research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

X-ray structure analysis of symmetrically substituted 1,1′-di­formyl­ruthenocene

CROSSMARK_Color_square_no_text.svg

aInstituto de Química Universidad Autónoma de México UNAM, Cd., Universitaria, PO Box 04510, Ciudad de México, Mexico, and bLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico
*Correspondence e-mail: pankajsh@servidor.unam.mx

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 14 November 2017; accepted 23 July 2018; online 10 August 2018)

1,1′-Di­formyl­ruthenocene, [Ru(C6H5O)2], crystallizes in the ortho­rhom­bic system in the P212121 space group at room temperature. There are two crystallographically independent mol­ecules in the asymmetric unit. The cyclo­penta­dienyl rings have eclipsed configuration. The mol­ecules self-assemble in a two-dimensional structure by C—H⋯O and C—H⋯π inter­actions with cisoid relative orientations of the two formyl groups. The crystal studied was refined as an inversion twin.

1. Chemical context

Ferrocene and its derivatives are among the most important metallocenes. The general chemistry of ruthenocenes and osmocenes has not been researched much, as they are much less reactive and much more expensive. The ruthenocene skeleton is less `superaromatic' than the ferrocene skeleton (Nesmeyanov et al., 1972[Nesmeyanov, A. N., Lubovich, A. A. & Gubin, S. P. (1972). Russ. Chem. Bull. 21, 1761-1764.]). It has long been reported that ruthenocene is more reactive towards li­thia­tion than its ferrocene analogue (Rausch et al., 1960[Rausch, M. D., Fischer, E. O. & Grubert, H. (1960). J. Am. Chem. Soc. 82, 76-82.]). The presence of less negative charge on the cyclo­penta­dienyl rings of ruthenocene than on those of ferrocene explains this higher reactivity as well as the higher acidity of the ruthenocene system (Sanders & Mueller-Westerhoff, 1996[Sanders, R. & Mueller-Westerhoff, U. T. (1996). J. Organomet. Chem. 512, 219-224.]).

Numerous applications of 1,1′-disubstituted derivatives of ferrocene and ruthenocene in asymmetric catalysis (Dai & Hou, 2010[Dai, L.-X. & Hou, X.-L. (2010). Editors. Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, ch. 7-8. Weinheim: Wiley VCH.]), biochemistry and material sciences (Štěpnička, 2008[Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules, ch. 8-12, 13. Chichester: J. Wiley & Sons.]), have been reported. Different types of substituents on the Cp ring often result in significant changes in the reactivity and properties of ruthenocene as a result of the electronic and steric factors that influence the mol­ecular entity. In general, ferrocene (Fc) and its heavier analogue ruthenocene (Rc) have similar structures (Muratov et al., 2014[Muratov, D. V., Romanov, A. S. & Kudinov, A. R. (2014). Russ. Chem. Bull. 63, 2485-2492.]). The mol­ecular structures of formyl ferrocene, 1,1′-diformyl ferrocene and formyl ruthenocene are known in the literature (Braga et al., 1999[Braga, D., Paganelli, F., Tagliavini, E., Casolari, S., Cojazzi, G. & Grepioni, F. (1999). Organometallics, 18, 4191-4196.]; Muratov et al., 2014[Muratov, D. V., Romanov, A. S. & Kudinov, A. R. (2014). Russ. Chem. Bull. 63, 2485-2492.]). The structures of 1,1′-disubstituted ferrocenes containing carb­oxy­lic or carbonyl groups have the potential to form a large number of inter­molecular inter­actions, building blocks in two or three dimensions, and to mould the inter­molecular hydrogen bonds and CO networks to achieve highly organized superstructures (Braga & Grepioni, 1997[Braga, D. & Grepioni, F. (1997). Acc. Chem. Res. 30, 81-87.]). The structure of the ferrocene analogue of the title compound has been published (Braga et al., 1999[Braga, D., Paganelli, F., Tagliavini, E., Casolari, S., Cojazzi, G. & Grepioni, F. (1999). Organometallics, 18, 4191-4196.]; MacGillivray et al., 1999[MacGillivray, L. R., Spinney, H. A., Reid, J. L. & Ripmeester, J. A. (1999). J. Chem. Crystallogr. 29, 865-869.]). We report here the crystal and mol­ecular structure of 1,1′-diformyl­ruthenocene, which has not previously been reported.

2. Structural commentary

The title compound contains two crystallographic independent mol­ecules (A and B, Fig. 1[link]a) in the asymmetric unit, which possess the same rotameric conformations. In both mol­ecules, the carbon atoms of the cyclo­penta­dienyl rings form penta­gonal prisms, which bind to the ruthenium atom (sandwich array). These Cp rings are in partially eclipsed positions. The two –CHO groups of the cyclo­penta­dienyl rings are in cisoid relative conformations. Bond lengths in the two independent mol­ecules are given in Table 1[link]. The C1—C11—C12—C6 and C31—C21—C26—C32 torsion angles are 2.5 (9) and 6.0 (9)°, respectively, which suggests that mol­ecule A is more eclipsed than mol­ecule B. In the reported crystal structure of the Fc(CHO)2 analogue, there are also two independent mol­ecular units in the asymmetric unit, but with different rotameric conformations. Similarly, the torsion angles C11—O1—O2—C12 and C31—O21—O22—C32 are 2 (1) and 7 (1)°, respectively. The torsion angle in diformyl ferrocene, which has a staggered configuration in one of the mol­ecules in the asymmetric unit is 42.4° (Balavoine et al., 1991[Balavoine, G. G. A., Doisneau, G. & Fillebeen-Khan, T. (1991). J. Organomet. Chem. 412, 381-382.]; Mueller-Westerhoff et al., 1993[Mueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163-167.]). The crystal structure of the di­acetyl­ruthenocene mol­ecule reported earlier also shows a cis configuration for the acetyl group, but one acetyl group is rotated by 180° with respect to the other (Trotter, 1963[Trotter, J. (1963). Acta Cryst. 16, 571-572.]).

[Scheme 1]

Table 1
Lengths of the Ru—C and C—C bonds in the Cp rings of the A and B mol­ecules.

A   B  
Ru1—C1 2.175 (10) Ru2—C21 2.154 (10)
Ru1—C2 2.173 (11) Ru2—C22 2.166 (10)
Ru1—C3 2.198 (11) Ru2—C23 2.182 (12)
Ru1—C4 2.190 (11) Ru2—C24 2.197 (12)
Ru1—C5 2.166 (11) Ru2—C25 2.177 (11)
Ru1—C6 2.153 (10) Ru2—C26 2.160 (11)
Ru1—C7 2.161 (12) Ru2—C27 2.169 (11)
Ru1—C8 2.175 (12) Ru2—C28 2.172 (12)
Ru1—C9 2.190 (12) Ru2—C29 2.179 (11)
Ru1—C10 2.173 (11) Ru2—C30 2.177 (11)
C1—C2 1.430 (15) C21—C25 1.430 (16)
C2—C3 1.385 (15) C21—C22 1.407 (15)
C3—C4 1.425 (15) C22—C23 1.408 (17)
C4—C5 1.403 (16) C23—C24 1.405 (17)
C1—C5 1.418 (15) C24—C25 1.415 (17)
C6—C7 1.425 (16) C26—C30 1.449 (15)
C7—C8 1.416 (17) C26—C27 1.410 (15)
C8—C9 1.448 (16) C27—C28 1.410 (17)
C9—C10 1.389 (17) C28—C29 1.431 (16)
C6—C10 1.425 (16) C29—C30 1.402 (16)
[Figure 1]
Figure 1
(a) ORTEP representation of the two crystallographically independent ruthenocene complex mol­ecules in the asymmetric unit at 50% probability level with atomic labelling. (b) The superimposed mol­ecules from the asymmetric unit.

The Cp(centroid)⋯Cp(centroid) distances in mol­ecules A and B are 3.621 and 3.616 Å, respectively. The difference could be due to the electronic effects of the two symmetrically substituted formyl groups. It was also observed that the C and O atoms of both formyl groups are nearly coplanar to the plane of their respective Cp ring. A comparison of the two complex mol­ecules in the asymmetric unit was performed by calculation of the mol­ecular overlay (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) (Fig. 1[link]b), resulting in the values Dr.m.s. = 0.0622 and Dmax = 0.1208.

3. Supra­molecular features

The mol­ecules self-assemble in a two-dimensional structure assisted by C—H⋯O and C—H⋯π inter­actions (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]), as shown in Fig. 2[link]. Numerical details are given in Table 2[link]. All secondary inter­actions that are shorter than the sum of the van der Waals radii of the atoms involved minus 0.12 Å are included. The mol­ecules form columns that are arranged in two-dimensional sheets parallel to the ab plane.

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O21 0.98 2.64 3.456 (16) 141
C3—H3⋯O1i 0.98 2.62 3.536 (15) 156
C4—H4⋯O21i 0.98 2.45 3.406 (16) 164
C9—H9⋯O22i 0.98 2.42 3.370 (16) 162
C23—H23⋯O1ii 0.98 2.44 3.379 (17) 161
C28—H28⋯O2ii 0.98 2.43 3.392 (16) 167
C30—H30⋯O2iii 0.98 2.63 3.436 (14) 140
C8—H8⋯Cgi 0.98 2.78 3.546 (15) 135
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing arrangement showing the perpendicular columns formed by the C= O⋯H—Cp secondary inter­actions.

The short contacts of each mol­ecule result in a special neighbouring array in three-dimensions, forming V-type assemblies as shown in Fig. 3[link]. In particular, the space group P212121 permits close packing of mol­ecules (Braga et al., 1999[Braga, D., Paganelli, F., Tagliavini, E., Casolari, S., Cojazzi, G. & Grepioni, F. (1999). Organometallics, 18, 4191-4196.]).

[Figure 3]
Figure 3
Packing arrangement along the c axis with dashed lines indicating the inter­molecular contacts.

4. Quantum-chemical calculations

DFT quantum-chemical calculations were performed using ωB97X-D based on 6-31 G* with SPARTAN16 (Wavefunction, 2017[Wavefunction (2017). Spartan '16. Version 2.0.1. Wavefunction Inc., Irvine, California, USA.]). The DFT structure optimization of 1,1′-diformyl­ruthenocene was performed starting from the X-ray data. The energy of mol­ecule A, where the mol­ecule is eclipsed and the formyl groups are in a cisoid geometry, is 0.73 Kcal more stable than that of the mol­ecule with a transoid geometry for the two formyl groups. When the energy of the two mol­ecules calculated together was compared with the sum of the energies obtained independently for each mol­ecule, it was observed that the asymmetric unit AB is more stable by 14.14 Kcal. This observation may be partly due to the presence of the two C—H⋯O hydrogen-bonding inter­actions between the two independent mol­ecules as shown in Fig. 3[link].

5. Synthesis and crystallization

All reactants were purchased from Aldrich Chemical Co. and 1,1′-diformyl ruthenocene was synthesized as reported earlier (Trotter, 1963[Trotter, J. (1963). Acta Cryst. 16, 571-572.]). Yellow needle-like crystals of ruthenocene di­aldehyde were obtained by slow evaporation of a saturated di­chloro­methane/hexane solution (v:v = 2:8) at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C6H5O)2]
Mr 287.27
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 8.944 (2), 10.797 (3), 20.520 (5)
V3) 1981.6 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.55
Crystal size (mm) 0.48 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.499, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 6151, 4288, 3556
Rint 0.048
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.03
No. of reflections 4288
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.68
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.43 (12)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CIFTAB (Sheldrick, 2013).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).

1,1'-Diformylruthenocene top
Crystal data top
[Ru(C6H5O)2]Dx = 1.926 Mg m3
Mr = 287.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3163 reflections
a = 8.944 (2) Åθ = 2.5–27.4°
b = 10.797 (3) ŵ = 1.55 mm1
c = 20.520 (5) ÅT = 298 K
V = 1981.6 (8) Å3Needle, yellow
Z = 80.48 × 0.12 × 0.05 mm
F(000) = 1136
Data collection top
Bruker SMART APEX CCD
diffractometer
4288 independent reflections
Radiation source: fine-focus sealed tube3556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.333 pixels mm-1θmax = 27.1°, θmin = 2.0°
ω scansh = 711
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 138
Tmin = 0.499, Tmax = 0.922l = 2626
6151 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0369P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4288 reflectionsΔρmax = 1.28 e Å3
272 parametersΔρmin = 0.68 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.80791 (9)0.43584 (8)0.21733 (4)0.0277 (2)
O10.7067 (12)0.7801 (9)0.1729 (5)0.061 (3)
O20.4211 (10)0.5356 (10)0.1480 (5)0.065 (3)
C10.8625 (12)0.6319 (9)0.2228 (6)0.033 (3)
C20.9145 (12)0.5713 (11)0.2804 (6)0.037 (3)
H20.88370.59120.32500.045*
C31.0219 (12)0.4849 (11)0.2632 (6)0.036 (3)
H31.07940.43300.29330.043*
C41.0382 (12)0.4888 (11)0.1942 (6)0.038 (3)
H41.10910.43970.16850.045*
C50.9390 (12)0.5777 (12)0.1693 (5)0.038 (3)
H50.93020.60280.12360.046*
C60.5752 (11)0.3939 (11)0.2021 (6)0.034 (3)
C70.6230 (13)0.3378 (11)0.2614 (6)0.039 (3)
H70.58120.35360.30470.047*
C80.7370 (15)0.2513 (12)0.2465 (6)0.045 (3)
H80.78820.19660.27740.054*
C90.7569 (13)0.2533 (11)0.1764 (6)0.038 (3)
H90.82620.20110.15160.045*
C100.6593 (14)0.3402 (12)0.1503 (6)0.042 (3)
H100.64750.35890.10390.050*
C110.7431 (12)0.7226 (10)0.2206 (6)0.038 (3)
H110.69060.73740.25890.046*
C120.4648 (13)0.4892 (13)0.1974 (6)0.047 (3)
H120.42330.51770.23610.057*
Ru20.66487 (9)0.45422 (8)0.46810 (4)0.0282 (2)
O210.7700 (12)0.7744 (9)0.3943 (5)0.062 (3)
O221.0724 (10)0.5577 (11)0.4277 (5)0.064 (3)
C210.6048 (13)0.6452 (10)0.4527 (6)0.036 (3)
C220.5427 (12)0.5738 (10)0.4021 (5)0.031 (2)
H220.56170.58400.35540.038*
C230.4408 (14)0.4905 (12)0.4307 (7)0.046 (3)
H230.37750.43130.40720.055*
C240.4395 (13)0.5115 (12)0.4982 (7)0.045 (3)
H240.37650.46770.52980.054*
C250.5434 (13)0.6059 (11)0.5137 (5)0.036 (3)
H250.56220.64230.55670.043*
C260.9013 (12)0.4147 (9)0.4733 (5)0.033 (2)
C270.8409 (14)0.3525 (11)0.4189 (6)0.037 (3)
H270.87190.36410.37350.045*
C280.7321 (14)0.2679 (12)0.4410 (6)0.042 (3)
H280.67490.21000.41400.051*
C290.7277 (14)0.2767 (11)0.5106 (6)0.042 (3)
H290.66440.22640.53920.051*
C300.8295 (12)0.3670 (10)0.5314 (5)0.035 (2)
H300.85240.38970.57650.042*
C310.7200 (15)0.7386 (11)0.4468 (7)0.048 (3)
H310.75810.77350.48480.057*
C321.0095 (12)0.5178 (11)0.4742 (7)0.044 (3)
H321.03010.55430.51420.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0257 (4)0.0277 (4)0.0298 (4)0.0009 (4)0.0001 (4)0.0011 (4)
O10.070 (7)0.052 (6)0.061 (6)0.010 (6)0.008 (6)0.012 (5)
O20.050 (5)0.075 (7)0.071 (6)0.017 (6)0.012 (5)0.023 (6)
C10.032 (6)0.023 (5)0.044 (7)0.005 (4)0.002 (5)0.006 (5)
C20.042 (6)0.037 (6)0.033 (6)0.004 (5)0.006 (5)0.004 (6)
C30.021 (5)0.038 (7)0.048 (7)0.003 (5)0.002 (5)0.002 (5)
C40.020 (5)0.049 (7)0.044 (6)0.001 (5)0.006 (5)0.001 (6)
C50.030 (6)0.051 (8)0.034 (6)0.013 (6)0.004 (5)0.000 (6)
C60.023 (5)0.032 (6)0.046 (7)0.003 (5)0.006 (5)0.003 (5)
C70.033 (6)0.035 (6)0.050 (7)0.001 (5)0.003 (5)0.005 (6)
C80.054 (8)0.032 (7)0.049 (8)0.003 (6)0.001 (6)0.015 (6)
C90.046 (7)0.021 (6)0.046 (7)0.003 (5)0.001 (6)0.008 (5)
C100.038 (7)0.045 (7)0.042 (7)0.006 (6)0.005 (6)0.012 (6)
C110.039 (6)0.032 (6)0.045 (7)0.002 (5)0.005 (6)0.007 (6)
C120.030 (6)0.066 (9)0.046 (7)0.006 (6)0.001 (5)0.003 (7)
Ru20.0265 (4)0.0270 (4)0.0310 (4)0.0004 (4)0.0024 (4)0.0014 (4)
O210.078 (8)0.049 (6)0.060 (6)0.014 (5)0.018 (5)0.010 (5)
O220.049 (5)0.082 (7)0.061 (6)0.015 (6)0.008 (4)0.028 (6)
C210.034 (6)0.020 (5)0.055 (8)0.014 (5)0.000 (6)0.003 (5)
C220.035 (5)0.026 (6)0.033 (5)0.006 (5)0.010 (5)0.003 (5)
C230.032 (7)0.043 (8)0.062 (8)0.010 (6)0.017 (6)0.011 (6)
C240.025 (6)0.045 (8)0.065 (8)0.001 (5)0.003 (6)0.003 (6)
C250.033 (6)0.039 (7)0.034 (6)0.011 (5)0.007 (5)0.001 (5)
C260.039 (6)0.023 (5)0.036 (6)0.013 (5)0.002 (5)0.007 (5)
C270.038 (6)0.040 (6)0.034 (6)0.015 (6)0.006 (5)0.005 (5)
C280.050 (8)0.037 (7)0.040 (7)0.009 (6)0.007 (6)0.012 (6)
C290.041 (7)0.029 (6)0.056 (8)0.007 (5)0.000 (6)0.015 (6)
C300.030 (5)0.047 (6)0.028 (5)0.001 (5)0.004 (5)0.005 (5)
C310.052 (8)0.024 (6)0.067 (9)0.007 (6)0.007 (7)0.001 (6)
C320.027 (5)0.048 (7)0.058 (8)0.001 (5)0.006 (6)0.001 (7)
Geometric parameters (Å, º) top
Ru1—C62.153 (10)Ru2—C212.154 (10)
Ru1—C72.161 (12)Ru2—C262.160 (11)
Ru1—C52.166 (11)Ru2—C222.166 (10)
Ru1—C22.173 (11)Ru2—C272.169 (11)
Ru1—C102.173 (11)Ru2—C282.172 (12)
Ru1—C82.175 (12)Ru2—C252.177 (11)
Ru1—C12.175 (10)Ru2—C302.177 (11)
Ru1—C42.190 (11)Ru2—C292.179 (11)
Ru1—C92.190 (12)Ru2—C232.182 (12)
Ru1—C32.198 (11)Ru2—C242.197 (12)
O1—C111.203 (14)O21—C311.229 (15)
O2—C121.196 (14)O22—C321.188 (14)
C1—C51.418 (15)C21—C221.407 (15)
C1—C21.430 (15)C21—C251.430 (16)
C1—C111.450 (15)C21—C311.447 (17)
C2—C31.385 (15)C22—C231.408 (17)
C2—H20.9800C22—H220.9800
C3—C41.425 (15)C23—C241.405 (17)
C3—H30.9800C23—H230.9800
C4—C51.403 (16)C24—C251.415 (17)
C4—H40.9800C24—H240.9800
C5—H50.9800C25—H250.9800
C6—C71.425 (16)C26—C271.410 (15)
C6—C101.425 (16)C26—C301.449 (15)
C6—C121.430 (17)C26—C321.475 (16)
C7—C81.416 (17)C27—C281.410 (17)
C7—H70.9800C27—H270.9800
C8—C91.448 (16)C28—C291.431 (16)
C8—H80.9800C28—H280.9800
C9—C101.389 (17)C29—C301.402 (16)
C9—H90.9800C29—H290.9800
C10—H100.9800C30—H300.9800
C11—H110.9300C31—H310.9300
C12—H120.9300C32—H320.9300
C6—Ru1—C738.6 (4)C21—Ru2—C26116.1 (4)
C6—Ru1—C5127.3 (4)C21—Ru2—C2238.0 (4)
C7—Ru1—C5161.9 (4)C26—Ru2—C22130.0 (4)
C6—Ru1—C2130.7 (4)C21—Ru2—C27126.7 (5)
C7—Ru1—C2114.6 (5)C26—Ru2—C2738.0 (4)
C5—Ru1—C263.8 (4)C22—Ru2—C27112.1 (4)
C6—Ru1—C1038.5 (4)C21—Ru2—C28156.6 (5)
C7—Ru1—C1064.2 (5)C26—Ru2—C2863.8 (4)
C5—Ru1—C10112.3 (4)C22—Ru2—C28122.1 (4)
C2—Ru1—C10164.8 (4)C27—Ru2—C2837.9 (5)
C6—Ru1—C864.2 (5)C21—Ru2—C2538.6 (4)
C7—Ru1—C838.1 (5)C26—Ru2—C25128.0 (4)
C5—Ru1—C8158.5 (5)C22—Ru2—C2564.4 (4)
C2—Ru1—C8125.5 (5)C27—Ru2—C25160.6 (4)
C10—Ru1—C863.9 (5)C28—Ru2—C25160.9 (5)
C6—Ru1—C1115.4 (4)C21—Ru2—C30132.1 (4)
C7—Ru1—C1128.8 (5)C26—Ru2—C3039.0 (4)
C5—Ru1—C138.1 (4)C22—Ru2—C30166.3 (4)
C2—Ru1—C138.4 (4)C27—Ru2—C3064.4 (4)
C10—Ru1—C1129.2 (5)C28—Ru2—C3064.2 (4)
C8—Ru1—C1160.6 (5)C25—Ru2—C30114.0 (4)
C6—Ru1—C4158.9 (4)C21—Ru2—C29164.8 (5)
C7—Ru1—C4159.8 (4)C26—Ru2—C2963.5 (4)
C5—Ru1—C437.6 (4)C22—Ru2—C29154.7 (4)
C2—Ru1—C462.7 (4)C27—Ru2—C2963.5 (5)
C10—Ru1—C4124.2 (5)C28—Ru2—C2938.4 (4)
C8—Ru1—C4125.0 (5)C25—Ru2—C29128.2 (5)
C1—Ru1—C463.0 (4)C30—Ru2—C2937.5 (4)
C6—Ru1—C963.5 (4)C21—Ru2—C2363.1 (5)
C7—Ru1—C963.9 (5)C26—Ru2—C23162.2 (5)
C5—Ru1—C9125.1 (5)C22—Ru2—C2337.8 (5)
C2—Ru1—C9157.7 (4)C27—Ru2—C23126.4 (5)
C10—Ru1—C937.1 (4)C28—Ru2—C23109.3 (5)
C8—Ru1—C938.7 (4)C25—Ru2—C2363.7 (5)
C1—Ru1—C9160.4 (4)C30—Ru2—C23155.3 (5)
C4—Ru1—C9110.3 (5)C29—Ru2—C23122.4 (5)
C6—Ru1—C3162.7 (4)C21—Ru2—C2462.8 (5)
C7—Ru1—C3127.2 (4)C26—Ru2—C24160.0 (5)
C5—Ru1—C363.5 (4)C22—Ru2—C2463.0 (5)
C2—Ru1—C336.9 (4)C27—Ru2—C24160.0 (5)
C10—Ru1—C3156.7 (4)C28—Ru2—C24125.9 (5)
C8—Ru1—C3110.9 (5)C25—Ru2—C2437.7 (4)
C1—Ru1—C363.1 (4)C30—Ru2—C24125.1 (5)
C4—Ru1—C337.9 (4)C29—Ru2—C24111.8 (5)
C9—Ru1—C3124.2 (4)C23—Ru2—C2437.4 (5)
C5—C1—C2107.1 (10)C22—C21—C25109.3 (10)
C5—C1—C11127.6 (12)C22—C21—C31127.0 (12)
C2—C1—C11125.0 (11)C25—C21—C31123.6 (12)
C5—C1—Ru170.6 (6)C22—C21—Ru271.5 (6)
C2—C1—Ru170.7 (6)C25—C21—Ru271.6 (6)
C11—C1—Ru1119.3 (7)C31—C21—Ru2120.1 (8)
C3—C2—C1108.8 (10)C21—C22—C23107.4 (10)
C3—C2—Ru172.5 (7)C21—C22—Ru270.5 (6)
C1—C2—Ru170.9 (6)C23—C22—Ru271.7 (7)
C3—C2—H2125.5C21—C22—H22126.3
C1—C2—H2125.5C23—C22—H22126.3
Ru1—C2—H2125.5Ru2—C22—H22126.3
C2—C3—C4107.7 (10)C24—C23—C22108.2 (11)
C2—C3—Ru170.6 (6)C24—C23—Ru271.9 (7)
C4—C3—Ru170.7 (6)C22—C23—Ru270.5 (7)
C2—C3—H3126.1C24—C23—H23125.9
C4—C3—H3126.1C22—C23—H23125.9
Ru1—C3—H3126.1Ru2—C23—H23125.9
C5—C4—C3108.5 (10)C23—C24—C25109.4 (12)
C5—C4—Ru170.3 (6)C23—C24—Ru270.7 (7)
C3—C4—Ru171.4 (6)C25—C24—Ru270.3 (6)
C5—C4—H4125.8C23—C24—H24125.3
C3—C4—H4125.8C25—C24—H24125.3
Ru1—C4—H4125.8Ru2—C24—H24125.3
C4—C5—C1107.8 (10)C24—C25—C21105.7 (11)
C4—C5—Ru172.1 (7)C24—C25—Ru271.9 (7)
C1—C5—Ru171.3 (6)C21—C25—Ru269.9 (6)
C4—C5—H5126.0C24—C25—H25127.1
C1—C5—H5126.0C21—C25—H25127.1
Ru1—C5—H5126.0Ru2—C25—H25127.1
C7—C6—C10107.8 (10)C27—C26—C30108.2 (10)
C7—C6—C12124.8 (11)C27—C26—C32128.3 (11)
C10—C6—C12127.4 (11)C30—C26—C32123.3 (10)
C7—C6—Ru171.0 (6)C27—C26—Ru271.3 (6)
C10—C6—Ru171.6 (6)C30—C26—Ru271.1 (6)
C12—C6—Ru1121.8 (8)C32—C26—Ru2119.6 (7)
C8—C7—C6108.2 (11)C28—C27—C26108.6 (11)
C8—C7—Ru171.5 (7)C28—C27—Ru271.2 (7)
C6—C7—Ru170.4 (7)C26—C27—Ru270.7 (6)
C8—C7—H7125.9C28—C27—H27125.7
C6—C7—H7125.9C26—C27—H27125.7
Ru1—C7—H7125.9Ru2—C27—H27125.7
C7—C8—C9107.0 (11)C27—C28—C29107.3 (11)
C7—C8—Ru170.4 (7)C27—C28—Ru270.9 (7)
C9—C8—Ru171.2 (7)C29—C28—Ru271.1 (7)
C7—C8—H8126.4C27—C28—H28126.3
C9—C8—H8126.4C29—C28—H28126.3
Ru1—C8—H8126.4Ru2—C28—H28126.3
C10—C9—C8108.4 (11)C30—C29—C28109.4 (11)
C10—C9—Ru170.8 (7)C30—C29—Ru271.2 (7)
C8—C9—Ru170.1 (7)C28—C29—Ru270.5 (7)
C10—C9—H9125.8C30—C29—H29125.3
C8—C9—H9125.8C28—C29—H29125.3
Ru1—C9—H9125.8Ru2—C29—H29125.3
C9—C10—C6108.6 (11)C29—C30—C26106.5 (10)
C9—C10—Ru172.1 (7)C29—C30—Ru271.3 (6)
C6—C10—Ru170.0 (6)C26—C30—Ru269.8 (6)
C9—C10—H10125.7C29—C30—H30126.7
C6—C10—H10125.7C26—C30—H30126.7
Ru1—C10—H10125.7Ru2—C30—H30126.7
O1—C11—C1125.0 (13)O21—C31—C21123.5 (13)
O1—C11—H11117.5O21—C31—H31118.3
C1—C11—H11117.5C21—C31—H31118.3
O2—C12—C6125.7 (13)O22—C32—C26125.1 (13)
O2—C12—H12117.1O22—C32—H32117.4
C6—C12—H12117.1C26—C32—H32117.4
C5—C1—C2—C31.4 (12)C25—C21—C22—C230.8 (13)
C11—C1—C2—C3175.9 (10)C31—C21—C22—C23176.9 (10)
Ru1—C1—C2—C363.0 (8)Ru2—C21—C22—C2362.7 (8)
C5—C1—C2—Ru161.6 (7)C25—C21—C22—Ru261.9 (8)
C11—C1—C2—Ru1112.9 (10)C31—C21—C22—Ru2114.2 (11)
C1—C2—C3—C40.6 (13)C21—C22—C23—C240.5 (14)
Ru1—C2—C3—C461.3 (8)Ru2—C22—C23—C2462.4 (9)
C1—C2—C3—Ru161.9 (8)C21—C22—C23—Ru261.9 (7)
C2—C3—C4—C50.4 (14)C22—C23—C24—C251.6 (15)
Ru1—C3—C4—C560.8 (8)Ru2—C23—C24—C2559.9 (9)
C2—C3—C4—Ru161.2 (8)C22—C23—C24—Ru261.5 (8)
C3—C4—C5—C11.3 (13)C23—C24—C25—C212.0 (14)
Ru1—C4—C5—C162.8 (7)Ru2—C24—C25—C2162.1 (7)
C3—C4—C5—Ru161.5 (8)C23—C24—C25—Ru260.1 (9)
C2—C1—C5—C41.6 (12)C22—C21—C25—C241.7 (12)
C11—C1—C5—C4175.9 (10)C31—C21—C25—C24178.0 (10)
Ru1—C1—C5—C463.3 (8)Ru2—C21—C25—C2463.5 (8)
C2—C1—C5—Ru161.7 (7)C22—C21—C25—Ru261.8 (8)
C11—C1—C5—Ru1112.6 (11)C31—C21—C25—Ru2114.5 (11)
C10—C6—C7—C80.7 (14)C30—C26—C27—C280.6 (12)
C12—C6—C7—C8177.8 (11)C32—C26—C27—C28174.8 (10)
Ru1—C6—C7—C861.8 (9)Ru2—C26—C27—C2861.4 (8)
C10—C6—C7—Ru162.5 (8)C30—C26—C27—Ru261.9 (7)
C12—C6—C7—Ru1116.0 (11)C32—C26—C27—Ru2113.4 (11)
C6—C7—C8—C91.0 (14)C26—C27—C28—C291.1 (13)
Ru1—C7—C8—C962.2 (9)Ru2—C27—C28—C2962.2 (8)
C6—C7—C8—Ru161.1 (8)C26—C27—C28—Ru261.1 (8)
C7—C8—C9—C101.0 (15)C27—C28—C29—C301.3 (14)
Ru1—C8—C9—C1060.7 (9)Ru2—C28—C29—C3060.8 (8)
C7—C8—C9—Ru161.7 (9)C27—C28—C29—Ru262.1 (8)
C8—C9—C10—C60.5 (15)C28—C29—C30—C260.9 (13)
Ru1—C9—C10—C660.8 (8)Ru2—C29—C30—C2661.3 (7)
C8—C9—C10—Ru160.2 (9)C28—C29—C30—Ru260.4 (9)
C7—C6—C10—C90.1 (14)C27—C26—C30—C290.2 (12)
C12—C6—C10—C9178.4 (11)C32—C26—C30—C29175.9 (10)
Ru1—C6—C10—C962.1 (9)Ru2—C26—C30—C2962.3 (8)
C7—C6—C10—Ru162.2 (8)C27—C26—C30—Ru262.1 (8)
C12—C6—C10—Ru1116.3 (12)C32—C26—C30—Ru2113.6 (9)
C5—C1—C11—O112.4 (18)C22—C21—C31—O216.2 (19)
C2—C1—C11—O1174.3 (12)C25—C21—C31—O21178.2 (12)
Ru1—C1—C11—O199.6 (13)Ru2—C21—C31—O2194.9 (14)
C7—C6—C12—O2178.4 (13)C27—C26—C32—O226.7 (19)
C10—C6—C12—O23 (2)C30—C26—C32—O22178.6 (12)
Ru1—C6—C12—O293.6 (15)Ru2—C26—C32—O2295.5 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O210.982.643.456 (16)141
C3—H3···O1i0.982.623.536 (15)156
C4—H4···O21i0.982.453.406 (16)164
C9—H9···O22i0.982.423.370 (16)162
C23—H23···O1ii0.982.443.379 (17)161
C28—H28···O2ii0.982.433.392 (16)167
C30—H30···O2iii0.982.633.436 (14)140
C8—H8···Cgi0.982.783.546 (15)135
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y+1, z+1/2.
Lengths of the Ru—C and C—C bonds in the Cp rings of the A and B molecules. top
AB
Ru1—C12.175 (10)Ru2—C212.154 (10)
Ru1—C22.173 (11)Ru2—C222.166 (10)
Ru1—C32.198 (11)Ru2—C232.182 (12)
Ru1—C42.190 (11)Ru2—C242.197 (12)
Ru1—C52.166 (11)Ru2—C252.177 (11)
Ru1—C62.153 (10)Ru2—C262.160 (11)
Ru1—C72.161 (12)Ru2—C272.169 (11)
Ru1—C82.175 (12)Ru2—C282.172 (12)
Ru1—C92.190 (12)Ru2—C292.179 (11)
Ru1—C102.173 (11)Ru2—C302.177 (11)
C1—C21.430 (15)C21—C251.430 (16)
C2—C31.385 (15)C21—C221.407 (15)
C3—C41.425 (15)C22—C231.408 (17)
C4—C51.403 (16)C23—C241.405 (17)
C1—C51.418 (15)C24—C251.415 (17)
C6—C71.425 (16)C26—C301.449 (15)
C7—C81.416 (17)C26—C271.410 (15)
C8—C91.448 (16)C27—C281.410 (17)
C9—C101.389 (17)C28—C291.431 (16)
C6—C101.425 (16)C29—C301.402 (16)
 

Acknowledgements

We thank Dr Toscano for solving the crystal structure.

Funding information

We are grateful to DGAPA (RN206615) for financial support and CONACyT (Fellowship 412093).

References

First citationBalavoine, G. G. A., Doisneau, G. & Fillebeen-Khan, T. (1991). J. Organomet. Chem. 412, 381–382.  CrossRef Web of Science Google Scholar
First citationBraga, D. & Grepioni, F. (1997). Acc. Chem. Res. 30, 81–87.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Paganelli, F., Tagliavini, E., Casolari, S., Cojazzi, G. & Grepioni, F. (1999). Organometallics, 18, 4191–4196.  Web of Science CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L.-X. & Hou, X.-L. (2010). Editors. Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, ch. 7–8. Weinheim: Wiley VCH.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacGillivray, L. R., Spinney, H. A., Reid, J. L. & Ripmeester, J. A. (1999). J. Chem. Crystallogr. 29, 865–869.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163–167.  CAS Google Scholar
First citationMuratov, D. V., Romanov, A. S. & Kudinov, A. R. (2014). Russ. Chem. Bull. 63, 2485–2492.  Web of Science CrossRef Google Scholar
First citationNesmeyanov, A. N., Lubovich, A. A. & Gubin, S. P. (1972). Russ. Chem. Bull. 21, 1761–1764.  CrossRef Google Scholar
First citationRausch, M. D., Fischer, E. O. & Grubert, H. (1960). J. Am. Chem. Soc. 82, 76–82.  CrossRef Web of Science Google Scholar
First citationSanders, R. & Mueller-Westerhoff, U. T. (1996). J. Organomet. Chem. 512, 219–224.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠtěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules, ch. 8–12, 13. Chichester: J. Wiley & Sons.  Google Scholar
First citationTrotter, J. (1963). Acta Cryst. 16, 571–572.  CrossRef IUCr Journals Web of Science Google Scholar
First citationWavefunction (2017). Spartan '16. Version 2.0.1. Wavefunction Inc., Irvine, California, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds