research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1,2-bis­­(2′,6′-diisoprop­­oxy-[2,3′-bipyridin]-6-yl)benzene

CROSSMARK_Color_square_no_text.svg

aResearch Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea, bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and cDivisionof Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 August 2018; accepted 14 September 2018; online 25 September 2018)

The title mol­ecule, C38H42N4O4, displays a helical structure induced by the combination of the C—C—C—C torsion angle [−10.8 (2)°] between two 2,3′-bipyridyl units attached to the 1,2-positions of the central benzene ring and consecutive connections between five aromatic rings through the meta- and ortho-positions. Intra­molecular C—H⋯π inter­actions between an H atom of a pyridine ring and the centroid of a another pyridine ring contributes to the stabilization of the helical structure. In the crystal, weak C—H⋯π inter­actions link the title mol­ecules into a two-dimensional supra­molecular network extending parallel to the ac plane, in which the mol­ecules with right- and left-handed helical structures are alternately arranged. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the mol­ecular packing is dominated by van der Waals inter­actions between neighbouring H atoms, as well as by C—H⋯π inter­actions. One isopropoxyl group is disordered over two sets of sites [occupancy ratio 0.715 (5):0.285 (5)].

1. Chemical context

Phospho­rescent transition metal complexes based on platinum metal cations have attracted enormous current inter­est owing to their applications as electroluminescent devices, e.g. as phospho­rescent organic light-emitting diodes (PhOLEDs) or light-emitting electrochemical cells (LEECs) (Cebrián & Mauro, 2018[Cebrián, C. & Mauro, M. (2018). Beilstein J. Org. Chem. 14, 1459-1481.]). In particular, platinum complexes bearing tetra­dentate ligands are of great inter­est as blue phospho­rescent materials because of their pure blue emission and high efficiency (Fleetham et al., 2014[Fleetham, T., Li, G., Wen, L. & Li, J. (2014). Adv. Mater. 26, 7116-7121.]). It is well known that the origin of emission in platinum complexes results mainly from an intra-ligand charge transfer (ILCT) mixed with a metal-to-ligand charge-transfer transition (MLCT) (Yersin et al., 2011[Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. (2011). Coord. Chem. Rev. 255, 2622-2652.]). In order to achieve blue phospho­rescent materials, the design of ligands with a large triplet energy needs to be taken into account as the first step.

Our inter­est has been focused on the development of a suitable tetra­dentate ligand based on 2,3′-bi­pyridine with a large triplet energy (Lee et al., 2017[Lee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378-383.]). Moreover, the crystal structures of 2,3′-bi­pyridine-based tetra­dentate ligands have aroused our curiosity, because the knowledge of the coordination mode(s) to a metal ion are of paramount importance in understanding its chemical and physical properties. Herein, we describe the mol­ecular and crystal structures of the title compound that can act as a tetra­dentate ligand to various transition metal ions. In addition, the mol­ecular packing of the title compound was examined with the aid of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. One isopropoxyl group is disordered over two sets of sites [C31–C30(–O2)–C32 and C31′–C30′(–O2′)–C32′, respectively]. Within the mol­ecule, intra­molecular C—H⋯N/O hydrogen bonds (Table 1[link], shown as black dashed lines in Fig. 1[link]) are observed. With respect to the two 2,3′-bipyridyl units, the N1-containing pyridine ring is tilted by 31.78 (6)° relative to the attached N2-containing one, while the N3-containing pyridine ring is only slightly tilted by 11.89 (8)° to the attached N4-containing one. The central benzene ring linking to the two 2,3′-bipyridyl units is tilted by 39.84 (5) and 48.07 (5)° relative to N2- and N3-containing pyridine rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N3/C17–C21 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2 0.95 2.47 2.789 (2) 100
C7—H7⋯O2 0.95 2.50 2.985 (3) 111
C7—H7⋯O2′ 0.95 2.07 2.694 (8) 122
C20—H20⋯O3 0.95 2.21 2.825 (2) 122
C26—H26⋯N3 0.95 2.37 2.726 (2) 102
C3—H3⋯Cg1 0.95 2.61 3.5078 (18) 158
C32—H32ACg1i 0.98 2.79 3.594 (3) 140
C37—H37CCg2ii 0.98 2.96 3.742 (3) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms not involved in intra­molecular inter­actions were omitted for clarity. The minor part of the disordered isopropyl group is drawn by two-coloured dashed lines. Black and yellow dashed lines represent intra­molecular C—H⋯N/O hydrogen bonds and C—H⋯π inter­actions.

The two 2,3′-bipyridyl units are attached at the 1,2-positions of the central benzene in an up- and down-fashion with the C10—C11—C16—C17 torsion angle being −10.8 (2)°, which is believed to reduce the steric hindrance between the two 2,3′-bipyridyl units. In combination with this torsion angle, the consecutive connections of five aromatic rings in the title mol­ecule lead to a helical structure. The central benzene unit occupies ortho-positions relative to the N atoms (N2 and N3) of the two inner pyridine rings, while the outer pyridine rings containing N1 and N4 are substituted relative to the inner pyridine rings at the meta-positions. An intra­molecular C—H⋯π inter­action between aromatic H3 and the centroid of the N3/C17–C21 ring as well as C—H⋯N/O hydrogen bonds (Table 1[link], shown as yellow and black dashed lines in Fig. 1[link], respectively) assists in the stabilization of the helical structure.

3. Supra­molecular features

In the crystal structure, the title mol­ecules are inter­linked by further C—H⋯π inter­actions (Table 1[link], yellow dashed lines in Fig. 2[link]) between (meth­yl)H32ACg1i and between (meth­yl)H37CCg2ii [Cg1 and Cg2 are the centroids of the N3/C17–C21 and C11–C16 rings, respectively; symmetry codes refer to Table 1[link]], forming a two-dimensional supra­molecular network parallel to the ac plane, in which mol­ecules with right- and left-handed helical structures are alternately arranged. These layers are stacked in an ABAB fashion along the b-axis direction whereby no significant inter­molecular inter­actions between the layers are observed.

[Figure 2]
Figure 2
Layer formed through inter­molecular C—H⋯π inter­actions (yellow dashed lines). The disordered isopropoxyl group and H atoms not involved in inter­molecular inter­actions are not shown for clarity. Colour codes: grey = carbon, blue = nitro­gen, red = oxygen and white = hydrogen.

4. Hirshfeld surface analysis

In order to qu­antify the various inter­molecular inter­actions in the mol­ecular packing of the title compound, a Hirshfeld surface analysis was carried out using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]). In Fig. 3[link], which shows the Hirshfeld surface mapped over the normalized contact distance (dnorm), the light-red spot on the surface indicates contact points with atoms participating in inter­molecular C—H⋯π inter­actions, corresponding to the H32A and pyridine-C20 atoms (Table 2[link]). Except for this light-red spot, the overall surface mapped over dnorm is covered by white and blue colours, indicating that the distances between the contact atoms in inter­molecular contacts are nearly the same as the sum of their van der Waals radii or longer. Therefore, there are no effective inter­molecular inter­actions apart from the C—H⋯π inter­actions in the mol­ecular packing. These features are confirmed in the two-dimensional fingerprint plots, Fig. 4[link]ae, delineated into overall, H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts, respectively. Their relative contributions of inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link].

Table 2
Summary of selected short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H34C⋯H34C 2.01 -x + 2, −y + 1, −z
H34B⋯H31F 2.08 -x + [{5\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
H18⋯H31E 2.14 -x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
H32A⋯C20 2.66 x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]
H25⋯O4 2.60 -x + 2, −y + 2, −z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound

Contact Percentage contribution
H⋯H 65.2
H⋯C/C⋯H 22.7
H⋯O/O⋯H 6.5
H⋯N/N⋯H 4.3
C⋯C 0.9
N⋯C/C⋯N 0.4
O⋯C/C⋯O 0.1
[Figure 3]
Figure 3
A view of the Hirshfeld surface of the title compound mapped over dnorm, showing H⋯C contacts of inter­molecular C—H⋯π inter­actions using a fixed colour scale of −0.1511 (red) to 1.6184 (blue) a.u.
[Figure 4]
Figure 4
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H and (e) H⋯N/N⋯H contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

As shown in Fig. 4[link]b and Table 3[link], the most widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a 65.2% contribution to the Hirshfeld surface. The sharp peak at de = di = 1.0 Å in the fingerprint plot delineated into H⋯H contacts (Fig. 4[link]b) corresponds to the shortest inter­atomic H⋯H contact between symmetry-related isoprop­oxy-H34C atoms (Table 2[link]), whereas two pairs of the flanking broad peaks, symmetrically disposed with respect to the diagonal, at de + di ∼ 2.1 and 2.2 Å, result from inter­atomic H⋯H contacts between the isoprop­oxy-H34B and -H31F atoms and between the benzene-H18 and isoprop­oxy-H31E atoms, respectively (Table 2[link]). The central green strip in Fig. 4[link]b, centered at de + di = 2.8 Å along the diagonal, indicates the presence of a large number of loose H⋯H contacts in the mol­ecular packing. The second largest contribution (22.7%) to the Hirshfeld surface of the title compound is due to inter­atomic H⋯C/C⋯H contacts (Fig. 4[link]c and Table 3[link]), drawn on the fingerprint plot as a pair with a symmetrical wing-like shape on the left and right side with respect to the diagonal. The peaks at de + di ∼ 2.7 Å in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 4[link]c) reflect the presence of short C—H⋯π inter­actions between the isoprop­oxy-H32A and pyridine-C20 atoms (Table 2[link]).

In the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 4[link]d), the 6.5% contribution to the Hirshfeld surface (Table 3[link]) originates from C—H⋯O hydrogen bonding. A pair of broad peaks at de + di ∼ 2.6 Å in Fig. 4[link]d corresponds to hydrogen bonding between the pyridine-H25 and O4 atoms (Table 2[link]). Although N⋯H/H⋯N contacts with a contribution of 4.3% to the Hirshfeld surface (Fig. 4[link]e and Table 3[link]) were observed, their inter­atomic distances are longer than the sum of their van der Waals radii and therefore they do not specifically contribute to the mol­ecular packing. Finally, the small contributions from the remaining inter­atomic contacts (Table 3[link]), i.e. C⋯C (0.9%), N⋯C/C⋯N (0.4%) and O⋯C/C⋯O (0.1%), have a negligible effect on the mol­ecular packing.

In summary, the Hirshfeld surface analysis and two-dimensional fingerprint plot reveal that the mol­ecular packing in the title compound is dominated by inter­molecular van der Waals inter­actions between neighbouring H atoms as well as by C—H⋯π inter­actions.

5. Database survey

Although a search of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2′,6′-disubstituted 2,3′-bi­pyridine gave a number of hits, that for 2′,6′-dialk­oxy-2,3′-bi­pyridine gave only four hits. Three [FINJAP (Polander et al., 2013[Polander, L. E., Yella, A., Curchod, B. F. E., Ashari Astani, N., Teuscher, J., Scopelliti, R., Gao, P., Mathew, S., Moser, J.-E., Tavernelli, I., Rothlisberger, U., Grätzel, M., Nazeeruddin, Md. K. & Frey, J. (2013). Angew. Chem. Int. Ed. 52, 8731-8735.]), SITFIM (Frey et al., 2014[Frey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). Dalton Trans. 43, 5667-5679.]) and XIXNID (Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.])] are RuII or IrII complexes with the ligand 2′,6′-dimeth­oxy-2,3′-bi­pyridine, and the remaining one (XIXNEZ; Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]) is an IrII complex with the ligand 2′,6′-di(2-meth­oxy­eth­oxy-2,3′-bi­pyridine. Recently, our group has also reported the crystal structure of 2,3′-bi­pyridine-2′,6′-dicarbo­nitrile (Jung et al., 2018[Jung, S., Park, K.-M., Kim, J. & Kang, Y. (2018). Acta Cryst. E74, 1272-1275.]) and the phospho­rescent properties for the IrII complex with ligand 2′,6′-diisoprop­oxy-2,3′-bi­pyridine (Kim et al., 2018[Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703-706.]).

6. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Advance 400 MHz spectrometer. The two starting materials, 6-bromo-2′,6′-dii­fluoro-2,3′-bi­pyridine and 1,2-bis­(2′,6′-di­fluoro-2,3′-bi­pyridine)­benzene were synthesized according to a slight modification of the previous synthetic methodology reported by our group (Kim et al., 2018[Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703-706.]; Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). Details regarding the synthetic procedures and reagents are presented in Fig. 5[link].

[Figure 5]
Figure 5
Synthetic routes and reagents to obtain the title compound: (i) 1,2-dipinacolato­benzene­(1.5 eq), Pd(PPh3)4 (6 mol%), 2 M K3PO4 (6 eq), THF, 363 K, 48 h; (ii) NaH (6 eq), iPrOH (8 eq), DMF, 273 K, 10 h.

The title compound was synthesized as follows: NaH (0.063 g, 2.64 mmol) was dissolved in DMF (10 ml) at 273 K. Isopropyl alcohol (1.27 ml, 3.52 mmol) was added slowly at the same temperature. Then the reaction mixture was stirred for 30 min. 1,2-Bis(2′,6′-di­fluoro­bipyridine)­benzene (0.2 g, 0.44 mmol) in DMF (10 ml) was subsequently added into the reaction mixture, which was stirred at 273 K for a further 10 h. All volatiles were removed under vacuum and the remaining solid extracted with EtOAc. The pure title compound was obtained by silica column chromatography (EtOAc/hexane = 1/10 v/v). Colourless crystals with X-ray quality were obtained by slow evaporation of a di­chloro­methane solution of title compound. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 2H), 7.75 (dd, J = 4.2 Hz, 2H), 7.64 (t, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.53 (dd, J = 4.0 Hz, 2H), 7.22 (d, J = 7.7 Hz, 2H), 6.17 (d, J = 7.6 Hz, 2H), 5.38 (sep, J = 3.7 Hz, 2H), 5.23 (sep, J = 3.7 Hz, 2H) 1.40 (d, J = 6.5 Hz, 12H), 1.36 (d, J = 6.4 Hz, 12H).

7. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 1.00 Å for methine C—H, 0.98 Å for methyl C–H with Uiso(H) = 1.2–1.5Ueq(C). The isopropyl group [C31–C30(–O2)–C32] was found to be disordered over two sets of sites [occupancy ratio 0.715 (5):0.285 (5)].

Table 4
Experimental details

Crystal data
Chemical formula C38H42N4O4
Mr 618.75
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.4897 (2), 17.2533 (4), 21.0921 (5)
β (°) 90.4825 (13)
V3) 3453.26 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55030, 6786, 5400
Rint 0.042
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.05
No. of reflections 6786
No. of parameters 452
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1,2-Bis(2',6'-diisopropoxy-[2,3'-bipyridin]-6-yl)benzene top
Crystal data top
C38H42N4O4F(000) = 1320
Mr = 618.75Dx = 1.190 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4897 (2) ÅCell parameters from 9922 reflections
b = 17.2533 (4) Åθ = 2.3–26.8°
c = 21.0921 (5) ŵ = 0.08 mm1
β = 90.4825 (13)°T = 173 K
V = 3453.26 (14) Å3Needle, colourless
Z = 40.42 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5400 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 1.5°
Tmin = 0.705, Tmax = 0.746h = 1111
55030 measured reflectionsk = 2121
6786 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0499P)2 + 1.521P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6786 reflectionsΔρmax = 0.18 e Å3
452 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.19196 (15)0.58808 (7)0.31447 (7)0.0521 (4)
O31.01870 (15)0.65522 (7)0.01321 (6)0.0507 (3)
O41.15126 (12)0.90921 (7)0.01613 (6)0.0411 (3)
N11.09841 (15)0.70868 (9)0.33625 (7)0.0428 (4)
N20.66435 (14)0.78701 (8)0.23833 (6)0.0336 (3)
N30.64904 (15)0.73193 (8)0.10559 (6)0.0359 (3)
N41.08181 (15)0.78198 (8)0.00226 (7)0.0376 (3)
C11.09115 (19)0.64246 (10)0.30500 (8)0.0392 (4)
C20.9834 (2)0.62424 (10)0.26277 (9)0.0427 (4)
H20.97940.57520.24230.051*
C30.88276 (18)0.67992 (10)0.25170 (8)0.0369 (4)
H30.80660.66870.22370.044*
C40.88968 (17)0.75228 (10)0.28048 (8)0.0343 (4)
C51.00019 (19)0.76141 (11)0.32417 (9)0.0436 (4)
C60.78887 (16)0.81328 (10)0.26010 (7)0.0334 (4)
C70.82307 (19)0.89191 (10)0.25820 (9)0.0416 (4)
H70.91070.90980.27470.050*
C80.72757 (19)0.94328 (11)0.23194 (9)0.0439 (4)
H80.74900.99700.23000.053*
C90.60074 (18)0.91603 (10)0.20854 (8)0.0400 (4)
H90.53410.95050.19000.048*
C100.57258 (17)0.83754 (10)0.21263 (7)0.0351 (4)
C110.43609 (17)0.80458 (11)0.18974 (8)0.0407 (4)
C120.31225 (19)0.84493 (14)0.20206 (10)0.0553 (5)
H120.31680.89430.22180.066*
C130.1815 (2)0.81347 (18)0.18565 (12)0.0697 (7)
H130.09790.84210.19340.084*
C140.1732 (2)0.74192 (18)0.15866 (11)0.0691 (8)
H140.08370.71980.14920.083*
C150.2946 (2)0.70166 (14)0.14506 (9)0.0589 (6)
H150.28780.65200.12580.071*
C160.42795 (18)0.73237 (11)0.15907 (8)0.0427 (4)
C170.55456 (19)0.68978 (11)0.13724 (8)0.0408 (4)
C180.5718 (2)0.61052 (11)0.14788 (9)0.0495 (5)
H180.50200.58140.16940.059*
C190.6925 (3)0.57578 (11)0.12631 (8)0.0523 (5)
H190.70710.52190.13310.063*
C200.7932 (2)0.61910 (10)0.09469 (8)0.0447 (4)
H200.87760.59560.08020.054*
C210.76775 (19)0.69822 (9)0.08465 (7)0.0362 (4)
C220.86729 (18)0.75218 (9)0.05339 (8)0.0342 (4)
C230.98940 (19)0.73182 (9)0.02104 (8)0.0369 (4)
C241.05673 (18)0.85710 (9)0.00537 (8)0.0345 (4)
C250.93616 (18)0.88538 (10)0.03383 (9)0.0396 (4)
H250.91830.93940.03660.048*
C260.84346 (18)0.83202 (10)0.05790 (8)0.0376 (4)
H260.76060.84990.07820.045*
C271.3110 (2)0.60571 (11)0.35629 (9)0.0455 (4)
H271.27620.63160.39560.055*
C281.3729 (3)0.52827 (13)0.37302 (13)0.0761 (8)
H28A1.45430.53560.40130.114*
H28B1.30180.49670.39440.114*
H28C1.40320.50190.33430.114*
C291.4147 (2)0.65754 (14)0.32372 (12)0.0654 (6)
H29A1.49370.66860.35260.098*
H29B1.45000.63170.28570.098*
H29C1.36830.70610.31170.098*
O20.9987 (3)0.82476 (17)0.36266 (13)0.0418 (6)0.715 (5)
C301.1067 (3)0.8352 (2)0.41069 (19)0.0411 (8)0.715 (5)
H301.12880.78400.43070.049*0.715 (5)
C311.2377 (4)0.8682 (2)0.3827 (2)0.0655 (11)0.715 (5)
H31A1.30920.87470.41610.098*0.715 (5)
H31B1.27340.83300.35020.098*0.715 (5)
H31C1.21650.91870.36360.098*0.715 (5)
C321.0413 (3)0.88800 (17)0.45934 (13)0.0502 (9)0.715 (5)
H32A1.10930.89770.49370.075*0.715 (5)
H32B1.01530.93720.43930.075*0.715 (5)
H32C0.95690.86340.47670.075*0.715 (5)
O2'1.0329 (8)0.8426 (4)0.3350 (4)0.054 (2)0.285 (5)
C30'1.1671 (13)0.8612 (6)0.3676 (5)0.065 (3)0.285 (5)
H30'1.24460.82900.34950.078*0.285 (5)
C31'1.1936 (11)0.9439 (5)0.3539 (6)0.093 (4)0.285 (5)
H31D1.20510.95100.30810.140*0.285 (5)
H31E1.11370.97500.36850.140*0.285 (5)
H31F1.27960.96060.37600.140*0.285 (5)
C32'1.1476 (19)0.8413 (8)0.4344 (6)0.095 (5)0.285 (5)
H32D1.13080.78550.43830.142*0.285 (5)
H32E1.23240.85540.45860.142*0.285 (5)
H32F1.06650.86970.45100.142*0.285 (5)
C331.1516 (2)0.63360 (11)0.01576 (10)0.0533 (5)
H331.22640.67120.00240.064*
C341.1862 (3)0.55423 (12)0.01062 (12)0.0717 (7)
H34A1.27540.53610.00720.108*
H34B1.19480.55730.05690.108*
H34C1.11080.51790.00080.108*
C351.1371 (3)0.63478 (15)0.08668 (11)0.0717 (7)
H35A1.22700.62020.10580.108*
H35B1.06390.59790.09990.108*
H35C1.11080.68700.10070.108*
C361.2860 (2)0.88172 (12)0.03986 (9)0.0479 (5)
H361.27070.83650.06880.058*
C371.3805 (2)0.85865 (15)0.01425 (13)0.0716 (7)
H37A1.47070.84030.00230.107*
H37B1.39680.90350.04190.107*
H37C1.33580.81710.03850.107*
C381.3438 (3)0.94945 (15)0.07685 (12)0.0718 (7)
H38A1.43540.93540.09460.108*
H38B1.27830.96270.11140.108*
H38C1.35500.99420.04860.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0617 (9)0.0355 (7)0.0586 (8)0.0067 (6)0.0258 (7)0.0017 (6)
O30.0690 (9)0.0287 (6)0.0546 (8)0.0051 (6)0.0061 (7)0.0080 (6)
O40.0397 (7)0.0347 (6)0.0492 (7)0.0022 (5)0.0089 (5)0.0048 (5)
N10.0384 (8)0.0418 (9)0.0482 (9)0.0004 (6)0.0119 (7)0.0066 (7)
N20.0298 (7)0.0424 (8)0.0287 (7)0.0036 (6)0.0013 (5)0.0013 (6)
N30.0406 (8)0.0359 (8)0.0311 (7)0.0090 (6)0.0090 (6)0.0041 (6)
N40.0452 (8)0.0330 (8)0.0345 (7)0.0049 (6)0.0007 (6)0.0019 (6)
C10.0455 (10)0.0318 (9)0.0401 (9)0.0018 (7)0.0077 (8)0.0054 (7)
C20.0560 (11)0.0272 (9)0.0445 (10)0.0077 (8)0.0147 (8)0.0024 (7)
C30.0431 (10)0.0336 (9)0.0339 (8)0.0100 (7)0.0094 (7)0.0046 (7)
C40.0329 (8)0.0372 (9)0.0327 (8)0.0048 (7)0.0026 (7)0.0023 (7)
C50.0390 (10)0.0399 (10)0.0517 (11)0.0008 (8)0.0117 (8)0.0128 (8)
C60.0318 (8)0.0393 (9)0.0292 (8)0.0023 (7)0.0008 (6)0.0056 (7)
C70.0373 (9)0.0412 (10)0.0463 (10)0.0036 (8)0.0054 (8)0.0100 (8)
C80.0483 (11)0.0340 (9)0.0493 (10)0.0012 (8)0.0002 (8)0.0071 (8)
C90.0400 (10)0.0420 (10)0.0382 (9)0.0052 (8)0.0008 (7)0.0005 (7)
C100.0319 (8)0.0447 (10)0.0286 (8)0.0008 (7)0.0025 (6)0.0022 (7)
C110.0308 (9)0.0571 (11)0.0343 (9)0.0055 (8)0.0022 (7)0.0155 (8)
C120.0359 (10)0.0785 (15)0.0517 (12)0.0033 (10)0.0042 (8)0.0211 (10)
C130.0307 (11)0.112 (2)0.0663 (15)0.0015 (12)0.0019 (10)0.0392 (15)
C140.0353 (11)0.117 (2)0.0549 (13)0.0264 (13)0.0136 (9)0.0381 (14)
C150.0515 (12)0.0828 (16)0.0422 (11)0.0313 (11)0.0160 (9)0.0246 (10)
C160.0399 (10)0.0559 (11)0.0322 (9)0.0160 (8)0.0094 (7)0.0166 (8)
C170.0493 (10)0.0432 (10)0.0297 (8)0.0177 (8)0.0124 (7)0.0046 (7)
C180.0732 (14)0.0402 (10)0.0349 (9)0.0224 (10)0.0064 (9)0.0041 (8)
C190.0938 (16)0.0299 (9)0.0332 (9)0.0129 (10)0.0073 (10)0.0008 (7)
C200.0714 (13)0.0302 (9)0.0322 (9)0.0039 (8)0.0069 (8)0.0031 (7)
C210.0502 (10)0.0314 (9)0.0268 (8)0.0066 (7)0.0113 (7)0.0004 (6)
C220.0423 (9)0.0285 (8)0.0315 (8)0.0022 (7)0.0075 (7)0.0003 (6)
C230.0506 (10)0.0266 (8)0.0334 (9)0.0026 (7)0.0070 (7)0.0029 (7)
C240.0389 (9)0.0315 (9)0.0331 (8)0.0007 (7)0.0026 (7)0.0012 (7)
C250.0400 (9)0.0268 (8)0.0522 (11)0.0022 (7)0.0028 (8)0.0006 (7)
C260.0362 (9)0.0317 (9)0.0449 (10)0.0006 (7)0.0004 (7)0.0004 (7)
C270.0530 (11)0.0430 (10)0.0402 (10)0.0040 (8)0.0147 (8)0.0031 (8)
C280.0897 (18)0.0510 (13)0.0869 (18)0.0104 (12)0.0427 (15)0.0095 (12)
C290.0568 (13)0.0744 (16)0.0651 (14)0.0037 (11)0.0008 (11)0.0119 (12)
O20.0425 (13)0.0432 (14)0.0393 (14)0.0052 (10)0.0186 (11)0.0134 (11)
C300.0413 (17)0.0456 (16)0.036 (2)0.0002 (13)0.0191 (15)0.0097 (16)
C310.047 (2)0.080 (3)0.070 (3)0.011 (2)0.0051 (18)0.019 (2)
C320.0513 (17)0.0576 (18)0.0413 (15)0.0041 (13)0.0177 (12)0.0161 (13)
O2'0.055 (4)0.049 (4)0.058 (5)0.015 (3)0.030 (4)0.019 (3)
C30'0.066 (7)0.053 (5)0.076 (7)0.022 (5)0.035 (6)0.016 (5)
C31'0.091 (7)0.060 (6)0.128 (9)0.005 (5)0.049 (6)0.026 (6)
C32'0.139 (14)0.090 (8)0.055 (8)0.016 (8)0.034 (7)0.008 (6)
C330.0663 (13)0.0396 (10)0.0538 (12)0.0129 (9)0.0023 (10)0.0108 (9)
C340.1011 (19)0.0387 (12)0.0753 (16)0.0180 (12)0.0054 (14)0.0117 (11)
C350.0918 (18)0.0706 (16)0.0530 (13)0.0188 (13)0.0038 (12)0.0097 (11)
C360.0468 (11)0.0470 (11)0.0502 (11)0.0078 (8)0.0165 (9)0.0063 (9)
C370.0435 (12)0.0834 (17)0.0880 (18)0.0039 (11)0.0008 (11)0.0283 (14)
C380.0688 (15)0.0722 (16)0.0751 (16)0.0081 (12)0.0332 (13)0.0229 (13)
Geometric parameters (Å, º) top
O1—C11.354 (2)C24—C251.385 (2)
O1—C271.459 (2)C25—C261.374 (2)
O3—C231.361 (2)C25—H250.9500
O3—C331.455 (2)C26—H260.9500
O4—C241.351 (2)C27—C281.501 (3)
O4—C361.457 (2)C27—C291.501 (3)
N1—C11.321 (2)C27—H271.0000
N1—C51.326 (2)C28—H28A0.9800
N2—C61.343 (2)C28—H28B0.9800
N2—C101.343 (2)C28—H28C0.9800
N3—C171.337 (2)C29—H29A0.9800
N3—C211.346 (2)C29—H29B0.9800
N4—C241.328 (2)C29—H29C0.9800
N4—C231.329 (2)O2—C301.446 (4)
C1—C21.386 (2)C30—C311.494 (6)
C2—C31.373 (2)C30—C321.510 (5)
C2—H20.9500C30—H301.0000
C3—C41.390 (2)C31—H31A0.9800
C3—H30.9500C31—H31B0.9800
C4—C51.399 (2)C31—H31C0.9800
C4—C61.484 (2)C32—H32A0.9800
C5—O21.362 (3)C32—H32B0.9800
C5—O2'1.453 (8)C32—H32C0.9800
C6—C71.396 (2)O2'—C30'1.478 (14)
C7—C81.380 (3)C30'—C32'1.464 (17)
C7—H70.9500C30'—C31'1.478 (15)
C8—C91.380 (2)C30'—H30'1.0000
C8—H80.9500C31'—H31D0.9800
C9—C101.383 (2)C31'—H31E0.9800
C9—H90.9500C31'—H31F0.9800
C10—C111.491 (2)C32'—H32D0.9800
C11—C121.392 (3)C32'—H32E0.9800
C11—C161.406 (3)C32'—H32F0.9800
C12—C131.395 (3)C33—C351.501 (3)
C12—H120.9500C33—C341.513 (3)
C13—C141.362 (4)C33—H331.0000
C13—H130.9500C34—H34A0.9800
C14—C151.378 (4)C34—H34B0.9800
C14—H140.9500C34—H34C0.9800
C15—C161.401 (2)C35—H35A0.9800
C15—H150.9500C35—H35B0.9800
C16—C171.485 (3)C35—H35C0.9800
C17—C181.395 (3)C36—C371.499 (3)
C18—C191.374 (3)C36—C381.510 (3)
C18—H180.9500C36—H361.0000
C19—C201.389 (3)C37—H37A0.9800
C19—H190.9500C37—H37B0.9800
C20—C211.402 (2)C37—H37C0.9800
C20—H200.9500C38—H38A0.9800
C21—C221.485 (2)C38—H38B0.9800
C22—C231.395 (2)C38—H38C0.9800
C22—C261.399 (2)
C1—O1—C27119.15 (14)O1—C27—H27109.6
C23—O3—C33118.60 (15)C28—C27—H27109.6
C24—O4—C36119.07 (13)C29—C27—H27109.6
C1—N1—C5117.66 (15)C27—C28—H28A109.5
C6—N2—C10118.98 (15)C27—C28—H28B109.5
C17—N3—C21119.70 (15)H28A—C28—H28B109.5
C24—N4—C23118.12 (15)C27—C28—H28C109.5
N1—C1—O1119.49 (15)H28A—C28—H28C109.5
N1—C1—C2123.50 (16)H28B—C28—H28C109.5
O1—C1—C2117.00 (16)C27—C29—H29A109.5
C3—C2—C1117.30 (16)C27—C29—H29B109.5
C3—C2—H2121.3H29A—C29—H29B109.5
C1—C2—H2121.3C27—C29—H29C109.5
C2—C3—C4121.60 (15)H29A—C29—H29C109.5
C2—C3—H3119.2H29B—C29—H29C109.5
C4—C3—H3119.2C5—O2—C30120.4 (3)
C3—C4—C5114.92 (15)O2—C30—C31111.0 (4)
C3—C4—C6118.87 (14)O2—C30—C32105.0 (2)
C5—C4—C6126.08 (15)C31—C30—C32112.7 (3)
N1—C5—O2116.54 (18)O2—C30—H30109.4
N1—C5—C4124.84 (16)C31—C30—H30109.4
O2—C5—C4118.15 (18)C32—C30—H30109.4
N1—C5—O2'118.9 (3)C30—C31—H31A109.5
C4—C5—O2'111.7 (3)C30—C31—H31B109.5
N2—C6—C7121.50 (15)H31A—C31—H31B109.5
N2—C6—C4115.02 (14)C30—C31—H31C109.5
C7—C6—C4123.26 (15)H31A—C31—H31C109.5
C8—C7—C6118.93 (16)H31B—C31—H31C109.5
C8—C7—H7120.5C30—C32—H32A109.5
C6—C7—H7120.5C30—C32—H32B109.5
C9—C8—C7119.52 (17)H32A—C32—H32B109.5
C9—C8—H8120.2C30—C32—H32C109.5
C7—C8—H8120.2H32A—C32—H32C109.5
C8—C9—C10118.67 (16)H32B—C32—H32C109.5
C8—C9—H9120.7C5—O2'—C30'117.6 (6)
C10—C9—H9120.7C32'—C30'—C31'115.9 (10)
N2—C10—C9122.39 (15)C32'—C30'—O2'106.4 (14)
N2—C10—C11116.20 (15)C31'—C30'—O2'105.4 (7)
C9—C10—C11121.39 (16)C32'—C30'—H30'109.6
C12—C11—C16119.07 (17)C31'—C30'—H30'109.6
C12—C11—C10118.77 (18)O2'—C30'—H30'109.6
C16—C11—C10122.08 (16)C30'—C31'—H31D109.5
C11—C12—C13120.6 (2)C30'—C31'—H31E109.5
C11—C12—H12119.7H31D—C31'—H31E109.5
C13—C12—H12119.7C30'—C31'—H31F109.5
C14—C13—C12120.3 (2)H31D—C31'—H31F109.5
C14—C13—H13119.8H31E—C31'—H31F109.5
C12—C13—H13119.8C30'—C32'—H32D109.5
C13—C14—C15119.9 (2)C30'—C32'—H32E109.5
C13—C14—H14120.1H32D—C32'—H32E109.5
C15—C14—H14120.1C30'—C32'—H32F109.5
C14—C15—C16121.4 (2)H32D—C32'—H32F109.5
C14—C15—H15119.3H32E—C32'—H32F109.5
C16—C15—H15119.3O3—C33—C35110.02 (18)
C15—C16—C11118.57 (19)O3—C33—C34105.29 (18)
C15—C16—C17118.63 (19)C35—C33—C34113.36 (18)
C11—C16—C17122.67 (15)O3—C33—H33109.3
N3—C17—C18122.36 (19)C35—C33—H33109.3
N3—C17—C16115.68 (16)C34—C33—H33109.3
C18—C17—C16121.94 (17)C33—C34—H34A109.5
C19—C18—C17118.11 (18)C33—C34—H34B109.5
C19—C18—H18120.9H34A—C34—H34B109.5
C17—C18—H18120.9C33—C34—H34C109.5
C18—C19—C20120.24 (18)H34A—C34—H34C109.5
C18—C19—H19119.9H34B—C34—H34C109.5
C20—C19—H19119.9C33—C35—H35A109.5
C19—C20—C21118.55 (19)C33—C35—H35B109.5
C19—C20—H20120.7H35A—C35—H35B109.5
C21—C20—H20120.7C33—C35—H35C109.5
N3—C21—C20121.01 (16)H35A—C35—H35C109.5
N3—C21—C22114.35 (14)H35B—C35—H35C109.5
C20—C21—C22124.60 (17)O4—C36—C37110.25 (17)
C23—C22—C26114.63 (15)O4—C36—C38104.41 (15)
C23—C22—C21126.42 (15)C37—C36—C38112.41 (19)
C26—C22—C21118.89 (16)O4—C36—H36109.9
N4—C23—O3116.84 (16)C37—C36—H36109.9
N4—C23—C22124.77 (15)C38—C36—H36109.9
O3—C23—C22118.39 (15)C36—C37—H37A109.5
N4—C24—O4119.25 (15)C36—C37—H37B109.5
N4—C24—C25123.08 (16)H37A—C37—H37B109.5
O4—C24—C25117.66 (15)C36—C37—H37C109.5
C26—C25—C24117.26 (16)H37A—C37—H37C109.5
C26—C25—H25121.4H37B—C37—H37C109.5
C24—C25—H25121.4C36—C38—H38A109.5
C25—C26—C22122.02 (16)C36—C38—H38B109.5
C25—C26—H26119.0H38A—C38—H38B109.5
C22—C26—H26119.0C36—C38—H38C109.5
O1—C27—C28104.85 (16)H38A—C38—H38C109.5
O1—C27—C29110.78 (16)H38B—C38—H38C109.5
C28—C27—C29112.4 (2)
C5—N1—C1—O1177.89 (17)C21—N3—C17—C16179.28 (14)
C5—N1—C1—C23.0 (3)C15—C16—C17—N3129.29 (17)
C27—O1—C1—N13.5 (3)C11—C16—C17—N346.7 (2)
C27—O1—C1—C2177.30 (16)C15—C16—C17—C1849.3 (2)
N1—C1—C2—C32.5 (3)C11—C16—C17—C18134.79 (18)
O1—C1—C2—C3178.35 (16)N3—C17—C18—C191.8 (3)
C1—C2—C3—C41.3 (3)C16—C17—C18—C19179.71 (16)
C2—C3—C4—C54.2 (3)C17—C18—C19—C200.3 (3)
C2—C3—C4—C6171.91 (16)C18—C19—C20—C210.9 (3)
C1—N1—C5—O2171.6 (2)C17—N3—C21—C200.9 (2)
C1—N1—C5—C40.4 (3)C17—N3—C21—C22176.82 (14)
C1—N1—C5—O2'154.3 (5)C19—C20—C21—N30.6 (2)
C3—C4—C5—N13.8 (3)C19—C20—C21—C22178.09 (15)
C6—C4—C5—N1171.94 (17)N3—C21—C22—C23172.01 (15)
C3—C4—C5—O2168.0 (2)C20—C21—C22—C2310.3 (3)
C6—C4—C5—O216.2 (3)N3—C21—C22—C2610.9 (2)
C3—C4—C5—O2'159.4 (4)C20—C21—C22—C26166.77 (16)
C6—C4—C5—O2'16.4 (5)C24—N4—C23—O3179.21 (15)
C10—N2—C6—C71.8 (2)C24—N4—C23—C220.3 (2)
C10—N2—C6—C4172.99 (14)C33—O3—C23—N44.1 (2)
C3—C4—C6—N228.8 (2)C33—O3—C23—C22174.92 (15)
C5—C4—C6—N2155.54 (17)C26—C22—C23—N42.6 (2)
C3—C4—C6—C7145.87 (17)C21—C22—C23—N4174.62 (15)
C5—C4—C6—C729.7 (3)C26—C22—C23—O3178.47 (15)
N2—C6—C7—C81.5 (3)C21—C22—C23—O34.3 (3)
C4—C6—C7—C8172.86 (16)C23—N4—C24—O4177.95 (14)
C6—C7—C8—C90.3 (3)C23—N4—C24—C253.0 (3)
C7—C8—C9—C100.5 (3)C36—O4—C24—N47.6 (2)
C6—N2—C10—C90.9 (2)C36—O4—C24—C25173.24 (16)
C6—N2—C10—C11179.67 (14)N4—C24—C25—C263.6 (3)
C8—C9—C10—N20.2 (3)O4—C24—C25—C26177.36 (15)
C8—C9—C10—C11178.43 (16)C24—C25—C26—C221.0 (3)
N2—C10—C11—C12137.74 (17)C23—C22—C26—C251.9 (2)
C9—C10—C11—C1241.0 (2)C21—C22—C26—C25175.57 (16)
N2—C10—C11—C1639.0 (2)C1—O1—C27—C28161.82 (19)
C9—C10—C11—C16142.30 (17)C1—O1—C27—C2976.7 (2)
C16—C11—C12—C131.5 (3)N1—C5—O2—C304.5 (4)
C10—C11—C12—C13175.26 (17)C4—C5—O2—C30177.1 (3)
C11—C12—C13—C141.6 (3)C5—O2—C30—C3181.2 (4)
C12—C13—C14—C152.7 (3)C5—O2—C30—C32156.7 (3)
C13—C14—C15—C160.7 (3)N1—C5—O2'—C30'8.6 (10)
C14—C15—C16—C112.3 (3)C4—C5—O2'—C30'165.8 (8)
C14—C15—C16—C17173.77 (17)C5—O2'—C30'—C32'74.0 (11)
C12—C11—C16—C153.4 (2)C5—O2'—C30'—C31'162.4 (8)
C10—C11—C16—C15173.27 (15)C23—O3—C33—C3584.9 (2)
C12—C11—C16—C17172.54 (16)C23—O3—C33—C34152.61 (17)
C10—C11—C16—C1710.8 (2)C24—O4—C36—C3775.5 (2)
C21—N3—C17—C182.2 (2)C24—O4—C36—C38163.58 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N3/C17–C21 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.952.472.789 (2)100
C7—H7···O20.952.502.985 (3)111
C7—H7···O20.952.072.694 (8)122
C20—H20···O30.952.212.825 (2)122
C26—H26···N30.952.372.726 (2)102
C3—H3···Cg10.952.613.5078 (18)158
C32—H32A···Cg1i0.982.793.594 (3)140
C37—H37C···Cg2ii0.982.963.742 (3)137
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z.
Summary of selected short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H34C···H34C2.01-x + 2, -y +1, -z
H34B···H31F2.08-x + 5/2, y - 1/2, -z + 1/2
H18···H31E2.14-x + 3/2, y - 1/2, -z + 1/2
H32A···C202.66x + 1/2, -y + 3/2, z + 1/2
H25···O42.60-x + 2, -y + 2, -z
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound top
ContactPercentage contribution
H···H65.2
H···C/C···H22.7
H···O/O···H6.5
H···N/N···H4.3
C···C0.9
N···C/C···N0.4
O···C/C···O0.1
 

Funding information

Funding for this research was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716). This study was also supported by a 2017 Research Grant from Kangwon National University (No. 520170286).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCebrián, C. & Mauro, M. (2018). Beilstein J. Org. Chem. 14, 1459–1481.  Google Scholar
First citationFleetham, T., Li, G., Wen, L. & Li, J. (2014). Adv. Mater. 26, 7116–7121.  CrossRef Google Scholar
First citationFrey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). Dalton Trans. 43, 5667–5679.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJung, S., Park, K.-M., Kim, J. & Kang, Y. (2018). Acta Cryst. E74, 1272–1275.  CrossRef IUCr Journals Google Scholar
First citationKim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706.  Web of Science CrossRef Google Scholar
First citationLee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.  Web of Science CrossRef CAS Google Scholar
First citationOh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolander, L. E., Yella, A., Curchod, B. F. E., Ashari Astani, N., Teuscher, J., Scopelliti, R., Gao, P., Mathew, S., Moser, J.-E., Tavernelli, I., Rothlisberger, U., Grätzel, M., Nazeeruddin, Md. K. & Frey, J. (2013). Angew. Chem. Int. Ed. 52, 8731–8735.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. (2011). Coord. Chem. Rev. 255, 2622–2652.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds