research communications
E)-2,4-di-tert-butyl-6-[(3-chloro-4-methylphenylimino)methyl]phenol
and Hirshfeld surface analysis of (aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs, University, 55139, Samsun, Turkey, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, Volodymyrska Str., 64, 01601 Kiev, Ukraine
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua
The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except the tert-butyl groups, located on the mirror plane. There is an intramolecular O—H⋯N hydrogen bond present forming an S(6) ring motif. In the crystal, the molecules are connected by C—H⋯π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (68.9%) and C⋯H/H⋯C (11.7%) interactions.
CCDC reference: 1873612
1. Chemical context
In coordination chemistry, et al., 1972; Hökelek et al., 2004; Moroz et al., 2012; Kansiz et al., 2018). are important for various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000) and photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers (Elmalı et al., 1999), electronics, optoelectronics and photonics (Iwan et al., 2007). They have been used as starting materials in the synthesis of many important medicinal substances. In the present study, a new Schiff base compound was synthesized and its determined by X-ray diffraction. In addition, to understand the intermolecular interactions in the Hirshfeld surface analysis was performed.
have found wide use as ligands (Calligaris2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The title Schiff base compound shows mirror symmetry with all the non-H atoms, except the tert-butyl groups, located on the mirror plane. The C14—O1 bond distance is 1.349 (3) Å, the C8=N1 and C5—N1 bond lengths are 1.278 (4) and 1.412 (4) Å, respectively, and the C7—Cl1 bond distance is 1.744 (3) Å. There is an intramolecular O—H⋯N hydrogen bond present (Table 1), forming an S(6) ring motif.
3. Supramolecular features
In the crystal, the molecules are connected by C1—H1B⋯π interactions, generating a three-dimensional supramolecular structure (Table 1 and Fig. 2).
4. Database survey
There are no previous reports of the title structure. However, several related structure have been reported (CSD, version 5.39, update May 2018; Groom et al., 2016), including bis{(E)-1-[(3-chloro-4-methylphenylimino)methyl]naphthalen-2-olate-N,O}copper(II) (SICXOU; Toprak et al., 2018), 2-{(E)-[(3-chloro-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol (TERTUI; Atalay et al., 2017), {2,2′-[4-chloro-5-methyl-o-phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) (WABDEK; Wang, 2010) and 4-[(E)-(3-chloro-4-methylphenyl)iminomethyl]-2-methoxy-3-nitrophenyl acetate (GAPPOE; Su et al., 2012). In all four compounds, the C—Cl bond lengths vary from 1.724 to 1.743 Å. In the title compound, the C7—Cl1 bond length is 1.744 (3) Å.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the synthesized complex. The Hirshfeld surfaces mapped over dnorm, de and di are illustrated in Figs. 3 and 4. The red spots on the surfaces indicate the intermolecular contacts involved in strong hydrogen bonds and interatomic contacts (Şen et al., 2017; Kansız & Dege, 2018; Sen et al., 2018; Gumus et al., 2018). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.031 (red) to 2.139 (blue) a.u. The red spots identified in Fig. 3 correspond to the near-type H⋯π contacts resulting from the C—H⋯π interactions (Table 1).
Fig. 5 shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6(a) (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (68.9%). The graph shown in Fig. 6(b) shows the (C⋯H/H⋯C) contacts between the carbon atoms inside the surface and the hydrogen atoms outside the Hirshfeld surface and vice versa, which contribute 11.7%. There are two symmetrical wings on the left and right sides. Furthermore, there are also Cl⋯H/H⋯Cl (11%), C⋯C (4.5%), C⋯N/N⋯C (2.2%), O⋯H/H⋯O (1.3%) and N⋯H/H⋯N (0.4%) contacts.
A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic where the C—H⋯π donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
in the range −0.030 to 0.044 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 76. Synthesis and crystallization
The title compound was prepared by refluxing a mixture of a solution containing 3,5-di-tert-butyl-2-hydroxybenzaldehyde (46.8 mg, 0.2 mmol) in ethanol (30 mL) and a solution containing 3-chloro-4-methylaniline (28.32 mg, 0.2 mmol) in ethanol (20 mL). The reaction mixture was stirred for 4 h under reflux. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 417–419 K; yield 84%).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1873612
https://doi.org/10.1107/S2056989018016377/xu5948sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018016377/xu5948Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXLXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C22H28ClNO | F(000) = 384 |
Mr = 357.90 | Dx = 1.142 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6753 (10) Å | Cell parameters from 5548 reflections |
b = 7.0072 (6) Å | θ = 2.1–30.7° |
c = 15.3749 (13) Å | µ = 0.19 mm−1 |
β = 93.425 (7)° | T = 296 K |
V = 1040.51 (17) Å3 | Prism, orange |
Z = 2 | 0.74 × 0.65 × 0.48 mm |
Stoe IPDS 2 diffractometer | 2300 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1298 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.028 |
rotation method scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −12→12 |
Tmin = 0.879, Tmax = 0.940 | k = −8→8 |
5895 measured reflections | l = −18→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.168 | w = 1/[σ2(Fo2) + (0.0964P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2300 reflections | Δρmax = 0.28 e Å−3 |
145 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2129 (4) | 0.250000 | 0.2502 (2) | 0.0799 (9) | |
H1A | 0.122313 | 0.250000 | 0.272431 | 0.120* | |
H1B | 0.223846 | 0.361862 | 0.215178 | 0.120* | |
C2 | 0.3181 (3) | 0.250000 | 0.3253 (2) | 0.0633 (8) | |
C3 | 0.2795 (3) | 0.250000 | 0.4107 (2) | 0.0703 (9) | |
H3 | 0.185649 | 0.250000 | 0.420637 | 0.084* | |
C4 | 0.3723 (3) | 0.250000 | 0.4806 (2) | 0.0700 (9) | |
H4 | 0.340566 | 0.250000 | 0.536544 | 0.084* | |
C5 | 0.5133 (3) | 0.250000 | 0.46997 (18) | 0.0556 (7) | |
C6 | 0.5560 (3) | 0.250000 | 0.38600 (19) | 0.0600 (7) | |
H6 | 0.649961 | 0.250000 | 0.376348 | 0.072* | |
C7 | 0.4596 (3) | 0.250000 | 0.3165 (2) | 0.0639 (8) | |
C8 | 0.5942 (3) | 0.250000 | 0.61807 (19) | 0.0568 (7) | |
H8 | 0.502444 | 0.250000 | 0.632881 | 0.068* | |
C9 | 0.7006 (3) | 0.250000 | 0.68668 (18) | 0.0521 (7) | |
C10 | 0.6637 (3) | 0.250000 | 0.77307 (19) | 0.0566 (7) | |
H10 | 0.570247 | 0.250000 | 0.784241 | 0.068* | |
C11 | 0.7595 (3) | 0.250000 | 0.84146 (18) | 0.0571 (7) | |
C12 | 0.8995 (3) | 0.250000 | 0.82148 (19) | 0.0620 (8) | |
H12 | 0.966318 | 0.250000 | 0.867572 | 0.074* | |
C13 | 0.9445 (3) | 0.250000 | 0.7374 (2) | 0.0590 (7) | |
C14 | 0.8423 (3) | 0.250000 | 0.66939 (18) | 0.0551 (7) | |
C15 | 1.0991 (3) | 0.250000 | 0.7198 (2) | 0.0722 (9) | |
C16 | 1.1330 (2) | 0.0710 (4) | 0.6677 (2) | 0.0980 (10) | |
H16A | 1.076649 | 0.068596 | 0.614163 | 0.147* | |
H16B | 1.228999 | 0.073060 | 0.655013 | 0.147* | |
H16C | 1.114737 | −0.040681 | 0.701290 | 0.147* | |
C17 | 1.1899 (4) | 0.250000 | 0.8041 (3) | 0.1274 (18) | |
H17A | 1.285592 | 0.250000 | 0.790824 | 0.191* | |
H17C | 1.170713 | 0.138138 | 0.837395 | 0.191* | |
C18 | 0.7224 (3) | 0.250000 | 0.9368 (2) | 0.0753 (9) | |
C19 | 0.7730 (5) | 0.4303 (8) | 0.9793 (2) | 0.176 (2) | |
H19A | 0.734855 | 0.537623 | 0.947277 | 0.264* | |
H19B | 0.744536 | 0.434730 | 1.037976 | 0.264* | |
H19C | 0.872234 | 0.434730 | 0.979833 | 0.264* | |
C20 | 0.5646 (4) | 0.250000 | 0.9437 (3) | 0.1131 (15) | |
H20A | 0.525969 | 0.136290 | 0.917256 | 0.170* | |
H20B | 0.543785 | 0.250000 | 1.003968 | 0.170* | |
Cl1 | 0.52181 (11) | 0.250000 | 0.21237 (6) | 0.1032 (4) | |
N1 | 0.6191 (2) | 0.250000 | 0.53735 (15) | 0.0599 (6) | |
O1 | 0.8791 (2) | 0.250000 | 0.58613 (13) | 0.0748 (6) | |
H1 | 0.809294 | 0.250000 | 0.553116 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.088 (2) | 0.066 (2) | 0.083 (2) | 0.000 | −0.0157 (18) | 0.000 |
C2 | 0.0734 (18) | 0.0410 (17) | 0.0749 (19) | 0.000 | −0.0011 (15) | 0.000 |
C3 | 0.0559 (16) | 0.077 (2) | 0.077 (2) | 0.000 | 0.0003 (16) | 0.000 |
C4 | 0.0621 (17) | 0.086 (2) | 0.0633 (18) | 0.000 | 0.0113 (15) | 0.000 |
C5 | 0.0611 (16) | 0.0480 (17) | 0.0576 (16) | 0.000 | 0.0032 (13) | 0.000 |
C6 | 0.0630 (16) | 0.0543 (18) | 0.0631 (17) | 0.000 | 0.0085 (14) | 0.000 |
C7 | 0.0786 (19) | 0.0547 (19) | 0.0587 (16) | 0.000 | 0.0068 (15) | 0.000 |
C8 | 0.0531 (14) | 0.0530 (18) | 0.0649 (17) | 0.000 | 0.0079 (13) | 0.000 |
C9 | 0.0527 (14) | 0.0458 (16) | 0.0582 (15) | 0.000 | 0.0074 (13) | 0.000 |
C10 | 0.0546 (15) | 0.0551 (18) | 0.0616 (16) | 0.000 | 0.0165 (14) | 0.000 |
C11 | 0.0642 (16) | 0.0530 (18) | 0.0550 (15) | 0.000 | 0.0112 (14) | 0.000 |
C12 | 0.0595 (16) | 0.065 (2) | 0.0611 (17) | 0.000 | 0.0016 (13) | 0.000 |
C13 | 0.0554 (15) | 0.0556 (18) | 0.0669 (17) | 0.000 | 0.0113 (14) | 0.000 |
C14 | 0.0574 (15) | 0.0524 (17) | 0.0566 (16) | 0.000 | 0.0128 (13) | 0.000 |
C15 | 0.0519 (16) | 0.082 (2) | 0.083 (2) | 0.000 | 0.0124 (15) | 0.000 |
C16 | 0.0684 (14) | 0.090 (2) | 0.139 (2) | 0.0156 (13) | 0.0353 (16) | −0.0004 (17) |
C17 | 0.0520 (18) | 0.219 (6) | 0.110 (3) | 0.000 | −0.002 (2) | 0.000 |
C18 | 0.079 (2) | 0.091 (3) | 0.0563 (17) | 0.000 | 0.0149 (16) | 0.000 |
C19 | 0.204 (4) | 0.235 (5) | 0.095 (2) | −0.106 (4) | 0.061 (3) | −0.087 (3) |
C20 | 0.102 (3) | 0.168 (4) | 0.073 (2) | 0.000 | 0.036 (2) | 0.000 |
Cl1 | 0.1117 (8) | 0.1390 (10) | 0.0595 (5) | 0.000 | 0.0104 (5) | 0.000 |
N1 | 0.0608 (13) | 0.0617 (16) | 0.0578 (14) | 0.000 | 0.0075 (11) | 0.000 |
O1 | 0.0613 (11) | 0.1072 (18) | 0.0574 (12) | 0.000 | 0.0166 (10) | 0.000 |
C1—C2 | 1.494 (5) | C12—C13 | 1.389 (4) |
C1—H1A | 0.9600 | C12—H12 | 0.9300 |
C1—H1B | 0.9600 | C13—C14 | 1.395 (4) |
C1—H1Bi | 0.9600 | C13—C15 | 1.536 (4) |
C2—C7 | 1.383 (4) | C14—O1 | 1.349 (3) |
C2—C3 | 1.387 (4) | C15—C17 | 1.523 (5) |
C3—C4 | 1.359 (4) | C15—C16 | 1.534 (3) |
C3—H3 | 0.9300 | C15—C16i | 1.534 (3) |
C4—C5 | 1.383 (4) | C16—H16A | 0.9600 |
C4—H4 | 0.9300 | C16—H16B | 0.9600 |
C5—C6 | 1.379 (4) | C16—H16C | 0.9600 |
C5—N1 | 1.412 (4) | C17—H17A | 0.9600 |
C6—C7 | 1.376 (4) | C17—H17C | 0.9600 |
C6—H6 | 0.9300 | C17—H17Ci | 0.9600 |
C7—Cl1 | 1.744 (3) | C18—C19i | 1.491 (4) |
C8—N1 | 1.278 (4) | C18—C19 | 1.491 (4) |
C8—C9 | 1.429 (4) | C18—C20 | 1.537 (5) |
C8—H8 | 0.9300 | C19—H19A | 0.9600 |
C9—C10 | 1.396 (4) | C19—H19B | 0.9600 |
C9—C14 | 1.412 (3) | C19—H19C | 0.9600 |
C10—C11 | 1.360 (4) | C20—H20A | 0.9600 |
C10—H10 | 0.9300 | C20—H20B | 0.9595 |
C11—C12 | 1.407 (4) | C20—H20Ai | 0.9600 |
C11—C18 | 1.530 (4) | O1—H1 | 0.8200 |
C2—C1—H1A | 108.6 | O1—C14—C13 | 119.7 (2) |
C2—C1—H1B | 109.9 | O1—C14—C9 | 119.5 (3) |
H1A—C1—H1B | 109.5 | C13—C14—C9 | 120.8 (2) |
C2—C1—H1Bi | 109.91 (9) | C17—C15—C16 | 108.31 (19) |
H1A—C1—H1Bi | 109.5 | C17—C15—C16i | 108.3 (2) |
H1B—C1—H1Bi | 109.5 | C16—C15—C16i | 109.7 (3) |
C7—C2—C3 | 114.6 (3) | C17—C15—C13 | 111.6 (3) |
C7—C2—C1 | 123.8 (3) | C16—C15—C13 | 109.45 (18) |
C3—C2—C1 | 121.5 (3) | C16i—C15—C13 | 109.45 (18) |
C4—C3—C2 | 123.1 (3) | C15—C16—H16A | 109.5 |
C4—C3—H3 | 118.4 | C15—C16—H16B | 109.5 |
C2—C3—H3 | 118.4 | H16A—C16—H16B | 109.5 |
C3—C4—C5 | 121.1 (3) | C15—C16—H16C | 109.5 |
C3—C4—H4 | 119.5 | H16A—C16—H16C | 109.5 |
C5—C4—H4 | 119.5 | H16B—C16—H16C | 109.5 |
C6—C5—C4 | 117.6 (3) | C15—C17—H17A | 109.4 |
C6—C5—N1 | 116.2 (2) | C15—C17—H17C | 109.5 |
C4—C5—N1 | 126.1 (2) | H17A—C17—H17C | 109.5 |
C7—C6—C5 | 120.0 (3) | C15—C17—H17Ci | 109.48 (8) |
C7—C6—H6 | 120.0 | H17A—C17—H17Ci | 109.5 |
C5—C6—H6 | 120.0 | H17C—C17—H17Ci | 109.5 |
C6—C7—C2 | 123.6 (3) | C19i—C18—C19 | 115.8 (5) |
C6—C7—Cl1 | 117.2 (2) | C19i—C18—C11 | 109.23 (18) |
C2—C7—Cl1 | 119.2 (3) | C19—C18—C11 | 109.23 (18) |
N1—C8—C9 | 123.2 (2) | C19i—C18—C20 | 105.8 (2) |
N1—C8—H8 | 118.4 | C19—C18—C20 | 105.8 (2) |
C9—C8—H8 | 118.4 | C11—C18—C20 | 110.9 (3) |
C10—C9—C14 | 119.1 (3) | C18—C19—H19A | 109.5 |
C10—C9—C8 | 119.2 (2) | C18—C19—H19B | 109.5 |
C14—C9—C8 | 121.7 (2) | H19A—C19—H19B | 109.5 |
C11—C10—C9 | 122.3 (2) | C18—C19—H19C | 109.5 |
C11—C10—H10 | 118.9 | H19A—C19—H19C | 109.5 |
C9—C10—H10 | 118.9 | H19B—C19—H19C | 109.5 |
C10—C11—C12 | 116.9 (2) | C18—C20—H20A | 109.5 |
C10—C11—C18 | 123.5 (2) | C18—C20—H20B | 109.4 |
C12—C11—C18 | 119.6 (3) | H20A—C20—H20B | 108.1 |
C13—C12—C11 | 124.2 (3) | C18—C20—H20Ai | 109.49 (9) |
C13—C12—H12 | 117.9 | H20A—C20—H20Ai | 112.2 |
C11—C12—H12 | 117.9 | H20B—C20—H20Ai | 108.1 |
C12—C13—C14 | 116.8 (2) | C8—N1—C5 | 122.8 (2) |
C12—C13—C15 | 121.8 (3) | C14—O1—H1 | 109.5 |
C14—C13—C15 | 121.5 (3) | ||
C7—C2—C3—C4 | 0.000 (1) | C12—C13—C14—O1 | 180.000 (1) |
C1—C2—C3—C4 | 180.000 (1) | C15—C13—C14—O1 | 0.000 (1) |
C2—C3—C4—C5 | 0.000 (1) | C12—C13—C14—C9 | 0.000 (1) |
C3—C4—C5—C6 | 0.000 (1) | C15—C13—C14—C9 | 180.000 (1) |
C3—C4—C5—N1 | 180.000 (1) | C10—C9—C14—O1 | 180.000 (1) |
C4—C5—C6—C7 | 0.000 (1) | C8—C9—C14—O1 | 0.000 (1) |
N1—C5—C6—C7 | 180.000 (1) | C10—C9—C14—C13 | 0.000 (1) |
C5—C6—C7—C2 | 0.000 (1) | C8—C9—C14—C13 | 180.000 (1) |
C5—C6—C7—Cl1 | 180.000 (1) | C12—C13—C15—C17 | 0.000 (1) |
C3—C2—C7—C6 | 0.000 (1) | C14—C13—C15—C17 | 180.000 (1) |
C1—C2—C7—C6 | 180.000 (1) | C12—C13—C15—C16 | 119.9 (2) |
C3—C2—C7—Cl1 | 180.000 (1) | C14—C13—C15—C16 | −60.1 (2) |
C1—C2—C7—Cl1 | 0.000 (1) | C12—C13—C15—C16i | −119.9 (2) |
N1—C8—C9—C10 | 180.000 (1) | C14—C13—C15—C16i | 60.1 (2) |
N1—C8—C9—C14 | 0.000 (1) | C10—C11—C18—C19i | 116.2 (3) |
C14—C9—C10—C11 | 0.000 (1) | C12—C11—C18—C19i | −63.8 (3) |
C8—C9—C10—C11 | 180.000 (1) | C10—C11—C18—C19 | −116.2 (3) |
C9—C10—C11—C12 | 0.000 (1) | C12—C11—C18—C19 | 63.8 (3) |
C9—C10—C11—C18 | 180.000 (1) | C10—C11—C18—C20 | 0.000 (2) |
C10—C11—C12—C13 | 0.000 (2) | C12—C11—C18—C20 | 180.000 (1) |
C18—C11—C12—C13 | 180.000 (1) | C9—C8—N1—C5 | 180.000 (1) |
C11—C12—C13—C14 | 0.000 (1) | C6—C5—N1—C8 | 180.000 (1) |
C11—C12—C13—C15 | 180.000 (1) | C4—C5—N1—C8 | 0.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
Cg is the centroid of the C9–C14 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.84 | 2.582 (3) | 149 |
C1—H1B···Cg1ii | 0.96 | 2.77 | 3.5072 (4) | 134 |
Symmetry code: (ii) −x+1, y+1/2, −z+1. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725. Google Scholar
Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385–403. CrossRef CAS Web of Science Google Scholar
Elmalı, A., Kabak, M., Kavlakoğlu, E. & Elerman, Y. (1999). J. Mol. Struct. 510, 207–214. Google Scholar
El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214. CrossRef IUCr Journals Google Scholar
Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. Web of Science CrossRef IUCr Journals Google Scholar
Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. CrossRef Google Scholar
Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51. Google Scholar
Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516. CrossRef IUCr Journals Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CrossRef CAS PubMed Google Scholar
Sen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147–1150. CrossRef IUCr Journals Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Su, D.-C., Wang, F.-T., Mao, C.-G. & Qian, S.-S. (2012). Acta Cryst. E68, o303. CrossRef IUCr Journals Google Scholar
Toprak, Ş., Tanak, H., Macit, M., Dege, N. & Orbay, M. (2018). J. Mol. Struct. 1174, 184–191. CrossRef Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth. Google Scholar
Wang, H. (2010). Acta Cryst. E66, m1571. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.