research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new form of Cd3TeO6 revealing dimorphism

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bIUT Bordeaux 1, 15 Rue Naudet, 33175 Gradignan, France
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by A. Van der Lee, Université de Montpellier II, France (Received 2 October 2018; accepted 8 October 2018; online 12 October 2018)

Phase-formation studies in the system CdO–TeO3 using a CsCl/NaCl melt at comparatively low temperatures revealed that tricadmium orthotellurate(VI), Cd3TeO6, is dimorphic. The new modification of Cd3TeO6 is denoted as the β-form and adopts the rhombohedral Mg3TeO6 structure type with one Cd and two O sites in general positions, and two Te sites with site symmetry [\overline{3}] each. In comparison with the previously reported monoclinic cryolite-type α-form that was prepared at higher temperatures, β-Cd3TeO6 has a much lower density and most likely represents a metastable modification. Whereas the [TeO6] octa­hedra in both polymorphs are very similar and show only minor deviations from ideal values, the polyhedra around the CdII sites are different, with a distorted [CdO6] octa­hedron in both modifications but an additional [CdO8] polyhedron with a [4 + 4] coordination in the α-form.

1. Chemical context

Various salts of meta-telluric acid, H2TeO4, have been reported as a result of high-pressure and high-temperature experiments (3000 atm; 973 K) aiming at various MIITeO4 phases, where M = Mg, Ca, Sr, Ba, Cd or Pb (Sleight et al., 1972[Sleight, A. W., Foris, C. M. & Licis, M. S. (1972). Inorg. Chem. 11, 1157-1158.]). Meanwhile, the crystal structures of the Ca, Sr and Ba salts were determined (Hottentot & Loopstra, 1979[Hottentot, D. & Loopstra, B. O. (1979). Acta Cryst. B35, 728-729.]; Weil et al., 2016[Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187-197.]) whereas those of the other phases remain unknown to date. In a recent project on single-crystal growth of the Cd salt of meta-telluric acid, we used a CsCl/NaCl salt mixture (Źemcźuźny & Rambach, 1909[Źemcźuźny, S. & Rambach, F. (1909). Z. Anorg. Allg. Chem. 65, 403-428.]) at temperatures < 800 K as a flux. Instead of the target phase CdTeO4, we obtained a new form of Cd3TeO6. The previously reported Cd3TeO6 polymorph crystallizes as a monoclinically distorted cryolite-type material in space-group type P21/n (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]) while the new form adopts the rhombohedral Mg3TeO6 structure type.

Prior to the current study, solid solutions Cd3–xMnxTeO6 with x = 3, 2, 1.5 and 1 were prepared in polycrystalline form (Ivanov et al., 2012[Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637-1644.]), but not the cadmium end member, i.e. where x = 0. We report here the crystal structure of the new polymorph of Cd3TeO6, together with a comparative discussion of isostructural solid solutions Cd3–xMnxTeO6. In the following, we refer to the previously reported monoclinic polymorph of Cd3TeO6 (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]) as the α-form, and the new rhombohedral polymorph as the β-form of Cd3TeO6.

2. Structural commentary

The crystal structure of β-Cd3TeO6 (Fig. 1[link]) is made up from a distorted close packing of hexa­gonal oxygen layers extending parallel to (001). The Cd site (site symmetry 1) and the two unique Te sites (each with site symmetry [\overline{3}]) are situated in the octa­hedral inter­stices of this arrangement. The distorted [CdO6] octa­hedron has Cd—O distances ranging from 2.2348 (17)–2.4658 (19) Å (Table 1[link]) and shares one edge with a [Te1O6] octa­hedron, another edge with a [Te2O6] octa­hedron, and four edges with neighbouring [CdO6] octa­hedra. Both [TeO6] octa­hedra show only minute deviations from the ideal octa­hedral symmetry. They are isolated from each other and are connected to six [CdO6] octa­hedra by sharing edges. The average Te—O bond length in β-Cd3TeO6 (1.931 Å) is in very good agreement with the mean Te—O bond length of 1.923 Å calculated for numerous (> 100) oxotellurates with octa­hedrally coordinated TeVI (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415-545.]; Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). Both unique O atoms are bonded to one Te and three Cd atoms in the form of a distorted tetra­hedron.

Table 1
Selected bond lengths (Å) in rhombohedral β-Cd3TeO6 and in isotypic (Cd1.5Mn1.5)TeO6 and Mn3TeO6

  β-Cd3TeO6a Cd1.5Mn1.5TeO6b Mn3TeO6c
M1—O1 2.2348 (17) 2.147 2.1055 (14)
M1—O2i 2.2455 (17) 2.150 2.1275 (13)
M1—O1ii 2.2907 (19) 2.240 2.2009 (13)
M1—O2iii 2.3051 (18) 2.260 2.2311 (12)
M1—O2 2.3370 (18) 2.273 2.2313 (13)
M1—O1iv 2.4658 (19) 2.412 2.3841 (13)
Te1—O1 1.9339 (17) 1.955 1.9247 (13)
Te2—O2 1.9290 (17) 1.959 1.9214 (12)
Notes: (a) This study; (b) Ivanov et al. (2012[Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637-1644.]) on the basis of X-ray powder diffraction data at room temperature (no s.u. given in original publication); (c) Weil (2006[Weil, M. (2006). Acta Cryst. E62, i244-i245.]) on the basis of single-crystal X-ray data at room temperature. [Symmetry codes: (i) y − [{1\over 3}], −x + y + [{1\over 3}], −z + [{1\over 3}]; (ii) −x + [{1\over 3}], y + [{2\over 3}], −z + [{2\over 3}]; (iii) −y, x − y, z; (iv) −y + [{1\over 3}], x − y + [{2\over 3}], z − [{1\over 3}].]
[Figure 1]
Figure 1
The crystal structure of β-Cd3TeO6 in polyhedral view in a projection along [0[\overline{1}]0]. [CdO6] octa­hedra are blue and [TeO6] octa­hedra are red. Displacement ellipsoids are drawn at the 90% probability level.

Like β-Cd3TeO6, Mn3TeO6 (Weil, 2006[Weil, M. (2006). Acta Cryst. E62, i244-i245.]) as well as phases with x = 2, 1.5 and 1 of the Cd3–xMnxTeO6 solid-solution series (Ivanov et al., 2012[Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637-1644.]) adopt the rhombohedral Mg3TeO6 structure type. A comparison of the bond lengths of the [MO6] (M = Cd, Mn) octa­hedra in the end members β-Cd3TeO6 and Mn3TeO6 and the solid solution Cd1.5Mn1.5TeO6 (mixed occupancy for the M site) shows inter­mediate values for the solid solution, consistent with the different ionic radii for six-coordinate CdII and MnII of 0.95 and 0.83 (high-spin) Å, respectively (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For a qu­anti­tative structural comparison of the end members β-Cd3TeO6 and Mn3TeO6 the program compstru (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]) was used. The degree of lattice distortion is 0.0204, the maximum distance between the atomic positions of paired atoms is 0.0680 Å for pair O2, the arithmetic mean of all distances is 0.0417 Å, and the measure of similarity is 0.011. All these values show a high similarity between the two crystal structures.

The structure of the monoclinic α-form of Cd3TeO6 (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]) comprises of two cadmium sites (one on a general position and one on an inversion centre), one tellurium site on an inversion centre and three oxygen sites in general positions. While the [TeO6] octa­hedra in both Cd3TeO6 polymorphs have nearly the same bond length distribution [2 × 1.904 (4), 2 × 1.924 (5), 2 × 1.948 (4) Å in the α-form; for the β-form, see: Table 1[link]], the set of coordin­ation polyhedra around the two CdII cations in the two structures is different. In β-Cd3TeO6, the cadmium site has a coordination number (CN) of six with an octa­hedral oxygen environment whereas in α-Cd3TeO6, only one site is octa­hedrally surrounded [range of Cd—O bond lengths: 2.211 (5)–2.350 (4) Å] and the other site exhibits a distorted [4 + 4] coordination [range of Cd—O bond lengths: 2.237 (5)–3.010 (5) Å].

As noted above, the end members β-Cd3TeO6 and Mn3TeO6 crystallize in the same structure type, suggesting a full miscibility over the complete range of x for the solid-solution series Cd3–xMnxTeO6. However, the adopted structure type for the complete range of x appears to be dependent on the reaction temperature. Single crystals of α-Cd3TeO6 for structure analysis were grown from a 9 CdO: 11 TeO2 mixture that was heated in air at 1350 K for three h (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]) while single crystals of β-Cd3TeO6 were obtained at much lower temperatures (793 K) using a flux method. This suggests that the high-temperature synthesis yields the thermodynamically stable modification. The rule of thumb that in the majority of cases the denser polymorph represents also the thermodynamically stable modification supports this assumption because α-Cd3TeO6 [Dx = 7.490 (2) g cm−3; Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]] is much denser than β-Cd3TeO6 [Dx = 6.941 g cm−3]. Under consideration of the similar reaction conditions for preparation of monoclinic α-Cd3TeO6 and the given solid solutions Cd3–xMnxTeO6 (1270 K following a ceramic route; Ivanov et al., 2012[Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637-1644.]), it appears likely that the rhombohedral β-Cd3TeO6 end member can be prepared only at lower temperatures whereas certain amounts of manganese substituting cadmium in the Cd3–xMnxTeO6 solid-solution series stabilize the Mg3TeO6 structure type at higher temperatures. Unfortunately, because of the scarcity of β-Cd3TeO6 material, a detailed investigation of the thermal behaviour of this phase, e.g. in terms of stability and a possible phase transition to α-Cd3TeO6, could not be undertaken.

3. Database survey

According to a search of the Inorganic Crystal Structure Database (ICSD; Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]), the Mg3TeO6 structure type is realized for eponymous Mg3TeO6 (Schulz & Bayer, 1971[Schulz, H. & Bayer, G. (1971). Acta Cryst. B27, 815-821.]), Ca3UO6 (Holc & Golic, 1983[Holc, J. & Golic, L. (1983). J. Solid State Chem. 48, 396-400.]), Mn3WO6 (Klüver & Müller-Buschbaum, 1994[Klüver, E. & Müller-Buschbaum, H. (1994). Z. Anorg. Allg. Chem. 620, 733-736.]), Li3AlD6 (Brinks & Hauback, 2003[Brinks, H. W. & Hauback, B. C. (2003). J. Alloys Compd. 354, 143-147.]; Løvvik et al., 2004[Løvvik, O. M., Opalka, S. M., Brinks, H. W. & Hauback, B. C. (2004). Phys. Rev. B, 69, 134117-, 1-1341179.]), Mn3TeO6 (Weil, 2006[Weil, M. (2006). Acta Cryst. E62, i244-i245.]), selected solid solutions Cd3–xMnxTeO6 (Ivanov et al., 2012[Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637-1644.]), Mn3-xCoxTeO6 (Singh et al., 2014[Singh, H., Sinha, A. K., Ghosh, H., Singh, M. N., Rajput, P., Prajapat, C. L., Singh, M. R. & Ravikumar, G. (2014). J. Appl. Phys. 116, 074904.]; Ivanov et al., 2014[Ivanov, S. A., Mathieu, R., Nordblad, P., Ritter, C., Tellgren, R., Golubko, N., Mosunov, A., Politova, E. D. & Weil, M. (2014). Mater. Res. Bull. 50, 42-56.]), Mn2.4Cu0.6TeO6 (Wulff et al., 1998[Wulff, L., Wedel, B. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49-52.]), (Ca0.2667 Y0.7333)3(Y0.2Sn0.3)Sn0.5O6 (Kaminaga et al., 2006[Kaminaga, Y., Yamane, H. & Yamada, T. (2006). Acta Cryst. C62, i57-i58.]), Mn2InSbO6 and Mn2ScSbO6 (Ivanov et al., 2011[Ivanov, S., Nordblad, P., Mathieu, R., Tellgren, R., Politova, E. & André, G. (2011). Eur. J. Inorg. Chem. pp. 4691-4699.]), Sc3(Sc0.295 Al0.705)O6 (Müller et al., 2004[Müller, D., Assenmacher, W. & Mader, W. (2004). Z. Anorg. Allg. Chem. 630, 2483-2489.]) and Ho3ScO6 (Badie, 1973[Badie, J. M. (1973). C. R. Acad. Sci. Ser. C, 277, 1365-1366.]).

4. Synthesis and crystallization

The rhombohedral β-form of Cd3TeO3 was obtained as one of the products from a flux synthesis using a CsCl/NaCl salt mixture (molar ratio 0.65/0.35). To 1.7 g of the salt mixture were added CdO (0.13 g) and TeO3 (0.18 g). TeO3 had previously been prepared by heating H6TeO6 at 573 K for 8 h. The reaction mixture was evacuated and sealed in a silica ampoule, heated from room temperature within 3 h to 793 K, kept at that temperature for 90 h and cooled within 10 h back to room temperature. The silica ampoule was subsequently broken and the solidified melt leached out with water for 2 h. The off-white product was filtered off, washed with water and was air-dried. The title compound was present in the form of a few nearly spherical colourless crystals. Other phases identified by single-crystal X-ray diffraction measurements of selected crystals were α-Cd3TeO6 (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]), the mixed-valent TeIV/VI compound Cd2Te2O7 (Weil, 2004[Weil, M. (2004). Solid State Sci. 6, 29-37.]) and a new form of incommensurately modulated CdTe2O5 (Weil & Stöger, 2018[Weil, M. & Stöger, B. (2018). Unpublished results.]). Estimated on optical inspection with a microscope, all these phases represent minor by-products. Powder X-ray diffraction measurements of the bulk additionally revealed triple-perovskite-type CsCdCl3 (Siegel & Gebert, 1964[Siegel, S. & Gebert, E. (1964). Acta Cryst. 17, 790.]) as the main phase and the TeIV compound CdTeO3 (Krämer & Brandt, 1985[Krämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152-1154.]) as a minority phase. Some additional reflections in the X-ray powder diffraction pattern of the bulk could not be assigned to the phases mentioned above or to any other known phase(s).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Standardized coordinates (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) from the isotypic phase Mn3TeO6 (Weil, 2006[Weil, M. (2006). Acta Cryst. E62, i244-i245.]) were taken as starting parameters for refinement. The highest and lowest remaining electron density peaks are located 1.56 and 1.53 Å from sites Te2 and O1, respectively.

Table 2
Experimental details

Crystal data
Chemical formula Cd3TeO6
Mr 560.80
Crystal system, space group Trigonal, R[\overline{3}]:H
Temperature (K) 296
a, c (Å) 9.1620 (2), 11.0736 (3)
V3) 805.01 (4)
Z 6
Radiation type Mo Kα
μ (mm−1) 17.06
Crystal size (mm) 0.08 (radius)
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.527, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 11351, 1623, 1526
Rint 0.033
(sin θ/λ)max−1) 1.025
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.046, 1.29
No. of reflections 1623
No. of parameters 33
Δρmax, Δρmin (e Å−3) 2.57, −1.53
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, TN, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates from isotypic structure; program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tricadmium orthotellurate(VI) top
Crystal data top
Cd3TeO6Dx = 6.941 Mg m3
Mr = 560.80Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 6637 reflections
a = 9.1620 (2) Åθ = 5.0–46.6°
c = 11.0736 (3) ŵ = 17.06 mm1
V = 805.01 (4) Å3T = 296 K
Z = 6Spherical, colourless
F(000) = 14640.08 × 0.08 × 0.08 × 0.08 (radius) mm
Data collection top
Bruker APEXII CCD
diffractometer
1526 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 46.8°, θmin = 3.2°
Tmin = 0.527, Tmax = 0.749h = 1818
11351 measured reflectionsk = 1816
1623 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0021P)2 + 11.2674P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max < 0.001
wR(F2) = 0.046Δρmax = 2.57 e Å3
S = 1.29Δρmin = 1.53 e Å3
1623 reflectionsExtinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.00434 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.03947 (2)0.26424 (2)0.21210 (2)0.00731 (4)
Te10.0000000.0000000.5000000.00444 (5)
Te20.0000000.0000000.0000000.00424 (5)
O10.0289 (2)0.1903 (2)0.40560 (16)0.0087 (2)
O20.1800 (2)0.1509 (2)0.10570 (16)0.0078 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00657 (6)0.00745 (6)0.00789 (6)0.00348 (5)0.00052 (4)0.00099 (4)
Te10.00419 (7)0.00419 (7)0.00492 (10)0.00210 (3)0.0000.000
Te20.00403 (7)0.00403 (7)0.00464 (10)0.00202 (3)0.0000.000
O10.0102 (6)0.0074 (6)0.0082 (5)0.0043 (5)0.0001 (5)0.0024 (4)
O20.0058 (5)0.0069 (6)0.0094 (6)0.0021 (5)0.0024 (4)0.0017 (4)
Geometric parameters (Å, º) top
Cd1—O12.2348 (17)Te1—O1viii1.9339 (18)
Cd1—O2i2.2455 (17)Te1—O1iii1.9339 (17)
Cd1—O1ii2.2907 (19)Te1—O1ix1.9339 (17)
Cd1—O2iii2.3051 (18)Te1—O1x1.9339 (17)
Cd1—O22.3370 (18)Te1—O1xi1.9339 (17)
Cd1—O1iv2.4658 (19)Te1—O11.9339 (17)
Cd1—Te23.2608 (2)Te2—O21.9290 (17)
Cd1—Te1v3.3420 (2)Te2—O2xii1.9290 (17)
Cd1—Cd1ii3.3606 (3)Te2—O2iii1.9290 (17)
Cd1—Cd1vi3.4239 (3)Te2—O2xiii1.9291 (17)
Cd1—Cd1vii3.4537 (2)Te2—O2xiv1.9291 (17)
Cd1—Cd1i3.4538 (2)Te2—O2xi1.9291 (17)
O1—Cd1—O2i94.05 (7)O1x—Te1—Cd1xvii79.65 (6)
O1—Cd1—O1ii84.10 (7)O1xi—Te1—Cd1xvii100.35 (6)
O2i—Cd1—O1ii120.35 (7)O1—Te1—Cd1xvii138.37 (6)
O1—Cd1—O2iii107.98 (7)Cd1xv—Te1—Cd1xvii117.776 (1)
O2i—Cd1—O2iii82.41 (7)Cd1xvi—Te1—Cd1xvii62.224 (1)
O1ii—Cd1—O2iii154.11 (6)Cd1ii—Te1—Cd1xvii180.0
O1—Cd1—O2107.37 (6)O1viii—Te1—Cd1xviii100.35 (6)
O2i—Cd1—O2148.88 (4)O1iii—Te1—Cd1xviii79.65 (6)
O1ii—Cd1—O284.88 (6)O1ix—Te1—Cd1xviii46.92 (5)
O2iii—Cd1—O269.79 (8)O1x—Te1—Cd1xviii138.37 (6)
O1—Cd1—O1iv144.36 (6)O1xi—Te1—Cd1xviii41.63 (6)
O2i—Cd1—O1iv82.90 (6)O1—Te1—Cd1xviii133.08 (5)
O1ii—Cd1—O1iv67.58 (8)Cd1xv—Te1—Cd1xviii62.225 (1)
O2iii—Cd1—O1iv106.78 (6)Cd1xvi—Te1—Cd1xviii117.775 (1)
O2—Cd1—O1iv91.75 (6)Cd1ii—Te1—Cd1xviii117.775 (1)
O1—Cd1—Te2119.57 (5)Cd1xvii—Te1—Cd1xviii62.225 (1)
O2i—Cd1—Te2113.76 (5)O1viii—Te1—Cd1xix79.65 (6)
O1ii—Cd1—Te2118.53 (5)O1iii—Te1—Cd1xix100.35 (6)
O2iii—Cd1—Te235.59 (4)O1ix—Te1—Cd1xix133.08 (5)
O2—Cd1—Te235.72 (4)O1x—Te1—Cd1xix41.63 (6)
O1iv—Cd1—Te293.60 (4)O1xi—Te1—Cd1xix138.37 (6)
O1—Cd1—Te1v111.58 (5)O1—Te1—Cd1xix46.92 (5)
O2i—Cd1—Te1v97.31 (5)Cd1xv—Te1—Cd1xix117.775 (1)
O1ii—Cd1—Te1v34.11 (4)Cd1xvi—Te1—Cd1xix62.225 (1)
O2iii—Cd1—Te1v140.34 (4)Cd1ii—Te1—Cd1xix62.225 (1)
O2—Cd1—Te1v95.47 (4)Cd1xvii—Te1—Cd1xix117.775 (1)
O1iv—Cd1—Te1v34.95 (4)Cd1xviii—Te1—Cd1xix180.0
Te2—Cd1—Te1v116.088 (5)O2—Te2—O2xii93.00 (8)
O1—Cd1—Cd1ii42.69 (5)O2—Te2—O2iii87.00 (8)
O2i—Cd1—Cd1ii113.04 (5)O2xii—Te2—O2iii180.00 (11)
O1ii—Cd1—Cd1ii41.41 (4)O2—Te2—O2xiii180.0
O2iii—Cd1—Cd1ii144.94 (5)O2xii—Te2—O2xiii87.00 (8)
O2—Cd1—Cd1ii97.92 (4)O2iii—Te2—O2xiii93.00 (8)
O1iv—Cd1—Cd1ii106.29 (4)O2—Te2—O2xiv93.00 (8)
Te2—Cd1—Cd1ii130.823 (8)O2xii—Te2—O2xiv87.00 (8)
Te1v—Cd1—Cd1ii71.352 (5)O2iii—Te2—O2xiv93.00 (8)
O1—Cd1—Cd1vi104.72 (5)O2xiii—Te2—O2xiv87.00 (8)
O2i—Cd1—Cd1vi41.86 (5)O2—Te2—O2xi87.00 (8)
O1ii—Cd1—Cd1vi159.57 (5)O2xii—Te2—O2xi93.00 (8)
O2iii—Cd1—Cd1vi40.55 (4)O2iii—Te2—O2xi87.00 (8)
O2—Cd1—Cd1vi109.20 (4)O2xiii—Te2—O2xi93.00 (8)
O1iv—Cd1—Cd1vi96.51 (4)O2xiv—Te2—O2xi180.00 (13)
Te2—Cd1—Cd1vi73.547 (5)O2—Te2—Cd1xiii134.98 (5)
Te1v—Cd1—Cd1vi126.995 (8)O2xii—Te2—Cd1xiii44.06 (5)
Cd1ii—Cd1—Cd1vi143.877 (10)O2iii—Te2—Cd1xiii135.94 (5)
O1—Cd1—Cd1vii104.17 (5)O2xiii—Te2—Cd1xiii45.02 (5)
O2i—Cd1—Cd1vii153.98 (5)O2xiv—Te2—Cd1xiii96.56 (5)
O1ii—Cd1—Cd1vii45.47 (5)O2xi—Te2—Cd1xiii83.44 (5)
O2iii—Cd1—Cd1vii108.67 (4)O2—Te2—Cd1xi44.06 (5)
O2—Cd1—Cd1vii40.10 (4)O2xii—Te2—Cd1xi83.44 (5)
O1iv—Cd1—Cd1vii71.44 (4)O2iii—Te2—Cd1xi96.56 (5)
Te2—Cd1—Cd1vii73.148 (6)O2xiii—Te2—Cd1xi135.94 (5)
Te1v—Cd1—Cd1vii58.887 (1)O2xiv—Te2—Cd1xi134.98 (5)
Cd1ii—Cd1—Cd1vii71.628 (5)O2xi—Te2—Cd1xi45.02 (5)
Cd1vi—Cd1—Cd1vii143.600 (10)Cd1xiii—Te2—Cd1xi106.152 (5)
O1—Cd1—Cd1i122.01 (5)O2—Te2—Cd145.02 (5)
O2i—Cd1—Cd1i42.10 (5)O2xii—Te2—Cd1135.94 (5)
O1ii—Cd1—Cd1i90.20 (4)O2iii—Te2—Cd144.06 (5)
O2iii—Cd1—Cd1i101.62 (5)O2xiii—Te2—Cd1134.98 (5)
O2—Cd1—Cd1i129.56 (4)O2xiv—Te2—Cd183.44 (5)
O1iv—Cd1—Cd1i41.48 (4)O2xi—Te2—Cd196.56 (5)
Te2—Cd1—Cd1i113.622 (7)Cd1xiii—Te2—Cd1180.0
Te1v—Cd1—Cd1i58.888 (1)Cd1xi—Te2—Cd173.847 (5)
Cd1ii—Cd1—Cd1i110.788 (6)O2—Te2—Cd1xiv135.94 (5)
Cd1vi—Cd1—Cd1i69.450 (8)O2xii—Te2—Cd1xiv96.56 (5)
Cd1vii—Cd1—Cd1i111.882 (5)O2iii—Te2—Cd1xiv83.44 (5)
O1viii—Te1—O1iii180.0O2xiii—Te2—Cd1xiv44.06 (5)
O1viii—Te1—O1ix93.54 (7)O2xiv—Te2—Cd1xiv45.02 (5)
O1iii—Te1—O1ix86.46 (7)O2xi—Te2—Cd1xiv134.98 (5)
O1viii—Te1—O1x93.54 (7)Cd1xiii—Te2—Cd1xiv73.848 (5)
O1iii—Te1—O1x86.46 (7)Cd1xi—Te2—Cd1xiv180.0
O1ix—Te1—O1x93.54 (7)Cd1—Te2—Cd1xiv106.153 (5)
O1viii—Te1—O1xi86.46 (7)O2—Te2—Cd1xii83.44 (5)
O1iii—Te1—O1xi93.54 (7)O2xii—Te2—Cd1xii45.02 (5)
O1ix—Te1—O1xi86.46 (7)O2iii—Te2—Cd1xii134.98 (5)
O1x—Te1—O1xi180.0O2xiii—Te2—Cd1xii96.56 (5)
O1viii—Te1—O186.46 (7)O2xiv—Te2—Cd1xii44.06 (5)
O1iii—Te1—O193.54 (7)O2xi—Te2—Cd1xii135.94 (5)
O1ix—Te1—O1180.0Cd1xiii—Te2—Cd1xii73.848 (5)
O1x—Te1—O186.46 (7)Cd1xi—Te2—Cd1xii106.152 (5)
O1xi—Te1—O193.54 (7)Cd1—Te2—Cd1xii106.153 (5)
O1viii—Te1—Cd1xv41.63 (6)Cd1xiv—Te2—Cd1xii73.848 (5)
O1iii—Te1—Cd1xv138.37 (6)O2—Te2—Cd1iii96.56 (5)
O1ix—Te1—Cd1xv79.65 (6)O2xii—Te2—Cd1iii134.98 (5)
O1x—Te1—Cd1xv133.08 (6)O2iii—Te2—Cd1iii45.02 (5)
O1xi—Te1—Cd1xv46.92 (6)O2xiii—Te2—Cd1iii83.44 (5)
O1—Te1—Cd1xv100.35 (6)O2xiv—Te2—Cd1iii135.94 (5)
O1viii—Te1—Cd1xvi138.37 (6)O2xi—Te2—Cd1iii44.06 (5)
O1iii—Te1—Cd1xvi41.63 (6)Cd1xiii—Te2—Cd1iii106.152 (5)
O1ix—Te1—Cd1xvi100.35 (6)Cd1xi—Te2—Cd1iii73.848 (5)
O1x—Te1—Cd1xvi46.92 (6)Cd1—Te2—Cd1iii73.847 (5)
O1xi—Te1—Cd1xvi133.08 (6)Cd1xiv—Te2—Cd1iii106.152 (5)
O1—Te1—Cd1xvi79.65 (6)Cd1xii—Te2—Cd1iii180.000 (11)
Cd1xv—Te1—Cd1xvi180.0Te1—O1—Cd1139.23 (10)
O1viii—Te1—Cd1ii46.92 (5)Te1—O1—Cd1ii104.25 (8)
O1iii—Te1—Cd1ii133.08 (5)Cd1—O1—Cd1ii95.90 (7)
O1ix—Te1—Cd1ii138.37 (6)Te1—O1—Cd1xix98.13 (7)
O1x—Te1—Cd1ii100.35 (6)Cd1—O1—Cd1xix116.00 (7)
O1xi—Te1—Cd1ii79.65 (6)Cd1ii—O1—Cd1xix93.05 (7)
O1—Te1—Cd1ii41.63 (6)Te2—O2—Cd1vii147.03 (10)
Cd1xv—Te1—Cd1ii62.223 (1)Te2—O2—Cd1xi100.35 (7)
Cd1xvi—Te1—Cd1ii117.776 (1)Cd1vii—O2—Cd1xi97.59 (7)
O1viii—Te1—Cd1xvii133.08 (5)Te2—O2—Cd199.25 (7)
O1iii—Te1—Cd1xvii46.92 (5)Cd1vii—O2—Cd197.80 (7)
O1ix—Te1—Cd1xvii41.63 (6)Cd1xi—O2—Cd1115.12 (8)
Symmetry codes: (i) y1/3, x+y+1/3, z+1/3; (ii) x+1/3, y+2/3, z+2/3; (iii) y, xy, z; (iv) y+1/3, xy+2/3, z1/3; (v) x+1/3, y+2/3, z1/3; (vi) x1/3, y+1/3, z+1/3; (vii) xy+2/3, x+1/3, z+1/3; (viii) y, x+y, z+1; (ix) x, y, z+1; (x) xy, x, z+1; (xi) x+y, x, z; (xii) y, x+y, z; (xiii) x, y, z; (xiv) xy, x, z; (xv) y+2/3, xy+1/3, z+1/3; (xvi) y2/3, x+y1/3, z+2/3; (xvii) x1/3, y2/3, z+1/3; (xviii) xy+1/3, x1/3, z+2/3; (xix) x+y1/3, x+1/3, z+1/3.
Selected bond lengths (Å) in rhombohedral β-Cd3TeO6 and in isotypic (Cd1.5Mn1.5)TeO6 and Mn3TeO6 top
β-Cd3TeO6aCd1.5Mn1.5TeO6bMn3TeO6c
M1—O12.2348 (17)2.1472.1055 (14)
M1—O2i2.2455 (17)2.1502.1275 (13)
M1—O1ii2.2907 (19)2.2402.2009 (13)
M1—O2iii2.3051 (18)2.2602.2311 (12)
M1—O22.3370 (18)2.2732.2313 (13)
M1—O1iv2.4658 (19)2.4122.3841 (13)
Te1—O11.9339 (17)1.9551.9247 (13)
Te2—O21.9290 (17)1.9591.9214 (12)
Notes: (a) This study; (b) Ivanov et al. (2012) on basis of X-ray powder diffraction data at room temperature (no s.u. given in original publication); (c) Weil (2006) on the basis of single-crystal X-ray data at room temperature. [Symmetry codes: (i) y - 1/3, -x + y + 1/3, -z + 1/3; (ii) -x + 1/3, y + 2/3, -z + 2/3; (iii) -y, x - y, z; (iv) -y + 1/3, x - y + 2/3, z - 1/3.]
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.

Funding information

TV acknowledges the Erasmus+ programme for an educational exchange.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBadie, J. M. (1973). C. R. Acad. Sci. Ser. C, 277, 1365–1366.  Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrinks, H. W. & Hauback, B. C. (2003). J. Alloys Compd. 354, 143–147.  Web of Science CrossRef Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450–2452.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545.  Web of Science CrossRef Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, TN, USA.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHolc, J. & Golic, L. (1983). J. Solid State Chem. 48, 396–400.  CrossRef Web of Science Google Scholar
First citationHottentot, D. & Loopstra, B. O. (1979). Acta Cryst. B35, 728–729.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIvanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637–1644.  Web of Science CrossRef Google Scholar
First citationIvanov, S. A., Mathieu, R., Nordblad, P., Ritter, C., Tellgren, R., Golubko, N., Mosunov, A., Politova, E. D. & Weil, M. (2014). Mater. Res. Bull. 50, 42–56.  Web of Science CrossRef Google Scholar
First citationIvanov, S., Nordblad, P., Mathieu, R., Tellgren, R., Politova, E. & André, G. (2011). Eur. J. Inorg. Chem. pp. 4691–4699.  Web of Science CrossRef Google Scholar
First citationKaminaga, Y., Yamane, H. & Yamada, T. (2006). Acta Cryst. C62, i57–i58.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlüver, E. & Müller-Buschbaum, H. (1994). Z. Anorg. Allg. Chem. 620, 733–736.  Google Scholar
First citationKrämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152–1154.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLøvvik, O. M., Opalka, S. M., Brinks, H. W. & Hauback, B. C. (2004). Phys. Rev. B, 69, 134117-, 1–1341179.  Google Scholar
First citationMüller, D., Assenmacher, W. & Mader, W. (2004). Z. Anorg. Allg. Chem. 630, 2483–2489.  Google Scholar
First citationSchulz, H. & Bayer, G. (1971). Acta Cryst. B27, 815–821.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegel, S. & Gebert, E. (1964). Acta Cryst. 17, 790.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSingh, H., Sinha, A. K., Ghosh, H., Singh, M. N., Rajput, P., Prajapat, C. L., Singh, M. R. & Ravikumar, G. (2014). J. Appl. Phys. 116, 074904.  Web of Science CrossRef Google Scholar
First citationSleight, A. W., Foris, C. M. & Licis, M. S. (1972). Inorg. Chem. 11, 1157–1158.  CrossRef Web of Science Google Scholar
First citationWeil, M. (2004). Solid State Sci. 6, 29–37.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. (2006). Acta Cryst. E62, i244–i245.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Stöger, B. (2018). Unpublished results.  Google Scholar
First citationWeil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187–197.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWulff, L., Wedel, B. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49–52.  CrossRef CAS Google Scholar
First citationŹemcźuźny, S. & Rambach, F. (1909). Z. Anorg. Allg. Chem. 65, 403–428.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds