research communications
A new form of Cd3TeO6 revealing dimorphism
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bIUT Bordeaux 1, 15 Rue Naudet, 33175 Gradignan, France
*Correspondence e-mail: matthias.weil@tuwien.ac.at
Phase-formation studies in the system CdO–TeO3 using a CsCl/NaCl melt at comparatively low temperatures revealed that tricadmium orthotellurate(VI), Cd3TeO6, is dimorphic. The new modification of Cd3TeO6 is denoted as the β-form and adopts the rhombohedral Mg3TeO6 structure type with one Cd and two O sites in general positions, and two Te sites with each. In comparison with the previously reported monoclinic cryolite-type α-form that was prepared at higher temperatures, β-Cd3TeO6 has a much lower density and most likely represents a metastable modification. Whereas the [TeO6] octahedra in both polymorphs are very similar and show only minor deviations from ideal values, the polyhedra around the CdII sites are different, with a distorted [CdO6] octahedron in both modifications but an additional [CdO8] polyhedron with a [4 + 4] coordination in the α-form.
Keywords: crystal structure; dimorphism; Mg3TeO6 structure type; solid solution.
CCDC reference: 1872058
1. Chemical context
Various salts of meta-telluric acid, H2TeO4, have been reported as a result of high-pressure and high-temperature experiments (3000 atm; 973 K) aiming at various MIITeO4 phases, where M = Mg, Ca, Sr, Ba, Cd or Pb (Sleight et al., 1972). Meanwhile, the crystal structures of the Ca, Sr and Ba salts were determined (Hottentot & Loopstra, 1979; Weil et al., 2016) whereas those of the other phases remain unknown to date. In a recent project on single-crystal growth of the Cd salt of meta-telluric acid, we used a CsCl/NaCl salt mixture (Źemcźuźny & Rambach, 1909) at temperatures < 800 K as a Instead of the target phase CdTeO4, we obtained a new form of Cd3TeO6. The previously reported Cd3TeO6 polymorph crystallizes as a monoclinically distorted cryolite-type material in space-group type P21/n (Burckhardt et al., 1982) while the new form adopts the rhombohedral Mg3TeO6 structure type.
Prior to the current study, solid solutions Cd3–xMnxTeO6 with x = 3, 2, 1.5 and 1 were prepared in polycrystalline form (Ivanov et al., 2012), but not the cadmium end member, i.e. where x = 0. We report here the of the new polymorph of Cd3TeO6, together with a comparative discussion of isostructural solid solutions Cd3–xMnxTeO6. In the following, we refer to the previously reported monoclinic polymorph of Cd3TeO6 (Burckhardt et al., 1982) as the α-form, and the new rhombohedral polymorph as the β-form of Cd3TeO6.
2. Structural commentary
The β-Cd3TeO6 (Fig. 1) is made up from a distorted close packing of hexagonal oxygen layers extending parallel to (001). The Cd site (site symmetry 1) and the two unique Te sites (each with ) are situated in the octahedral interstices of this arrangement. The distorted [CdO6] octahedron has Cd—O distances ranging from 2.2348 (17)–2.4658 (19) Å (Table 1) and shares one edge with a [Te1O6] octahedron, another edge with a [Te2O6] octahedron, and four edges with neighbouring [CdO6] octahedra. Both [TeO6] octahedra show only minute deviations from the ideal octahedral symmetry. They are isolated from each other and are connected to six [CdO6] octahedra by sharing edges. The average Te—O bond length in β-Cd3TeO6 (1.931 Å) is in very good agreement with the mean Te—O bond length of 1.923 Å calculated for numerous (> 100) oxotellurates with octahedrally coordinated TeVI (Christy et al., 2016; Gagné & Hawthorne, 2018). Both unique O atoms are bonded to one Te and three Cd atoms in the form of a distorted tetrahedron.
ofLike β-Cd3TeO6, Mn3TeO6 (Weil, 2006) as well as phases with x = 2, 1.5 and 1 of the Cd3–xMnxTeO6 solid-solution series (Ivanov et al., 2012) adopt the rhombohedral Mg3TeO6 structure type. A comparison of the bond lengths of the [MO6] (M = Cd, Mn) octahedra in the end members β-Cd3TeO6 and Mn3TeO6 and the Cd1.5Mn1.5TeO6 (mixed occupancy for the M site) shows intermediate values for the consistent with the different ionic radii for six-coordinate CdII and MnII of 0.95 and 0.83 (high-spin) Å, respectively (Shannon, 1976). For a quantitative structural comparison of the end members β-Cd3TeO6 and Mn3TeO6 the program compstru (de la Flor et al., 2016) available at the Bilbao Crystallographic Server (Aroyo et al., 2006) was used. The degree of is 0.0204, the maximum distance between the atomic positions of paired atoms is 0.0680 Å for pair O2, the arithmetic mean of all distances is 0.0417 Å, and the measure of similarity is 0.011. All these values show a high similarity between the two crystal structures.
The structure of the monoclinic α-form of Cd3TeO6 (Burckhardt et al., 1982) comprises of two cadmium sites (one on a general position and one on an inversion centre), one tellurium site on an inversion centre and three oxygen sites in general positions. While the [TeO6] octahedra in both Cd3TeO6 polymorphs have nearly the same bond length distribution [2 × 1.904 (4), 2 × 1.924 (5), 2 × 1.948 (4) Å in the α-form; for the β-form, see: Table 1], the set of coordination polyhedra around the two CdII cations in the two structures is different. In β-Cd3TeO6, the cadmium site has a (CN) of six with an octahedral oxygen environment whereas in α-Cd3TeO6, only one site is octahedrally surrounded [range of Cd—O bond lengths: 2.211 (5)–2.350 (4) Å] and the other site exhibits a distorted [4 + 4] coordination [range of Cd—O bond lengths: 2.237 (5)–3.010 (5) Å].
As noted above, the end members β-Cd3TeO6 and Mn3TeO6 crystallize in the same structure type, suggesting a full miscibility over the complete range of x for the solid-solution series Cd3–xMnxTeO6. However, the adopted structure type for the complete range of x appears to be dependent on the reaction temperature. Single crystals of α-Cd3TeO6 for structure analysis were grown from a 9 CdO: 11 TeO2 mixture that was heated in air at 1350 K for three h (Burckhardt et al., 1982) while single crystals of β-Cd3TeO6 were obtained at much lower temperatures (793 K) using a method. This suggests that the high-temperature synthesis yields the thermodynamically stable modification. The rule of thumb that in the majority of cases the denser polymorph represents also the thermodynamically stable modification supports this assumption because α-Cd3TeO6 [Dx = 7.490 (2) g cm−3; Burckhardt et al., 1982] is much denser than β-Cd3TeO6 [Dx = 6.941 g cm−3]. Under consideration of the similar reaction conditions for preparation of monoclinic α-Cd3TeO6 and the given solid solutions Cd3–xMnxTeO6 (1270 K following a ceramic route; Ivanov et al., 2012), it appears likely that the rhombohedral β-Cd3TeO6 end member can be prepared only at lower temperatures whereas certain amounts of manganese substituting cadmium in the Cd3–xMnxTeO6 solid-solution series stabilize the Mg3TeO6 structure type at higher temperatures. Unfortunately, because of the scarcity of β-Cd3TeO6 material, a detailed investigation of the thermal behaviour of this phase, e.g. in terms of stability and a possible to α-Cd3TeO6, could not be undertaken.
3. Database survey
According to a search of the Inorganic et al., 2002), the Mg3TeO6 structure type is realized for eponymous Mg3TeO6 (Schulz & Bayer, 1971), Ca3UO6 (Holc & Golic, 1983), Mn3WO6 (Klüver & Müller-Buschbaum, 1994), Li3AlD6 (Brinks & Hauback, 2003; Løvvik et al., 2004), Mn3TeO6 (Weil, 2006), selected solid solutions Cd3–xMnxTeO6 (Ivanov et al., 2012), Mn3-xCoxTeO6 (Singh et al., 2014; Ivanov et al., 2014), Mn2.4Cu0.6TeO6 (Wulff et al., 1998), (Ca0.2667 Y0.7333)3(Y0.2Sn0.3)Sn0.5O6 (Kaminaga et al., 2006), Mn2InSbO6 and Mn2ScSbO6 (Ivanov et al., 2011), Sc3(Sc0.295 Al0.705)O6 (Müller et al., 2004) and Ho3ScO6 (Badie, 1973).
Database (ICSD; Belsky4. Synthesis and crystallization
The rhombohedral β-form of Cd3TeO3 was obtained as one of the products from a synthesis using a CsCl/NaCl salt mixture (molar ratio 0.65/0.35). To 1.7 g of the salt mixture were added CdO (0.13 g) and TeO3 (0.18 g). TeO3 had previously been prepared by heating H6TeO6 at 573 K for 8 h. The reaction mixture was evacuated and sealed in a silica ampoule, heated from room temperature within 3 h to 793 K, kept at that temperature for 90 h and cooled within 10 h back to room temperature. The silica ampoule was subsequently broken and the solidified melt leached out with water for 2 h. The off-white product was filtered off, washed with water and was air-dried. The title compound was present in the form of a few nearly spherical colourless crystals. Other phases identified by single-crystal X-ray diffraction measurements of selected crystals were α-Cd3TeO6 (Burckhardt et al., 1982), the mixed-valent TeIV/VI compound Cd2Te2O7 (Weil, 2004) and a new form of incommensurately modulated CdTe2O5 (Weil & Stöger, 2018). Estimated on optical inspection with a microscope, all these phases represent minor by-products. Powder X-ray diffraction measurements of the bulk additionally revealed triple-perovskite-type CsCdCl3 (Siegel & Gebert, 1964) as the main phase and the TeIV compound CdTeO3 (Krämer & Brandt, 1985) as a minority phase. Some additional reflections in the X-ray powder diffraction pattern of the bulk could not be assigned to the phases mentioned above or to any other known phase(s).
5. Refinement
Crystal data, data collection and structure . Standardized coordinates (Gelato & Parthé, 1987) from the isotypic phase Mn3TeO6 (Weil, 2006) were taken as starting parameters for The highest and lowest remaining electron density peaks are located 1.56 and 1.53 Å from sites Te2 and O1, respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1872058
https://doi.org/10.1107/S2056989018014214/vn2137sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014214/vn2137Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates from isotypic structure; program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Cd3TeO6 | Dx = 6.941 Mg m−3 |
Mr = 560.80 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3:H | Cell parameters from 6637 reflections |
a = 9.1620 (2) Å | θ = 5.0–46.6° |
c = 11.0736 (3) Å | µ = 17.06 mm−1 |
V = 805.01 (4) Å3 | T = 296 K |
Z = 6 | Spherical, colourless |
F(000) = 1464 | 0.08 × 0.08 × 0.08 × 0.08 (radius) mm |
Bruker APEXII CCD diffractometer | 1526 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 46.8°, θmin = 3.2° |
Tmin = 0.527, Tmax = 0.749 | h = −18→18 |
11351 measured reflections | k = −18→16 |
1623 independent reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0021P)2 + 11.2674P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max < 0.001 |
wR(F2) = 0.046 | Δρmax = 2.57 e Å−3 |
S = 1.29 | Δρmin = −1.53 e Å−3 |
1623 reflections | Extinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 parameters | Extinction coefficient: 0.00434 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.03947 (2) | 0.26424 (2) | 0.21210 (2) | 0.00731 (4) | |
Te1 | 0.000000 | 0.000000 | 0.500000 | 0.00444 (5) | |
Te2 | 0.000000 | 0.000000 | 0.000000 | 0.00424 (5) | |
O1 | 0.0289 (2) | 0.1903 (2) | 0.40560 (16) | 0.0087 (2) | |
O2 | 0.1800 (2) | 0.1509 (2) | 0.10570 (16) | 0.0078 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.00657 (6) | 0.00745 (6) | 0.00789 (6) | 0.00348 (5) | −0.00052 (4) | −0.00099 (4) |
Te1 | 0.00419 (7) | 0.00419 (7) | 0.00492 (10) | 0.00210 (3) | 0.000 | 0.000 |
Te2 | 0.00403 (7) | 0.00403 (7) | 0.00464 (10) | 0.00202 (3) | 0.000 | 0.000 |
O1 | 0.0102 (6) | 0.0074 (6) | 0.0082 (5) | 0.0043 (5) | −0.0001 (5) | 0.0024 (4) |
O2 | 0.0058 (5) | 0.0069 (6) | 0.0094 (6) | 0.0021 (5) | −0.0024 (4) | −0.0017 (4) |
Cd1—O1 | 2.2348 (17) | Te1—O1viii | 1.9339 (18) |
Cd1—O2i | 2.2455 (17) | Te1—O1iii | 1.9339 (17) |
Cd1—O1ii | 2.2907 (19) | Te1—O1ix | 1.9339 (17) |
Cd1—O2iii | 2.3051 (18) | Te1—O1x | 1.9339 (17) |
Cd1—O2 | 2.3370 (18) | Te1—O1xi | 1.9339 (17) |
Cd1—O1iv | 2.4658 (19) | Te1—O1 | 1.9339 (17) |
Cd1—Te2 | 3.2608 (2) | Te2—O2 | 1.9290 (17) |
Cd1—Te1v | 3.3420 (2) | Te2—O2xii | 1.9290 (17) |
Cd1—Cd1ii | 3.3606 (3) | Te2—O2iii | 1.9290 (17) |
Cd1—Cd1vi | 3.4239 (3) | Te2—O2xiii | 1.9291 (17) |
Cd1—Cd1vii | 3.4537 (2) | Te2—O2xiv | 1.9291 (17) |
Cd1—Cd1i | 3.4538 (2) | Te2—O2xi | 1.9291 (17) |
O1—Cd1—O2i | 94.05 (7) | O1x—Te1—Cd1xvii | 79.65 (6) |
O1—Cd1—O1ii | 84.10 (7) | O1xi—Te1—Cd1xvii | 100.35 (6) |
O2i—Cd1—O1ii | 120.35 (7) | O1—Te1—Cd1xvii | 138.37 (6) |
O1—Cd1—O2iii | 107.98 (7) | Cd1xv—Te1—Cd1xvii | 117.776 (1) |
O2i—Cd1—O2iii | 82.41 (7) | Cd1xvi—Te1—Cd1xvii | 62.224 (1) |
O1ii—Cd1—O2iii | 154.11 (6) | Cd1ii—Te1—Cd1xvii | 180.0 |
O1—Cd1—O2 | 107.37 (6) | O1viii—Te1—Cd1xviii | 100.35 (6) |
O2i—Cd1—O2 | 148.88 (4) | O1iii—Te1—Cd1xviii | 79.65 (6) |
O1ii—Cd1—O2 | 84.88 (6) | O1ix—Te1—Cd1xviii | 46.92 (5) |
O2iii—Cd1—O2 | 69.79 (8) | O1x—Te1—Cd1xviii | 138.37 (6) |
O1—Cd1—O1iv | 144.36 (6) | O1xi—Te1—Cd1xviii | 41.63 (6) |
O2i—Cd1—O1iv | 82.90 (6) | O1—Te1—Cd1xviii | 133.08 (5) |
O1ii—Cd1—O1iv | 67.58 (8) | Cd1xv—Te1—Cd1xviii | 62.225 (1) |
O2iii—Cd1—O1iv | 106.78 (6) | Cd1xvi—Te1—Cd1xviii | 117.775 (1) |
O2—Cd1—O1iv | 91.75 (6) | Cd1ii—Te1—Cd1xviii | 117.775 (1) |
O1—Cd1—Te2 | 119.57 (5) | Cd1xvii—Te1—Cd1xviii | 62.225 (1) |
O2i—Cd1—Te2 | 113.76 (5) | O1viii—Te1—Cd1xix | 79.65 (6) |
O1ii—Cd1—Te2 | 118.53 (5) | O1iii—Te1—Cd1xix | 100.35 (6) |
O2iii—Cd1—Te2 | 35.59 (4) | O1ix—Te1—Cd1xix | 133.08 (5) |
O2—Cd1—Te2 | 35.72 (4) | O1x—Te1—Cd1xix | 41.63 (6) |
O1iv—Cd1—Te2 | 93.60 (4) | O1xi—Te1—Cd1xix | 138.37 (6) |
O1—Cd1—Te1v | 111.58 (5) | O1—Te1—Cd1xix | 46.92 (5) |
O2i—Cd1—Te1v | 97.31 (5) | Cd1xv—Te1—Cd1xix | 117.775 (1) |
O1ii—Cd1—Te1v | 34.11 (4) | Cd1xvi—Te1—Cd1xix | 62.225 (1) |
O2iii—Cd1—Te1v | 140.34 (4) | Cd1ii—Te1—Cd1xix | 62.225 (1) |
O2—Cd1—Te1v | 95.47 (4) | Cd1xvii—Te1—Cd1xix | 117.775 (1) |
O1iv—Cd1—Te1v | 34.95 (4) | Cd1xviii—Te1—Cd1xix | 180.0 |
Te2—Cd1—Te1v | 116.088 (5) | O2—Te2—O2xii | 93.00 (8) |
O1—Cd1—Cd1ii | 42.69 (5) | O2—Te2—O2iii | 87.00 (8) |
O2i—Cd1—Cd1ii | 113.04 (5) | O2xii—Te2—O2iii | 180.00 (11) |
O1ii—Cd1—Cd1ii | 41.41 (4) | O2—Te2—O2xiii | 180.0 |
O2iii—Cd1—Cd1ii | 144.94 (5) | O2xii—Te2—O2xiii | 87.00 (8) |
O2—Cd1—Cd1ii | 97.92 (4) | O2iii—Te2—O2xiii | 93.00 (8) |
O1iv—Cd1—Cd1ii | 106.29 (4) | O2—Te2—O2xiv | 93.00 (8) |
Te2—Cd1—Cd1ii | 130.823 (8) | O2xii—Te2—O2xiv | 87.00 (8) |
Te1v—Cd1—Cd1ii | 71.352 (5) | O2iii—Te2—O2xiv | 93.00 (8) |
O1—Cd1—Cd1vi | 104.72 (5) | O2xiii—Te2—O2xiv | 87.00 (8) |
O2i—Cd1—Cd1vi | 41.86 (5) | O2—Te2—O2xi | 87.00 (8) |
O1ii—Cd1—Cd1vi | 159.57 (5) | O2xii—Te2—O2xi | 93.00 (8) |
O2iii—Cd1—Cd1vi | 40.55 (4) | O2iii—Te2—O2xi | 87.00 (8) |
O2—Cd1—Cd1vi | 109.20 (4) | O2xiii—Te2—O2xi | 93.00 (8) |
O1iv—Cd1—Cd1vi | 96.51 (4) | O2xiv—Te2—O2xi | 180.00 (13) |
Te2—Cd1—Cd1vi | 73.547 (5) | O2—Te2—Cd1xiii | 134.98 (5) |
Te1v—Cd1—Cd1vi | 126.995 (8) | O2xii—Te2—Cd1xiii | 44.06 (5) |
Cd1ii—Cd1—Cd1vi | 143.877 (10) | O2iii—Te2—Cd1xiii | 135.94 (5) |
O1—Cd1—Cd1vii | 104.17 (5) | O2xiii—Te2—Cd1xiii | 45.02 (5) |
O2i—Cd1—Cd1vii | 153.98 (5) | O2xiv—Te2—Cd1xiii | 96.56 (5) |
O1ii—Cd1—Cd1vii | 45.47 (5) | O2xi—Te2—Cd1xiii | 83.44 (5) |
O2iii—Cd1—Cd1vii | 108.67 (4) | O2—Te2—Cd1xi | 44.06 (5) |
O2—Cd1—Cd1vii | 40.10 (4) | O2xii—Te2—Cd1xi | 83.44 (5) |
O1iv—Cd1—Cd1vii | 71.44 (4) | O2iii—Te2—Cd1xi | 96.56 (5) |
Te2—Cd1—Cd1vii | 73.148 (6) | O2xiii—Te2—Cd1xi | 135.94 (5) |
Te1v—Cd1—Cd1vii | 58.887 (1) | O2xiv—Te2—Cd1xi | 134.98 (5) |
Cd1ii—Cd1—Cd1vii | 71.628 (5) | O2xi—Te2—Cd1xi | 45.02 (5) |
Cd1vi—Cd1—Cd1vii | 143.600 (10) | Cd1xiii—Te2—Cd1xi | 106.152 (5) |
O1—Cd1—Cd1i | 122.01 (5) | O2—Te2—Cd1 | 45.02 (5) |
O2i—Cd1—Cd1i | 42.10 (5) | O2xii—Te2—Cd1 | 135.94 (5) |
O1ii—Cd1—Cd1i | 90.20 (4) | O2iii—Te2—Cd1 | 44.06 (5) |
O2iii—Cd1—Cd1i | 101.62 (5) | O2xiii—Te2—Cd1 | 134.98 (5) |
O2—Cd1—Cd1i | 129.56 (4) | O2xiv—Te2—Cd1 | 83.44 (5) |
O1iv—Cd1—Cd1i | 41.48 (4) | O2xi—Te2—Cd1 | 96.56 (5) |
Te2—Cd1—Cd1i | 113.622 (7) | Cd1xiii—Te2—Cd1 | 180.0 |
Te1v—Cd1—Cd1i | 58.888 (1) | Cd1xi—Te2—Cd1 | 73.847 (5) |
Cd1ii—Cd1—Cd1i | 110.788 (6) | O2—Te2—Cd1xiv | 135.94 (5) |
Cd1vi—Cd1—Cd1i | 69.450 (8) | O2xii—Te2—Cd1xiv | 96.56 (5) |
Cd1vii—Cd1—Cd1i | 111.882 (5) | O2iii—Te2—Cd1xiv | 83.44 (5) |
O1viii—Te1—O1iii | 180.0 | O2xiii—Te2—Cd1xiv | 44.06 (5) |
O1viii—Te1—O1ix | 93.54 (7) | O2xiv—Te2—Cd1xiv | 45.02 (5) |
O1iii—Te1—O1ix | 86.46 (7) | O2xi—Te2—Cd1xiv | 134.98 (5) |
O1viii—Te1—O1x | 93.54 (7) | Cd1xiii—Te2—Cd1xiv | 73.848 (5) |
O1iii—Te1—O1x | 86.46 (7) | Cd1xi—Te2—Cd1xiv | 180.0 |
O1ix—Te1—O1x | 93.54 (7) | Cd1—Te2—Cd1xiv | 106.153 (5) |
O1viii—Te1—O1xi | 86.46 (7) | O2—Te2—Cd1xii | 83.44 (5) |
O1iii—Te1—O1xi | 93.54 (7) | O2xii—Te2—Cd1xii | 45.02 (5) |
O1ix—Te1—O1xi | 86.46 (7) | O2iii—Te2—Cd1xii | 134.98 (5) |
O1x—Te1—O1xi | 180.0 | O2xiii—Te2—Cd1xii | 96.56 (5) |
O1viii—Te1—O1 | 86.46 (7) | O2xiv—Te2—Cd1xii | 44.06 (5) |
O1iii—Te1—O1 | 93.54 (7) | O2xi—Te2—Cd1xii | 135.94 (5) |
O1ix—Te1—O1 | 180.0 | Cd1xiii—Te2—Cd1xii | 73.848 (5) |
O1x—Te1—O1 | 86.46 (7) | Cd1xi—Te2—Cd1xii | 106.152 (5) |
O1xi—Te1—O1 | 93.54 (7) | Cd1—Te2—Cd1xii | 106.153 (5) |
O1viii—Te1—Cd1xv | 41.63 (6) | Cd1xiv—Te2—Cd1xii | 73.848 (5) |
O1iii—Te1—Cd1xv | 138.37 (6) | O2—Te2—Cd1iii | 96.56 (5) |
O1ix—Te1—Cd1xv | 79.65 (6) | O2xii—Te2—Cd1iii | 134.98 (5) |
O1x—Te1—Cd1xv | 133.08 (6) | O2iii—Te2—Cd1iii | 45.02 (5) |
O1xi—Te1—Cd1xv | 46.92 (6) | O2xiii—Te2—Cd1iii | 83.44 (5) |
O1—Te1—Cd1xv | 100.35 (6) | O2xiv—Te2—Cd1iii | 135.94 (5) |
O1viii—Te1—Cd1xvi | 138.37 (6) | O2xi—Te2—Cd1iii | 44.06 (5) |
O1iii—Te1—Cd1xvi | 41.63 (6) | Cd1xiii—Te2—Cd1iii | 106.152 (5) |
O1ix—Te1—Cd1xvi | 100.35 (6) | Cd1xi—Te2—Cd1iii | 73.848 (5) |
O1x—Te1—Cd1xvi | 46.92 (6) | Cd1—Te2—Cd1iii | 73.847 (5) |
O1xi—Te1—Cd1xvi | 133.08 (6) | Cd1xiv—Te2—Cd1iii | 106.152 (5) |
O1—Te1—Cd1xvi | 79.65 (6) | Cd1xii—Te2—Cd1iii | 180.000 (11) |
Cd1xv—Te1—Cd1xvi | 180.0 | Te1—O1—Cd1 | 139.23 (10) |
O1viii—Te1—Cd1ii | 46.92 (5) | Te1—O1—Cd1ii | 104.25 (8) |
O1iii—Te1—Cd1ii | 133.08 (5) | Cd1—O1—Cd1ii | 95.90 (7) |
O1ix—Te1—Cd1ii | 138.37 (6) | Te1—O1—Cd1xix | 98.13 (7) |
O1x—Te1—Cd1ii | 100.35 (6) | Cd1—O1—Cd1xix | 116.00 (7) |
O1xi—Te1—Cd1ii | 79.65 (6) | Cd1ii—O1—Cd1xix | 93.05 (7) |
O1—Te1—Cd1ii | 41.63 (6) | Te2—O2—Cd1vii | 147.03 (10) |
Cd1xv—Te1—Cd1ii | 62.223 (1) | Te2—O2—Cd1xi | 100.35 (7) |
Cd1xvi—Te1—Cd1ii | 117.776 (1) | Cd1vii—O2—Cd1xi | 97.59 (7) |
O1viii—Te1—Cd1xvii | 133.08 (5) | Te2—O2—Cd1 | 99.25 (7) |
O1iii—Te1—Cd1xvii | 46.92 (5) | Cd1vii—O2—Cd1 | 97.80 (7) |
O1ix—Te1—Cd1xvii | 41.63 (6) | Cd1xi—O2—Cd1 | 115.12 (8) |
Symmetry codes: (i) y−1/3, −x+y+1/3, −z+1/3; (ii) −x+1/3, −y+2/3, −z+2/3; (iii) −y, x−y, z; (iv) −y+1/3, x−y+2/3, z−1/3; (v) x+1/3, y+2/3, z−1/3; (vi) −x−1/3, −y+1/3, −z+1/3; (vii) x−y+2/3, x+1/3, −z+1/3; (viii) y, −x+y, −z+1; (ix) −x, −y, −z+1; (x) x−y, x, −z+1; (xi) −x+y, −x, z; (xii) y, −x+y, −z; (xiii) −x, −y, −z; (xiv) x−y, x, −z; (xv) −y+2/3, x−y+1/3, z+1/3; (xvi) y−2/3, −x+y−1/3, −z+2/3; (xvii) x−1/3, y−2/3, z+1/3; (xviii) x−y+1/3, x−1/3, −z+2/3; (xix) −x+y−1/3, −x+1/3, z+1/3. |
β-Cd3TeO6a | Cd1.5Mn1.5TeO6b | Mn3TeO6c | |
M1—O1 | 2.2348 (17) | 2.147 | 2.1055 (14) |
M1—O2i | 2.2455 (17) | 2.150 | 2.1275 (13) |
M1—O1ii | 2.2907 (19) | 2.240 | 2.2009 (13) |
M1—O2iii | 2.3051 (18) | 2.260 | 2.2311 (12) |
M1—O2 | 2.3370 (18) | 2.273 | 2.2313 (13) |
M1—O1iv | 2.4658 (19) | 2.412 | 2.3841 (13) |
Te1—O1 | 1.9339 (17) | 1.955 | 1.9247 (13) |
Te2—O2 | 1.9290 (17) | 1.959 | 1.9214 (12) |
Notes: (a) This study; (b) Ivanov et al. (2012) on basis of X-ray powder diffraction data at room temperature (no s.u. given in original publication); (c) Weil (2006) on the basis of single-crystal X-ray data at room temperature. [Symmetry codes: (i) y - 1/3, -x + y + 1/3, -z + 1/3; (ii) -x + 1/3, y + 2/3, -z + 2/3; (iii) -y, x - y, z; (iv) -y + 1/3, x - y + 2/3, z - 1/3.] |
Acknowledgements
The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.
Funding information
TV acknowledges the Erasmus+ programme for an educational exchange.
References
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27. Web of Science CrossRef CAS Google Scholar
Badie, J. M. (1973). C. R. Acad. Sci. Ser. C, 277, 1365–1366. Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brinks, H. W. & Hauback, B. C. (2003). J. Alloys Compd. 354, 143–147. Web of Science CrossRef Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450–2452. CrossRef CAS Web of Science IUCr Journals Google Scholar
Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545. Web of Science CrossRef Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, TN, USA. Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. Web of Science CrossRef IUCr Journals Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Holc, J. & Golic, L. (1983). J. Solid State Chem. 48, 396–400. CrossRef Web of Science Google Scholar
Hottentot, D. & Loopstra, B. O. (1979). Acta Cryst. B35, 728–729. CrossRef CAS IUCr Journals Web of Science Google Scholar
Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637–1644. Web of Science CrossRef Google Scholar
Ivanov, S. A., Mathieu, R., Nordblad, P., Ritter, C., Tellgren, R., Golubko, N., Mosunov, A., Politova, E. D. & Weil, M. (2014). Mater. Res. Bull. 50, 42–56. Web of Science CrossRef Google Scholar
Ivanov, S., Nordblad, P., Mathieu, R., Tellgren, R., Politova, E. & André, G. (2011). Eur. J. Inorg. Chem. pp. 4691–4699. Web of Science CrossRef Google Scholar
Kaminaga, Y., Yamane, H. & Yamada, T. (2006). Acta Cryst. C62, i57–i58. Web of Science CrossRef CAS IUCr Journals Google Scholar
Klüver, E. & Müller-Buschbaum, H. (1994). Z. Anorg. Allg. Chem. 620, 733–736. Google Scholar
Krämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152–1154. CrossRef Web of Science IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Løvvik, O. M., Opalka, S. M., Brinks, H. W. & Hauback, B. C. (2004). Phys. Rev. B, 69, 134117-, 1–1341179. Google Scholar
Müller, D., Assenmacher, W. & Mader, W. (2004). Z. Anorg. Allg. Chem. 630, 2483–2489. Google Scholar
Schulz, H. & Bayer, G. (1971). Acta Cryst. B27, 815–821. CrossRef IUCr Journals Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegel, S. & Gebert, E. (1964). Acta Cryst. 17, 790. CrossRef IUCr Journals Web of Science Google Scholar
Singh, H., Sinha, A. K., Ghosh, H., Singh, M. N., Rajput, P., Prajapat, C. L., Singh, M. R. & Ravikumar, G. (2014). J. Appl. Phys. 116, 074904. Web of Science CrossRef Google Scholar
Sleight, A. W., Foris, C. M. & Licis, M. S. (1972). Inorg. Chem. 11, 1157–1158. CrossRef Web of Science Google Scholar
Weil, M. (2004). Solid State Sci. 6, 29–37. Web of Science CrossRef CAS Google Scholar
Weil, M. (2006). Acta Cryst. E62, i244–i245. Web of Science CrossRef IUCr Journals Google Scholar
Weil, M. & Stöger, B. (2018). Unpublished results. Google Scholar
Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187–197. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wulff, L., Wedel, B. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49–52. CrossRef CAS Google Scholar
Źemcźuźny, S. & Rambach, F. (1909). Z. Anorg. Allg. Chem. 65, 403–428. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.