research communications
κO)[N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine-κ5O,N,N′,O′,O′′]nickel(II) tetrahydrate
and Hirshfeld surface analysis of (succinato-aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Engineering, Chemical Engineering Department, 55139, Samsun, Turkey, cSakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: gaidaisv77@ukr.net
In the title compound, [Ni(C10H24N2O4)(C4H4O4)]·4H2O, the NiII cation is octahedrally coordinated by one O atom of the succinate anion and three O atoms and two N atoms from an N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine molecule. In the crystal, molecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analyses and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (63.3%) and H⋯O/O⋯H (34.5%) interactions.
Keywords: crystal structure; nickel(II) complex; succinic acid; Hirshfeld surface.
CCDC reference: 1564209
1. Chemical context
Aliphatic dicarboxylic acid ligands have been utilized consistently in the synthesis of a diverse range of metal complexes. The metal-ion geometries of coordination compounds can easily be identified. Transition metal atoms can be bridged by aliphatic or aromatic dicarboxylate ligands to produce chains, layers and frameworks (Pavlishchuk et al., 2011; Cheng et al., 2013; Şen et al., 2017). In addition, many transition and heavy metal cations play an important role in biological processes in the formation of many vitamins and drug components. An important element for biological systems is nickel. Nickel complexes have biological applications as a result of their antiepileptic, antimicrobial, antibacterial and anticancer activities (Bombicz et al., 2001). Nickel complexes with succinic acid [chemical formula (CH2)2(CO2H)2] are examples containing a dicarboxylic acid. The carboxyl O atoms ligate to transition metals and thus the succinic acid can bridge between nickel metal centres to form one-, two- and three-dimensional structures as polymeric chains, layers and frameworks, respectively. We describe herein the synthesis and structural features of a new NiII complex, namely (succinato-κO)[N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine-κ5O,N,N′,O′,O′′]nickel(II) tetrahydrate. In addition, to understand the intermolecular interactions in the Hirshfeld surface analysis was performed.
2. Structural commentary
The molecular structure of the . The NiII ion is octahedrally coordinated by three O atoms and two N atoms of N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine molecule and one O atom of the succinate anion. The Ni1—O4, Ni1—O5 and Ni1—N1 bond lengths are 2.0172 (16), 2.114 (2) and 2.145 (2) Å, respectively (Table 1). The C—O bond lengths in the deprotonated carboxylic groups differ noticeably [C1—O1 = 1.250 (3) Å and C4—O4 = 1.263 (3) Å], which is typical for monodentately coordinated carboxylates (Gumienna-Kontecka et al., 2007; Pavlishchuk et al., 2010; Penkova et al., 2010). In the same way, the C5—O6, C7—O5 and C12—O7 bonds [1.431 (3), 1.440 (3) and 1.434 (3) Å, respectively] show single-bond character. The C10—N1 and C11—N1 bond lengths are similar [1.490 (3) and 1.497 (3) Å, respectively], while the C6—N2 and C9—N2 bonds are also not significantly different [1.500 (3) and 1.484 (4) Å, respectively]. An intramolecular C14—H14B⋯O4 hydrogen bond occurs while the complex molecule and water molecules are linked by O—H⋯O hydrogen bonds (O9—H9C⋯O8, O9—H9D⋯O10, O10—H10D⋯O11, O11—H11C⋯O12, O11—H11D⋯O3; Fig. 1 and Table 2).
of the title compound is illustrated in Fig. 1
|
3. Supramolecular features
The crystal packing of the title compound (Fig. 2) features intermolecular hydrogen bonds (O5—H5⋯O2i, O7—H7⋯O1i, O8—H8⋯O2ii, O10—H10C⋯O11iii, O12—H12C⋯O1iv and C6—H6A⋯O10v; symmetry codes as in Table 2), which connect the molecules into a three-dimensional supramolecular architecture. All four O atoms of the water molecules are involved in intra or intermolecular hydrogen bonds.
4. Database survey
A search of the Cambridge Structural database (CSD, version 5.39, update May 2018; Groom et al., 2016) revealed that there are several precendents for catena-{[[N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine-κ2N1,N2]nickel(II)]-μ-succinato-κO4} tetrahydrate, including the structures of hexaaquanickel(II) bis{aqua[N-(2-{bis[(carboxy)methyl]amino}ethyl)glycinato]nickel(II)} dihydrate (NELMUO; Belošević et al., 2013), hexaaquanickel(II) (μ2-triethylenetetra-aminehexaacetato)diaquadinickel(II) dihydrate (UCAWEB; Shi et al., 2006) and sodium aqua{hydrogen 2,2′,2′′,2′′′-[ethane-1,2-diylbis(nitrilo)]tetraacetato}nickel(II) trihydrate (WAPHAY; Crouse et al., 2012). In addition, tetraaquabis(isonicotinamide-κN1)nickel(II) bis(4-formylbenzoate) dihydrate (HUCLAT; Hökelek et al., 2009), trans-tetraaquabis(isonicotinamide)nickel(II) bis(3-hydroxybenzoate) tetrahydrate (GANZAY; Zaman et al., 2012) and tetraaquabis(isonicotinamide)nickel(II) thiophene-2,5-dicarboxylate dihydrate (NETQIO; Liu et al., 2012) have been reported. In these three complexes, the Ni—N bond lengths vary from 1.999 to 2.118 Å. In the title complex, the Ni—N bond lengths [2.145 (2) and 2.069 (2) Å] fall within these limits.
5. Hirshfeld surface analysis
Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and intermolecular interactions in the CrystalExplorer (Turner et al., 2017). The molecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.7407 (red) to 1.6068 (blue) a.u. The red spots on the surface indicate the intermolecular contacts involved in the hydrogen bonds. The red spots identified in Figs. 3 and 4 correspond to the near-type H⋯O contacts resulting from O—H⋯O and C—H⋯O hydrogen bonds (Table 2).
and two-dimensional fingerprint plots were calculated usingFig. 5 shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6 represents the O⋯H/H⋯O contacts (34.5%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di = 1.7 Å, and has two symmetrical points at the top, bottom left and right. These data are characteristic of O—H⋯O and C—H⋯O hydrogen bonds (Table 2). The top plot shown in Fig. 6 shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.0 Å, which indicates the presence of the H⋯H contacts (63.3% contribution). The graph for C⋯H/H⋯C represents the contacts ((1.4% contribution) between the carbon atoms inside the Hirshfeld surface and the hydrogen atoms outside it and vice versa. It has two symmetrical wings on the left and right sides.
In the view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic , the C—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
in the range −0.308 to 0.257 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, Fig. 76. Synthesis and crystallization
A solution of NaOH (50 mmol, 2.0 g) was added to an aqueous solution of succinic acid (25 mmol, 3 g) under stirring. A solution of NiCl2·6H2O (25 mmol, 6.14 g) in methanol was added. The mixture was heated at 353 K for one h and then the blue mixture was filtered and left to dry at room temperature. The product (0.88 mmol, 0.20 g) was dissolved in ethanol and added to a ethanol solution of N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine (1.75 mmol, 0.41 g). The mixture was heated at 353 K for one h under stirring and the resulting suspension was filtered. It was allowed to crystallize for four weeks at room temperature. Blue prismatic crystals suitable for X-ray were obtained.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.97 Å. and refined as riding, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The water H atoms were located in a difference map and were refined subject to a DFIX restraint of O—H = 0.85 Å. The O12—H12C bond length was refined with a DFIX restraint of 0.84 (4) Å. The H atoms bonded to other O atoms (O5, O6, O7 and O8) were located in a difference map and refined freely.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1564209
https://doi.org/10.1107/S2056989018015359/xu5943sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015359/xu5943Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Ni(C10H24N2O4)(C4H4O4)]·4H2O | F(000) = 1032 |
Mr = 483.16 | Dx = 1.480 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1369 (6) Å | Cell parameters from 18670 reflections |
b = 10.8182 (5) Å | θ = 1.9–27.7° |
c = 19.7771 (12) Å | µ = 0.96 mm−1 |
β = 90.172 (5)° | T = 296 K |
V = 2168.8 (2) Å3 | Prism, blue |
Z = 4 | 0.64 × 0.53 × 0.42 mm |
Stoe IPDS 2 diffractometer | 4472 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 3581 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.050 |
rotation method scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −11→12 |
Tmin = 0.605, Tmax = 0.735 | k = −13→13 |
11333 measured reflections | l = −24→24 |
Refinement on F2 | 14 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0617P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.003 |
4472 reflections | Δρmax = 0.53 e Å−3 |
283 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.78305 (3) | 0.48644 (3) | 0.27834 (2) | 0.03216 (11) | |
O6 | 0.71228 (19) | 0.64974 (17) | 0.23851 (8) | 0.0399 (4) | |
O7 | 0.83482 (18) | 0.31821 (16) | 0.32148 (8) | 0.0389 (4) | |
O4 | 0.7758 (2) | 0.55541 (16) | 0.37302 (8) | 0.0402 (4) | |
O5 | 0.98373 (19) | 0.53962 (19) | 0.27746 (9) | 0.0441 (4) | |
O1 | 1.0038 (2) | 0.6832 (2) | 0.57591 (9) | 0.0506 (5) | |
O3 | 0.7525 (2) | 0.75762 (18) | 0.35312 (9) | 0.0492 (5) | |
O2 | 0.8782 (2) | 0.5373 (2) | 0.62081 (10) | 0.0505 (5) | |
O8 | 0.3602 (2) | 0.5662 (2) | 0.36159 (13) | 0.0616 (6) | |
H8 | 0.289310 | 0.530698 | 0.365865 | 0.092* | |
N1 | 0.6030 (2) | 0.3883 (2) | 0.25904 (10) | 0.0386 (5) | |
N2 | 0.8286 (2) | 0.4497 (2) | 0.17844 (10) | 0.0399 (5) | |
O11 | 0.6745 (3) | 0.9685 (3) | 0.43095 (17) | 0.0797 (8) | |
H11C | 0.743874 | 1.002983 | 0.446171 | 0.120* | |
H11D | 0.695813 | 0.910368 | 0.404223 | 0.120* | |
C1 | 0.9109 (3) | 0.6073 (2) | 0.57295 (12) | 0.0406 (6) | |
C4 | 0.7866 (3) | 0.6676 (2) | 0.38981 (12) | 0.0394 (6) | |
O12 | 0.9026 (3) | 1.0865 (3) | 0.48350 (16) | 0.0815 (8) | |
C11 | 0.6166 (3) | 0.2652 (2) | 0.29282 (14) | 0.0443 (6) | |
H11A | 0.644685 | 0.204241 | 0.259896 | 0.053* | |
H11B | 0.531595 | 0.239664 | 0.310360 | 0.053* | |
C10 | 0.6021 (3) | 0.3719 (3) | 0.18425 (14) | 0.0497 (7) | |
H10A | 0.566366 | 0.445588 | 0.163106 | 0.060* | |
H10B | 0.545229 | 0.302940 | 0.172542 | 0.060* | |
C12 | 0.7148 (3) | 0.2705 (2) | 0.34949 (14) | 0.0440 (6) | |
H12A | 0.683244 | 0.324126 | 0.385255 | 0.053* | |
H12B | 0.729239 | 0.188620 | 0.368117 | 0.053* | |
C6 | 0.8042 (3) | 0.5651 (3) | 0.13822 (13) | 0.0471 (7) | |
H6A | 0.722563 | 0.556087 | 0.113029 | 0.057* | |
H6B | 0.875128 | 0.575787 | 0.105906 | 0.057* | |
C5 | 0.7955 (3) | 0.6798 (3) | 0.18258 (13) | 0.0466 (6) | |
H5A | 0.882565 | 0.703352 | 0.198508 | 0.056* | |
H5B | 0.758527 | 0.748288 | 0.157150 | 0.056* | |
C9 | 0.7392 (3) | 0.3480 (3) | 0.15738 (14) | 0.0503 (7) | |
H9A | 0.771937 | 0.269966 | 0.174776 | 0.060* | |
H9B | 0.736540 | 0.342881 | 0.108427 | 0.060* | |
O10 | 0.5320 (4) | 0.8538 (4) | 0.54221 (19) | 0.1024 (10) | |
H10C | 0.461361 | 0.887695 | 0.555905 | 0.154* | |
H10D | 0.555241 | 0.886225 | 0.504954 | 0.154* | |
C8 | 0.9674 (3) | 0.4115 (3) | 0.17774 (13) | 0.0481 (7) | |
H8A | 0.998072 | 0.406052 | 0.131423 | 0.058* | |
H8B | 0.975995 | 0.330382 | 0.198239 | 0.058* | |
C13 | 0.4778 (3) | 0.4508 (3) | 0.27750 (14) | 0.0471 (6) | |
H13A | 0.404622 | 0.399473 | 0.262823 | 0.057* | |
H13B | 0.472178 | 0.528317 | 0.253025 | 0.057* | |
C3 | 0.8508 (4) | 0.6932 (3) | 0.45697 (14) | 0.0549 (8) | |
H3A | 0.944899 | 0.702764 | 0.450027 | 0.066* | |
H3B | 0.817365 | 0.771168 | 0.474064 | 0.066* | |
C14 | 0.4626 (3) | 0.4768 (3) | 0.35170 (17) | 0.0541 (7) | |
H14A | 0.440785 | 0.401067 | 0.375403 | 0.065* | |
H14B | 0.545096 | 0.508051 | 0.369923 | 0.065* | |
C2 | 0.8295 (3) | 0.5965 (3) | 0.50927 (13) | 0.0526 (7) | |
H2A | 0.847406 | 0.516578 | 0.489003 | 0.063* | |
H2B | 0.737092 | 0.597494 | 0.521824 | 0.063* | |
C7 | 1.0510 (3) | 0.5040 (3) | 0.21648 (15) | 0.0497 (7) | |
H7A | 1.135643 | 0.467410 | 0.227709 | 0.060* | |
H7B | 1.066719 | 0.576359 | 0.188659 | 0.060* | |
O9 | 0.4560 (5) | 0.6270 (4) | 0.49044 (17) | 0.1286 (14) | |
H6 | 0.691139 | 0.719062 | 0.257744 | 0.193* | |
H7 | 0.897531 | 0.295947 | 0.348879 | 0.193* | |
H5 | 1.041734 | 0.531317 | 0.309305 | 0.193* | |
H9C | 0.418851 | 0.624575 | 0.451870 | 0.193* | |
H9D | 0.466146 | 0.701837 | 0.502467 | 0.193* | |
H12C | 0.872 (6) | 1.154 (3) | 0.474 (3) | 0.16 (3)* | |
H12D | 0.980 (4) | 1.105 (5) | 0.497 (5) | 0.31 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03494 (19) | 0.03014 (17) | 0.03141 (16) | −0.00050 (13) | 0.00031 (11) | 0.00160 (11) |
O6 | 0.0440 (11) | 0.0373 (9) | 0.0383 (8) | 0.0033 (8) | 0.0026 (8) | 0.0053 (7) |
O7 | 0.0389 (10) | 0.0347 (9) | 0.0430 (9) | −0.0009 (8) | −0.0022 (7) | 0.0043 (7) |
O4 | 0.0511 (12) | 0.0348 (9) | 0.0347 (8) | −0.0036 (8) | 0.0008 (8) | −0.0006 (7) |
O5 | 0.0371 (10) | 0.0524 (11) | 0.0426 (9) | −0.0040 (9) | 0.0011 (8) | 0.0039 (8) |
O1 | 0.0493 (12) | 0.0560 (12) | 0.0465 (10) | −0.0098 (10) | −0.0097 (9) | 0.0051 (9) |
O3 | 0.0676 (14) | 0.0370 (10) | 0.0430 (10) | 0.0029 (10) | −0.0090 (9) | 0.0004 (7) |
O2 | 0.0459 (12) | 0.0616 (12) | 0.0440 (10) | −0.0027 (10) | −0.0038 (9) | 0.0104 (9) |
O8 | 0.0498 (13) | 0.0501 (12) | 0.0850 (15) | 0.0042 (11) | 0.0207 (12) | 0.0023 (11) |
N1 | 0.0355 (12) | 0.0367 (11) | 0.0436 (11) | −0.0007 (9) | −0.0011 (9) | 0.0018 (9) |
N2 | 0.0431 (13) | 0.0413 (12) | 0.0353 (10) | 0.0015 (10) | 0.0025 (9) | 0.0001 (8) |
O11 | 0.078 (2) | 0.0564 (15) | 0.105 (2) | 0.0042 (14) | −0.0075 (16) | −0.0150 (14) |
C1 | 0.0422 (15) | 0.0420 (13) | 0.0377 (12) | 0.0054 (12) | −0.0007 (11) | −0.0029 (10) |
C4 | 0.0412 (15) | 0.0406 (13) | 0.0365 (12) | −0.0024 (12) | 0.0000 (10) | −0.0012 (10) |
O12 | 0.084 (2) | 0.0730 (19) | 0.0877 (19) | −0.0127 (17) | −0.0047 (16) | 0.0158 (15) |
C11 | 0.0403 (15) | 0.0357 (13) | 0.0569 (15) | −0.0048 (12) | −0.0007 (12) | 0.0024 (11) |
C10 | 0.0470 (17) | 0.0567 (17) | 0.0454 (14) | −0.0053 (14) | −0.0102 (12) | −0.0041 (12) |
C12 | 0.0466 (17) | 0.0352 (13) | 0.0502 (14) | −0.0007 (12) | 0.0006 (12) | 0.0089 (10) |
C6 | 0.0526 (18) | 0.0538 (16) | 0.0349 (12) | 0.0035 (14) | 0.0035 (12) | 0.0078 (11) |
C5 | 0.0525 (17) | 0.0430 (14) | 0.0443 (13) | 0.0039 (13) | 0.0047 (12) | 0.0128 (11) |
C9 | 0.0567 (19) | 0.0506 (16) | 0.0435 (14) | −0.0023 (14) | −0.0016 (13) | −0.0111 (12) |
O10 | 0.092 (3) | 0.099 (3) | 0.116 (3) | −0.004 (2) | 0.0061 (19) | −0.003 (2) |
C8 | 0.0487 (17) | 0.0528 (16) | 0.0428 (13) | 0.0102 (14) | 0.0098 (12) | 0.0016 (12) |
C13 | 0.0362 (15) | 0.0455 (15) | 0.0595 (16) | 0.0018 (12) | −0.0024 (12) | 0.0058 (12) |
C3 | 0.078 (2) | 0.0388 (14) | 0.0481 (15) | −0.0040 (15) | −0.0195 (15) | −0.0021 (11) |
C14 | 0.0411 (16) | 0.0563 (17) | 0.0649 (18) | 0.0046 (14) | 0.0074 (14) | 0.0001 (14) |
C2 | 0.0541 (19) | 0.0646 (19) | 0.0392 (13) | −0.0101 (15) | −0.0058 (12) | 0.0018 (12) |
C7 | 0.0404 (15) | 0.0591 (18) | 0.0498 (15) | 0.0021 (14) | 0.0105 (12) | 0.0077 (13) |
O9 | 0.180 (4) | 0.106 (3) | 0.100 (2) | −0.014 (3) | −0.013 (2) | −0.017 (2) |
Ni1—O4 | 2.0172 (16) | C11—H11B | 0.9700 |
Ni1—O6 | 2.0622 (18) | C10—C9 | 1.512 (4) |
Ni1—N2 | 2.069 (2) | C10—H10A | 0.9700 |
Ni1—O7 | 2.0768 (17) | C10—H10B | 0.9700 |
Ni1—O5 | 2.114 (2) | C12—H12A | 0.9700 |
Ni1—N1 | 2.145 (2) | C12—H12B | 0.9700 |
O6—C5 | 1.431 (3) | C6—C5 | 1.522 (4) |
O6—H6 | 0.8680 | C6—H6A | 0.9700 |
O7—C12 | 1.434 (3) | C6—H6B | 0.9700 |
O7—H7 | 0.8681 | C5—H5A | 0.9700 |
O4—C4 | 1.263 (3) | C5—H5B | 0.9700 |
O5—C7 | 1.440 (3) | C9—H9A | 0.9700 |
O5—H5 | 0.8650 | C9—H9B | 0.9700 |
O1—C1 | 1.250 (3) | O10—H10C | 0.8500 |
O3—C4 | 1.262 (3) | O10—H10D | 0.8501 |
O2—C1 | 1.257 (3) | C8—C7 | 1.518 (4) |
O8—C14 | 1.433 (4) | C8—H8A | 0.9700 |
O8—H8 | 0.8200 | C8—H8B | 0.9700 |
N1—C13 | 1.485 (4) | C13—C14 | 1.502 (4) |
N1—C10 | 1.490 (3) | C13—H13A | 0.9700 |
N1—C11 | 1.497 (3) | C13—H13B | 0.9700 |
N2—C8 | 1.467 (4) | C3—C2 | 1.488 (4) |
N2—C9 | 1.484 (4) | C3—H3A | 0.9700 |
N2—C6 | 1.500 (3) | C3—H3B | 0.9700 |
O11—H11C | 0.8500 | C14—H14A | 0.9700 |
O11—H11D | 0.8500 | C14—H14B | 0.9700 |
C1—C2 | 1.508 (4) | C2—H2A | 0.9700 |
C4—C3 | 1.503 (4) | C2—H2B | 0.9700 |
O12—H12C | 0.816 (10) | C7—H7A | 0.9700 |
O12—H12D | 0.851 (9) | C7—H7B | 0.9700 |
C11—C12 | 1.498 (4) | O9—H9C | 0.8500 |
C11—H11A | 0.9700 | O9—H9D | 0.8500 |
O4—Ni1—O6 | 91.38 (7) | C11—C12—H12A | 110.4 |
O4—Ni1—N2 | 165.11 (9) | O7—C12—H12B | 110.4 |
O6—Ni1—N2 | 83.00 (8) | C11—C12—H12B | 110.4 |
O4—Ni1—O7 | 87.29 (7) | H12A—C12—H12B | 108.6 |
O6—Ni1—O7 | 174.18 (7) | N2—C6—C5 | 112.5 (2) |
N2—Ni1—O7 | 99.62 (8) | N2—C6—H6A | 109.1 |
O4—Ni1—O5 | 86.84 (8) | C5—C6—H6A | 109.1 |
O6—Ni1—O5 | 95.59 (8) | N2—C6—H6B | 109.1 |
N2—Ni1—O5 | 80.03 (8) | C5—C6—H6B | 109.1 |
O7—Ni1—O5 | 90.00 (7) | H6A—C6—H6B | 107.8 |
O4—Ni1—N1 | 108.35 (8) | O6—C5—C6 | 107.2 (2) |
O6—Ni1—N1 | 93.50 (8) | O6—C5—H5A | 110.3 |
N2—Ni1—N1 | 85.82 (9) | C6—C5—H5A | 110.3 |
O7—Ni1—N1 | 81.56 (8) | O6—C5—H5B | 110.3 |
O5—Ni1—N1 | 162.10 (8) | C6—C5—H5B | 110.3 |
C5—O6—Ni1 | 106.55 (15) | H5A—C5—H5B | 108.5 |
C5—O6—H6 | 106.8 | N2—C9—C10 | 109.6 (2) |
Ni1—O6—H6 | 131.2 | N2—C9—H9A | 109.7 |
C12—O7—Ni1 | 105.11 (15) | C10—C9—H9A | 109.7 |
C12—O7—H7 | 106.2 | N2—C9—H9B | 109.7 |
Ni1—O7—H7 | 133.1 | C10—C9—H9B | 109.7 |
C4—O4—Ni1 | 126.59 (16) | H9A—C9—H9B | 108.2 |
C7—O5—Ni1 | 113.10 (17) | H10C—O10—H10D | 109.5 |
C7—O5—H5 | 105.0 | N2—C8—C7 | 110.1 (2) |
Ni1—O5—H5 | 128.2 | N2—C8—H8A | 109.6 |
C14—O8—H8 | 109.5 | C7—C8—H8A | 109.6 |
C13—N1—C10 | 107.2 (2) | N2—C8—H8B | 109.6 |
C13—N1—C11 | 111.9 (2) | C7—C8—H8B | 109.6 |
C10—N1—C11 | 109.7 (2) | H8A—C8—H8B | 108.2 |
C13—N1—Ni1 | 117.32 (17) | N1—C13—C14 | 114.5 (2) |
C10—N1—Ni1 | 103.81 (17) | N1—C13—H13A | 108.6 |
C11—N1—Ni1 | 106.49 (16) | C14—C13—H13A | 108.6 |
C8—N2—C9 | 111.9 (2) | N1—C13—H13B | 108.6 |
C8—N2—C6 | 112.7 (2) | C14—C13—H13B | 108.6 |
C9—N2—C6 | 111.6 (2) | H13A—C13—H13B | 107.6 |
C8—N2—Ni1 | 106.26 (15) | C2—C3—C4 | 114.9 (2) |
C9—N2—Ni1 | 105.82 (16) | C2—C3—H3A | 108.5 |
C6—N2—Ni1 | 108.03 (16) | C4—C3—H3A | 108.5 |
H11C—O11—H11D | 109.5 | C2—C3—H3B | 108.5 |
O1—C1—O2 | 124.1 (2) | C4—C3—H3B | 108.5 |
O1—C1—C2 | 120.0 (2) | H3A—C3—H3B | 107.5 |
O2—C1—C2 | 116.0 (3) | O8—C14—C13 | 109.6 (3) |
O3—C4—O4 | 124.6 (2) | O8—C14—H14A | 109.7 |
O3—C4—C3 | 118.8 (2) | C13—C14—H14A | 109.7 |
O4—C4—C3 | 116.5 (2) | O8—C14—H14B | 109.7 |
H12C—O12—H12D | 101.8 (15) | C13—C14—H14B | 109.7 |
N1—C11—C12 | 111.1 (2) | H14A—C14—H14B | 108.2 |
N1—C11—H11A | 109.4 | C3—C2—C1 | 116.5 (3) |
C12—C11—H11A | 109.4 | C3—C2—H2A | 108.2 |
N1—C11—H11B | 109.4 | C1—C2—H2A | 108.2 |
C12—C11—H11B | 109.4 | C3—C2—H2B | 108.2 |
H11A—C11—H11B | 108.0 | C1—C2—H2B | 108.2 |
N1—C10—C9 | 111.5 (2) | H2A—C2—H2B | 107.3 |
N1—C10—H10A | 109.3 | O5—C7—C8 | 109.5 (2) |
C9—C10—H10A | 109.3 | O5—C7—H7A | 109.8 |
N1—C10—H10B | 109.3 | C8—C7—H7A | 109.8 |
C9—C10—H10B | 109.3 | O5—C7—H7B | 109.8 |
H10A—C10—H10B | 108.0 | C8—C7—H7B | 109.8 |
O7—C12—C11 | 106.7 (2) | H7A—C7—H7B | 108.2 |
O7—C12—H12A | 110.4 | H9C—O9—H9D | 109.5 |
Ni1—O4—C4—O3 | 29.5 (4) | Ni1—N2—C9—C10 | 42.5 (3) |
Ni1—O4—C4—C3 | −147.4 (2) | N1—C10—C9—N2 | −55.8 (3) |
C13—N1—C11—C12 | −105.5 (3) | C9—N2—C8—C7 | −165.1 (2) |
C10—N1—C11—C12 | 135.7 (3) | C6—N2—C8—C7 | 68.1 (3) |
Ni1—N1—C11—C12 | 23.9 (3) | Ni1—N2—C8—C7 | −50.0 (2) |
C13—N1—C10—C9 | 161.6 (2) | C10—N1—C13—C14 | −179.1 (3) |
C11—N1—C10—C9 | −76.7 (3) | C11—N1—C13—C14 | 60.6 (3) |
Ni1—N1—C10—C9 | 36.8 (3) | Ni1—N1—C13—C14 | −62.9 (3) |
Ni1—O7—C12—C11 | 56.1 (2) | O3—C4—C3—C2 | 151.7 (3) |
N1—C11—C12—O7 | −54.5 (3) | O4—C4—C3—C2 | −31.2 (4) |
C8—N2—C6—C5 | −99.8 (3) | N1—C13—C14—O8 | 163.5 (2) |
C9—N2—C6—C5 | 133.2 (3) | C4—C3—C2—C1 | 169.7 (3) |
Ni1—N2—C6—C5 | 17.3 (3) | O1—C1—C2—C3 | −10.1 (4) |
Ni1—O6—C5—C6 | 50.5 (2) | O2—C1—C2—C3 | 169.4 (3) |
N2—C6—C5—O6 | −45.8 (3) | Ni1—O5—C7—C8 | −13.7 (3) |
C8—N2—C9—C10 | 157.8 (2) | N2—C8—C7—O5 | 42.3 (3) |
C6—N2—C9—C10 | −74.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O2i | 0.86 | 1.76 | 2.585 (3) | 158 |
O6—H6···O3 | 0.87 | 2.03 | 2.581 (2) | 121 |
O7—H7···O1i | 0.87 | 1.80 | 2.603 (3) | 152 |
O8—H8···O2ii | 0.82 | 1.87 | 2.687 (3) | 175 |
O9—H9C···O8 | 0.85 | 1.98 | 2.803 (4) | 162 |
O9—H9D···O10 | 0.85 | 1.94 | 2.767 (6) | 164 |
O10—H10C···O11iii | 0.85 | 2.09 | 2.892 (5) | 156 |
O10—H10D···O11 | 0.85 | 2.10 | 2.913 (5) | 160 |
O11—H11C···O12 | 0.85 | 1.99 | 2.836 (4) | 178 |
O11—H11D···O3 | 0.85 | 2.02 | 2.865 (4) | 172 |
O12—H12C···O1iv | 0.82 (4) | 2.38 (5) | 2.915 (4) | 124 (5) |
C6—H6A···O10v | 0.97 | 2.57 | 3.458 (5) | 152 |
C14—H14B···O4 | 0.97 | 2.39 | 3.313 (4) | 158 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1; (v) x, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Belošević, S., Ćendić, M., Meetsma, A. & Matović, Z. D. (2013). Polyhedron, 50, 473–480. Google Scholar
Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235. Google Scholar
Cheng, P., Lin, W., Tseng, F., Kao, C., Chang, T., Senthil Raja, D., Liu, W. & Lin, C. (2013). Dalton Trans. 42, 2765–2772. Web of Science CrossRef CAS PubMed Google Scholar
Crouse, H., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S. & Basu, S. (2012). Dalton Trans. 41, 2720–2731. CrossRef PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Google Scholar
Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131. Web of Science CrossRef IUCr Journals Google Scholar
Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026. Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 2011, 4826–4836. CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CrossRef Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CrossRef CAS Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, W., Dai, Y., Zhao, B., Song, H.-B., Wang, H.-G. & Cheng, P. (2006). Inorg. Chem. Commun. 9, 192–195. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth. Google Scholar
Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.