research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystallographic analysis and Hirshfeld surface analysis of 4-bromo-2-{[2-(5-bromo-2-nitro­phen­yl)hydrazin-1-yl­­idene]meth­yl}-5-fluoro­phenol

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, cMinistry of Forestry and Water Affairs , 11th Regional Directorate, 55030, Ilkadım-Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 10 October 2018; accepted 16 October 2018; online 19 October 2018)

The title compound, C13H8Br2FN3O3, is nearly planar with a dihedral angle of 10.6 (4)° between the two benzene rings. Intra­molecular N—H⋯O and O—H⋯N hydrogen bonds occur. In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. The roles of the inter­molecular inter­actions in the crystal packing were clarified using Hirshfeld surface analysis.

1. Chemical context

Hydrazones, the most important derivatives of carboxaldehyde, are widely used both in organic synthesis and in industrial work because of their reaction abilities, such as ring closing, oxidation-reduction, replacement reactions and coupling (Öztürk et al., 2003[Öztürk, S., Akkurt, M., Aydemír, E. & Fun, H.-K. (2003). Acta Cryst. E59, o488-o489.]). They are generally considered to be useful starting materials for the production of pharmaceuticals, pesticides, textile dyestuffs as well as compounds that serve as stabilizers and inhibitors in photography (Kaban & Ocal, 1993[Kaban, S. & Ocal, N. (1993). Pak. J. Sci. Ind. Res. 36, 357-359.]). In addition, they exhibit a wide range of applications in the fields of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities includes anti­microbial, anti­fungal, anti­viral, anti­tumor, anti-HIV, anti-inflammatory, anti­neoplastic and analgesic activities (Sudheer et al., 2015[Sudheer, R., Sithambaresan, M., Sajitha, N. R., Manoj, E. & Kurup, M. R. P. (2015). Acta Cryst. E71, 702-705.]; Soujanya & Rajitha, 2017[Soujanya, M. & Rajitha, G. (2017). Int. J. Pharm. Sci. Res. 8, 3786-3794.]). Hydrazone-based mol­ecular switches, metalloassemblies and sensors have also been developed (Sudheer et al., 2015[Sudheer, R., Sithambaresan, M., Sajitha, N. R., Manoj, E. & Kurup, M. R. P. (2015). Acta Cryst. E71, 702-705.]). Unlike oximes (Sliva et al., 1997[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273-276.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.]), hydrazones are mostly obtained as a mixture of E and Z isomers and both isomers are generally weak acids (Mori et al., 2015[Mori, A., Suzuki, T. & Nakajima, K. (2015). Acta Cryst. E71, 142-145.]). Tautomerism between the isomers might also occur in the case of the hydrazone and azo forms (Aydemir & Kaban, 2018[Aydemir, E. & Kaban, S. (2018). Asian J. Chem. 30, 1460-1464.]). In this study, the structure of the newly synthesized compound has been evaluated by spectroscopic techniques. In view of this, in order to obtain information about the stereochemistry of the mol­ecule and to confirm the assigned structure, X-ray analysis of the title compound was undertaken.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The dihedral angle between the aromatic rings is 10.6 (4)°. The N1—N2 and N2–C8 bond lengths are 1.368 (7) and 1.374 (8) Å, respectively. The C13–N3 bond [1.451 (8) Å] in the nitro group is close to the standard value for this type of bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). Intra­molecular N2—H2⋯O3 and O1—H1⋯N1 hydrogen-bonding inter­actions (Table 1[link]) occur.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.631 (7) 146
N2—H2⋯O3 0.86 2.01 2.619 (7) 127
N2—H2⋯O3i 0.86 2.50 3.293 (7) 155
C4—H4⋯O1ii 0.93 2.60 3.494 (8) 162
C7—H7⋯O3i 0.93 2.66 3.461 (7) 145
C12—H12⋯Br1iii 0.93 3.02 3.908 (7) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
An ORTEP view of 4-bromo-2-{[2-(5-bromo-2-nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}-5-fluoro­phenol. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
The view of the crystal packing of the title compound.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed to qu­antify the nature of the inter­molecular inter­actions. The Hirshfeld surfaces were generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]) using a standard (high) surface resolution. Fig. 3[link] shows the Hirshfeld surfaces mapped over dnorm in the range −0.2247 (red) to 1.3787 (blue) a.u. If the value of dnorm is negative, the inter­molecular contacts are shorter than the van der Waals radius; these are shown as red regions. A positive value of dnorm, shown in blue, indicates that the inter­molecular contacts are longer than the van der Waals radius (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]). The red regions on the dnorm surface correspond to C—H⋯O hydrogen-bonding inter­actions, which comprise 20.2% of the total Hirshfeld surfaces.

[Figure 3]
Figure 3
Views of the Hirshfeld surface of the title compound mapped over dnorm.

The two-dimensional fingerprint (FP) plots are used to analyse significant differences between the inter­molecular inter­action patterns (Gumus et al., 2018[Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211-1214.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]; Kansiz et al., 2018[Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513-1516.]). Fig. 4[link] represents the FP plot for the sum of the contacts contributing to the Hirshfeld surface displayed in normal mode. In Fig. 5[link] distinct spikes indicate different inter­actions between two adjacent mol­ecules in the crystal structure. The contribution from the Br⋯H/H⋯Br contacts make the largest (21.7%) to the Hirshfeld surface (Fig. 5[link]b). The 20.2% contribution from the O—H⋯O hydrogen bond is seen as a pair of sharp spikes at de + di = 2.3 Å) in Fig. 5[link]a. The distribution of positive and negative potential over the Hirshfeld surface is represented in Fig. 6[link] (positive electrostatic potential shown in blue region and negative electrostatic potential in red).

[Figure 4]
Figure 4
Fingerprint plot of the title compound showing all inter­actions.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots with a dnorm view of the (a) O⋯H/H⋯O (20.2%), (b) Br⋯H/H⋯Br (21.7%), (c) F⋯H/H⋯F (7.4%), (d) C⋯H/H⋯C (9.7%), (e) N⋯H/H⋯N (3.3%) and (f) H⋯H (6.0%) contacts in the title compound.
[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential.

5. Database survey

There are no direct precedents for the structure of C13H8Br2FN3O3 in the crystallographic literature (CSD, version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) but some similar structures including 2-nitro­phenyl­hydrazine have been reported. All geometric parameters in the title compound agree well with those reported in the literature with the N1—N2 and N2—C8 bond distances being comparable to those in N-(4-chloro-2-nitro­phen­yl)-N′-methyl-N-(quinolin-4-yl­meth­yl­ene)hydrazine [1.367 (2) and 1.386 (3) Å; Karadayı et al., 2005[Karadayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671-o2673.]] and N-(4-bromo-2-nitro­phen­yl)-N-methyl-N′-(quinolin-4-yl­methyl­ene)hydrazine [1.359 (3) and 1.393 (4) Å; Öztürk et al., 2003[Öztürk, S., Akkurt, M., Aydemír, E. & Fun, H.-K. (2003). Acta Cryst. E59, o488-o489.]].

6. Synthesis and crystallization

5-Bromo-4-fluoro-2-hy­droxy­benzaldehyde (0.5 mmol) was dissolved in hot absolute ethanol (10 mL) and an equimolar amount of 5-bromo-2-nitro­phenyl­hydrazine, dissolved in a minimum volume of absolute ethanol, was slowly added. The product appeared in the first minute. The reaction mixture was refluxed for an additional hour to complete the condensation and then allowed to cool in room temperature. The separated solid was then filtered and washed with ethanol and diethyl ether. The crude product was recrystallized from toluene as pink needle-shaped crystals, 96% yield, m.p. 569–570 K (dec.). The reaction scheme is shown in Fig. 7[link]. UV (CHCl3): λmax 340, 430 nm; IR (KBr): υ 3610 (–OH), 3285 and 1155 (N—H), 3120–2985 (=C—H), 2915 (C—H), 1608 (C=N), 1558 (C=C), 1515 (N—N), 1475 and 1310 (N=O), 1195, 690 and 665 (C—X) cm−1; MS (ESI+): 434.01 ([M + H]+, C13H8Br2FN3O3; calculated 433.03).

[Figure 7]
Figure 7
The synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C)

Table 2
Experimental details

Crystal data
Chemical formula C13H8Br2FN3O3
Mr 433.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 16.1360 (14), 4.1745 (3), 21.468 (2)
β (°) 95.026 (7)
V3) 1440.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.65
Crystal size (mm) 0.46 × 0.17 × 0.02
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.296, 0.883
No. of measured, independent and observed [I > 2σ(I)] reflections 9546, 2775, 1270
Rint 0.113
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.098, 0.84
No. of reflections 2775
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.28
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-Bromo-2-{[2-(5-bromo-2-nitrophenyl)hydrazin-1-ylidene]methyl}-5-fluorophenol top
Crystal data top
C13H8Br2FN3O3F(000) = 840
Mr = 433.04Dx = 1.997 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.1360(14) ÅCell parameters from 5914 reflections
b = 4.1745 (3) Åθ = 1.5–29.7°
c = 21.468 (2) ŵ = 5.65 mm1
β = 95.026 (7)°T = 296 K
V = 1440.5 (2) Å3Needle, pink
Z = 40.46 × 0.17 × 0.02 mm
Data collection top
Stoe IPDS 2
diffractometer
2775 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1270 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.113
rotation method scansθmax = 26.0°, θmin = 1.5°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1919
Tmin = 0.296, Tmax = 0.883k = 45
9546 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
2775 reflectionsΔρmax = 0.42 e Å3
200 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.19136 (4)0.4176 (2)0.67484 (4)0.0714 (3)
Br10.12607 (5)1.1323 (3)0.25304 (4)0.0787 (3)
O30.5159 (3)0.2810 (14)0.5457 (2)0.0689 (16)
F10.0194 (2)0.9500 (15)0.3236 (2)0.107 (2)
N10.2772 (3)0.3510 (15)0.4968 (3)0.0503 (14)
N30.5145 (3)0.0903 (18)0.5895 (3)0.0566 (15)
N20.3538 (3)0.2591 (14)0.5232 (3)0.0564 (18)
H20.3981540.3252050.5078430.068*
O20.5792 (3)0.0104 (14)0.6187 (2)0.0800 (19)
O10.1152 (3)0.4263 (18)0.4954 (3)0.0892 (19)
H10.1610840.3579110.5084140.134*
C80.3593 (4)0.0605 (18)0.5745 (3)0.0470 (18)
C10.1976 (4)0.8061 (17)0.3618 (3)0.0496 (19)
H1A0.2485990.8485520.3463710.060*
C130.4351 (4)0.0228 (17)0.6077 (3)0.050 (2)
C70.2755 (4)0.5174 (18)0.4473 (3)0.050 (2)
H70.3249170.5647990.4300590.060*
C110.3659 (4)0.3285 (19)0.6826 (3)0.062 (2)
H110.3677630.4540090.7185270.074*
C120.4369 (4)0.2110 (18)0.6608 (3)0.053 (2)
H120.4879200.2590400.6823670.064*
C60.1965 (4)0.636 (2)0.4169 (3)0.0542 (19)
C90.2876 (4)0.0681 (18)0.5974 (3)0.0497 (18)
H90.2360950.0243280.5762060.060*
C100.2909 (4)0.2535 (18)0.6492 (3)0.055 (2)
C20.1272 (4)0.913 (2)0.3293 (3)0.0569 (19)
C50.1212 (4)0.584 (2)0.4414 (3)0.067 (2)
C40.0481 (4)0.692 (2)0.4105 (4)0.078 (3)
H40.0027850.6601310.4267060.093*
C30.0533 (4)0.849 (2)0.3552 (3)0.067 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0566 (5)0.0778 (7)0.0821 (6)0.0020 (5)0.0197 (4)0.0045 (5)
Br10.0781 (6)0.0915 (8)0.0632 (5)0.0096 (5)0.0115 (4)0.0140 (5)
O30.053 (3)0.084 (5)0.070 (3)0.002 (3)0.007 (3)0.023 (3)
F10.052 (2)0.167 (6)0.098 (3)0.020 (3)0.010 (2)0.037 (3)
N10.043 (3)0.054 (5)0.053 (4)0.006 (3)0.002 (3)0.005 (3)
N30.046 (3)0.066 (5)0.058 (4)0.002 (4)0.002 (3)0.006 (4)
N20.040 (3)0.070 (5)0.060 (4)0.003 (3)0.008 (3)0.006 (3)
O20.040 (3)0.116 (6)0.082 (4)0.010 (3)0.006 (3)0.016 (3)
O10.052 (3)0.136 (6)0.080 (4)0.010 (4)0.011 (3)0.042 (4)
C80.043 (4)0.056 (5)0.043 (4)0.003 (4)0.005 (3)0.004 (4)
C10.042 (4)0.049 (6)0.058 (5)0.001 (3)0.002 (3)0.000 (4)
C130.040 (4)0.053 (6)0.060 (5)0.004 (3)0.007 (3)0.006 (4)
C70.033 (4)0.068 (7)0.048 (4)0.004 (3)0.005 (3)0.000 (4)
C110.064 (5)0.069 (7)0.053 (4)0.007 (4)0.010 (4)0.009 (4)
C120.043 (4)0.061 (6)0.054 (4)0.009 (4)0.004 (3)0.003 (4)
C60.041 (4)0.073 (6)0.047 (4)0.002 (4)0.001 (3)0.001 (4)
C90.041 (4)0.047 (5)0.061 (4)0.007 (4)0.007 (3)0.011 (4)
C100.059 (4)0.056 (6)0.049 (4)0.012 (4)0.006 (4)0.001 (4)
C20.049 (4)0.059 (5)0.062 (4)0.003 (4)0.003 (3)0.007 (4)
C50.041 (4)0.097 (7)0.064 (5)0.003 (5)0.010 (4)0.018 (5)
C40.042 (4)0.124 (9)0.069 (5)0.008 (5)0.012 (4)0.015 (5)
C30.041 (4)0.093 (7)0.062 (5)0.009 (4)0.019 (4)0.002 (5)
Geometric parameters (Å, º) top
Br2—C101.872 (7)C1—H1A0.9300
Br1—C21.874 (7)C13—C121.383 (9)
O3—N31.234 (7)C7—C61.465 (9)
F1—C31.369 (7)C7—H70.9300
N1—C71.268 (8)C11—C121.366 (9)
N1—N21.368 (7)C11—C101.388 (9)
N3—O21.243 (7)C11—H110.9300
N3—C131.451 (8)C12—H120.9300
N2—C81.374 (8)C6—C51.383 (8)
N2—H20.8600C9—C101.353 (10)
O1—C51.343 (8)C9—H90.9300
O1—H10.8200C2—C31.386 (9)
C8—C91.402 (8)C5—C41.378 (10)
C8—C131.406 (9)C4—C31.363 (10)
C1—C21.356 (9)C4—H40.9300
C1—C61.381 (9)
C7—N1—N2117.0 (5)C11—C12—H12119.0
O3—N3—O2122.2 (6)C13—C12—H12119.0
O3—N3—C13119.4 (6)C1—C6—C5119.0 (6)
O2—N3—C13118.4 (6)C1—C6—C7118.6 (6)
N1—N2—C8119.6 (5)C5—C6—C7122.4 (6)
N1—N2—H2120.2C10—C9—C8122.3 (6)
C8—N2—H2120.2C10—C9—H9118.9
C5—O1—H1109.5C8—C9—H9118.9
N2—C8—C9120.9 (6)C9—C10—C11121.6 (7)
N2—C8—C13123.3 (6)C9—C10—Br2118.6 (5)
C9—C8—C13115.8 (6)C11—C10—Br2119.8 (6)
C2—C1—C6122.5 (6)C1—C2—C3116.2 (7)
C2—C1—H1A118.8C1—C2—Br1123.6 (5)
C6—C1—H1A118.8C3—C2—Br1120.1 (5)
C12—C13—C8120.9 (6)O1—C5—C4116.9 (6)
C12—C13—N3116.9 (6)O1—C5—C6122.5 (6)
C8—C13—N3122.2 (6)C4—C5—C6120.5 (7)
N1—C7—C6120.9 (6)C3—C4—C5117.5 (6)
N1—C7—H7119.6C3—C4—H4121.2
C6—C7—H7119.6C5—C4—H4121.2
C12—C11—C10117.5 (7)C4—C3—F1117.7 (6)
C12—C11—H11121.2C4—C3—C2124.2 (6)
C10—C11—H11121.2F1—C3—C2118.1 (7)
C11—C12—C13122.0 (6)
C7—N1—N2—C8175.6 (6)C13—C8—C9—C101.7 (10)
N1—N2—C8—C94.6 (10)C8—C9—C10—C110.3 (12)
N1—N2—C8—C13174.2 (6)C8—C9—C10—Br2179.0 (5)
N2—C8—C13—C12176.8 (7)C12—C11—C10—C90.7 (11)
C9—C8—C13—C122.1 (10)C12—C11—C10—Br2178.0 (5)
N2—C8—C13—N31.4 (10)C6—C1—C2—C31.4 (12)
C9—C8—C13—N3179.7 (6)C6—C1—C2—Br1177.9 (6)
O3—N3—C13—C12173.8 (7)C1—C6—C5—O1178.7 (8)
O2—N3—C13—C126.4 (9)C7—C6—C5—O11.5 (13)
O3—N3—C13—C84.4 (10)C1—C6—C5—C41.6 (13)
O2—N3—C13—C8175.3 (7)C7—C6—C5—C4178.3 (8)
N2—N1—C7—C6177.9 (6)O1—C5—C4—C3179.2 (9)
C10—C11—C12—C130.3 (11)C6—C5—C4—C30.6 (14)
C8—C13—C12—C111.2 (11)C5—C4—C3—F1178.3 (8)
N3—C13—C12—C11179.5 (7)C5—C4—C3—C21.9 (14)
C2—C1—C6—C52.6 (12)C1—C2—C3—C41.0 (13)
C2—C1—C6—C7177.3 (7)Br1—C2—C3—C4179.8 (8)
N1—C7—C6—C1177.6 (7)C1—C2—C3—F1179.3 (7)
N1—C7—C6—C52.3 (12)Br1—C2—C3—F10.1 (11)
N2—C8—C9—C10177.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.631 (7)146
N2—H2···O30.862.012.619 (7)127
N2—H2···O3i0.862.503.293 (7)155
C4—H4···O1ii0.932.603.494 (8)162
C7—H7···O3i0.932.663.461 (7)145
C12—H12···Br1iii0.933.023.908 (7)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationAydemir, E. & Kaban, S. (2018). Asian J. Chem. 30, 1460–1464.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214.  CrossRef IUCr Journals Google Scholar
First citationKaban, S. & Ocal, N. (1993). Pak. J. Sci. Ind. Res. 36, 357–359.  Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516.  CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671–o2673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMori, A., Suzuki, T. & Nakajima, K. (2015). Acta Cryst. E71, 142–145.  CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Aydemír, E. & Fun, H.-K. (2003). Acta Cryst. E59, o488–o489.  CrossRef IUCr Journals Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSoujanya, M. & Rajitha, G. (2017). Int. J. Pharm. Sci. Res. 8, 3786–3794.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSudheer, R., Sithambaresan, M., Sajitha, N. R., Manoj, E. & Kurup, M. R. P. (2015). Acta Cryst. E71, 702–705.  CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds