research communications
Synthesis, crystallographic analysis and Hirshfeld surface analysis of 4-bromo-2-{[2-(5-bromo-2-nitrophenyl)hydrazin-1-ylidene]methyl}-5-fluorophenol
aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, cMinistry of Forestry and Water Affairs , 11th Regional Directorate, 55030, Ilkadım-Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net
The title compound, C13H8Br2FN3O3, is nearly planar with a dihedral angle of 10.6 (4)° between the two benzene rings. Intramolecular N—H⋯O and O—H⋯N hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. The roles of the intermolecular interactions in the crystal packing were clarified using Hirshfeld surface analysis.
Keywords: crystal structure; Hirshfeld surface; Hydrazone; crystal structure; hydrogen bonding; 5-bromo-4-fluoro-2-hydroxybenzaldehyde.
CCDC reference: 1864935
1. Chemical context
et al., 2003). They are generally considered to be useful starting materials for the production of pharmaceuticals, pesticides, textile dyestuffs as well as compounds that serve as stabilizers and inhibitors in photography (Kaban & Ocal, 1993). In addition, they exhibit a wide range of applications in the fields of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities includes antimicrobial, antifungal, antiviral, antitumor, anti-HIV, anti-inflammatory, antineoplastic and analgesic activities (Sudheer et al., 2015; Soujanya & Rajitha, 2017). Hydrazone-based molecular switches, metalloassemblies and sensors have also been developed (Sudheer et al., 2015). Unlike (Sliva et al., 1997; Penkova et al., 2010; Pavlishchuk et al., 2010), are mostly obtained as a mixture of E and Z isomers and both isomers are generally weak acids (Mori et al., 2015). between the isomers might also occur in the case of the hydrazone and azo forms (Aydemir & Kaban, 2018). In this study, the structure of the newly synthesized compound has been evaluated by spectroscopic techniques. In view of this, in order to obtain information about the stereochemistry of the molecule and to confirm the assigned structure, X-ray analysis of the title compound was undertaken.
the most important derivatives of carboxaldehyde, are widely used both in organic synthesis and in industrial work because of their reaction abilities, such as ring closing, oxidation-reduction, replacement reactions and coupling (Öztürk2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The dihedral angle between the aromatic rings is 10.6 (4)°. The N1—N2 and N2–C8 bond lengths are 1.368 (7) and 1.374 (8) Å, respectively. The C13–N3 bond [1.451 (8) Å] in the nitro group is close to the standard value for this type of bond (Allen et al., 1987). Intramolecular N2—H2⋯O3 and O1—H1⋯N1 hydrogen-bonding interactions (Table 1) occur.
3. Supramolecular features
In the crystal, the molecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds (Table 1, Fig. 2).
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed to quantify the nature of the intermolecular interactions. The Hirshfeld surfaces were generated using CrystalExplorer17.5 (Turner et al., 2017) using a standard (high) surface resolution. Fig. 3 shows the Hirshfeld surfaces mapped over dnorm in the range −0.2247 (red) to 1.3787 (blue) a.u. If the value of dnorm is negative, the intermolecular contacts are shorter than the van der Waals radius; these are shown as red regions. A positive value of dnorm, shown in blue, indicates that the intermolecular contacts are longer than the van der Waals radius (Şen et al., 2017). The red regions on the dnorm surface correspond to C—H⋯O hydrogen-bonding interactions, which comprise 20.2% of the total Hirshfeld surfaces.
The two-dimensional fingerprint (FP) plots are used to analyse significant differences between the intermolecular interaction patterns (Gumus et al., 2018; Kansız & Dege, 2018; Kansiz et al., 2018). Fig. 4 represents the FP plot for the sum of the contacts contributing to the Hirshfeld surface displayed in normal mode. In Fig. 5 distinct spikes indicate different interactions between two adjacent molecules in the The contribution from the Br⋯H/H⋯Br contacts make the largest (21.7%) to the Hirshfeld surface (Fig. 5b). The 20.2% contribution from the O—H⋯O hydrogen bond is seen as a pair of sharp spikes at de + di = 2.3 Å) in Fig. 5a. The distribution of positive and negative potential over the Hirshfeld surface is represented in Fig. 6 (positive electrostatic potential shown in blue region and negative electrostatic potential in red).
5. Database survey
There are no direct precedents for the structure of C13H8Br2FN3O3 in the crystallographic literature (CSD, version 5.39, update of May 2018; Groom et al., 2016) but some similar structures including 2-nitrophenylhydrazine have been reported. All geometric parameters in the title compound agree well with those reported in the literature with the N1—N2 and N2—C8 bond distances being comparable to those in N-(4-chloro-2-nitrophenyl)-N′-methyl-N-(quinolin-4-ylmethylene)hydrazine [1.367 (2) and 1.386 (3) Å; Karadayı et al., 2005] and N-(4-bromo-2-nitrophenyl)-N-methyl-N′-(quinolin-4-ylmethylene)hydrazine [1.359 (3) and 1.393 (4) Å; Öztürk et al., 2003].
6. Synthesis and crystallization
5-Bromo-4-fluoro-2-hydroxybenzaldehyde (0.5 mmol) was dissolved in hot absolute ethanol (10 mL) and an equimolar amount of 5-bromo-2-nitrophenylhydrazine, dissolved in a minimum volume of absolute ethanol, was slowly added. The product appeared in the first minute. The reaction mixture was refluxed for an additional hour to complete the condensation and then allowed to cool in room temperature. The separated solid was then filtered and washed with ethanol and diethyl ether. The crude product was recrystallized from toluene as pink needle-shaped crystals, 96% yield, m.p. 569–570 K (dec.). The reaction scheme is shown in Fig. 7. UV (CHCl3): λmax 340, 430 nm; IR (KBr): υ 3610 (–OH), 3285 and 1155 (N—H), 3120–2985 (=C—H), 2915 (C—H), 1608 (C=N), 1558 (C=C), 1515 (N—N), 1475 and 1310 (N=O), 1195, 690 and 665 (C—X) cm−1; MS (ESI+): 434.01 ([M + H]+, C13H8Br2FN3O3; calculated 433.03).
7. Refinement
Crystal data, data collection and structure . The C-bound hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C)
details are summarized in Table 2Supporting information
CCDC reference: 1864935
https://doi.org/10.1107/S2056989018014627/xu5944sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014627/xu5944Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014627/xu5944Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C13H8Br2FN3O3 | F(000) = 840 |
Mr = 433.04 | Dx = 1.997 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 16.1360(14) Å | Cell parameters from 5914 reflections |
b = 4.1745 (3) Å | θ = 1.5–29.7° |
c = 21.468 (2) Å | µ = 5.65 mm−1 |
β = 95.026 (7)° | T = 296 K |
V = 1440.5 (2) Å3 | Needle, pink |
Z = 4 | 0.46 × 0.17 × 0.02 mm |
Stoe IPDS 2 diffractometer | 2775 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1270 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.113 |
rotation method scans | θmax = 26.0°, θmin = 1.5° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −19→19 |
Tmin = 0.296, Tmax = 0.883 | k = −4→5 |
9546 measured reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.84 | (Δ/σ)max < 0.001 |
2775 reflections | Δρmax = 0.42 e Å−3 |
200 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br2 | 0.19136 (4) | −0.4176 (2) | 0.67484 (4) | 0.0714 (3) | |
Br1 | 0.12607 (5) | 1.1323 (3) | 0.25304 (4) | 0.0787 (3) | |
O3 | 0.5159 (3) | 0.2810 (14) | 0.5457 (2) | 0.0689 (16) | |
F1 | −0.0194 (2) | 0.9500 (15) | 0.3236 (2) | 0.107 (2) | |
N1 | 0.2772 (3) | 0.3510 (15) | 0.4968 (3) | 0.0503 (14) | |
N3 | 0.5145 (3) | 0.0903 (18) | 0.5895 (3) | 0.0566 (15) | |
N2 | 0.3538 (3) | 0.2591 (14) | 0.5232 (3) | 0.0564 (18) | |
H2 | 0.398154 | 0.325205 | 0.507843 | 0.068* | |
O2 | 0.5792 (3) | −0.0104 (14) | 0.6187 (2) | 0.0800 (19) | |
O1 | 0.1152 (3) | 0.4263 (18) | 0.4954 (3) | 0.0892 (19) | |
H1 | 0.161084 | 0.357911 | 0.508414 | 0.134* | |
C8 | 0.3593 (4) | 0.0605 (18) | 0.5745 (3) | 0.0470 (18) | |
C1 | 0.1976 (4) | 0.8061 (17) | 0.3618 (3) | 0.0496 (19) | |
H1A | 0.248599 | 0.848552 | 0.346371 | 0.060* | |
C13 | 0.4351 (4) | −0.0228 (17) | 0.6077 (3) | 0.050 (2) | |
C7 | 0.2755 (4) | 0.5174 (18) | 0.4473 (3) | 0.050 (2) | |
H7 | 0.324917 | 0.564799 | 0.430059 | 0.060* | |
C11 | 0.3659 (4) | −0.3285 (19) | 0.6826 (3) | 0.062 (2) | |
H11 | 0.367763 | −0.454009 | 0.718527 | 0.074* | |
C12 | 0.4369 (4) | −0.2110 (18) | 0.6608 (3) | 0.053 (2) | |
H12 | 0.487920 | −0.259040 | 0.682367 | 0.064* | |
C6 | 0.1965 (4) | 0.636 (2) | 0.4169 (3) | 0.0542 (19) | |
C9 | 0.2876 (4) | −0.0681 (18) | 0.5974 (3) | 0.0497 (18) | |
H9 | 0.236095 | −0.024328 | 0.576206 | 0.060* | |
C10 | 0.2909 (4) | −0.2535 (18) | 0.6492 (3) | 0.055 (2) | |
C2 | 0.1272 (4) | 0.913 (2) | 0.3293 (3) | 0.0569 (19) | |
C5 | 0.1212 (4) | 0.584 (2) | 0.4414 (3) | 0.067 (2) | |
C4 | 0.0481 (4) | 0.692 (2) | 0.4105 (4) | 0.078 (3) | |
H4 | −0.002785 | 0.660131 | 0.426706 | 0.093* | |
C3 | 0.0533 (4) | 0.849 (2) | 0.3552 (3) | 0.067 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.0566 (5) | 0.0778 (7) | 0.0821 (6) | −0.0020 (5) | 0.0197 (4) | 0.0045 (5) |
Br1 | 0.0781 (6) | 0.0915 (8) | 0.0632 (5) | −0.0096 (5) | −0.0115 (4) | 0.0140 (5) |
O3 | 0.053 (3) | 0.084 (5) | 0.070 (3) | 0.002 (3) | 0.007 (3) | 0.023 (3) |
F1 | 0.052 (2) | 0.167 (6) | 0.098 (3) | 0.020 (3) | −0.010 (2) | 0.037 (3) |
N1 | 0.043 (3) | 0.054 (5) | 0.053 (4) | 0.006 (3) | −0.002 (3) | −0.005 (3) |
N3 | 0.046 (3) | 0.066 (5) | 0.058 (4) | −0.002 (4) | 0.002 (3) | −0.006 (4) |
N2 | 0.040 (3) | 0.070 (5) | 0.060 (4) | 0.003 (3) | 0.008 (3) | 0.006 (3) |
O2 | 0.040 (3) | 0.116 (6) | 0.082 (4) | 0.010 (3) | −0.006 (3) | 0.016 (3) |
O1 | 0.052 (3) | 0.136 (6) | 0.080 (4) | 0.010 (4) | 0.011 (3) | 0.042 (4) |
C8 | 0.043 (4) | 0.056 (5) | 0.043 (4) | 0.003 (4) | 0.005 (3) | −0.004 (4) |
C1 | 0.042 (4) | 0.049 (6) | 0.058 (5) | −0.001 (3) | 0.002 (3) | 0.000 (4) |
C13 | 0.040 (4) | 0.053 (6) | 0.060 (5) | −0.004 (3) | 0.007 (3) | −0.006 (4) |
C7 | 0.033 (4) | 0.068 (7) | 0.048 (4) | −0.004 (3) | 0.005 (3) | 0.000 (4) |
C11 | 0.064 (5) | 0.069 (7) | 0.053 (4) | 0.007 (4) | 0.010 (4) | 0.009 (4) |
C12 | 0.043 (4) | 0.061 (6) | 0.054 (4) | 0.009 (4) | −0.004 (3) | −0.003 (4) |
C6 | 0.041 (4) | 0.073 (6) | 0.047 (4) | −0.002 (4) | 0.001 (3) | 0.001 (4) |
C9 | 0.041 (4) | 0.047 (5) | 0.061 (4) | 0.007 (4) | 0.007 (3) | −0.011 (4) |
C10 | 0.059 (4) | 0.056 (6) | 0.049 (4) | 0.012 (4) | 0.006 (4) | −0.001 (4) |
C2 | 0.049 (4) | 0.059 (5) | 0.062 (4) | −0.003 (4) | 0.003 (3) | −0.007 (4) |
C5 | 0.041 (4) | 0.097 (7) | 0.064 (5) | 0.003 (5) | 0.010 (4) | 0.018 (5) |
C4 | 0.042 (4) | 0.124 (9) | 0.069 (5) | 0.008 (5) | 0.012 (4) | 0.015 (5) |
C3 | 0.041 (4) | 0.093 (7) | 0.062 (5) | 0.009 (4) | −0.019 (4) | −0.002 (5) |
Br2—C10 | 1.872 (7) | C1—H1A | 0.9300 |
Br1—C2 | 1.874 (7) | C13—C12 | 1.383 (9) |
O3—N3 | 1.234 (7) | C7—C6 | 1.465 (9) |
F1—C3 | 1.369 (7) | C7—H7 | 0.9300 |
N1—C7 | 1.268 (8) | C11—C12 | 1.366 (9) |
N1—N2 | 1.368 (7) | C11—C10 | 1.388 (9) |
N3—O2 | 1.243 (7) | C11—H11 | 0.9300 |
N3—C13 | 1.451 (8) | C12—H12 | 0.9300 |
N2—C8 | 1.374 (8) | C6—C5 | 1.383 (8) |
N2—H2 | 0.8600 | C9—C10 | 1.353 (10) |
O1—C5 | 1.343 (8) | C9—H9 | 0.9300 |
O1—H1 | 0.8200 | C2—C3 | 1.386 (9) |
C8—C9 | 1.402 (8) | C5—C4 | 1.378 (10) |
C8—C13 | 1.406 (9) | C4—C3 | 1.363 (10) |
C1—C2 | 1.356 (9) | C4—H4 | 0.9300 |
C1—C6 | 1.381 (9) | ||
C7—N1—N2 | 117.0 (5) | C11—C12—H12 | 119.0 |
O3—N3—O2 | 122.2 (6) | C13—C12—H12 | 119.0 |
O3—N3—C13 | 119.4 (6) | C1—C6—C5 | 119.0 (6) |
O2—N3—C13 | 118.4 (6) | C1—C6—C7 | 118.6 (6) |
N1—N2—C8 | 119.6 (5) | C5—C6—C7 | 122.4 (6) |
N1—N2—H2 | 120.2 | C10—C9—C8 | 122.3 (6) |
C8—N2—H2 | 120.2 | C10—C9—H9 | 118.9 |
C5—O1—H1 | 109.5 | C8—C9—H9 | 118.9 |
N2—C8—C9 | 120.9 (6) | C9—C10—C11 | 121.6 (7) |
N2—C8—C13 | 123.3 (6) | C9—C10—Br2 | 118.6 (5) |
C9—C8—C13 | 115.8 (6) | C11—C10—Br2 | 119.8 (6) |
C2—C1—C6 | 122.5 (6) | C1—C2—C3 | 116.2 (7) |
C2—C1—H1A | 118.8 | C1—C2—Br1 | 123.6 (5) |
C6—C1—H1A | 118.8 | C3—C2—Br1 | 120.1 (5) |
C12—C13—C8 | 120.9 (6) | O1—C5—C4 | 116.9 (6) |
C12—C13—N3 | 116.9 (6) | O1—C5—C6 | 122.5 (6) |
C8—C13—N3 | 122.2 (6) | C4—C5—C6 | 120.5 (7) |
N1—C7—C6 | 120.9 (6) | C3—C4—C5 | 117.5 (6) |
N1—C7—H7 | 119.6 | C3—C4—H4 | 121.2 |
C6—C7—H7 | 119.6 | C5—C4—H4 | 121.2 |
C12—C11—C10 | 117.5 (7) | C4—C3—F1 | 117.7 (6) |
C12—C11—H11 | 121.2 | C4—C3—C2 | 124.2 (6) |
C10—C11—H11 | 121.2 | F1—C3—C2 | 118.1 (7) |
C11—C12—C13 | 122.0 (6) | ||
C7—N1—N2—C8 | −175.6 (6) | C13—C8—C9—C10 | 1.7 (10) |
N1—N2—C8—C9 | 4.6 (10) | C8—C9—C10—C11 | −0.3 (12) |
N1—N2—C8—C13 | −174.2 (6) | C8—C9—C10—Br2 | −179.0 (5) |
N2—C8—C13—C12 | 176.8 (7) | C12—C11—C10—C9 | −0.7 (11) |
C9—C8—C13—C12 | −2.1 (10) | C12—C11—C10—Br2 | 178.0 (5) |
N2—C8—C13—N3 | −1.4 (10) | C6—C1—C2—C3 | 1.4 (12) |
C9—C8—C13—N3 | 179.7 (6) | C6—C1—C2—Br1 | −177.9 (6) |
O3—N3—C13—C12 | −173.8 (7) | C1—C6—C5—O1 | −178.7 (8) |
O2—N3—C13—C12 | 6.4 (9) | C7—C6—C5—O1 | 1.5 (13) |
O3—N3—C13—C8 | 4.4 (10) | C1—C6—C5—C4 | 1.6 (13) |
O2—N3—C13—C8 | −175.3 (7) | C7—C6—C5—C4 | −178.3 (8) |
N2—N1—C7—C6 | −177.9 (6) | O1—C5—C4—C3 | −179.2 (9) |
C10—C11—C12—C13 | 0.3 (11) | C6—C5—C4—C3 | 0.6 (14) |
C8—C13—C12—C11 | 1.2 (11) | C5—C4—C3—F1 | 178.3 (8) |
N3—C13—C12—C11 | 179.5 (7) | C5—C4—C3—C2 | −1.9 (14) |
C2—C1—C6—C5 | −2.6 (12) | C1—C2—C3—C4 | 1.0 (13) |
C2—C1—C6—C7 | 177.3 (7) | Br1—C2—C3—C4 | −179.8 (8) |
N1—C7—C6—C1 | −177.6 (7) | C1—C2—C3—F1 | −179.3 (7) |
N1—C7—C6—C5 | 2.3 (12) | Br1—C2—C3—F1 | −0.1 (11) |
N2—C8—C9—C10 | −177.2 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.91 | 2.631 (7) | 146 |
N2—H2···O3 | 0.86 | 2.01 | 2.619 (7) | 127 |
N2—H2···O3i | 0.86 | 2.50 | 3.293 (7) | 155 |
C4—H4···O1ii | 0.93 | 2.60 | 3.494 (8) | 162 |
C7—H7···O3i | 0.93 | 2.66 | 3.461 (7) | 145 |
C12—H12···Br1iii | 0.93 | 3.02 | 3.908 (7) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Aydemir, E. & Kaban, S. (2018). Asian J. Chem. 30, 1460–1464. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214. CrossRef IUCr Journals Google Scholar
Kaban, S. & Ocal, N. (1993). Pak. J. Sci. Ind. Res. 36, 357–359. Google Scholar
Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51. Google Scholar
Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516. CrossRef IUCr Journals Google Scholar
Karadayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671–o2673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mori, A., Suzuki, T. & Nakajima, K. (2015). Acta Cryst. E71, 142–145. CrossRef IUCr Journals Google Scholar
Öztürk, S., Akkurt, M., Aydemír, E. & Fun, H.-K. (2003). Acta Cryst. E59, o488–o489. CrossRef IUCr Journals Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CSD CrossRef CAS Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Soujanya, M. & Rajitha, G. (2017). Int. J. Pharm. Sci. Res. 8, 3786–3794. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Sudheer, R., Sithambaresan, M., Sajitha, N. R., Manoj, E. & Kurup, M. R. P. (2015). Acta Cryst. E71, 702–705. CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.