research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (succinato-κO)[N,N,N′,N′-tetra­kis­(2-hy­dr­oxy­eth­yl)ethyl­enedi­amine-κ5O,N,N′,O′,O′′]nickel(II) tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Engineering, Chemical Engineering Department, 55139, Samsun, Turkey, cSakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: gaidaisv77@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 October 2018; accepted 30 October 2018; online 6 November 2018)

In the title compound, [Ni(C10H24N2O4)(C4H4O4)]·4H2O, the NiII cation is octa­hedrally coordinated by one O atom of the succinate anion and three O atoms and two N atoms from an N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine mol­ecule. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture. Hirshfeld surface analyses and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (63.3%) and H⋯O/O⋯H (34.5%) inter­actions.

1. Chemical context

Aliphatic di­carb­oxy­lic acid ligands have been utilized consistently in the synthesis of a diverse range of metal complexes. The metal-ion geometries of coordination compounds can easily be identified. Transition metal atoms can be bridged by aliphatic or aromatic di­carboxyl­ate ligands to produce chains, layers and frameworks (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 2011, 4826-4836.]; Cheng et al., 2013[Cheng, P., Lin, W., Tseng, F., Kao, C., Chang, T., Senthil Raja, D., Liu, W. & Lin, C. (2013). Dalton Trans. 42, 2765-2772.]; Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]). In addition, many transition and heavy metal cations play an important role in biological processes in the formation of many vitamins and drug components. An important element for biological systems is nickel. Nickel complexes have biological applications as a result of their anti­epileptic, anti­microbial, anti­bacterial and anti­cancer activities (Bombicz et al., 2001[Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229-235.]). Nickel complexes with succinic acid [chemical formula (CH2)2(CO2H)2] are examples containing a di­carb­oxy­lic acid. The carboxyl O atoms ligate to transition metals and thus the succinic acid can bridge between nickel metal centres to form one-, two- and three-dimensional structures as polymeric chains, layers and frameworks, respectively. We describe herein the synthesis and structural features of a new NiII complex, namely (succinato-κO)[N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­ene­di­amine-κ5O,N,N′,O′,O′′]nickel(II) tetra­hydrate. In addition, to understand the inter­molecular inter­actions in the crystal structure, Hirshfeld surface analysis was performed.

2. Structural commentary

The mol­ecular structure of the asymmetric unit of the title compound is illustrated in Fig. 1[link]. The NiII ion is octa­hedrally coordinated by three O atoms and two N atoms of N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine mol­ecule and one O atom of the succinate anion. The Ni1—O4, Ni1—O5 and Ni1—N1 bond lengths are 2.0172 (16), 2.114 (2) and 2.145 (2) Å, respectively (Table 1[link]). The C—O bond lengths in the deprotonated carb­oxy­lic groups differ noticeably [C1—O1 = 1.250 (3) Å and C4—O4 = 1.263 (3) Å], which is typical for monodentately coordinated carboxyl­ates (Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). In the same way, the C5—O6, C7—O5 and C12—O7 bonds [1.431 (3), 1.440 (3) and 1.434 (3) Å, respectively] show single-bond character. The C10—N1 and C11—N1 bond lengths are similar [1.490 (3) and 1.497 (3) Å, respectively], while the C6—N2 and C9—N2 bonds are also not significantly different [1.500 (3) and 1.484 (4) Å, respectively]. An intra­molecular C14—H14B⋯O4 hydrogen bond occurs while the complex mol­ecule and water mol­ecules are linked by O—H⋯O hydrogen bonds (O9—H9C⋯O8, O9—H9D⋯O10, O10—H10D⋯O11, O11—H11C⋯O12, O11—H11D⋯O3; Fig. 1[link] and Table 2[link]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Ni1—O4 2.0172 (16) Ni1—O5 2.114 (2)
Ni1—O6 2.0622 (18) Ni1—N1 2.145 (2)
Ni1—N2 2.069 (2) O4—C4 1.263 (3)
Ni1—O7 2.0768 (17) O1—C1 1.250 (3)
       
O4—Ni1—N2 165.11 (9) O4—Ni1—N1 108.35 (8)
O6—Ni1—O7 174.18 (7) N2—Ni1—N1 85.82 (9)
O6—Ni1—O5 95.59 (8) O5—Ni1—N1 162.10 (8)
       
Ni1—O4—C4—O3 29.5 (4) Ni1—N1—C10—C9 36.8 (3)
Ni1—O4—C4—C3 −147.4 (2) Ni1—O7—C12—C11 56.1 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.86 1.76 2.585 (3) 158
O6—H6⋯O3 0.87 2.03 2.581 (2) 121
O7—H7⋯O1i 0.87 1.80 2.603 (3) 152
O8—H8⋯O2ii 0.82 1.87 2.687 (3) 175
O9—H9C⋯O8 0.85 1.98 2.803 (4) 162
O9—H9D⋯O10 0.85 1.94 2.767 (6) 164
O10—H10C⋯O11iii 0.85 2.09 2.892 (5) 156
O10—H10D⋯O11 0.85 2.10 2.913 (5) 160
O11—H11C⋯O12 0.85 1.99 2.836 (4) 178
O11—H11D⋯O3 0.85 2.02 2.865 (4) 172
O12—H12C⋯O1iv 0.82 (4) 2.38 (5) 2.915 (4) 124 (5)
C6—H6A⋯O10v 0.97 2.57 3.458 (5) 152
C14—H14B⋯O4 0.97 2.39 3.313 (4) 158
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+2, -z+1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

The crystal packing of the title compound (Fig. 2[link]) features inter­molecular hydrogen bonds (O5—H5⋯O2i, O7—H7⋯O1i, O8—H8⋯O2ii, O10—H10C⋯O11iii, O12—H12C⋯O1iv and C6—H6A⋯O10v; symmetry codes as in Table 2[link]), which connect the mol­ecules into a three-dimensional supra­molecular architecture. All four O atoms of the water mol­ecules are involved in intra or inter­molecular hydrogen bonds.

[Figure 2]
Figure 2
A view of the crystal packing of the title compound along the c axis. Dashed lines denote the intra­molecular and inter­molecular hydrogen bonds.

4. Database survey

A search of the Cambridge Structural database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that there are several precendents for catena-{[[N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine-κ2N1,N2]nickel(II)]-μ-succinato-κO4} tetra­hydrate, including the structures of hexa­aqua­nickel(II) bis­{aqua[N-(2-{bis­[(carb­oxy)meth­yl]amino}­eth­yl)gly­cinato]nickel(II)} dihydrate (NELMUO; Belošević et al., 2013[Belošević, S., Ćendić, M., Meetsma, A. & Matović, Z. D. (2013). Polyhedron, 50, 473-480.]), hexa­aqua­nickel(II) (μ2-tri­ethyl­ene­tetra-amine­hexa­acetato)­diaqua­dinickel(II) dihydrate (UCAWEB; Shi et al., 2006[Shi, W., Dai, Y., Zhao, B., Song, H.-B., Wang, H.-G. & Cheng, P. (2006). Inorg. Chem. Commun. 9, 192-195.]) and sodium aqua­{hydrogen 2,2′,2′′,2′′′-[ethane-1,2-diylbis(nitrilo)]tetra­acetato}­nickel(II) trihydrate (WAPHAY; Crouse et al., 2012[Crouse, H., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S. & Basu, S. (2012). Dalton Trans. 41, 2720-2731.]). In addition, tetra­aqua­bis­(isonicotinamide-κN1)nickel(II) bis­(4-formyl­benzo­ate) dihydrate (HUCLAT; Hökelek et al., 2009[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130-m1131.]), trans-tetra­aqua­bis­(isonicotinamide)­nickel(II) bis­(3-hy­droxy­benzo­ate) tetra­hydrate (GANZAY; Zaman et al., 2012[Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249-m250.]) and tetra­aqua­bis­(isonicotinamide)­nickel(II) thio­phene-2,5-di­carboxylate dihydrate (NETQIO; Liu et al., 2012[Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019-1026.]) have been reported. In these three complexes, the Ni—N bond lengths vary from 1.999 to 2.118 Å. In the title complex, the Ni—N bond lengths [2.145 (2) and 2.069 (2) Å] fall within these limits.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure and two-dimensional fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]). The mol­ecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.7407 (red) to 1.6068 (blue) a.u. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. The red spots identified in Figs. 3[link] and 4[link] correspond to the near-type H⋯O contacts resulting from O—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]).

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions.

Fig. 5[link] shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6[link] represents the O⋯H/H⋯O contacts (34.5%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di = 1.7 Å, and has two symmetrical points at the top, bottom left and right. These data are characteristic of O—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]). The top plot shown in Fig. 6[link] shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.0 Å, which indicates the presence of the H⋯H contacts (63.3% contribution). The graph for C⋯H/H⋯C represents the contacts ((1.4% contribution) between the carbon atoms inside the Hirshfeld surface and the hydrogen atoms outside it and vice versa. It has two symmetrical wings on the left and right sides.

[Figure 5]
Figure 5
The fingerprint plot for all inter­actions.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the H⋯H (63.3%), O⋯H/H⋯O (34.5%), C⋯H/H⋯C (1.4%) and O⋯O (0.8%) contacts in the title compound.

In the view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.308 to 0.257 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, Fig. 7[link], the C—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 7]
Figure 7
Hirshfeld surface plotted over electrostatic potential energy.

6. Synthesis and crystallization

A solution of NaOH (50 mmol, 2.0 g) was added to an aqueous solution of succinic acid (25 mmol, 3 g) under stirring. A solution of NiCl2·6H2O (25 mmol, 6.14 g) in methanol was added. The mixture was heated at 353 K for one h and then the blue mixture was filtered and left to dry at room temperature. The product (0.88 mmol, 0.20 g) was dissolved in ethanol and added to a ethanol solution of N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine (1.75 mmol, 0.41 g). The mixture was heated at 353 K for one h under stirring and the resulting suspension was filtered. It was allowed to crystallize for four weeks at room temperature. Blue prismatic crystals suitable for X-ray diffraction analysis were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.97 Å. and refined as riding, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The water H atoms were located in a difference map and were refined subject to a DFIX restraint of O—H = 0.85 Å. The O12—H12C bond length was refined with a DFIX restraint of 0.84 (4) Å. The H atoms bonded to other O atoms (O5, O6, O7 and O8) were located in a difference map and refined freely.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C10H24N2O4)(C4H4O4)]·4H2O
Mr 483.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1369 (6), 10.8182 (5), 19.7771 (12)
β (°) 90.172 (5)
V3) 2168.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.64 × 0.53 × 0.42
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.605, 0.735
No. of measured, independent and observed [I > 2σ(I)] reflections 11333, 4472, 3581
Rint 0.050
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.06
No. of reflections 4472
No. of parameters 283
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.43
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(Succinato-κO)[N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine-κ5O,N,N',O',O'']nickel(II) tetrahydrate top
Crystal data top
[Ni(C10H24N2O4)(C4H4O4)]·4H2OF(000) = 1032
Mr = 483.16Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1369 (6) ÅCell parameters from 18670 reflections
b = 10.8182 (5) Åθ = 1.9–27.7°
c = 19.7771 (12) ŵ = 0.96 mm1
β = 90.172 (5)°T = 296 K
V = 2168.8 (2) Å3Prism, blue
Z = 40.64 × 0.53 × 0.42 mm
Data collection top
Stoe IPDS 2
diffractometer
4472 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3581 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.050
rotation method scansθmax = 26.5°, θmin = 2.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1112
Tmin = 0.605, Tmax = 0.735k = 1313
11333 measured reflectionsl = 2424
Refinement top
Refinement on F214 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0617P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
4472 reflectionsΔρmax = 0.53 e Å3
283 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.78305 (3)0.48644 (3)0.27834 (2)0.03216 (11)
O60.71228 (19)0.64974 (17)0.23851 (8)0.0399 (4)
O70.83482 (18)0.31821 (16)0.32148 (8)0.0389 (4)
O40.7758 (2)0.55541 (16)0.37302 (8)0.0402 (4)
O50.98373 (19)0.53962 (19)0.27746 (9)0.0441 (4)
O11.0038 (2)0.6832 (2)0.57591 (9)0.0506 (5)
O30.7525 (2)0.75762 (18)0.35312 (9)0.0492 (5)
O20.8782 (2)0.5373 (2)0.62081 (10)0.0505 (5)
O80.3602 (2)0.5662 (2)0.36159 (13)0.0616 (6)
H80.2893100.5306980.3658650.092*
N10.6030 (2)0.3883 (2)0.25904 (10)0.0386 (5)
N20.8286 (2)0.4497 (2)0.17844 (10)0.0399 (5)
O110.6745 (3)0.9685 (3)0.43095 (17)0.0797 (8)
H11C0.7438741.0029830.4461710.120*
H11D0.6958130.9103680.4042230.120*
C10.9109 (3)0.6073 (2)0.57295 (12)0.0406 (6)
C40.7866 (3)0.6676 (2)0.38981 (12)0.0394 (6)
O120.9026 (3)1.0865 (3)0.48350 (16)0.0815 (8)
C110.6166 (3)0.2652 (2)0.29282 (14)0.0443 (6)
H11A0.6446850.2042410.2598960.053*
H11B0.5315950.2396640.3103600.053*
C100.6021 (3)0.3719 (3)0.18425 (14)0.0497 (7)
H10A0.5663660.4455880.1631060.060*
H10B0.5452290.3029400.1725420.060*
C120.7148 (3)0.2705 (2)0.34949 (14)0.0440 (6)
H12A0.6832440.3241260.3852550.053*
H12B0.7292390.1886200.3681170.053*
C60.8042 (3)0.5651 (3)0.13822 (13)0.0471 (7)
H6A0.7225630.5560870.1130290.057*
H6B0.8751280.5757870.1059060.057*
C50.7955 (3)0.6798 (3)0.18258 (13)0.0466 (6)
H5A0.8825650.7033520.1985080.056*
H5B0.7585270.7482880.1571500.056*
C90.7392 (3)0.3480 (3)0.15738 (14)0.0503 (7)
H9A0.7719370.2699660.1747760.060*
H9B0.7365400.3428810.1084270.060*
O100.5320 (4)0.8538 (4)0.54221 (19)0.1024 (10)
H10C0.4613610.8876950.5559050.154*
H10D0.5552410.8862250.5049540.154*
C80.9674 (3)0.4115 (3)0.17774 (13)0.0481 (7)
H8A0.9980720.4060520.1314230.058*
H8B0.9759950.3303820.1982390.058*
C130.4778 (3)0.4508 (3)0.27750 (14)0.0471 (6)
H13A0.4046220.3994730.2628230.057*
H13B0.4721780.5283170.2530250.057*
C30.8508 (4)0.6932 (3)0.45697 (14)0.0549 (8)
H3A0.9448990.7027640.4500270.066*
H3B0.8173650.7711680.4740640.066*
C140.4626 (3)0.4768 (3)0.35170 (17)0.0541 (7)
H14A0.4407850.4010670.3754030.065*
H14B0.5450960.5080510.3699230.065*
C20.8295 (3)0.5965 (3)0.50927 (13)0.0526 (7)
H2A0.8474060.5165780.4890030.063*
H2B0.7370920.5974940.5218240.063*
C71.0510 (3)0.5040 (3)0.21648 (15)0.0497 (7)
H7A1.1356430.4674100.2277090.060*
H7B1.0667190.5763590.1886590.060*
O90.4560 (5)0.6270 (4)0.49044 (17)0.1286 (14)
H60.6911390.7190620.2577440.193*
H70.8975310.2959470.3488790.193*
H51.0417340.5313170.3093050.193*
H9C0.4188510.6245750.4518700.193*
H9D0.4661460.7018370.5024670.193*
H12C0.872 (6)1.154 (3)0.474 (3)0.16 (3)*
H12D0.980 (4)1.105 (5)0.497 (5)0.31 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03494 (19)0.03014 (17)0.03141 (16)0.00050 (13)0.00031 (11)0.00160 (11)
O60.0440 (11)0.0373 (9)0.0383 (8)0.0033 (8)0.0026 (8)0.0053 (7)
O70.0389 (10)0.0347 (9)0.0430 (9)0.0009 (8)0.0022 (7)0.0043 (7)
O40.0511 (12)0.0348 (9)0.0347 (8)0.0036 (8)0.0008 (8)0.0006 (7)
O50.0371 (10)0.0524 (11)0.0426 (9)0.0040 (9)0.0011 (8)0.0039 (8)
O10.0493 (12)0.0560 (12)0.0465 (10)0.0098 (10)0.0097 (9)0.0051 (9)
O30.0676 (14)0.0370 (10)0.0430 (10)0.0029 (10)0.0090 (9)0.0004 (7)
O20.0459 (12)0.0616 (12)0.0440 (10)0.0027 (10)0.0038 (9)0.0104 (9)
O80.0498 (13)0.0501 (12)0.0850 (15)0.0042 (11)0.0207 (12)0.0023 (11)
N10.0355 (12)0.0367 (11)0.0436 (11)0.0007 (9)0.0011 (9)0.0018 (9)
N20.0431 (13)0.0413 (12)0.0353 (10)0.0015 (10)0.0025 (9)0.0001 (8)
O110.078 (2)0.0564 (15)0.105 (2)0.0042 (14)0.0075 (16)0.0150 (14)
C10.0422 (15)0.0420 (13)0.0377 (12)0.0054 (12)0.0007 (11)0.0029 (10)
C40.0412 (15)0.0406 (13)0.0365 (12)0.0024 (12)0.0000 (10)0.0012 (10)
O120.084 (2)0.0730 (19)0.0877 (19)0.0127 (17)0.0047 (16)0.0158 (15)
C110.0403 (15)0.0357 (13)0.0569 (15)0.0048 (12)0.0007 (12)0.0024 (11)
C100.0470 (17)0.0567 (17)0.0454 (14)0.0053 (14)0.0102 (12)0.0041 (12)
C120.0466 (17)0.0352 (13)0.0502 (14)0.0007 (12)0.0006 (12)0.0089 (10)
C60.0526 (18)0.0538 (16)0.0349 (12)0.0035 (14)0.0035 (12)0.0078 (11)
C50.0525 (17)0.0430 (14)0.0443 (13)0.0039 (13)0.0047 (12)0.0128 (11)
C90.0567 (19)0.0506 (16)0.0435 (14)0.0023 (14)0.0016 (13)0.0111 (12)
O100.092 (3)0.099 (3)0.116 (3)0.004 (2)0.0061 (19)0.003 (2)
C80.0487 (17)0.0528 (16)0.0428 (13)0.0102 (14)0.0098 (12)0.0016 (12)
C130.0362 (15)0.0455 (15)0.0595 (16)0.0018 (12)0.0024 (12)0.0058 (12)
C30.078 (2)0.0388 (14)0.0481 (15)0.0040 (15)0.0195 (15)0.0021 (11)
C140.0411 (16)0.0563 (17)0.0649 (18)0.0046 (14)0.0074 (14)0.0001 (14)
C20.0541 (19)0.0646 (19)0.0392 (13)0.0101 (15)0.0058 (12)0.0018 (12)
C70.0404 (15)0.0591 (18)0.0498 (15)0.0021 (14)0.0105 (12)0.0077 (13)
O90.180 (4)0.106 (3)0.100 (2)0.014 (3)0.013 (2)0.017 (2)
Geometric parameters (Å, º) top
Ni1—O42.0172 (16)C11—H11B0.9700
Ni1—O62.0622 (18)C10—C91.512 (4)
Ni1—N22.069 (2)C10—H10A0.9700
Ni1—O72.0768 (17)C10—H10B0.9700
Ni1—O52.114 (2)C12—H12A0.9700
Ni1—N12.145 (2)C12—H12B0.9700
O6—C51.431 (3)C6—C51.522 (4)
O6—H60.8680C6—H6A0.9700
O7—C121.434 (3)C6—H6B0.9700
O7—H70.8681C5—H5A0.9700
O4—C41.263 (3)C5—H5B0.9700
O5—C71.440 (3)C9—H9A0.9700
O5—H50.8650C9—H9B0.9700
O1—C11.250 (3)O10—H10C0.8500
O3—C41.262 (3)O10—H10D0.8501
O2—C11.257 (3)C8—C71.518 (4)
O8—C141.433 (4)C8—H8A0.9700
O8—H80.8200C8—H8B0.9700
N1—C131.485 (4)C13—C141.502 (4)
N1—C101.490 (3)C13—H13A0.9700
N1—C111.497 (3)C13—H13B0.9700
N2—C81.467 (4)C3—C21.488 (4)
N2—C91.484 (4)C3—H3A0.9700
N2—C61.500 (3)C3—H3B0.9700
O11—H11C0.8500C14—H14A0.9700
O11—H11D0.8500C14—H14B0.9700
C1—C21.508 (4)C2—H2A0.9700
C4—C31.503 (4)C2—H2B0.9700
O12—H12C0.816 (10)C7—H7A0.9700
O12—H12D0.851 (9)C7—H7B0.9700
C11—C121.498 (4)O9—H9C0.8500
C11—H11A0.9700O9—H9D0.8500
O4—Ni1—O691.38 (7)C11—C12—H12A110.4
O4—Ni1—N2165.11 (9)O7—C12—H12B110.4
O6—Ni1—N283.00 (8)C11—C12—H12B110.4
O4—Ni1—O787.29 (7)H12A—C12—H12B108.6
O6—Ni1—O7174.18 (7)N2—C6—C5112.5 (2)
N2—Ni1—O799.62 (8)N2—C6—H6A109.1
O4—Ni1—O586.84 (8)C5—C6—H6A109.1
O6—Ni1—O595.59 (8)N2—C6—H6B109.1
N2—Ni1—O580.03 (8)C5—C6—H6B109.1
O7—Ni1—O590.00 (7)H6A—C6—H6B107.8
O4—Ni1—N1108.35 (8)O6—C5—C6107.2 (2)
O6—Ni1—N193.50 (8)O6—C5—H5A110.3
N2—Ni1—N185.82 (9)C6—C5—H5A110.3
O7—Ni1—N181.56 (8)O6—C5—H5B110.3
O5—Ni1—N1162.10 (8)C6—C5—H5B110.3
C5—O6—Ni1106.55 (15)H5A—C5—H5B108.5
C5—O6—H6106.8N2—C9—C10109.6 (2)
Ni1—O6—H6131.2N2—C9—H9A109.7
C12—O7—Ni1105.11 (15)C10—C9—H9A109.7
C12—O7—H7106.2N2—C9—H9B109.7
Ni1—O7—H7133.1C10—C9—H9B109.7
C4—O4—Ni1126.59 (16)H9A—C9—H9B108.2
C7—O5—Ni1113.10 (17)H10C—O10—H10D109.5
C7—O5—H5105.0N2—C8—C7110.1 (2)
Ni1—O5—H5128.2N2—C8—H8A109.6
C14—O8—H8109.5C7—C8—H8A109.6
C13—N1—C10107.2 (2)N2—C8—H8B109.6
C13—N1—C11111.9 (2)C7—C8—H8B109.6
C10—N1—C11109.7 (2)H8A—C8—H8B108.2
C13—N1—Ni1117.32 (17)N1—C13—C14114.5 (2)
C10—N1—Ni1103.81 (17)N1—C13—H13A108.6
C11—N1—Ni1106.49 (16)C14—C13—H13A108.6
C8—N2—C9111.9 (2)N1—C13—H13B108.6
C8—N2—C6112.7 (2)C14—C13—H13B108.6
C9—N2—C6111.6 (2)H13A—C13—H13B107.6
C8—N2—Ni1106.26 (15)C2—C3—C4114.9 (2)
C9—N2—Ni1105.82 (16)C2—C3—H3A108.5
C6—N2—Ni1108.03 (16)C4—C3—H3A108.5
H11C—O11—H11D109.5C2—C3—H3B108.5
O1—C1—O2124.1 (2)C4—C3—H3B108.5
O1—C1—C2120.0 (2)H3A—C3—H3B107.5
O2—C1—C2116.0 (3)O8—C14—C13109.6 (3)
O3—C4—O4124.6 (2)O8—C14—H14A109.7
O3—C4—C3118.8 (2)C13—C14—H14A109.7
O4—C4—C3116.5 (2)O8—C14—H14B109.7
H12C—O12—H12D101.8 (15)C13—C14—H14B109.7
N1—C11—C12111.1 (2)H14A—C14—H14B108.2
N1—C11—H11A109.4C3—C2—C1116.5 (3)
C12—C11—H11A109.4C3—C2—H2A108.2
N1—C11—H11B109.4C1—C2—H2A108.2
C12—C11—H11B109.4C3—C2—H2B108.2
H11A—C11—H11B108.0C1—C2—H2B108.2
N1—C10—C9111.5 (2)H2A—C2—H2B107.3
N1—C10—H10A109.3O5—C7—C8109.5 (2)
C9—C10—H10A109.3O5—C7—H7A109.8
N1—C10—H10B109.3C8—C7—H7A109.8
C9—C10—H10B109.3O5—C7—H7B109.8
H10A—C10—H10B108.0C8—C7—H7B109.8
O7—C12—C11106.7 (2)H7A—C7—H7B108.2
O7—C12—H12A110.4H9C—O9—H9D109.5
Ni1—O4—C4—O329.5 (4)Ni1—N2—C9—C1042.5 (3)
Ni1—O4—C4—C3147.4 (2)N1—C10—C9—N255.8 (3)
C13—N1—C11—C12105.5 (3)C9—N2—C8—C7165.1 (2)
C10—N1—C11—C12135.7 (3)C6—N2—C8—C768.1 (3)
Ni1—N1—C11—C1223.9 (3)Ni1—N2—C8—C750.0 (2)
C13—N1—C10—C9161.6 (2)C10—N1—C13—C14179.1 (3)
C11—N1—C10—C976.7 (3)C11—N1—C13—C1460.6 (3)
Ni1—N1—C10—C936.8 (3)Ni1—N1—C13—C1462.9 (3)
Ni1—O7—C12—C1156.1 (2)O3—C4—C3—C2151.7 (3)
N1—C11—C12—O754.5 (3)O4—C4—C3—C231.2 (4)
C8—N2—C6—C599.8 (3)N1—C13—C14—O8163.5 (2)
C9—N2—C6—C5133.2 (3)C4—C3—C2—C1169.7 (3)
Ni1—N2—C6—C517.3 (3)O1—C1—C2—C310.1 (4)
Ni1—O6—C5—C650.5 (2)O2—C1—C2—C3169.4 (3)
N2—C6—C5—O645.8 (3)Ni1—O5—C7—C813.7 (3)
C8—N2—C9—C10157.8 (2)N2—C8—C7—O542.3 (3)
C6—N2—C9—C1074.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.861.762.585 (3)158
O6—H6···O30.872.032.581 (2)121
O7—H7···O1i0.871.802.603 (3)152
O8—H8···O2ii0.821.872.687 (3)175
O9—H9C···O80.851.982.803 (4)162
O9—H9D···O100.851.942.767 (6)164
O10—H10C···O11iii0.852.092.892 (5)156
O10—H10D···O110.852.102.913 (5)160
O11—H11C···O120.851.992.836 (4)178
O11—H11D···O30.852.022.865 (4)172
O12—H12C···O1iv0.82 (4)2.38 (5)2.915 (4)124 (5)
C6—H6A···O10v0.972.573.458 (5)152
C14—H14B···O40.972.393.313 (4)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1; (v) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBelošević, S., Ćendić, M., Meetsma, A. & Matović, Z. D. (2013). Polyhedron, 50, 473–480.  Google Scholar
First citationBombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235.  Google Scholar
First citationCheng, P., Lin, W., Tseng, F., Kao, C., Chang, T., Senthil Raja, D., Liu, W. & Lin, C. (2013). Dalton Trans. 42, 2765–2772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrouse, H., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S. & Basu, S. (2012). Dalton Trans. 41, 2720–2731.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.  Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 2011, 4826–4836.  CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CrossRef Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CrossRef CAS Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, W., Dai, Y., Zhao, B., Song, H.-B., Wang, H.-G. & Cheng, P. (2006). Inorg. Chem. Commun. 9, 192–195.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar
First citationZaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds