research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Packing polymorphism in the structure of trans-aqua­[N,N′-bis­­(salicyl­­idene)ethane-1,2-di­amine-κ4O,N,N′,O′]chlorido­manganese(III) monohydrate

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: lupita_qt@hotmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 1 October 2018; accepted 6 November 2018; online 13 November 2018)

The crystal structure of the title complex (systematic name: trans-aqua­chlorido­{2,2′[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III) monohydrate), [Mn(C16H14N2O2)Cl(H2O)]·H2O has been reported previously in the space group P21/n [Panja et al. (2003[Panja, A., Shaikh, N., Ali, M., Vojt\?íšek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191-1198.]). Polyhedron, 22, 1191–1198]. We obtained the same hydrated complex through an alternative synthesis, and crystallized a new polymorph, in the space group P21. The mol­ecular conformation of the complex is virtually unmodified, but the absence of the glide plane in the new polymorph halves the unit-cell parameter c, affording a non-centrosymmetric crystal structure with Z = 2, while the previously reported crystal is centrosymmetric with Z = 4. Both phases represent a case of packing polymorphism, similar to other dimorphic crystal structures retrieved from the Cambridge Structural Database.

1. Chemical context

Schiff base organic compounds are widely employed ligands in modern coordination chemistry because they are easily accessible and display high versatility (Zarei et al., 2015[Zarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82-87.]). Within this field, the coordination chemistry of H2salen [N,N′-bis­(salicyl­idene)ethane-1,2-di­amine] has been studied with virtually all transition metals. The chelating character of the dianionic ligand salen is known to stabilize not only M2+ cations, but also higher oxidation states, providing that ancillary anions such as Cl are present. In the case of manganese, this strategy may be used to stabilize MnIII and MnIV oxidation states, generally in octa­hedral ligand fields. The resulting complexes are potentially of inter­est in various inter­disciplinary fields such as structural chemistry, catalytic processes involving metalloproteins or enzymes (Sarkar et al., 2017[Sarkar, N., Das, M. & Chattopadhyay, S. (2017). Inorg. Chim. Acta, 457, 19-28.]), magnetochemistry (Blinov, 2017[Blinov, L. N. (2017). Glass Phys. Chem. 43, 1-16.]), and NLO materials. Regarding the sub-family of MnIII–salen derivatives, they have been used mainly as models for biological systems involving this metal cation. For our part, we focus on salen-based materials, which can display non-linear optical response, for example with CoIII as the metal centre (Qu­intero-Téllez et al., 2016[Quintero-Téllez, M. G., Alcántara-Flores, J. L., Bernès, S., Arroyo Carrasco, M. L., Méndez Otero, M. M. & Reyes-Ortega, Y. (2016). Inorg. Chem. Commun. 70, 41-46.]).

While extending our work to MnIII, we prepared the title complex, for which a synthesis was previously reported (Panja et al., 2003[Panja, A., Shaikh, N., Ali, M., Vojt\?íšek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191-1198.]). These authors synthesized the complex using a MnIII compound as starting material, namely [Mn(salen)OAc]·H2O, which was reacted with MnCl2·4H2O in water. Crystallization at room temperature afforded brownish black microcrystals, and the authors characterized the complex in space group P21/n, with Z = 4. We obtained the same compound through a more straightforward synthetic route, using a one-pot reaction between salicyl­aldehyde, di­ethyl­enetri­amine, and MnCl2, in MeOH. In contrast to the previous synthesis, crystallization was carried out at low temperature (283 K) in methanol, affording brown crystals. The structure determination shows that this phase crystallizes in space group P21, with Z = 2.

[Scheme 1]

Although we have no strong experimental evidences regarding the mechanism triggering the polymorphism for this complex, we believe that the temperature and the solvent of crystallization could be the key parameters. We report here the structure of the P21 polymorph, along with its characterization in solution by means of UV–Vis spectroscopy.

2. Structural commentary

The asymmetric unit of the P21 phase contains one [Mn(salen)(OH2)Cl] neutral complex and one lattice water mol­ecule, both in general positions (Fig. 1[link]). As expected, the MnIII centre displays a slightly distorted octa­hedral geometry, with the four donor sites of ligand salen in the equatorial plane (N1/N2/O1/O2). The metal deviates by only 0.056 Å from the equatorial plane, and axial sites are occupied by a water mol­ecule (O3W) and the chloride ion (Cl) at normal distances. Deviations from an ideal octa­hedral geometry result from the bite angles of the chelating salen ligand.

[Figure 1]
Figure 1
The structure of the title solvate, with displacement ellipsoids for non-H atoms at the 50% probability level.

The relative position of the lattice water mol­ecule and the complex mol­ecule is very similar in both polymorphs: a fit between the asymmetric units of each phase, carried out using all non-H atoms in the complex, shows that the unique significant differences are for the phenol rings C1–C6 and C11–C16, which are rotated about their σ bonds C7—C6 and C10—C11, by ca 6.4 and 13.9°, respectively. However, such a limited change in the conformation of the complex is unlikely to promote the polymorphism. On the other hand, each phase gives a clearly different simulated powder diffraction pattern (Fig. 2[link]).

[Figure 2]
Figure 2
Simulated powder diffraction patterns for the P21/n form of the title compound (Panja et al., 2003[Panja, A., Shaikh, N., Ali, M., Vojt\?íšek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191-1198.]; blue spectrum) and the P21 form (this work; red spectrum). A fit between the mol­ecules constituting the asymmetric units in both phases is also displayed, using the same colour scheme (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

The crystal structure reported by Panja et al. is based on a primitive monoclinic unit cell with parameters a = 6.6470 (2), b = 7.3330 (2), c = 33.8260 (10) Å and β = 95.1650 (17)°. The cell volume V is 1642.07 (8) Å3, corresponding to a P21/n structure with four formulas per unit cell. An obvious relation is observed with the parameters of our phase (Table 3[link]): the cell symmetry is retained, with very similar a, b and β parameters, while the c parameter is almost exactly halved. The resulting cell volume is then V = 838.67 (10) Å3. Therefore, the unit-cell content is also halved to Z = 2, and a marginal difference of 2% for the calculated densities is observed between the two polymorphs. It is worth mentioning that after the data collection was completed, we checked the correctness of the short c parameter for the P21 polymorph, by re-building the reciprocal space: no extra diffraction spots with indices (h k l/2) for a potential supercell are observed in the 0kl and h0l layers. This can be qu­anti­tatively assessed by integrating the collected frames after doubling the c parameter: the statistics for intensities over the whole (hkl) pattern are then 〈I/σ(I)〉 = 4.70 if l is even (10251 reflections) and 〈I/σ(I)〉 = 0.16 if l is odd (10053 reflections). The previously reported P21/n polymorph gives much more balanced statistics, 〈I/σ(I)〉 = 84.74 for l = 2n and 〈I/σ(I)〉 = 85.67 for l = 2n + 1 [given that, apparently, original structure factors are not available anymore for this crystal, intensities Fo2 and standard deviations σ(Fo2) were generated using the dedicated tool in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])]. These statistics support the correctness of the unit cells for both polymorphs.

Table 3
Experimental details

Crystal data
Chemical formula [Mn(C16H14N2O2)Cl(H2O)]·H2O
Mr 392.71
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 6.7083 (4), 7.2414 (5), 17.2768 (13)
β (°) 92.153 (6)
V3) 838.67 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.97
Crystal size (mm) 0.30 × 0.30 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO, Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.969, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10229, 4080, 3647
Rint 0.033
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.072, 1.06
No. of reflections 4080
No. of parameters 229
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.23
Absolute structure Flack x determined using 1381 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.017 (12)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO, Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A comparison of unit cells shows that mol­ecules related by the screw axis parallel to [010] remain in the same relative orientation (Fig. 3[link]), including the water mol­ecules. Each pair of mol­ecules is inverted in the P21/n polymorph, while the lack of a glide plane in the new phase restrains the cell contents to this pair of mol­ecules, which is extended in the crystal through lattice translations. The key point is then that the new phase crystallizes in a non-centrosymmetric space group, P21, while doubling the c parameter gives a centrosymmetric space group, P21/n. The presence or absence of an inversion centre affords two phases related by packing polymorphism (Brog et al., 2013[Brog, J.-P., Chanez, C.-L., Crochet, A. & Fromm, K. M. (2013). RSC Adv. 3, 16905-16931.])

[Figure 3]
Figure 3
A comparison between the cell content for the P21/n and P21 forms (top and bottom, respectively). Dashed lines relate mol­ecules with identical orientation in both crystals, and symmetry elements are displayed (top: screw axes, glide planes and inversion centres; bottom: screw axes).

The electronic spectrum of the title compound in DMSO shows one band at 264 nm assigned to the ligand ππ* transition, and a broad band at 598 nm, which corresponds to dd transitions (Fig. 4[link]). The dd band is satisfactorily fitted with two Gaussian functions (Fig. 4[link], inset; OriginLab Corp., 2017[OriginLab Corp. (2017). OriginPro 9.4, Northampton, MA, USA.]), and can be assigned to the 5Eg5T2g transition, consistent with the distorted octa­hedral ligand field observed for the metal centre in the solid state. If no conformational flexibility is possible for this complex, the polymorphism is then due to different packing structures, rather than geometric modifications.

[Figure 4]
Figure 4
UV–vis spectrum of the title polymorph dissolved in DMSO. The experimental spectrum (red line) is fitted with Gaussian functions for which maxima are indicated. The sum of these Gaussian functions affords the theoretical spectrum (dotted blue line). The visible range of the spectrum is displayed in the inset, using a scale allowing the dd transitions to be assessed, fitted with two Gaussian functions, giving a maximum at λ = 598 nm.

3. Supra­molecular features

The presence of both a coordinated and a lattice water mol­ecules favours the formation of O—H⋯O hydrogen bonds in the crystal (Table 1[link]). The coordinated mol­ecule O3W serves as donor, forming bonds with the lattice water O4W and the chloride atom of a neighbouring complex in position (x, y − 1, z). The lattice mol­ecule O4W serves both as donor and acceptor, forming bonds with the chloride and phenolate atom O2 of two symmetry-related complexes. The resulting supra­molecular structure is a 3D framework based essentially on discrete chains extended to large ring motifs. The comparison between the Hirshfeld surfaces for the asymmetric units in the two phases (Fig. 5[link]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.]) is consistent with the observed crystal symmetries and provides some clues about the factor causing the packing polymorphism. For the P21/n phase, the inversion centre allows the formation of ππ contacts between symmetry-related C11–C16 benzene rings (symmetry code: 2 − x, −y, 1 − z). Such weak inter­actions are reflected in the red spots on the Hirshfeld surface, marked with arrows in Fig. 5[link]. The main consequence of the absence of an inversion centre in the P21 crystal is the removal of these contacts (Fig. 5[link], bottom), in connection with the small rotation of 13.9° observed for this part of the Schiff base (see previous section and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H31W⋯O4W 0.81 (5) 2.02 (5) 2.827 (4) 174 (5)
O3W—H32W⋯Cli 0.80 (6) 2.45 (6) 3.249 (3) 173 (5)
O4W—H41W⋯O2ii 0.83 (6) 2.07 (6) 2.896 (4) 170 (5)
O4W—H42W⋯Cliii 0.81 (5) 2.41 (5) 3.228 (3) 178 (5)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x-1, y-1, z.
[Figure 5]
Figure 5
Hirshfeld surfaces mapped over dnorm (−0.15 to 1.20 Å) for the P21/n polymorph reported in 2003 (Panja et al., 2003[Panja, A., Shaikh, N., Ali, M., Vojt\?íšek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191-1198.]; top) and the novel P21 polymorph (bottom). Arrows in the first case indicate regions where inter­molecular distances are shorter than van der Waals contacts, because of ππ inter­actions.

The crystal structure of the non-hydrated complex has been reported (Martínez et al., 2002[Martínez, D., Motevalli, M. & Watkinson, M. (2002). Acta Cryst. C58, m258-m260.]), in space group P21, but the packing structure is then modified, since the array of hydrogen bonds is different.

4. Database survey

Retrieving cases of packing polymorphism by mining the Cambridge Structural Database is not a straightforward task, since no dedicated tools have been designed for such a search (CSD, version 5.39, updated May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). It is thus difficult to estimate whether or not this phenomenon is common. Restraining the search to the symmetry class 2/m, we however found some cases very similar to that observed for the title compound, with packing dimorphism in space groups P21/n and P21 (or any alternative settings for these groups), some of which are listed in Table 2[link]. For each pair, the ratio between the unit-cell volumes for the P21/n and P21 phases is very close to 2, because of the loss of the glide plane and the halving of the cell parameter c. Very simple mol­ecules are found, such as glycine (DOLBIR; Arul Asir Abraham et al., 2015[Arul Asir Abraham, D., Sankar, U., Perumal, S. & Selvarajan, P. (2015). Int. J. Chem. Tech. Res. 8(1), 105-110.]) and also more complex mol­ecules (YURVAI; van den Hende et al., 1995[Hende, J. R. van den, Hitchcock, P. B., Holmes, S. A., Lappert, M. F., Leung, W.-P., Mak, T. C. W. & Prashar, S. (1995). J. Chem. Soc. Dalton Trans. pp. 1427-1433.]). Using simulated powder diffraction patterns in order to ensure that a pair of crystal structures forms a genuine case of packing dimorphism, false positive occurrences may also be detected. For example, the reported crystal structures for 4-cyano-4′-ethyl-bipbenyl, referenced KUSVID and KUSVID01 (space groups P21/c and P21, respectively; Haase et al., 1992[Haase, W., Loub, J. & Paulus, H. (1992). Z. Kristallogr. 202, 7-16.]) almost certainly represent the same crystal structure rather than two packing polymorphs resulting from a reversible distortive phase transition, as was reported.

Table 2
Examples of dimorphic crystal structures with packing polymorphism in the symmetry class 2/m

CSD references Space groups Volumes of unit cells (Å3) Literature reference
CANDUR01, CANDUR02 P21/c, P21 1190, 610 Lutker & Matzger (2010[Lutker, K. M. & Matzger, A. J. (2010). J. Pharm. Sci. 99, 794-803.])
DOLBIR07, DOLBIR08 P21/n, P21 304, 155 Jiang et al. (2015[Jiang, Q., Shtukenberg, A. G., Ward, M. D. & Hu, C. (2015). Cryst. Growth Des. 15, 2568-2573.])
GEPSEA01, GEPSEA P21/c, P21 1108, 554 Konno & Matsushita (2006[Konno, Y. & Matsushita, N. (2006). Bull. Chem. Soc. Jpn, 79, 1237-1239.])
LIHGAM, LIHGAM01 P21/c, P21 1060, 502 Wang & Fu (2013[Wang, W.-X. & Fu, X.-Q. (2013). Z. Anorg. Allg. Chem. 639, 471-474.])
MIZHOT01, MIZHOT02 P21/c, P21 1472, 738 Sevinçek et al. (2011[Sevinçek, R., Aygün, M., Alp, S. & Kazak, C. (2011). J. Chem. Crystallogr. 41, 1140-1144.]); Parveen et al. (2015[Parveen, M., Ahmad, F., Malla, A. M., Azaz, S., Silva, M. R. & Silva, P. S. P. (2015). RSC Adv. 5, 52330-52346.])
NORVEX, NORVEX01 P21/c, P21 1938, 966 Zhang et al. (2015[Zhang, X.-Y., Jiang, X.-X., Li, Y., Lin, Z. S., Zhang, G.-C. & Wu, Y.-C. (2015). CrystEngComm, 17, 1050-1055.])
SOGUAN20, SOGUAN03 P21/c, P21 1026, 513 Alléaume et al. (1976[Alléaume, M., Gulko, A., Herbstein, F. H., Kapon, M. & Marsh, R. E. (1976). Acta Cryst. B32, 669-682.]); Eccles et al. (2011[Eccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O'Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. & Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213-215.])
YURVAI, YURVAI01 P21/c, P21 4798, 2285 van den Hende et al. (1995[Hende, J. R. van den, Hitchcock, P. B., Holmes, S. A., Lappert, M. F., Leung, W.-P., Mak, T. C. W. & Prashar, S. (1995). J. Chem. Soc. Dalton Trans. pp. 1427-1433.]); Deacon et al. (2014[Deacon, G. B., Hamidi, S., Junk, P. C., Kelly, R. P. & Wang, J. (2014). Eur. J. Inorg. Chem. pp. 460-468.])

5. Synthesis and crystallization

Equimolar amounts (1 mmol) of MnCl2 (0.125 g), salicyl­aldehyde (108 µl) and di­ethyl­enetri­amine (106 µl) in MeOH (5 ml) were placed in a beaker and the mixture was kept under magnetic stirring for 30 minutes at room temperature. As the Schiff base ligand was formed in situ, the condensation reaction between the aldehyde and the amine afforded water, which participates as a reagent. The mixture was left at room temperature for one day, filtered, and then cooled to 283 K, affording brown single crystals of the title compound after eight days (51 mg, yield based on Mn: 17%). M.p. 447 K. IR (KBr pellet, cm−1): 3436 (O—H), 1610 (C=N), 638 (Mn—O), 460 (Mn—N). The UV–Vis spectrum (Fig. 4[link]) was measured in a DMSO solution (≃ 1.3×10−2 mM) using a Cary 50 spectro­photometer (λmax/, nm/10−3M−1cm−1): 264/114.5, 598/1.16.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms for water mol­ecules O3W and O4W were found in a difference map, and freely refined. Other H atoms were refined as riding on their carrier atoms with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Aquachlorido{2,2'[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}manganese(III) monohydrate top
Crystal data top
[Mn(C16H14N2O2)Cl(H2O)]·H2ODx = 1.555 Mg m3
Mr = 392.71Melting point: 447 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.7083 (4) ÅCell parameters from 4867 reflections
b = 7.2414 (5) Åθ = 3.7–27.5°
c = 17.2768 (13) ŵ = 0.97 mm1
β = 92.153 (6)°T = 298 K
V = 838.67 (10) Å3Plate, brown
Z = 20.30 × 0.30 × 0.15 mm
F(000) = 404
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4080 independent reflections
Radiation source: Enhance (Mo) X-ray Source3647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 29.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 99
Tmin = 0.969, Tmax = 1.000k = 910
10229 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.0549P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4080 reflectionsΔρmax = 0.40 e Å3
229 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack x determined using 1381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (12)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.09362 (6)0.52766 (6)0.76613 (3)0.02725 (13)
Cl0.21462 (13)0.86787 (12)0.78160 (7)0.0449 (3)
O10.2621 (3)0.4339 (3)0.84472 (14)0.0314 (5)
O20.2725 (3)0.4682 (3)0.68703 (14)0.0319 (6)
O3W0.0502 (4)0.2359 (4)0.7460 (2)0.0468 (8)
H31W0.167 (8)0.208 (7)0.741 (3)0.070*
H32W0.022 (8)0.150 (8)0.757 (3)0.070*
O4W0.4622 (4)0.1624 (5)0.7235 (2)0.0489 (8)
H41W0.541 (8)0.251 (8)0.719 (3)0.073*
H42W0.544 (7)0.087 (7)0.737 (3)0.073*
N10.1165 (4)0.5785 (4)0.84081 (18)0.0295 (7)
N20.1111 (4)0.6231 (4)0.69079 (18)0.0314 (7)
C10.2606 (5)0.4706 (4)0.9199 (2)0.0276 (7)
C20.4299 (5)0.4261 (5)0.9660 (2)0.0338 (8)
H210.5393200.3728460.9431410.041*
C30.4374 (6)0.4598 (5)1.0446 (2)0.0415 (9)
H310.5524170.4314061.0738930.050*
C40.2745 (6)0.5358 (6)1.0804 (2)0.0460 (9)
H410.2802280.5590141.1333570.055*
C50.1057 (6)0.5760 (5)1.0368 (2)0.0404 (10)
H510.0045130.6236861.0610440.048*
C60.0944 (5)0.5471 (5)0.95632 (19)0.0316 (8)
C70.0886 (5)0.5890 (4)0.9141 (2)0.0324 (8)
H710.1959990.6270220.9426920.039*
C80.3150 (5)0.6098 (5)0.8028 (2)0.0380 (9)
H820.3967910.6843980.8358100.046*
H810.3820020.4928070.7933940.046*
C90.2848 (5)0.7073 (5)0.7279 (2)0.0410 (10)
H910.4030770.6953160.6941770.049*
H920.2605260.8376390.7371890.049*
C100.0941 (5)0.6321 (5)0.6175 (2)0.0374 (9)
H1010.2024620.6787470.5885610.045*
C110.0782 (5)0.5765 (5)0.5754 (2)0.0362 (9)
C120.0738 (6)0.6076 (5)0.4951 (2)0.0480 (10)
H1210.0401280.6587060.4714510.058*
C130.2312 (7)0.5651 (6)0.4508 (2)0.0548 (12)
H1310.2252580.5873090.3977490.066*
C140.4005 (6)0.4880 (6)0.4864 (2)0.0511 (11)
H1410.5091610.4593660.4567360.061*
C150.4104 (5)0.4534 (5)0.5645 (2)0.0381 (9)
H1510.5240480.3983460.5866500.046*
C160.2515 (5)0.4998 (5)0.61183 (19)0.0315 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0191 (2)0.0312 (3)0.0315 (3)0.0036 (2)0.00186 (16)0.0002 (2)
Cl0.0318 (5)0.0302 (4)0.0722 (8)0.0033 (4)0.0032 (4)0.0006 (4)
O10.0250 (12)0.0383 (13)0.0308 (14)0.0071 (10)0.0006 (10)0.0004 (11)
O20.0249 (11)0.0394 (14)0.0316 (14)0.0052 (10)0.0028 (10)0.0005 (10)
O3W0.0326 (15)0.0306 (15)0.077 (2)0.0012 (12)0.0035 (15)0.0004 (14)
O4W0.0321 (15)0.0432 (18)0.072 (2)0.0047 (13)0.0084 (14)0.0092 (15)
N10.0179 (13)0.0290 (16)0.0417 (19)0.0024 (10)0.0022 (12)0.0047 (12)
N20.0235 (14)0.0311 (15)0.0395 (19)0.0014 (12)0.0023 (12)0.0014 (13)
C10.0287 (16)0.0230 (16)0.0312 (19)0.0042 (13)0.0027 (14)0.0035 (13)
C20.0294 (18)0.0333 (19)0.039 (2)0.0001 (14)0.0017 (15)0.0076 (16)
C30.046 (2)0.040 (2)0.039 (2)0.0069 (17)0.0072 (17)0.0110 (17)
C40.067 (2)0.041 (2)0.0303 (19)0.002 (2)0.0007 (17)0.000 (2)
C50.050 (2)0.033 (2)0.039 (2)0.0002 (16)0.0134 (18)0.0011 (15)
C60.0311 (16)0.0283 (18)0.0356 (19)0.0006 (16)0.0053 (13)0.0000 (16)
C70.0286 (18)0.0255 (17)0.044 (2)0.0008 (13)0.0123 (16)0.0028 (15)
C80.0200 (17)0.040 (2)0.054 (3)0.0034 (15)0.0047 (16)0.0066 (18)
C90.0238 (18)0.038 (2)0.060 (3)0.0101 (15)0.0049 (17)0.0045 (19)
C100.0328 (19)0.0297 (19)0.049 (3)0.0010 (15)0.0099 (16)0.0050 (17)
C110.041 (2)0.031 (2)0.035 (2)0.0024 (15)0.0034 (16)0.0028 (14)
C120.062 (3)0.041 (2)0.039 (2)0.004 (2)0.011 (2)0.0094 (18)
C130.085 (3)0.051 (3)0.028 (2)0.013 (2)0.003 (2)0.0035 (18)
C140.063 (3)0.050 (3)0.042 (2)0.011 (2)0.018 (2)0.007 (2)
C150.0373 (19)0.040 (2)0.037 (2)0.0049 (16)0.0063 (16)0.0037 (16)
C160.0356 (17)0.0282 (19)0.0310 (19)0.0063 (16)0.0034 (14)0.0001 (16)
Geometric parameters (Å, º) top
Mn—O11.862 (2)C4—H410.9300
Mn—O21.901 (2)C5—C61.405 (5)
Mn—N11.981 (3)C5—H510.9300
Mn—N21.981 (3)C6—C71.436 (5)
Mn—O3W2.343 (3)C7—H710.9300
Mn—Cl2.6045 (10)C8—C91.496 (5)
O1—C11.326 (4)C8—H820.9700
O2—C161.322 (4)C8—H810.9700
O3W—H31W0.81 (5)C9—H910.9700
O3W—H32W0.80 (6)C9—H920.9700
O4W—H41W0.83 (6)C10—C111.446 (5)
O4W—H42W0.81 (5)C10—H1010.9300
N1—C71.276 (5)C11—C121.405 (5)
N1—C81.480 (4)C11—C161.414 (5)
N2—C101.277 (5)C12—C131.362 (6)
N2—C91.482 (4)C12—H1210.9300
C1—C21.400 (5)C13—C141.388 (6)
C1—C61.414 (4)C13—H1310.9300
C2—C31.379 (5)C14—C151.372 (5)
C2—H210.9300C14—H1410.9300
C3—C41.389 (5)C15—C161.408 (4)
C3—H310.9300C15—H1510.9300
C4—C51.368 (5)
O1—Mn—O293.41 (10)C6—C5—H51119.1
O1—Mn—N191.15 (11)C5—C6—C1119.0 (3)
O2—Mn—N1173.66 (11)C5—C6—C7119.0 (3)
O1—Mn—N2173.37 (11)C1—C6—C7122.0 (3)
O2—Mn—N292.71 (11)N1—C7—C6125.6 (3)
N1—Mn—N282.56 (12)N1—C7—H71117.2
O1—Mn—O3W90.85 (11)C6—C7—H71117.2
O2—Mn—O3W87.51 (11)N1—C8—C9107.9 (3)
N1—Mn—O3W88.01 (11)N1—C8—H82110.1
N2—Mn—O3W86.87 (11)C9—C8—H82110.1
O1—Mn—Cl95.26 (8)N1—C8—H81110.1
O2—Mn—Cl94.89 (7)C9—C8—H81110.1
N1—Mn—Cl89.08 (8)H82—C8—H81108.4
N2—Mn—Cl86.75 (9)N2—C9—C8108.3 (3)
O3W—Mn—Cl173.28 (8)N2—C9—H91110.0
C1—O1—Mn127.9 (2)C8—C9—H91110.0
C16—O2—Mn128.4 (2)N2—C9—H92110.0
Mn—O3W—H31W129 (4)C8—C9—H92110.0
Mn—O3W—H32W115 (4)H91—C9—H92108.4
H31W—O3W—H32W114 (5)N2—C10—C11125.9 (3)
H41W—O4W—H42W96 (4)N2—C10—H101117.0
C7—N1—C8121.8 (3)C11—C10—H101117.0
C7—N1—Mn125.2 (2)C12—C11—C16119.3 (3)
C8—N1—Mn113.0 (2)C12—C11—C10117.7 (3)
C10—N2—C9120.5 (3)C16—C11—C10123.0 (3)
C10—N2—Mn125.7 (2)C13—C12—C11122.1 (4)
C9—N2—Mn113.4 (2)C13—C12—H121119.0
O1—C1—C2118.3 (3)C11—C12—H121119.0
O1—C1—C6123.3 (3)C12—C13—C14118.7 (4)
C2—C1—C6118.3 (3)C12—C13—H131120.6
C3—C2—C1121.2 (3)C14—C13—H131120.6
C3—C2—H21119.4C15—C14—C13121.2 (4)
C1—C2—H21119.4C15—C14—H141119.4
C2—C3—C4120.6 (3)C13—C14—H141119.4
C2—C3—H31119.7C14—C15—C16121.2 (4)
C4—C3—H31119.7C14—C15—H151119.4
C5—C4—C3119.2 (3)C16—C15—H151119.4
C5—C4—H41120.4O2—C16—C15118.3 (3)
C3—C4—H41120.4O2—C16—C11124.1 (3)
C4—C5—C6121.7 (3)C15—C16—C11117.6 (3)
C4—C5—H51119.1
O2—Mn—O1—C1160.2 (2)Mn—N1—C8—C934.8 (3)
N1—Mn—O1—C124.2 (2)C10—N2—C9—C8155.3 (3)
O3W—Mn—O1—C1112.2 (2)Mn—N2—C9—C831.2 (4)
Cl—Mn—O1—C165.0 (2)N1—C8—C9—N241.5 (4)
Mn—O1—C1—C2163.0 (2)C9—N2—C10—C11171.8 (3)
Mn—O1—C1—C618.9 (4)Mn—N2—C10—C110.7 (5)
O1—C1—C2—C3179.7 (3)N2—C10—C11—C12176.2 (3)
C6—C1—C2—C31.5 (5)N2—C10—C11—C161.4 (6)
C1—C2—C3—C41.3 (5)C16—C11—C12—C130.4 (6)
C2—C3—C4—C50.4 (6)C10—C11—C12—C13178.0 (4)
C3—C4—C5—C61.8 (6)C11—C12—C13—C140.3 (6)
C4—C5—C6—C11.5 (5)C12—C13—C14—C150.5 (6)
C4—C5—C6—C7178.8 (4)C13—C14—C15—C161.9 (6)
O1—C1—C6—C5178.2 (3)Mn—O2—C16—C15176.1 (2)
C2—C1—C6—C50.2 (5)Mn—O2—C16—C114.3 (5)
O1—C1—C6—C70.9 (5)C14—C15—C16—O2177.9 (3)
C2—C1—C6—C7177.1 (3)C14—C15—C16—C112.5 (5)
C8—N1—C7—C6175.0 (3)C12—C11—C16—O2178.7 (3)
Mn—N1—C7—C66.9 (5)C10—C11—C16—O21.2 (5)
C5—C6—C7—N1176.2 (3)C12—C11—C16—C151.7 (5)
C1—C6—C7—N16.5 (5)C10—C11—C16—C15179.2 (3)
C7—N1—C8—C9143.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H31W···O4W0.81 (5)2.02 (5)2.827 (4)174 (5)
O3W—H32W···Cli0.80 (6)2.45 (6)3.249 (3)173 (5)
O4W—H41W···O2ii0.83 (6)2.07 (6)2.896 (4)170 (5)
O4W—H42W···Cliii0.81 (5)2.41 (5)3.228 (3)178 (5)
C8—H81···O1ii0.972.613.217 (4)121
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x1, y1, z.
Examples of dimorphic crystal structures with packing polymorphism in the symmetry class 2/m top
CSD referencesSpace groupsVolumes of unit cells (Å3)Literature reference
CANDUR01, CANDUR02P21/c, P211190, 610Lutker & Matzger (2010)
DOLBIR07, DOLBIR08P21/n, P21304, 155Jiang et al. (2015)
GEPSEA01, GEPSEAP21/c, P211108, 554Konno & Matsushita (2006)
LIHGAM, LIHGAM01P21/c, P211060, 502Wang & Fu (2013)
MIZHOT01, MIZHOT02P21/c, P211472, 738Sevinçek et al. (2011); Parveen et al. (2015)
NORVEX, NORVEX01P21/c, P211938, 966Zhang et al. (2015)
SOGUAN20, SOGUAN03P21/c, P211026, 513Alléaume et al. (1976); Eccles et al. (2011)
YURVAI, YURVAI01P21/c, P214798, 2285van den Hende et al. (1995); Deacon et al. (2014)
 

Acknowledgements

The authors thank Dr Angel Mendoza, IC-UAP (Puebla, Mexico) for X-ray measurements.

Funding information

The present work was partially supported by the Vicerrectroría de Investigación y Estudios de Posgrado from BUAP, Projects QUTM-NAT17-I and QUTM-NAT18-I.

References

First citationAgilent (2013). CrysAlis PRO, Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAlléaume, M., Gulko, A., Herbstein, F. H., Kapon, M. & Marsh, R. E. (1976). Acta Cryst. B32, 669–682.  CrossRef IUCr Journals Web of Science Google Scholar
First citationArul Asir Abraham, D., Sankar, U., Perumal, S. & Selvarajan, P. (2015). Int. J. Chem. Tech. Res. 8(1), 105–110.  Google Scholar
First citationBlinov, L. N. (2017). Glass Phys. Chem. 43, 1–16.  CrossRef Google Scholar
First citationBrog, J.-P., Chanez, C.-L., Crochet, A. & Fromm, K. M. (2013). RSC Adv. 3, 16905–16931.  CrossRef Google Scholar
First citationDeacon, G. B., Hamidi, S., Junk, P. C., Kelly, R. P. & Wang, J. (2014). Eur. J. Inorg. Chem. pp. 460–468.  CrossRef Google Scholar
First citationEccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O'Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. & Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213–215.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaase, W., Loub, J. & Paulus, H. (1992). Z. Kristallogr. 202, 7–16.  CrossRef CAS Web of Science Google Scholar
First citationHende, J. R. van den, Hitchcock, P. B., Holmes, S. A., Lappert, M. F., Leung, W.-P., Mak, T. C. W. & Prashar, S. (1995). J. Chem. Soc. Dalton Trans. pp. 1427–1433.  Google Scholar
First citationJiang, Q., Shtukenberg, A. G., Ward, M. D. & Hu, C. (2015). Cryst. Growth Des. 15, 2568–2573.  CrossRef Google Scholar
First citationKonno, Y. & Matsushita, N. (2006). Bull. Chem. Soc. Jpn, 79, 1237–1239.  CrossRef Google Scholar
First citationLutker, K. M. & Matzger, A. J. (2010). J. Pharm. Sci. 99, 794–803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez, D., Motevalli, M. & Watkinson, M. (2002). Acta Cryst. C58, m258–m260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOriginLab Corp. (2017). OriginPro 9.4, Northampton, MA, USA.  Google Scholar
First citationPanja, A., Shaikh, N., Ali, M., Vojt\?íšek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191–1198.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParveen, M., Ahmad, F., Malla, A. M., Azaz, S., Silva, M. R. & Silva, P. S. P. (2015). RSC Adv. 5, 52330–52346.  CrossRef Google Scholar
First citationQuintero-Téllez, M. G., Alcántara-Flores, J. L., Bernès, S., Arroyo Carrasco, M. L., Méndez Otero, M. M. & Reyes-Ortega, Y. (2016). Inorg. Chem. Commun. 70, 41–46.  Google Scholar
First citationSarkar, N., Das, M. & Chattopadhyay, S. (2017). Inorg. Chim. Acta, 457, 19–28.  CrossRef Google Scholar
First citationSevinçek, R., Aygün, M., Alp, S. & Kazak, C. (2011). J. Chem. Crystallogr. 41, 1140–1144.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.  Google Scholar
First citationWang, W.-X. & Fu, X.-Q. (2013). Z. Anorg. Allg. Chem. 639, 471–474.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82–87.  Web of Science CrossRef Google Scholar
First citationZhang, X.-Y., Jiang, X.-X., Li, Y., Lin, Z. S., Zhang, G.-C. & Wu, Y.-C. (2015). CrystEngComm, 17, 1050–1055.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds