research communications
Molecular and H-2λ6,1-benzothiazine-3-carboxylate
of methyl 4-methyl-2,2-dioxo-1aSSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60, Nauky ave., Kharkiv 61001, Ukraine, bV.N. Karazin Kharkiv National University, 4 Svobody, Kharkiv 61077, Ukraine, and cNational University of Pharmacy, 4 Valentinovska Str., Kharkiv 61168, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com
The title compound, C11H11NO4S, possesses weak analgesic properties and is a source compound for the synthesis of highly active analgesic and anti-inflammatory compounds. The benzothiazine ring adopts a conformation intermediate between twist-boat and sofa. The ester substituent is turned towards the endocyclic double bond because of steric repulsion. In the crystal, the molecules form columns along the [001] direction, bound by N—H⋯O hydrogen bonds and stacking interactions.
Keywords: 1,2-benzothiazine derivatives; molecular and crystal structure; hydrogen bonding; π-stacking interaction.
CCDC reference: 1861156
1. Chemical context
Methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (I) displays moderate analgesic properties (Azotla-Cruz et al., 2017) but has been used for the synthesis of highly active analgesic and anti-inflammatory compounds (Ukrainets et al., 2018). Earlier it was shown (Ukrainets et al., 2016a,b) that the biological properties of 2,1-benzothiazine derivatives depend to a considerable degree on their molecular and crystal structures. Thus knowledge of both the molecular and crystal structures of I is very important.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The dihydrothiazine heterocycle adopts a twist-boat conformation with puckering parameters (Zefirov et al., 1990) S = 0.57, Θ = 53.3°, Ψ = 25.2°. The S1 and C8 atoms deviate from the mean plane of the remaining ring atoms by 0.7941 (6) and 0.260 (2) Å, respectively. Some steric repulsion between the methyl substituent at the C7 atom and the ester group [the short intramolecular contact C11⋯O1 is 2.986 (5) Å compared to the van der Waals radii sum of 3.00 Å (Zefirov, 1997)] is compensated for by the formation of the intramolecular C11—H11C⋯O1 hydrogen bond (Table 1). As a result, the ester substituent is turned relative to the C7=C8 endocyclic double bond [C7=C8—C9—O1 torsion angle is −35.2 (5)°] and the C7=C8 [1.359 (4) Å] and C8—C9 [1.504 (3) Å] bonds are elongated compared to the standard values (Bürgi & Dunitz, 1994) of 1.326 and 1.455 Å, respectively. The methyl group of the ester substituent is in an anti-periplanar conformation relative to the C8—C9 bond [C8—C9—O2—C10 = 174.5 (2)°].
3. Supramolecular features
In the crystal, molecules of I form columns along the [001] direction (Fig. 2). Neighboring molecules within the column are linked by the N1—H1N⋯O4i hydrogen bonds (Table 1) and π-stacking interactions with centroid–centroid diatances of 3.870 (2) Å. The columns are connected by weak C4—H4⋯O3ii hydrogen bonds (Table 1).
4. Database survey
An search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016) revealed only three similar 1,2-benzothiazine derivatives with a methyl substituent at the C7 atom (VAZQEV and VAZQIZ, Azotla-Cruz et al., 2017; OWUQII, Azotla-Cruz et al., 2016). All of these compounds are substituted at the nitrogen atom and have very similar molecular structures. The structure VAZQEV differs from others by the trans-orientation of the carbonyl group of the ester substituent relative to the endocyclic double bond.
4.1. Synthesis and crystallization
Methyl (chlorosulfonyl)acetate (1.90 g, 0.011 mol) was added dropwise with stirring to a solution of ortho-aminoacetophenone (1.35 g, 0.010 mol) and triethylamine (1.54 mL, 0.011 mol) in CH2Cl2 (20 mL) and cooled to 268–273 K. After 10 h, water (50 mL) was added to the reaction mixture, which was then acidified to pH 4 with 1 N HCl and mixed thoroughly. The organic layer was separated off, dried over anhydrous CaCl2, and the solvent distilled (at reduced pressure at the end). The resulting anilide was subjected to heterocyclization without purification. A solution of sodium methylate in anhydrous methanol [from metallic sodium (0.69 g, 0.030 mol) and absolute methanol (15 mL)], the mixture was boiled and then kept for 15 h at room temperature. The reaction mixture was diluted with cold water and acidified with 1 N HCl to pH 4. Finally, the solid ester, I, was separated by filtration, washed with water, and dried in air giving colourless block-shaped crystals, yield: 2.25 g (89%); m.p. 476–578 K (methanol); Rf = 0.37. 1H NMR (400 MHz, DMSO-d6): δ 11.84 (br s, 1H, NH), 7.79 (d, 1H, J = 7.6 Hz, H-5), 7.49 (t, 1H, J = 7.2 Hz, H-7), 7.22 (t, 1H, J = 7.6 Hz, H-6), 7.12 (d, 1H, J = 8.0 Hz, H-8), 3.84 (s, 3H, OCH3), 2.46 (s, 3H, 4-CH3, coincides with the signal of residual protons DMSO-d6). 13C-NMR (100 MHz, DMSO-d6 + CDCl3): δ 161.6 (C=O), 147.7, 138.2, 132.2, 127.4, 127.1, 123.0, 121.3, 118.8, 52.9 (OCH3), 17.5 (4-CH3). MS (m/z, %): 253 [M]+ (4.4), 252 [M − H]+ (1.5), 221 [M − CH3OH]+ (8.4), 195 (80.2), 119 (75.3), 103 (17.0), 93 (100), 92 (59.5), 77 (50.0). Analysis calculated for C11H11NO4S: C, 52.16; H, 4.38; N, 5.53; S 12.66%. Found: C, 52.07; H, 4.30; N, 5.46; S 12.72%.
5. Refinement
Crystal data, data collection and structure . All of the H atoms were located in difference-Fourier maps. The N-bound H atoms were refined isotropically. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.96 Å with Uiso(H) =1.5Ueq(C) for the methyl groups and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for all others.
details are summarized in Table 2Supporting information
CCDC reference: 1861156
https://doi.org/10.1107/S2056989018011362/zp2032sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011362/zp2032Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018011362/zp2032Isup3.cml
Data collection: CrysAlis CCD (Agilent, 2012); cell
CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).C11H11NO4S | F(000) = 264 |
Mr = 253.27 | Dx = 1.480 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8367 (3) Å | Cell parameters from 2089 reflections |
b = 9.6842 (4) Å | θ = 4.2–30.6° |
c = 7.5006 (4) Å | µ = 0.29 mm−1 |
β = 93.468 (4)° | T = 293 K |
V = 568.19 (4) Å3 | Block, colourless |
Z = 2 | 0.21 × 0.18 × 0.15 mm |
Agilent Xcalibur Sapphire3 diffractometer | 3068 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2803 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.026 |
ω–scans | θmax = 30.0°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | h = −10→11 |
Tmin = 0.809, Tmax = 1.000 | k = −9→13 |
5509 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0399P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3068 reflections | Δρmax = 0.19 e Å−3 |
160 parameters | Δρmin = −0.21 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 1127 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.82278 (8) | 0.16925 (5) | 0.52933 (8) | 0.03401 (14) | |
O1 | 0.6143 (4) | 0.5195 (2) | 0.4202 (4) | 0.0679 (7) | |
O2 | 0.8581 (3) | 0.4555 (2) | 0.5668 (3) | 0.0514 (5) | |
O3 | 0.9468 (3) | 0.2019 (2) | 0.4041 (3) | 0.0477 (5) | |
O4 | 0.8846 (2) | 0.15240 (18) | 0.7126 (2) | 0.0416 (4) | |
N1 | 0.7250 (3) | 0.0322 (2) | 0.4558 (3) | 0.0420 (5) | |
H1N | 0.780 (5) | −0.012 (4) | 0.388 (5) | 0.064 (11)* | |
C1 | 0.5686 (3) | −0.0083 (2) | 0.5189 (3) | 0.0364 (5) | |
C2 | 0.5276 (4) | −0.1480 (3) | 0.5226 (4) | 0.0459 (6) | |
H2 | 0.6049 | −0.2136 | 0.4864 | 0.055* | |
C3 | 0.3720 (5) | −0.1882 (3) | 0.5802 (4) | 0.0558 (8) | |
H3 | 0.3433 | −0.2814 | 0.5814 | 0.067* | |
C4 | 0.2584 (4) | −0.0915 (4) | 0.6361 (4) | 0.0570 (8) | |
H4 | 0.1550 | −0.1198 | 0.6786 | 0.068* | |
C5 | 0.2967 (4) | 0.0469 (3) | 0.6297 (4) | 0.0469 (6) | |
H5 | 0.2174 | 0.1112 | 0.6652 | 0.056* | |
C6 | 0.4538 (3) | 0.0927 (3) | 0.5705 (3) | 0.0374 (5) | |
C7 | 0.4909 (3) | 0.2408 (3) | 0.5508 (3) | 0.0384 (5) | |
C8 | 0.6512 (3) | 0.2858 (3) | 0.5222 (3) | 0.0365 (5) | |
C9 | 0.7020 (4) | 0.4337 (3) | 0.4961 (4) | 0.0431 (6) | |
C10 | 0.9327 (5) | 0.5898 (3) | 0.5392 (5) | 0.0634 (9) | |
H10A | 1.0462 | 0.5924 | 0.5949 | 0.095* | |
H10B | 0.8640 | 0.6595 | 0.5908 | 0.095* | |
H10C | 0.9375 | 0.6066 | 0.4134 | 0.095* | |
C11 | 0.3470 (5) | 0.3403 (3) | 0.5685 (6) | 0.0599 (10) | |
H11A | 0.3055 | 0.3331 | 0.6860 | 0.090* | |
H11B | 0.2562 | 0.3192 | 0.4811 | 0.090* | |
H11C | 0.3869 | 0.4326 | 0.5498 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0300 (3) | 0.0345 (2) | 0.0379 (3) | 0.0013 (2) | 0.0052 (2) | 0.0017 (2) |
O1 | 0.0679 (16) | 0.0430 (11) | 0.0907 (18) | 0.0062 (10) | −0.0134 (14) | 0.0153 (11) |
O2 | 0.0499 (13) | 0.0386 (9) | 0.0646 (14) | −0.0088 (9) | −0.0041 (10) | 0.0034 (8) |
O3 | 0.0423 (11) | 0.0504 (11) | 0.0519 (12) | 0.0000 (9) | 0.0161 (9) | 0.0048 (9) |
O4 | 0.0372 (10) | 0.0453 (10) | 0.0421 (11) | −0.0009 (7) | −0.0014 (8) | 0.0061 (7) |
N1 | 0.0383 (12) | 0.0385 (11) | 0.0505 (13) | −0.0010 (9) | 0.0116 (10) | −0.0106 (9) |
C1 | 0.0333 (12) | 0.0388 (12) | 0.0367 (13) | −0.0032 (10) | 0.0000 (10) | −0.0034 (9) |
C2 | 0.0472 (16) | 0.0391 (13) | 0.0508 (16) | −0.0035 (11) | −0.0007 (13) | 0.0006 (11) |
C3 | 0.059 (2) | 0.0488 (16) | 0.059 (2) | −0.0186 (14) | 0.0022 (15) | 0.0046 (12) |
C4 | 0.0461 (17) | 0.072 (2) | 0.0530 (17) | −0.0189 (15) | 0.0062 (13) | 0.0059 (15) |
C5 | 0.0349 (13) | 0.0617 (17) | 0.0444 (15) | −0.0021 (12) | 0.0040 (12) | −0.0013 (12) |
C6 | 0.0323 (12) | 0.0426 (13) | 0.0369 (12) | 0.0005 (10) | −0.0004 (9) | −0.0029 (9) |
C7 | 0.0328 (12) | 0.0405 (13) | 0.0416 (13) | 0.0036 (10) | −0.0010 (10) | −0.0047 (10) |
C8 | 0.0370 (13) | 0.0343 (11) | 0.0383 (13) | 0.0052 (9) | 0.0010 (10) | −0.0012 (9) |
C9 | 0.0474 (15) | 0.0347 (12) | 0.0469 (16) | 0.0045 (11) | −0.0004 (13) | −0.0027 (10) |
C10 | 0.069 (2) | 0.0425 (17) | 0.078 (2) | −0.0173 (15) | 0.0017 (18) | −0.0029 (15) |
C11 | 0.0372 (17) | 0.0518 (15) | 0.091 (3) | 0.0120 (13) | 0.0055 (18) | −0.0072 (15) |
S1—O3 | 1.4271 (19) | C1—C6 | 1.400 (3) |
S1—O4 | 1.4391 (19) | C2—C3 | 1.375 (5) |
S1—N1 | 1.613 (2) | C3—C4 | 1.375 (5) |
S1—C8 | 1.754 (3) | C4—C5 | 1.375 (4) |
O1—C9 | 1.199 (4) | C5—C6 | 1.406 (4) |
O2—C9 | 1.321 (4) | C6—C7 | 1.472 (4) |
O2—C10 | 1.446 (4) | C7—C8 | 1.359 (4) |
N1—C1 | 1.397 (3) | C7—C11 | 1.496 (4) |
C1—C2 | 1.391 (3) | C8—C9 | 1.503 (4) |
O3—S1—O4 | 116.79 (13) | C4—C5—C6 | 121.1 (3) |
O3—S1—N1 | 106.58 (13) | C1—C6—C5 | 117.2 (2) |
O4—S1—N1 | 111.04 (12) | C1—C6—C7 | 121.3 (2) |
O3—S1—C8 | 112.85 (12) | C5—C6—C7 | 121.4 (3) |
O4—S1—C8 | 108.38 (12) | C8—C7—C6 | 121.2 (2) |
N1—S1—C8 | 99.88 (13) | C8—C7—C11 | 121.1 (3) |
C9—O2—C10 | 117.3 (2) | C6—C7—C11 | 117.7 (2) |
C1—N1—S1 | 121.58 (18) | C7—C8—C9 | 125.5 (2) |
C2—C1—N1 | 119.2 (2) | C7—C8—S1 | 120.2 (2) |
C2—C1—C6 | 121.4 (2) | C9—C8—S1 | 114.1 (2) |
N1—C1—C6 | 119.3 (2) | O1—C9—O2 | 124.7 (3) |
C3—C2—C1 | 119.5 (3) | O1—C9—C8 | 125.0 (3) |
C2—C3—C4 | 120.4 (3) | O2—C9—C8 | 110.3 (2) |
C5—C4—C3 | 120.5 (3) | ||
O3—S1—N1—C1 | −163.3 (2) | C1—C6—C7—C11 | 166.1 (3) |
O4—S1—N1—C1 | 68.5 (2) | C5—C6—C7—C11 | −9.2 (4) |
C8—S1—N1—C1 | −45.7 (2) | C6—C7—C8—C9 | 178.5 (2) |
S1—N1—C1—C2 | −149.9 (2) | C11—C7—C8—C9 | −3.3 (4) |
S1—N1—C1—C6 | 32.6 (3) | C6—C7—C8—S1 | −6.1 (3) |
N1—C1—C2—C3 | −178.3 (3) | C11—C7—C8—S1 | 172.1 (2) |
C6—C1—C2—C3 | −0.8 (4) | O3—S1—C8—C7 | 145.0 (2) |
C1—C2—C3—C4 | −0.9 (5) | O4—S1—C8—C7 | −84.1 (2) |
C2—C3—C4—C5 | 2.1 (5) | N1—S1—C8—C7 | 32.2 (2) |
C3—C4—C5—C6 | −1.6 (4) | O3—S1—C8—C9 | −39.2 (2) |
C2—C1—C6—C5 | 1.3 (4) | O4—S1—C8—C9 | 91.8 (2) |
N1—C1—C6—C5 | 178.8 (2) | N1—S1—C8—C9 | −151.97 (19) |
C2—C1—C6—C7 | −174.3 (2) | C10—O2—C9—O1 | −4.8 (5) |
N1—C1—C6—C7 | 3.2 (4) | C10—O2—C9—C8 | 174.5 (2) |
C4—C5—C6—C1 | −0.1 (4) | C7—C8—C9—O1 | −35.2 (5) |
C4—C5—C6—C7 | 175.5 (2) | S1—C8—C9—O1 | 149.2 (3) |
C1—C6—C7—C8 | −15.6 (4) | C7—C8—C9—O2 | 145.5 (3) |
C5—C6—C7—C8 | 169.1 (3) | S1—C8—C9—O2 | −30.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···O1 | 0.96 | 2.24 | 2.986 (5) | 133 |
N1—H1N···O4i | 0.81 (4) | 2.09 (4) | 2.891 (3) | 170 (4) |
C4—H4···O3ii | 0.93 | 2.55 | 3.427 (3) | 158 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x−1, −y, z+1/2. |
References
Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Azotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2. Google Scholar
Azotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574–1576. CrossRef IUCr Journals Google Scholar
Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-7-84. Weinheim: VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ukrainets, I. V., Hamza, G. M., Burian, A. A., Shishkina, S. V., Voloshchuk, N. I. & Malchenko, O. V. (2018). Sci. Pharm. 86, 9. CrossRef Google Scholar
Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Grinevich, L. A. & Sim, G. (2016a). Sci. Pharm. 84, 705–714. CrossRef Google Scholar
Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411–415. CrossRef IUCr Journals Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.