research communications
X-ray structure analysis of symmetrically substituted 1,1′-diformylruthenocene
aInstituto de Química Universidad Autónoma de México UNAM, Cd., Universitaria, PO Box 04510, Ciudad de México, Mexico, and bLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico
*Correspondence e-mail: pankajsh@servidor.unam.mx
1,1′-Diformylruthenocene, [Ru(C6H5O)2], crystallizes in the orthorhombic system in the P212121 at room temperature. There are two crystallographically independent molecules in the The cyclopentadienyl rings have eclipsed configuration. The molecules self-assemble in a two-dimensional structure by C—H⋯O and C—H⋯π interactions with cisoid relative orientations of the two formyl groups. The crystal studied was refined as an inversion twin.
CCDC reference: 1545792
1. Chemical context
Ferrocene and its derivatives are among the most important et al., 1972). It has long been reported that ruthenocene is more reactive towards lithiation than its ferrocene analogue (Rausch et al., 1960). The presence of less negative charge on the cyclopentadienyl rings of ruthenocene than on those of ferrocene explains this higher reactivity as well as the higher acidity of the ruthenocene system (Sanders & Mueller-Westerhoff, 1996).
The general chemistry of ruthenocenes and osmocenes has not been researched much, as they are much less reactive and much more expensive. The ruthenocene skeleton is less `superaromatic' than the ferrocene skeleton (NesmeyanovNumerous applications of 1,1′-disubstituted derivatives of ferrocene and ruthenocene in asymmetric catalysis (Dai & Hou, 2010), biochemistry and material sciences (Štěpnička, 2008), have been reported. Different types of substituents on the Cp ring often result in significant changes in the reactivity and properties of ruthenocene as a result of the electronic and steric factors that influence the molecular entity. In general, ferrocene (Fc) and its heavier analogue ruthenocene (Rc) have similar structures (Muratov et al., 2014). The molecular structures of formyl ferrocene, 1,1′-diformyl ferrocene and formyl ruthenocene are known in the literature (Braga et al., 1999; Muratov et al., 2014). The structures of 1,1′-disubstituted ferrocenes containing carboxylic or carbonyl groups have the potential to form a large number of intermolecular interactions, building blocks in two or three dimensions, and to mould the intermolecular hydrogen bonds and CO networks to achieve highly organized superstructures (Braga & Grepioni, 1997). The structure of the ferrocene analogue of the title compound has been published (Braga et al., 1999; MacGillivray et al., 1999). We report here the crystal and molecular structure of 1,1′-diformylruthenocene, which has not previously been reported.
2. Structural commentary
The title compound contains two crystallographic independent molecules (A and B, Fig. 1a) in the which possess the same rotameric conformations. In both molecules, the carbon atoms of the cyclopentadienyl rings form pentagonal prisms, which bind to the ruthenium atom (sandwich array). These Cp rings are in partially eclipsed positions. The two –CHO groups of the cyclopentadienyl rings are in cisoid relative conformations. Bond lengths in the two independent molecules are given in Table 1. The C1—C11—C12—C6 and C31—C21—C26—C32 torsion angles are 2.5 (9) and 6.0 (9)°, respectively, which suggests that molecule A is more eclipsed than molecule B. In the reported of the Fc(CHO)2 analogue, there are also two independent molecular units in the but with different rotameric conformations. Similarly, the torsion angles C11—O1—O2—C12 and C31—O21—O22—C32 are 2 (1) and 7 (1)°, respectively. The torsion angle in diformyl ferrocene, which has a staggered configuration in one of the molecules in the is 42.4° (Balavoine et al., 1991; Mueller-Westerhoff et al., 1993). The of the diacetylruthenocene molecule reported earlier also shows a cis configuration for the acetyl group, but one acetyl group is rotated by 180° with respect to the other (Trotter, 1963).
|
The Cp(centroid)⋯Cp(centroid) distances in molecules A and B are 3.621 and 3.616 Å, respectively. The difference could be due to the electronic effects of the two symmetrically substituted formyl groups. It was also observed that the C and O atoms of both formyl groups are nearly coplanar to the plane of their respective Cp ring. A comparison of the two complex molecules in the was performed by calculation of the molecular overlay (Mercury; Macrae et al., 2008) (Fig. 1b), resulting in the values Dr.m.s. = 0.0622 and Dmax = 0.1208.
3. Supramolecular features
The molecules self-assemble in a two-dimensional structure assisted by C—H⋯O and C—H⋯π interactions (Desiraju, 1996), as shown in Fig. 2. Numerical details are given in Table 2. All secondary interactions that are shorter than the sum of the van der Waals radii of the atoms involved minus 0.12 Å are included. The molecules form columns that are arranged in two-dimensional sheets parallel to the ab plane.
The short contacts of each molecule result in a special neighbouring array in three-dimensions, forming V-type assemblies as shown in Fig. 3. In particular, the P212121 permits close packing of molecules (Braga et al., 1999).
4. Quantum-chemical calculations
DFT quantum-chemical calculations were performed using ωB97X-D based on 6-31 G* with SPARTAN16 (Wavefunction, 2017). The DFT structure optimization of 1,1′-diformylruthenocene was performed starting from the X-ray data. The energy of molecule A, where the molecule is eclipsed and the formyl groups are in a cisoid geometry, is 0.73 Kcal more stable than that of the molecule with a transoid geometry for the two formyl groups. When the energy of the two molecules calculated together was compared with the sum of the energies obtained independently for each molecule, it was observed that the A–B is more stable by 14.14 Kcal. This observation may be partly due to the presence of the two C—H⋯O hydrogen-bonding interactions between the two independent molecules as shown in Fig. 3.
5. Synthesis and crystallization
All reactants were purchased from Aldrich Chemical Co. and 1,1′-diformyl ruthenocene was synthesized as reported earlier (Trotter, 1963). Yellow needle-like crystals of ruthenocene dialdehyde were obtained by slow evaporation of a saturated dichloromethane/hexane solution (v:v = 2:8) at ambient temperature.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1545792
https://doi.org/10.1107/S2056989018010642/zp2025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018010642/zp2025Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).[Ru(C6H5O)2] | Dx = 1.926 Mg m−3 |
Mr = 287.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3163 reflections |
a = 8.944 (2) Å | θ = 2.5–27.4° |
b = 10.797 (3) Å | µ = 1.55 mm−1 |
c = 20.520 (5) Å | T = 298 K |
V = 1981.6 (8) Å3 | Needle, yellow |
Z = 8 | 0.48 × 0.12 × 0.05 mm |
F(000) = 1136 |
Bruker SMART APEX CCD diffractometer | 4288 independent reflections |
Radiation source: fine-focus sealed tube | 3556 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.1°, θmin = 2.0° |
ω scans | h = −7→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −13→8 |
Tmin = 0.499, Tmax = 0.922 | l = −26→26 |
6151 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4288 reflections | Δρmax = 1.28 e Å−3 |
272 parameters | Δρmin = −0.68 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.43 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.80791 (9) | 0.43584 (8) | 0.21733 (4) | 0.0277 (2) | |
O1 | 0.7067 (12) | 0.7801 (9) | 0.1729 (5) | 0.061 (3) | |
O2 | 0.4211 (10) | 0.5356 (10) | 0.1480 (5) | 0.065 (3) | |
C1 | 0.8625 (12) | 0.6319 (9) | 0.2228 (6) | 0.033 (3) | |
C2 | 0.9145 (12) | 0.5713 (11) | 0.2804 (6) | 0.037 (3) | |
H2 | 0.8837 | 0.5912 | 0.3250 | 0.045* | |
C3 | 1.0219 (12) | 0.4849 (11) | 0.2632 (6) | 0.036 (3) | |
H3 | 1.0794 | 0.4330 | 0.2933 | 0.043* | |
C4 | 1.0382 (12) | 0.4888 (11) | 0.1942 (6) | 0.038 (3) | |
H4 | 1.1091 | 0.4397 | 0.1685 | 0.045* | |
C5 | 0.9390 (12) | 0.5777 (12) | 0.1693 (5) | 0.038 (3) | |
H5 | 0.9302 | 0.6028 | 0.1236 | 0.046* | |
C6 | 0.5752 (11) | 0.3939 (11) | 0.2021 (6) | 0.034 (3) | |
C7 | 0.6230 (13) | 0.3378 (11) | 0.2614 (6) | 0.039 (3) | |
H7 | 0.5812 | 0.3536 | 0.3047 | 0.047* | |
C8 | 0.7370 (15) | 0.2513 (12) | 0.2465 (6) | 0.045 (3) | |
H8 | 0.7882 | 0.1966 | 0.2774 | 0.054* | |
C9 | 0.7569 (13) | 0.2533 (11) | 0.1764 (6) | 0.038 (3) | |
H9 | 0.8262 | 0.2011 | 0.1516 | 0.045* | |
C10 | 0.6593 (14) | 0.3402 (12) | 0.1503 (6) | 0.042 (3) | |
H10 | 0.6475 | 0.3589 | 0.1039 | 0.050* | |
C11 | 0.7431 (12) | 0.7226 (10) | 0.2206 (6) | 0.038 (3) | |
H11 | 0.6906 | 0.7374 | 0.2589 | 0.046* | |
C12 | 0.4648 (13) | 0.4892 (13) | 0.1974 (6) | 0.047 (3) | |
H12 | 0.4233 | 0.5177 | 0.2361 | 0.057* | |
Ru2 | 0.66487 (9) | 0.45422 (8) | 0.46810 (4) | 0.0282 (2) | |
O21 | 0.7700 (12) | 0.7744 (9) | 0.3943 (5) | 0.062 (3) | |
O22 | 1.0724 (10) | 0.5577 (11) | 0.4277 (5) | 0.064 (3) | |
C21 | 0.6048 (13) | 0.6452 (10) | 0.4527 (6) | 0.036 (3) | |
C22 | 0.5427 (12) | 0.5738 (10) | 0.4021 (5) | 0.031 (2) | |
H22 | 0.5617 | 0.5840 | 0.3554 | 0.038* | |
C23 | 0.4408 (14) | 0.4905 (12) | 0.4307 (7) | 0.046 (3) | |
H23 | 0.3775 | 0.4313 | 0.4072 | 0.055* | |
C24 | 0.4395 (13) | 0.5115 (12) | 0.4982 (7) | 0.045 (3) | |
H24 | 0.3765 | 0.4677 | 0.5298 | 0.054* | |
C25 | 0.5434 (13) | 0.6059 (11) | 0.5137 (5) | 0.036 (3) | |
H25 | 0.5622 | 0.6423 | 0.5567 | 0.043* | |
C26 | 0.9013 (12) | 0.4147 (9) | 0.4733 (5) | 0.033 (2) | |
C27 | 0.8409 (14) | 0.3525 (11) | 0.4189 (6) | 0.037 (3) | |
H27 | 0.8719 | 0.3641 | 0.3735 | 0.045* | |
C28 | 0.7321 (14) | 0.2679 (12) | 0.4410 (6) | 0.042 (3) | |
H28 | 0.6749 | 0.2100 | 0.4140 | 0.051* | |
C29 | 0.7277 (14) | 0.2767 (11) | 0.5106 (6) | 0.042 (3) | |
H29 | 0.6644 | 0.2264 | 0.5392 | 0.051* | |
C30 | 0.8295 (12) | 0.3670 (10) | 0.5314 (5) | 0.035 (2) | |
H30 | 0.8524 | 0.3897 | 0.5765 | 0.042* | |
C31 | 0.7200 (15) | 0.7386 (11) | 0.4468 (7) | 0.048 (3) | |
H31 | 0.7581 | 0.7735 | 0.4848 | 0.057* | |
C32 | 1.0095 (12) | 0.5178 (11) | 0.4742 (7) | 0.044 (3) | |
H32 | 1.0301 | 0.5543 | 0.5142 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0257 (4) | 0.0277 (4) | 0.0298 (4) | 0.0009 (4) | 0.0001 (4) | −0.0011 (4) |
O1 | 0.070 (7) | 0.052 (6) | 0.061 (6) | 0.010 (6) | −0.008 (6) | 0.012 (5) |
O2 | 0.050 (5) | 0.075 (7) | 0.071 (6) | 0.017 (6) | −0.012 (5) | 0.023 (6) |
C1 | 0.032 (6) | 0.023 (5) | 0.044 (7) | −0.005 (4) | −0.002 (5) | −0.006 (5) |
C2 | 0.042 (6) | 0.037 (6) | 0.033 (6) | 0.004 (5) | −0.006 (5) | −0.004 (6) |
C3 | 0.021 (5) | 0.038 (7) | 0.048 (7) | 0.003 (5) | −0.002 (5) | 0.002 (5) |
C4 | 0.020 (5) | 0.049 (7) | 0.044 (6) | −0.001 (5) | 0.006 (5) | −0.001 (6) |
C5 | 0.030 (6) | 0.051 (8) | 0.034 (6) | −0.013 (6) | 0.004 (5) | 0.000 (6) |
C6 | 0.023 (5) | 0.032 (6) | 0.046 (7) | −0.003 (5) | −0.006 (5) | 0.003 (5) |
C7 | 0.033 (6) | 0.035 (6) | 0.050 (7) | 0.001 (5) | −0.003 (5) | 0.005 (6) |
C8 | 0.054 (8) | 0.032 (7) | 0.049 (8) | −0.003 (6) | 0.001 (6) | 0.015 (6) |
C9 | 0.046 (7) | 0.021 (6) | 0.046 (7) | 0.003 (5) | −0.001 (6) | −0.008 (5) |
C10 | 0.038 (7) | 0.045 (7) | 0.042 (7) | −0.006 (6) | −0.005 (6) | −0.012 (6) |
C11 | 0.039 (6) | 0.032 (6) | 0.045 (7) | −0.002 (5) | −0.005 (6) | −0.007 (6) |
C12 | 0.030 (6) | 0.066 (9) | 0.046 (7) | −0.006 (6) | 0.001 (5) | 0.003 (7) |
Ru2 | 0.0265 (4) | 0.0270 (4) | 0.0310 (4) | −0.0004 (4) | −0.0024 (4) | −0.0014 (4) |
O21 | 0.078 (8) | 0.049 (6) | 0.060 (6) | −0.014 (5) | 0.018 (5) | 0.010 (5) |
O22 | 0.049 (5) | 0.082 (7) | 0.061 (6) | −0.015 (6) | 0.008 (4) | 0.028 (6) |
C21 | 0.034 (6) | 0.020 (5) | 0.055 (8) | 0.014 (5) | 0.000 (6) | 0.003 (5) |
C22 | 0.035 (5) | 0.026 (6) | 0.033 (5) | 0.006 (5) | −0.010 (5) | −0.003 (5) |
C23 | 0.032 (7) | 0.043 (8) | 0.062 (8) | 0.010 (6) | −0.017 (6) | −0.011 (6) |
C24 | 0.025 (6) | 0.045 (8) | 0.065 (8) | −0.001 (5) | 0.003 (6) | −0.003 (6) |
C25 | 0.033 (6) | 0.039 (7) | 0.034 (6) | 0.011 (5) | 0.007 (5) | −0.001 (5) |
C26 | 0.039 (6) | 0.023 (5) | 0.036 (6) | 0.013 (5) | −0.002 (5) | −0.007 (5) |
C27 | 0.038 (6) | 0.040 (6) | 0.034 (6) | 0.015 (6) | 0.006 (5) | −0.005 (5) |
C28 | 0.050 (8) | 0.037 (7) | 0.040 (7) | 0.009 (6) | −0.007 (6) | −0.012 (6) |
C29 | 0.041 (7) | 0.029 (6) | 0.056 (8) | 0.007 (5) | 0.000 (6) | 0.015 (6) |
C30 | 0.030 (5) | 0.047 (6) | 0.028 (5) | −0.001 (5) | −0.004 (5) | 0.005 (5) |
C31 | 0.052 (8) | 0.024 (6) | 0.067 (9) | 0.007 (6) | 0.007 (7) | 0.001 (6) |
C32 | 0.027 (5) | 0.048 (7) | 0.058 (8) | 0.001 (5) | −0.006 (6) | 0.001 (7) |
Ru1—C6 | 2.153 (10) | Ru2—C21 | 2.154 (10) |
Ru1—C7 | 2.161 (12) | Ru2—C26 | 2.160 (11) |
Ru1—C5 | 2.166 (11) | Ru2—C22 | 2.166 (10) |
Ru1—C2 | 2.173 (11) | Ru2—C27 | 2.169 (11) |
Ru1—C10 | 2.173 (11) | Ru2—C28 | 2.172 (12) |
Ru1—C8 | 2.175 (12) | Ru2—C25 | 2.177 (11) |
Ru1—C1 | 2.175 (10) | Ru2—C30 | 2.177 (11) |
Ru1—C4 | 2.190 (11) | Ru2—C29 | 2.179 (11) |
Ru1—C9 | 2.190 (12) | Ru2—C23 | 2.182 (12) |
Ru1—C3 | 2.198 (11) | Ru2—C24 | 2.197 (12) |
O1—C11 | 1.203 (14) | O21—C31 | 1.229 (15) |
O2—C12 | 1.196 (14) | O22—C32 | 1.188 (14) |
C1—C5 | 1.418 (15) | C21—C22 | 1.407 (15) |
C1—C2 | 1.430 (15) | C21—C25 | 1.430 (16) |
C1—C11 | 1.450 (15) | C21—C31 | 1.447 (17) |
C2—C3 | 1.385 (15) | C22—C23 | 1.408 (17) |
C2—H2 | 0.9800 | C22—H22 | 0.9800 |
C3—C4 | 1.425 (15) | C23—C24 | 1.405 (17) |
C3—H3 | 0.9800 | C23—H23 | 0.9800 |
C4—C5 | 1.403 (16) | C24—C25 | 1.415 (17) |
C4—H4 | 0.9800 | C24—H24 | 0.9800 |
C5—H5 | 0.9800 | C25—H25 | 0.9800 |
C6—C7 | 1.425 (16) | C26—C27 | 1.410 (15) |
C6—C10 | 1.425 (16) | C26—C30 | 1.449 (15) |
C6—C12 | 1.430 (17) | C26—C32 | 1.475 (16) |
C7—C8 | 1.416 (17) | C27—C28 | 1.410 (17) |
C7—H7 | 0.9800 | C27—H27 | 0.9800 |
C8—C9 | 1.448 (16) | C28—C29 | 1.431 (16) |
C8—H8 | 0.9800 | C28—H28 | 0.9800 |
C9—C10 | 1.389 (17) | C29—C30 | 1.402 (16) |
C9—H9 | 0.9800 | C29—H29 | 0.9800 |
C10—H10 | 0.9800 | C30—H30 | 0.9800 |
C11—H11 | 0.9300 | C31—H31 | 0.9300 |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C6—Ru1—C7 | 38.6 (4) | C21—Ru2—C26 | 116.1 (4) |
C6—Ru1—C5 | 127.3 (4) | C21—Ru2—C22 | 38.0 (4) |
C7—Ru1—C5 | 161.9 (4) | C26—Ru2—C22 | 130.0 (4) |
C6—Ru1—C2 | 130.7 (4) | C21—Ru2—C27 | 126.7 (5) |
C7—Ru1—C2 | 114.6 (5) | C26—Ru2—C27 | 38.0 (4) |
C5—Ru1—C2 | 63.8 (4) | C22—Ru2—C27 | 112.1 (4) |
C6—Ru1—C10 | 38.5 (4) | C21—Ru2—C28 | 156.6 (5) |
C7—Ru1—C10 | 64.2 (5) | C26—Ru2—C28 | 63.8 (4) |
C5—Ru1—C10 | 112.3 (4) | C22—Ru2—C28 | 122.1 (4) |
C2—Ru1—C10 | 164.8 (4) | C27—Ru2—C28 | 37.9 (5) |
C6—Ru1—C8 | 64.2 (5) | C21—Ru2—C25 | 38.6 (4) |
C7—Ru1—C8 | 38.1 (5) | C26—Ru2—C25 | 128.0 (4) |
C5—Ru1—C8 | 158.5 (5) | C22—Ru2—C25 | 64.4 (4) |
C2—Ru1—C8 | 125.5 (5) | C27—Ru2—C25 | 160.6 (4) |
C10—Ru1—C8 | 63.9 (5) | C28—Ru2—C25 | 160.9 (5) |
C6—Ru1—C1 | 115.4 (4) | C21—Ru2—C30 | 132.1 (4) |
C7—Ru1—C1 | 128.8 (5) | C26—Ru2—C30 | 39.0 (4) |
C5—Ru1—C1 | 38.1 (4) | C22—Ru2—C30 | 166.3 (4) |
C2—Ru1—C1 | 38.4 (4) | C27—Ru2—C30 | 64.4 (4) |
C10—Ru1—C1 | 129.2 (5) | C28—Ru2—C30 | 64.2 (4) |
C8—Ru1—C1 | 160.6 (5) | C25—Ru2—C30 | 114.0 (4) |
C6—Ru1—C4 | 158.9 (4) | C21—Ru2—C29 | 164.8 (5) |
C7—Ru1—C4 | 159.8 (4) | C26—Ru2—C29 | 63.5 (4) |
C5—Ru1—C4 | 37.6 (4) | C22—Ru2—C29 | 154.7 (4) |
C2—Ru1—C4 | 62.7 (4) | C27—Ru2—C29 | 63.5 (5) |
C10—Ru1—C4 | 124.2 (5) | C28—Ru2—C29 | 38.4 (4) |
C8—Ru1—C4 | 125.0 (5) | C25—Ru2—C29 | 128.2 (5) |
C1—Ru1—C4 | 63.0 (4) | C30—Ru2—C29 | 37.5 (4) |
C6—Ru1—C9 | 63.5 (4) | C21—Ru2—C23 | 63.1 (5) |
C7—Ru1—C9 | 63.9 (5) | C26—Ru2—C23 | 162.2 (5) |
C5—Ru1—C9 | 125.1 (5) | C22—Ru2—C23 | 37.8 (5) |
C2—Ru1—C9 | 157.7 (4) | C27—Ru2—C23 | 126.4 (5) |
C10—Ru1—C9 | 37.1 (4) | C28—Ru2—C23 | 109.3 (5) |
C8—Ru1—C9 | 38.7 (4) | C25—Ru2—C23 | 63.7 (5) |
C1—Ru1—C9 | 160.4 (4) | C30—Ru2—C23 | 155.3 (5) |
C4—Ru1—C9 | 110.3 (5) | C29—Ru2—C23 | 122.4 (5) |
C6—Ru1—C3 | 162.7 (4) | C21—Ru2—C24 | 62.8 (5) |
C7—Ru1—C3 | 127.2 (4) | C26—Ru2—C24 | 160.0 (5) |
C5—Ru1—C3 | 63.5 (4) | C22—Ru2—C24 | 63.0 (5) |
C2—Ru1—C3 | 36.9 (4) | C27—Ru2—C24 | 160.0 (5) |
C10—Ru1—C3 | 156.7 (4) | C28—Ru2—C24 | 125.9 (5) |
C8—Ru1—C3 | 110.9 (5) | C25—Ru2—C24 | 37.7 (4) |
C1—Ru1—C3 | 63.1 (4) | C30—Ru2—C24 | 125.1 (5) |
C4—Ru1—C3 | 37.9 (4) | C29—Ru2—C24 | 111.8 (5) |
C9—Ru1—C3 | 124.2 (4) | C23—Ru2—C24 | 37.4 (5) |
C5—C1—C2 | 107.1 (10) | C22—C21—C25 | 109.3 (10) |
C5—C1—C11 | 127.6 (12) | C22—C21—C31 | 127.0 (12) |
C2—C1—C11 | 125.0 (11) | C25—C21—C31 | 123.6 (12) |
C5—C1—Ru1 | 70.6 (6) | C22—C21—Ru2 | 71.5 (6) |
C2—C1—Ru1 | 70.7 (6) | C25—C21—Ru2 | 71.6 (6) |
C11—C1—Ru1 | 119.3 (7) | C31—C21—Ru2 | 120.1 (8) |
C3—C2—C1 | 108.8 (10) | C21—C22—C23 | 107.4 (10) |
C3—C2—Ru1 | 72.5 (7) | C21—C22—Ru2 | 70.5 (6) |
C1—C2—Ru1 | 70.9 (6) | C23—C22—Ru2 | 71.7 (7) |
C3—C2—H2 | 125.5 | C21—C22—H22 | 126.3 |
C1—C2—H2 | 125.5 | C23—C22—H22 | 126.3 |
Ru1—C2—H2 | 125.5 | Ru2—C22—H22 | 126.3 |
C2—C3—C4 | 107.7 (10) | C24—C23—C22 | 108.2 (11) |
C2—C3—Ru1 | 70.6 (6) | C24—C23—Ru2 | 71.9 (7) |
C4—C3—Ru1 | 70.7 (6) | C22—C23—Ru2 | 70.5 (7) |
C2—C3—H3 | 126.1 | C24—C23—H23 | 125.9 |
C4—C3—H3 | 126.1 | C22—C23—H23 | 125.9 |
Ru1—C3—H3 | 126.1 | Ru2—C23—H23 | 125.9 |
C5—C4—C3 | 108.5 (10) | C23—C24—C25 | 109.4 (12) |
C5—C4—Ru1 | 70.3 (6) | C23—C24—Ru2 | 70.7 (7) |
C3—C4—Ru1 | 71.4 (6) | C25—C24—Ru2 | 70.3 (6) |
C5—C4—H4 | 125.8 | C23—C24—H24 | 125.3 |
C3—C4—H4 | 125.8 | C25—C24—H24 | 125.3 |
Ru1—C4—H4 | 125.8 | Ru2—C24—H24 | 125.3 |
C4—C5—C1 | 107.8 (10) | C24—C25—C21 | 105.7 (11) |
C4—C5—Ru1 | 72.1 (7) | C24—C25—Ru2 | 71.9 (7) |
C1—C5—Ru1 | 71.3 (6) | C21—C25—Ru2 | 69.9 (6) |
C4—C5—H5 | 126.0 | C24—C25—H25 | 127.1 |
C1—C5—H5 | 126.0 | C21—C25—H25 | 127.1 |
Ru1—C5—H5 | 126.0 | Ru2—C25—H25 | 127.1 |
C7—C6—C10 | 107.8 (10) | C27—C26—C30 | 108.2 (10) |
C7—C6—C12 | 124.8 (11) | C27—C26—C32 | 128.3 (11) |
C10—C6—C12 | 127.4 (11) | C30—C26—C32 | 123.3 (10) |
C7—C6—Ru1 | 71.0 (6) | C27—C26—Ru2 | 71.3 (6) |
C10—C6—Ru1 | 71.6 (6) | C30—C26—Ru2 | 71.1 (6) |
C12—C6—Ru1 | 121.8 (8) | C32—C26—Ru2 | 119.6 (7) |
C8—C7—C6 | 108.2 (11) | C28—C27—C26 | 108.6 (11) |
C8—C7—Ru1 | 71.5 (7) | C28—C27—Ru2 | 71.2 (7) |
C6—C7—Ru1 | 70.4 (7) | C26—C27—Ru2 | 70.7 (6) |
C8—C7—H7 | 125.9 | C28—C27—H27 | 125.7 |
C6—C7—H7 | 125.9 | C26—C27—H27 | 125.7 |
Ru1—C7—H7 | 125.9 | Ru2—C27—H27 | 125.7 |
C7—C8—C9 | 107.0 (11) | C27—C28—C29 | 107.3 (11) |
C7—C8—Ru1 | 70.4 (7) | C27—C28—Ru2 | 70.9 (7) |
C9—C8—Ru1 | 71.2 (7) | C29—C28—Ru2 | 71.1 (7) |
C7—C8—H8 | 126.4 | C27—C28—H28 | 126.3 |
C9—C8—H8 | 126.4 | C29—C28—H28 | 126.3 |
Ru1—C8—H8 | 126.4 | Ru2—C28—H28 | 126.3 |
C10—C9—C8 | 108.4 (11) | C30—C29—C28 | 109.4 (11) |
C10—C9—Ru1 | 70.8 (7) | C30—C29—Ru2 | 71.2 (7) |
C8—C9—Ru1 | 70.1 (7) | C28—C29—Ru2 | 70.5 (7) |
C10—C9—H9 | 125.8 | C30—C29—H29 | 125.3 |
C8—C9—H9 | 125.8 | C28—C29—H29 | 125.3 |
Ru1—C9—H9 | 125.8 | Ru2—C29—H29 | 125.3 |
C9—C10—C6 | 108.6 (11) | C29—C30—C26 | 106.5 (10) |
C9—C10—Ru1 | 72.1 (7) | C29—C30—Ru2 | 71.3 (6) |
C6—C10—Ru1 | 70.0 (6) | C26—C30—Ru2 | 69.8 (6) |
C9—C10—H10 | 125.7 | C29—C30—H30 | 126.7 |
C6—C10—H10 | 125.7 | C26—C30—H30 | 126.7 |
Ru1—C10—H10 | 125.7 | Ru2—C30—H30 | 126.7 |
O1—C11—C1 | 125.0 (13) | O21—C31—C21 | 123.5 (13) |
O1—C11—H11 | 117.5 | O21—C31—H31 | 118.3 |
C1—C11—H11 | 117.5 | C21—C31—H31 | 118.3 |
O2—C12—C6 | 125.7 (13) | O22—C32—C26 | 125.1 (13) |
O2—C12—H12 | 117.1 | O22—C32—H32 | 117.4 |
C6—C12—H12 | 117.1 | C26—C32—H32 | 117.4 |
C5—C1—C2—C3 | 1.4 (12) | C25—C21—C22—C23 | 0.8 (13) |
C11—C1—C2—C3 | 175.9 (10) | C31—C21—C22—C23 | 176.9 (10) |
Ru1—C1—C2—C3 | 63.0 (8) | Ru2—C21—C22—C23 | 62.7 (8) |
C5—C1—C2—Ru1 | −61.6 (7) | C25—C21—C22—Ru2 | −61.9 (8) |
C11—C1—C2—Ru1 | 112.9 (10) | C31—C21—C22—Ru2 | 114.2 (11) |
C1—C2—C3—C4 | −0.6 (13) | C21—C22—C23—C24 | 0.5 (14) |
Ru1—C2—C3—C4 | 61.3 (8) | Ru2—C22—C23—C24 | 62.4 (9) |
C1—C2—C3—Ru1 | −61.9 (8) | C21—C22—C23—Ru2 | −61.9 (7) |
C2—C3—C4—C5 | −0.4 (14) | C22—C23—C24—C25 | −1.6 (15) |
Ru1—C3—C4—C5 | 60.8 (8) | Ru2—C23—C24—C25 | 59.9 (9) |
C2—C3—C4—Ru1 | −61.2 (8) | C22—C23—C24—Ru2 | −61.5 (8) |
C3—C4—C5—C1 | 1.3 (13) | C23—C24—C25—C21 | 2.0 (14) |
Ru1—C4—C5—C1 | 62.8 (7) | Ru2—C24—C25—C21 | 62.1 (7) |
C3—C4—C5—Ru1 | −61.5 (8) | C23—C24—C25—Ru2 | −60.1 (9) |
C2—C1—C5—C4 | −1.6 (12) | C22—C21—C25—C24 | −1.7 (12) |
C11—C1—C5—C4 | −175.9 (10) | C31—C21—C25—C24 | −178.0 (10) |
Ru1—C1—C5—C4 | −63.3 (8) | Ru2—C21—C25—C24 | −63.5 (8) |
C2—C1—C5—Ru1 | 61.7 (7) | C22—C21—C25—Ru2 | 61.8 (8) |
C11—C1—C5—Ru1 | −112.6 (11) | C31—C21—C25—Ru2 | −114.5 (11) |
C10—C6—C7—C8 | 0.7 (14) | C30—C26—C27—C28 | 0.6 (12) |
C12—C6—C7—C8 | −177.8 (11) | C32—C26—C27—C28 | −174.8 (10) |
Ru1—C6—C7—C8 | −61.8 (9) | Ru2—C26—C27—C28 | −61.4 (8) |
C10—C6—C7—Ru1 | 62.5 (8) | C30—C26—C27—Ru2 | 61.9 (7) |
C12—C6—C7—Ru1 | −116.0 (11) | C32—C26—C27—Ru2 | −113.4 (11) |
C6—C7—C8—C9 | −1.0 (14) | C26—C27—C28—C29 | −1.1 (13) |
Ru1—C7—C8—C9 | −62.2 (9) | Ru2—C27—C28—C29 | −62.2 (8) |
C6—C7—C8—Ru1 | 61.1 (8) | C26—C27—C28—Ru2 | 61.1 (8) |
C7—C8—C9—C10 | 1.0 (15) | C27—C28—C29—C30 | 1.3 (14) |
Ru1—C8—C9—C10 | −60.7 (9) | Ru2—C28—C29—C30 | −60.8 (8) |
C7—C8—C9—Ru1 | 61.7 (9) | C27—C28—C29—Ru2 | 62.1 (8) |
C8—C9—C10—C6 | −0.5 (15) | C28—C29—C30—C26 | −0.9 (13) |
Ru1—C9—C10—C6 | −60.8 (8) | Ru2—C29—C30—C26 | −61.3 (7) |
C8—C9—C10—Ru1 | 60.2 (9) | C28—C29—C30—Ru2 | 60.4 (9) |
C7—C6—C10—C9 | −0.1 (14) | C27—C26—C30—C29 | 0.2 (12) |
C12—C6—C10—C9 | 178.4 (11) | C32—C26—C30—C29 | 175.9 (10) |
Ru1—C6—C10—C9 | 62.1 (9) | Ru2—C26—C30—C29 | 62.3 (8) |
C7—C6—C10—Ru1 | −62.2 (8) | C27—C26—C30—Ru2 | −62.1 (8) |
C12—C6—C10—Ru1 | 116.3 (12) | C32—C26—C30—Ru2 | 113.6 (9) |
C5—C1—C11—O1 | −12.4 (18) | C22—C21—C31—O21 | 6.2 (19) |
C2—C1—C11—O1 | 174.3 (12) | C25—C21—C31—O21 | −178.2 (12) |
Ru1—C1—C11—O1 | −99.6 (13) | Ru2—C21—C31—O21 | 94.9 (14) |
C7—C6—C12—O2 | −178.4 (13) | C27—C26—C32—O22 | −6.7 (19) |
C10—C6—C12—O2 | 3 (2) | C30—C26—C32—O22 | 178.6 (12) |
Ru1—C6—C12—O2 | 93.6 (15) | Ru2—C26—C32—O22 | −95.5 (13) |
Cg is the centroid of the C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O21 | 0.98 | 2.64 | 3.456 (16) | 141 |
C3—H3···O1i | 0.98 | 2.62 | 3.536 (15) | 156 |
C4—H4···O21i | 0.98 | 2.45 | 3.406 (16) | 164 |
C9—H9···O22i | 0.98 | 2.42 | 3.370 (16) | 162 |
C23—H23···O1ii | 0.98 | 2.44 | 3.379 (17) | 161 |
C28—H28···O2ii | 0.98 | 2.43 | 3.392 (16) | 167 |
C30—H30···O2iii | 0.98 | 2.63 | 3.436 (14) | 140 |
C8—H8···Cgi | 0.98 | 2.78 | 3.546 (15) | 135 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, −y+1, z+1/2. |
A | B | ||
Ru1—C1 | 2.175 (10) | Ru2—C21 | 2.154 (10) |
Ru1—C2 | 2.173 (11) | Ru2—C22 | 2.166 (10) |
Ru1—C3 | 2.198 (11) | Ru2—C23 | 2.182 (12) |
Ru1—C4 | 2.190 (11) | Ru2—C24 | 2.197 (12) |
Ru1—C5 | 2.166 (11) | Ru2—C25 | 2.177 (11) |
Ru1—C6 | 2.153 (10) | Ru2—C26 | 2.160 (11) |
Ru1—C7 | 2.161 (12) | Ru2—C27 | 2.169 (11) |
Ru1—C8 | 2.175 (12) | Ru2—C28 | 2.172 (12) |
Ru1—C9 | 2.190 (12) | Ru2—C29 | 2.179 (11) |
Ru1—C10 | 2.173 (11) | Ru2—C30 | 2.177 (11) |
C1—C2 | 1.430 (15) | C21—C25 | 1.430 (16) |
C2—C3 | 1.385 (15) | C21—C22 | 1.407 (15) |
C3—C4 | 1.425 (15) | C22—C23 | 1.408 (17) |
C4—C5 | 1.403 (16) | C23—C24 | 1.405 (17) |
C1—C5 | 1.418 (15) | C24—C25 | 1.415 (17) |
C6—C7 | 1.425 (16) | C26—C30 | 1.449 (15) |
C7—C8 | 1.416 (17) | C26—C27 | 1.410 (15) |
C8—C9 | 1.448 (16) | C27—C28 | 1.410 (17) |
C9—C10 | 1.389 (17) | C28—C29 | 1.431 (16) |
C6—C10 | 1.425 (16) | C29—C30 | 1.402 (16) |
Acknowledgements
We thank Dr Toscano for solving the crystal structure.
Funding information
We are grateful to DGAPA (RN206615) for financial support and CONACyT (Fellowship 412093).
References
Balavoine, G. G. A., Doisneau, G. & Fillebeen-Khan, T. (1991). J. Organomet. Chem. 412, 381–382. CrossRef Web of Science Google Scholar
Braga, D. & Grepioni, F. (1997). Acc. Chem. Res. 30, 81–87. CrossRef CAS Web of Science Google Scholar
Braga, D., Paganelli, F., Tagliavini, E., Casolari, S., Cojazzi, G. & Grepioni, F. (1999). Organometallics, 18, 4191–4196. Web of Science CrossRef Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, L.-X. & Hou, X.-L. (2010). Editors. Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, ch. 7–8. Weinheim: Wiley VCH. Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
MacGillivray, L. R., Spinney, H. A., Reid, J. L. & Ripmeester, J. A. (1999). J. Chem. Crystallogr. 29, 865–869. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163–167. CAS Google Scholar
Muratov, D. V., Romanov, A. S. & Kudinov, A. R. (2014). Russ. Chem. Bull. 63, 2485–2492. Web of Science CrossRef Google Scholar
Nesmeyanov, A. N., Lubovich, A. A. & Gubin, S. P. (1972). Russ. Chem. Bull. 21, 1761–1764. CrossRef Google Scholar
Rausch, M. D., Fischer, E. O. & Grubert, H. (1960). J. Am. Chem. Soc. 82, 76–82. CrossRef Web of Science Google Scholar
Sanders, R. & Mueller-Westerhoff, U. T. (1996). J. Organomet. Chem. 512, 219–224. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules, ch. 8–12, 13. Chichester: J. Wiley & Sons. Google Scholar
Trotter, J. (1963). Acta Cryst. 16, 571–572. CrossRef IUCr Journals Web of Science Google Scholar
Wavefunction (2017). Spartan '16. Version 2.0.1. Wavefunction Inc., Irvine, California, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.