9226120.4724760.068*
H8B0.5866380.8903410.4561830.068*
H8C0.5540090.8973200.5349680.068*
C90.5187 (4)0.7927 (3)0.3503 (2)0.0456 (13)
H9A0.4752790.8256760.3304450.068*
H9B0.5243020.7495930.3206040.068*
H9C0.5747730.8177030.3530960.068*
C100.4183 (3)0.6449 (3)0.3899 (2)0.0444 (13)
H10A0.3555190.6493730.3828120.067*
H10B0.4314110.5969880.4097030.067*
H10C0.4482050.6502980.3452390.067*
C110.5660 (3)0.6194 (3)0.5293 (2)0.0278 (10)
C120.6913 (3)0.6181 (2)0.3746 (2)0.0286 (10)
C130.7413 (3)0.5637 (2)0.3961 (2)0.0304 (10)
C140.7606 (3)0.4963 (2)0.5252 (2)0.0278 (10)
H14A0.6963770.4966630.5264370.033*
H14B0.7793750.4509650.5017720.033*
C150.7957 (3)0.4971 (2)0.5998 (2)0.0358 (11)
H15A0.7861090.4486440.6208410.043*
H15B0.8591720.5055790.5981020.043*
C160.7548 (3)0.5546 (2)0.6466 (2)0.0328 (11)
H16A0.7695330.5441530.6957340.039*
H16B0.6908220.5526990.6418290.039*
C170.7331 (3)0.7017 (2)0.6814 (2)0.0292 (10)
C180.6833 (3)0.7532 (2)0.6539 (2)0.0267 (10)
C190.6439 (3)0.6191 (3)0.3059 (2)0.0397 (12)
H19A0.6738890.5873310.2727130.060*
H19B0.6426950.6689170.2876470.060*
H19C0.5843350.6017590.3125780.060*
C200.7620 (3)0.4947 (3)0.3569 (2)0.0411 (12)
H20A0.7332970.4957860.3113950.062*
H20B0.7413500.4526540.3834580.062*
H20C0.8249470.4909880.3503100.062*
C210.7475 (3)0.6871 (3)0.7574 (2)0.0378 (12)
H21A0.7374580.7318550.7839490.057*
H21B0.8072960.6706060.7647370.057*
H21C0.7071320.6493280.7731760.057*
C220.6369 (3)0.8090 (3)0.6972 (2)0.0381 (11)
H22A0.6767930.8287250.7321960.057*
H22B0.5872850.7862520.7205730.057*
H22C0.6162850.8485350.6672100.057*
P11.0000000.50751 (9)0.7500000.0338 (4)
P20.5000000.56829 (10)0.7500000.0361 (4)
F10.9262 (3)0.44789 (18)0.7508 (2)0.0895 (14)
F20.92696 (19)0.56827 (15)0.75048 (16)0.0518 (8)
F30.9995 (2)0.5074 (2)0.83285 (14)0.0700 (10)
F40.4168 (2)0.5668 (2)0.7027 (2)0.0808 (11)
F50.5402 (3)0.62895 (18)0.70149 (18)0.0727 (10)
F60.5418 (2)0.50624 (17)0.70251 (16)0.0670 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0223 (3)0.0268 (3)0.0202 (3)0.0012 (2)0.0002 (2)0.0010 (2)
Fe10.0216 (4)0.0250 (3)0.0201 (3)0.0001 (3)0.0002 (2)0.0023 (2)
S10.0247 (6)0.0316 (6)0.0204 (5)0.0003 (5)0.0005 (4)0.0000 (4)
S20.0229 (6)0.0327 (6)0.0286 (6)0.0013 (5)0.0008 (4)0.0049 (4)
S30.0261 (6)0.0303 (6)0.0242 (5)0.0011 (5)0.0038 (4)0.0004 (4)
S40.0269 (6)0.0269 (5)0.0231 (5)0.0013 (5)0.0007 (4)0.0010 (4)
O10.036 (2)0.0321 (18)0.051 (2)0.0015 (15)0.0016 (16)0.0102 (15)
C10.021 (2)0.028 (2)0.025 (2)0.0042 (18)0.0034 (17)0.0000 (17)
C20.022 (2)0.030 (2)0.027 (2)0.0050 (18)0.0023 (18)0.0014 (18)
C30.018 (2)0.029 (2)0.044 (3)0.0021 (19)0.001 (2)0.004 (2)
C40.025 (3)0.043 (3)0.026 (2)0.009 (2)0.0030 (19)0.011 (2)
C50.020 (2)0.039 (3)0.024 (2)0.006 (2)0.0028 (17)0.0011 (18)
C60.027 (3)0.034 (2)0.046 (3)0.007 (2)0.003 (2)0.003 (2)
C70.031 (3)0.045 (3)0.030 (2)0.005 (2)0.000 (2)0.010 (2)
C80.028 (3)0.028 (2)0.079 (4)0.006 (2)0.007 (3)0.010 (2)
C90.041 (3)0.060 (3)0.036 (3)0.014 (3)0.009 (2)0.021 (2)
C100.036 (3)0.057 (3)0.040 (3)0.007 (3)0.013 (2)0.009 (2)
C110.017 (2)0.039 (3)0.027 (2)0.001 (2)0.0023 (17)0.001 (2)
C120.027 (3)0.033 (2)0.025 (2)0.002 (2)0.0040 (18)0.0060 (18)
C130.029 (3)0.039 (3)0.024 (2)0.001 (2)0.0034 (19)0.0076 (19)
C140.023 (2)0.023 (2)0.037 (2)0.0006 (18)0.0029 (19)0.0038 (18)
C150.034 (3)0.032 (2)0.042 (3)0.001 (2)0.006 (2)0.004 (2)
C160.037 (3)0.031 (2)0.031 (2)0.000 (2)0.003 (2)0.0036 (19)
C170.029 (3)0.035 (2)0.023 (2)0.008 (2)0.0010 (19)0.0039 (19)
C180.028 (3)0.030 (2)0.021 (2)0.007 (2)0.0012 (18)0.0052 (17)
C190.041 (3)0.052 (3)0.026 (2)0.009 (3)0.002 (2)0.006 (2)
C200.046 (3)0.045 (3)0.033 (2)0.001 (2)0.003 (2)0.014 (2)
C210.044 (3)0.045 (3)0.025 (2)0.003 (2)0.005 (2)0.002 (2)
C220.039 (3)0.048 (3)0.027 (2)0.003 (2)0.005 (2)0.010 (2)
P10.0388 (11)0.0305 (9)0.0321 (9)0.0000.0043 (7)0.000
P20.0311 (10)0.0423 (10)0.0350 (9)0.0000.0006 (8)0.000
F10.112 (4)0.055 (2)0.102 (3)0.046 (2)0.036 (3)0.027 (2)
F20.0310 (18)0.0563 (18)0.068 (2)0.0122 (14)0.0023 (14)0.0122 (15)
F30.060 (2)0.115 (3)0.0349 (16)0.010 (2)0.0033 (15)0.0145 (17)
F40.061 (2)0.090 (3)0.092 (3)0.011 (2)0.039 (2)0.017 (2)
F50.090 (3)0.0526 (19)0.075 (2)0.0221 (19)0.016 (2)0.0109 (17)
F60.089 (3)0.061 (2)0.0507 (18)0.0087 (19)0.0156 (18)0.0130 (15)
Geometric parameters (Å, º) top
Ni1—S32.1507 (11)C10—H10A0.9800
Ni1—S22.1530 (12)C10—H10B0.9800
Ni1—S42.1563 (12)C10—H10C0.9800
Ni1—S12.1616 (11)C12—C131.328 (6)
Ni1—Fe12.9195 (8)C12—C191.510 (6)
Fe1—C111.768 (5)C13—C201.509 (6)
Fe1—C12.080 (4)C14—C151.532 (6)
Fe1—C52.098 (4)C14—H14A0.9900
Fe1—C22.107 (4)C14—H14B0.9900
Fe1—C32.126 (4)C15—C161.524 (6)
Fe1—C42.138 (4)C15—H15A0.9900
Fe1—S12.3309 (12)C15—H15B0.9900
Fe1—S42.3602 (12)C16—H16A0.9900
S1—C121.798 (4)C16—H16B0.9900
S2—C131.778 (4)C17—C181.329 (6)
S2—C141.833 (4)C17—C211.501 (6)
S3—C171.783 (5)C18—C221.503 (6)
S3—C161.825 (4)C19—H19A0.9800
S4—C181.786 (4)C19—H19B0.9800
O1—C111.149 (5)C19—H19C0.9800
C1—C21.423 (6)C20—H20A0.9800
C1—C51.432 (6)C20—H20B0.9800
C1—C61.504 (6)C20—H20C0.9800
C2—C31.434 (6)C21—H21A0.9800
C2—C71.499 (6)C21—H21B0.9800
C3—C41.404 (6)C21—H21C0.9800
C3—C81.508 (6)C22—H22A0.9800
C4—C51.429 (6)C22—H22B0.9800
C4—C91.507 (6)C22—H22C0.9800
C5—C101.493 (6)P1—F1i1.579 (3)
C6—H6A0.9800P1—F11.579 (3)
C6—H6B0.9800P1—F21.585 (3)
C6—H6C0.9800P1—F2i1.585 (3)
C7—H7A0.9800P1—F31.592 (3)
C7—H7B0.9800P1—F3i1.592 (3)
C7—H7C0.9800P2—F4ii1.572 (3)
C8—H8A0.9800P2—F41.572 (3)
C8—H8B0.9800P2—F5ii1.580 (3)
C8—H8C0.9800P2—F51.580 (3)
C9—H9A0.9800P2—F6ii1.596 (3)
C9—H9B0.9800P2—F61.596 (3)
C9—H9C0.9800
S3—Ni1—S293.13 (4)H8A—C8—H8B109.5
S3—Ni1—S491.41 (4)C3—C8—H8C109.5
S2—Ni1—S4174.38 (5)H8A—C8—H8C109.5
S3—Ni1—S1174.42 (5)H8B—C8—H8C109.5
S2—Ni1—S191.42 (4)C4—C9—H9A109.5
S4—Ni1—S183.87 (4)C4—C9—H9B109.5
S3—Ni1—Fe1122.53 (4)H9A—C9—H9B109.5
S2—Ni1—Fe1121.66 (4)C4—C9—H9C109.5
S4—Ni1—Fe152.85 (3)H9A—C9—H9C109.5
S1—Ni1—Fe152.04 (3)H9B—C9—H9C109.5
C11—Fe1—C187.63 (18)C5—C10—H10A109.5
C11—Fe1—C598.85 (18)C5—C10—H10B109.5
C1—Fe1—C540.08 (15)H10A—C10—H10B109.5
C11—Fe1—C2114.69 (18)C5—C10—H10C109.5
C1—Fe1—C239.73 (15)H10A—C10—H10C109.5
C5—Fe1—C266.92 (16)H10B—C10—H10C109.5
C11—Fe1—C3152.97 (19)O1—C11—Fe1173.2 (4)
C1—Fe1—C366.26 (16)C13—C12—C19124.2 (4)
C5—Fe1—C366.07 (17)C13—C12—S1120.9 (3)
C2—Fe1—C339.61 (16)C19—C12—S1114.7 (3)
C11—Fe1—C4137.02 (19)C12—C13—C20126.9 (4)
C1—Fe1—C466.05 (16)C12—C13—S2118.0 (3)
C5—Fe1—C439.42 (17)C20—C13—S2114.8 (3)
C2—Fe1—C465.71 (16)C15—C14—S2111.4 (3)
C3—Fe1—C438.43 (17)C15—C14—H14A109.3
C11—Fe1—S195.64 (14)S2—C14—H14A109.3
C1—Fe1—S1148.36 (12)C15—C14—H14B109.3
C5—Fe1—S1108.58 (12)S2—C14—H14B109.3
C2—Fe1—S1149.63 (12)H14A—C14—H14B108.0
C3—Fe1—S1110.20 (12)C16—C15—C14114.4 (4)
C4—Fe1—S191.47 (12)C16—C15—H15A108.7
C11—Fe1—S4101.72 (14)C14—C15—H15A108.7
C1—Fe1—S4134.25 (11)C16—C15—H15B108.7
C5—Fe1—S4158.40 (12)C14—C15—H15B108.7
C2—Fe1—S498.20 (12)H15A—C15—H15B107.6
C3—Fe1—S492.43 (13)C15—C16—S3110.7 (3)
C4—Fe1—S4121.08 (13)C15—C16—H16A109.5
S1—Fe1—S475.92 (4)S3—C16—H16A109.5
C11—Fe1—Ni171.28 (14)C15—C16—H16B109.5
C1—Fe1—Ni1157.04 (11)S3—C16—H16B109.5
C5—Fe1—Ni1149.87 (12)H16A—C16—H16B108.1
C2—Fe1—Ni1143.21 (12)C18—C17—C21126.8 (4)
C3—Fe1—Ni1132.80 (12)C18—C17—S3117.8 (3)
C4—Fe1—Ni1136.25 (12)C21—C17—S3115.3 (3)
S1—Fe1—Ni146.99 (3)C17—C18—C22122.7 (4)
S4—Fe1—Ni146.74 (3)C17—C18—S4121.1 (3)
C12—S1—Ni1102.40 (15)C22—C18—S4116.0 (3)
C12—S1—Fe1117.49 (15)C12—C19—H19A109.5
Ni1—S1—Fe180.97 (4)C12—C19—H19B109.5
C13—S2—C14101.1 (2)H19A—C19—H19B109.5
C13—S2—Ni1104.38 (15)C12—C19—H19C109.5
C14—S2—Ni1107.23 (14)H19A—C19—H19C109.5
C17—S3—C16102.0 (2)H19B—C19—H19C109.5
C17—S3—Ni1104.64 (15)C13—C20—H20A109.5
C16—S3—Ni1107.48 (15)C13—C20—H20B109.5
C18—S4—Ni1103.04 (15)H20A—C20—H20B109.5
C18—S4—Fe1120.33 (15)C13—C20—H20C109.5
Ni1—S4—Fe180.41 (4)H20A—C20—H20C109.5
C2—C1—C5108.6 (4)H20B—C20—H20C109.5
C2—C1—C6124.7 (4)C17—C21—H21A109.5
C5—C1—C6126.4 (4)C17—C21—H21B109.5
C2—C1—Fe171.2 (2)H21A—C21—H21B109.5
C5—C1—Fe170.6 (2)C17—C21—H21C109.5
C6—C1—Fe1128.5 (3)H21A—C21—H21C109.5
C1—C2—C3107.2 (4)H21B—C21—H21C109.5
C1—C2—C7124.5 (4)C18—C22—H22A109.5
C3—C2—C7128.1 (4)C18—C22—H22B109.5
C1—C2—Fe169.1 (2)H22A—C22—H22B109.5
C3—C2—Fe170.9 (2)C18—C22—H22C109.5
C7—C2—Fe1129.7 (3)H22A—C22—H22C109.5
C4—C3—C2108.5 (4)H22B—C22—H22C109.5
C4—C3—C8125.2 (4)F1i—P1—F192.2 (3)
C2—C3—C8126.1 (4)F1i—P1—F2179.1 (2)
C4—C3—Fe171.3 (2)F1—P1—F288.70 (19)
C2—C3—Fe169.5 (2)F1i—P1—F2i88.70 (19)
C8—C3—Fe1128.5 (3)F1—P1—F2i179.11 (19)
C3—C4—C5108.8 (4)F2—P1—F2i90.4 (2)
C3—C4—C9126.0 (4)F1i—P1—F390.73 (19)
C5—C4—C9125.2 (4)F1—P1—F389.21 (19)
C3—C4—Fe170.3 (2)F2—P1—F389.51 (17)
C5—C4—Fe168.8 (2)F2i—P1—F390.56 (17)
C9—C4—Fe1128.9 (3)F1i—P1—F3i89.21 (19)
C4—C5—C1107.0 (4)F1—P1—F3i90.73 (19)
C4—C5—C10127.9 (4)F2—P1—F3i90.56 (17)
C1—C5—C10124.6 (4)F2i—P1—F3i89.51 (17)
C4—C5—Fe171.8 (2)F3—P1—F3i179.9 (3)
C1—C5—Fe169.3 (2)F4ii—P2—F4178.0 (3)
C10—C5—Fe1130.4 (3)F4ii—P2—F5ii89.5 (2)
C1—C6—H6A109.5F4—P2—F5ii91.9 (2)
C1—C6—H6B109.5F4ii—P2—F591.9 (2)
H6A—C6—H6B109.5F4—P2—F589.5 (2)
C1—C6—H6C109.5F5ii—P2—F590.2 (3)
H6A—C6—H6C109.5F4ii—P2—F6ii89.2 (2)
H6B—C6—H6C109.5F4—P2—F6ii89.4 (2)
C2—C7—H7A109.5F5ii—P2—F6ii90.47 (18)
C2—C7—H7B109.5F5—P2—F6ii178.67 (19)
H7A—C7—H7B109.5F4ii—P2—F689.4 (2)
C2—C7—H7C109.5F4—P2—F689.2 (2)
H7A—C7—H7C109.5F5ii—P2—F6178.66 (19)
H7B—C7—H7C109.5F5—P2—F690.47 (18)
C3—C8—H8A109.5F6ii—P2—F688.8 (3)
C3—C8—H8B109.5
C5—C1—C2—C30.0 (5)C2—C1—C5—C10173.1 (4)
C6—C1—C2—C3174.6 (4)C6—C1—C5—C101.4 (7)
Fe1—C1—C2—C361.0 (3)Fe1—C1—C5—C10125.5 (4)
C5—C1—C2—C7174.4 (4)C2—C1—C5—Fe161.4 (3)
C6—C1—C2—C70.2 (7)C6—C1—C5—Fe1124.2 (4)
Fe1—C1—C2—C7124.5 (4)Ni1—S1—C12—C1310.7 (4)
C5—C1—C2—Fe161.0 (3)Fe1—S1—C12—C1396.8 (4)
C6—C1—C2—Fe1124.4 (4)Ni1—S1—C12—C19173.1 (3)
C1—C2—C3—C41.0 (5)Fe1—S1—C12—C1986.9 (3)
C7—C2—C3—C4173.2 (4)C19—C12—C13—C201.5 (8)
Fe1—C2—C3—C460.9 (3)S1—C12—C13—C20174.4 (4)
C1—C2—C3—C8176.8 (4)C19—C12—C13—S2174.9 (3)
C7—C2—C3—C82.6 (8)S1—C12—C13—S21.0 (5)
Fe1—C2—C3—C8123.3 (5)C14—S2—C13—C12123.5 (4)
C1—C2—C3—Fe159.9 (3)Ni1—S2—C13—C1212.2 (4)
C7—C2—C3—Fe1125.9 (5)C14—S2—C13—C2062.3 (4)
C2—C3—C4—C51.6 (5)Ni1—S2—C13—C20173.6 (3)
C8—C3—C4—C5177.4 (4)C13—S2—C14—C15174.9 (3)
Fe1—C3—C4—C558.2 (3)Ni1—S2—C14—C1565.9 (3)
C2—C3—C4—C9175.9 (4)S2—C14—C15—C1672.5 (4)
C8—C3—C4—C90.1 (7)C14—C15—C16—S373.0 (4)
Fe1—C3—C4—C9124.3 (5)C17—S3—C16—C15177.2 (3)
C2—C3—C4—Fe159.7 (3)Ni1—S3—C16—C1567.5 (3)
C8—C3—C4—Fe1124.4 (5)C16—S3—C17—C18122.3 (4)
C3—C4—C5—C11.6 (5)Ni1—S3—C17—C1810.4 (4)
C9—C4—C5—C1176.0 (4)C16—S3—C17—C2160.1 (4)
Fe1—C4—C5—C160.7 (3)Ni1—S3—C17—C21172.0 (3)
C3—C4—C5—C10173.4 (4)C21—C17—C18—C223.9 (7)
C9—C4—C5—C104.2 (7)S3—C17—C18—C22173.4 (3)
Fe1—C4—C5—C10127.5 (5)C21—C17—C18—S4178.1 (4)
C3—C4—C5—Fe159.1 (3)S3—C17—C18—S40.8 (5)
C9—C4—C5—Fe1123.3 (4)Ni1—S4—C18—C179.1 (4)
C2—C1—C5—C41.0 (5)Fe1—S4—C18—C1795.5 (4)
C6—C1—C5—C4173.5 (4)Ni1—S4—C18—C22176.3 (3)
Fe1—C1—C5—C462.3 (3)Fe1—S4—C18—C2289.9 (3)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+3/2.
 

Acknowledgements

We thank Mitchell J. Kerr for preparing a sample of Ni(S2C2Me2)2 used in the synthesis.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; University of Toronto.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCanaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). Chem. Commun. 46, 5876–5878.  Web of Science CrossRef Google Scholar
First citationCatheline, D. & Astruc, D. (1984). Organometallics, 3, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. (2014). Chem. Rev. 114, 4081–4148.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483–1489.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965–2973.  Web of Science CrossRef Google Scholar
First citationZhang, C., Reddy, H. K., Chadha, R. K. & Schrauzer, G. N. (1992). J. Coord. Chem. 26, 117–126.  CrossRef Web of Science Google Scholar
First citationZhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280–18285.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds