research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2,4-di-tert-butyl-6-[(3-chloro-4-methyl­phenyl­imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs, University, 55139, Samsun, Turkey, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, Volodymyrska Str., 64, 01601 Kiev, Ukraine
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 October 2018; accepted 18 November 2018; online 30 November 2018)

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except the tert-butyl groups, located on the mirror plane. There is an intra­molecular O—H⋯N hydrogen bond present forming an S(6) ring motif. In the crystal, the mol­ecules are connected by C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (68.9%) and C⋯H/H⋯C (11.7%) inter­actions.

1. Chemical context

In coordination chemistry, Schiff bases have found wide use as ligands (Calligaris et al., 1972[Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385-403.]; Hökelek et al., 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]; Kansiz et al., 2018[Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513-1516.]). Schiff bases are important for various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429-1438.]) and photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers (Elmalı et al., 1999[Elmalı, A., Kabak, M., Kavlakoğlu, E. & Elerman, Y. (1999). J. Mol. Struct. 510, 207-214.]), electronics, optoelectronics and photonics (Iwan et al., 2007[Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030-1041.]). They have been used as starting materials in the synthesis of many important medicinal substances. In the present study, a new Schiff base compound was synthesized and its crystal structure determined by X-ray diffraction. In addition, to understand the inter­molecular inter­actions in the crystal structure, Hirshfeld surface analysis was performed.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The title Schiff base compound shows mirror symmetry with all the non-H atoms, except the tert-butyl groups, located on the mirror plane. The C14—O1 bond distance is 1.349 (3) Å, the C8=N1 and C5—N1 bond lengths are 1.278 (4) and 1.412 (4) Å, respectively, and the C7—Cl1 bond distance is 1.744 (3) Å. There is an intra­molecular O—H⋯N hydrogen bond present (Table 1[link]), forming an S(6) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.582 (3) 149
C1—H1BCg1i 0.96 2.77 3.5072 (4) 134
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 10% probability level. Symmetry code: (i) x, −y + [1\over2], z.

3. Supra­molecular features

In the crystal, the mol­ecules are connected by C1—H1Bπ inter­actions, generating a three-dimensional supra­molecular structure (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote the intra­molecular and inter­molecular hydrogen bonds.

4. Database survey

There are no previous reports of the title structure. However, several related structure have been reported (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including bis­{(E)-1-[(3-chloro-4-methyl­phenyl­imino)­meth­yl]naphthalen-2-olate-N,O}copper(II) (SICXOU; Toprak et al., 2018[Toprak, Ş., Tanak, H., Macit, M., Dege, N. & Orbay, M. (2018). J. Mol. Struct. 1174, 184-191.]), 2-{(E)-[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (TERTUI; Atalay et al., 2017[Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.]), {2,2′-[4-chloro-5-methyl-o-phenyl­enebis(nitrilo­methyl­idyne)]dipheno­lato}nick­el(II) (WABDEK; Wang, 2010[Wang, H. (2010). Acta Cryst. E66, m1571.]) and 4-[(E)-(3-chloro-4-methyl­phen­yl)imino­meth­yl]-2-meth­oxy-3-nitro­phenyl acetate (GAPPOE; Su et al., 2012[Su, D.-C., Wang, F.-T., Mao, C.-G. & Qian, S.-S. (2012). Acta Cryst. E68, o303.]). In all four compounds, the C—Cl bond lengths vary from 1.724 to 1.743 Å. In the title compound, the C7—Cl1 bond length is 1.744 (3) Å.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the synthesized complex. The Hirshfeld surfaces mapped over dnorm, de and di are illustrated in Figs. 3[link] and 4[link]. The red spots on the surfaces indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]; Sen et al., 2018[Sen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147-1150.]; Gumus et al., 2018[Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211-1214.]). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.031 (red) to 2.139 (blue) a.u. The red spots identified in Fig. 3[link] correspond to the near-type H⋯π contacts resulting from the C—H⋯π inter­actions (Table 1[link]).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for visualizing the inter­molecular inter­actions of the title compound.

Fig. 5[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6[link](a) (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (68.9%). The graph shown in Fig. 6[link](b) shows the (C⋯H/H⋯C) contacts between the carbon atoms inside the surface and the hydrogen atoms outside the Hirshfeld surface and vice versa, which contribute 11.7%. There are two symmetrical wings on the left and right sides. Furthermore, there are also Cl⋯H/H⋯Cl (11%), C⋯C (4.5%), C⋯N/N⋯C (2.2%), O⋯H/H⋯O (1.3%) and N⋯H/H⋯N (0.4%) contacts.

[Figure 5]
Figure 5
Overall fingerprint plot for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the (a) H⋯H (68.9%), (b) C⋯H/H⋯C (11.7%), (c) Cl⋯H/H⋯Cl (11%) and (d) C⋯C (4.5%) contacts in the title compound.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.030 to 0.044 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 7[link] where the C—H⋯π donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 7]
Figure 7
A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy.

6. Synthesis and crystallization

The title compound was prepared by refluxing a mixture of a solution containing 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde (46.8 mg, 0.2 mmol) in ethanol (30 mL) and a solution containing 3-chloro-4-methyl­aniline (28.32 mg, 0.2 mmol) in ethanol (20 mL). The reaction mixture was stirred for 4 h under reflux. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 417–419 K; yield 84%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H28ClNO
Mr 357.90
Crystal system, space group Monoclinic, P21/m
Temperature (K) 296
a, b, c (Å) 9.6753 (10), 7.0072 (6), 15.3749 (13)
β (°) 93.425 (7)
V3) 1040.51 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.74 × 0.65 × 0.48
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.879, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 5895, 2300, 1298
Rint 0.028
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.168, 1.00
No. of reflections 2300
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.22
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXLXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXLXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2,4-di-tert-butyl-6-[(3-chloro-4-methylphenylimino)methyl]phenol top
Crystal data top
C22H28ClNOF(000) = 384
Mr = 357.90Dx = 1.142 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 9.6753 (10) ÅCell parameters from 5548 reflections
b = 7.0072 (6) Åθ = 2.1–30.7°
c = 15.3749 (13) ŵ = 0.19 mm1
β = 93.425 (7)°T = 296 K
V = 1040.51 (17) Å3Prism, orange
Z = 20.74 × 0.65 × 0.48 mm
Data collection top
Stoe IPDS 2
diffractometer
2300 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1298 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.028
rotation method scansθmax = 26.5°, θmin = 2.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1212
Tmin = 0.879, Tmax = 0.940k = 88
5895 measured reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0964P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2300 reflectionsΔρmax = 0.28 e Å3
145 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2129 (4)0.2500000.2502 (2)0.0799 (9)
H1A0.1223130.2500000.2724310.120*
H1B0.2238460.3618620.2151780.120*
C20.3181 (3)0.2500000.3253 (2)0.0633 (8)
C30.2795 (3)0.2500000.4107 (2)0.0703 (9)
H30.1856490.2500000.4206370.084*
C40.3723 (3)0.2500000.4806 (2)0.0700 (9)
H40.3405660.2500000.5365440.084*
C50.5133 (3)0.2500000.46997 (18)0.0556 (7)
C60.5560 (3)0.2500000.38600 (19)0.0600 (7)
H60.6499610.2500000.3763480.072*
C70.4596 (3)0.2500000.3165 (2)0.0639 (8)
C80.5942 (3)0.2500000.61807 (19)0.0568 (7)
H80.5024440.2500000.6328810.068*
C90.7006 (3)0.2500000.68668 (18)0.0521 (7)
C100.6637 (3)0.2500000.77307 (19)0.0566 (7)
H100.5702470.2500000.7842410.068*
C110.7595 (3)0.2500000.84146 (18)0.0571 (7)
C120.8995 (3)0.2500000.82148 (19)0.0620 (8)
H120.9663180.2500000.8675720.074*
C130.9445 (3)0.2500000.7374 (2)0.0590 (7)
C140.8423 (3)0.2500000.66939 (18)0.0551 (7)
C151.0991 (3)0.2500000.7198 (2)0.0722 (9)
C161.1330 (2)0.0710 (4)0.6677 (2)0.0980 (10)
H16A1.0766490.0685960.6141630.147*
H16B1.2289990.0730600.6550130.147*
H16C1.1147370.0406810.7012900.147*
C171.1899 (4)0.2500000.8041 (3)0.1274 (18)
H17A1.2855920.2500000.7908240.191*
H17C1.1707130.1381380.8373950.191*
C180.7224 (3)0.2500000.9368 (2)0.0753 (9)
C190.7730 (5)0.4303 (8)0.9793 (2)0.176 (2)
H19A0.7348550.5376230.9472770.264*
H19B0.7445360.4347301.0379760.264*
H19C0.8722340.4347300.9798330.264*
C200.5646 (4)0.2500000.9437 (3)0.1131 (15)
H20A0.5259690.1362900.9172560.170*
H20B0.5437850.2500001.0039680.170*
Cl10.52181 (11)0.2500000.21237 (6)0.1032 (4)
N10.6191 (2)0.2500000.53735 (15)0.0599 (6)
O10.8791 (2)0.2500000.58613 (13)0.0748 (6)
H10.8092940.2500000.5531160.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.088 (2)0.066 (2)0.083 (2)0.0000.0157 (18)0.000
C20.0734 (18)0.0410 (17)0.0749 (19)0.0000.0011 (15)0.000
C30.0559 (16)0.077 (2)0.077 (2)0.0000.0003 (16)0.000
C40.0621 (17)0.086 (2)0.0633 (18)0.0000.0113 (15)0.000
C50.0611 (16)0.0480 (17)0.0576 (16)0.0000.0032 (13)0.000
C60.0630 (16)0.0543 (18)0.0631 (17)0.0000.0085 (14)0.000
C70.0786 (19)0.0547 (19)0.0587 (16)0.0000.0068 (15)0.000
C80.0531 (14)0.0530 (18)0.0649 (17)0.0000.0079 (13)0.000
C90.0527 (14)0.0458 (16)0.0582 (15)0.0000.0074 (13)0.000
C100.0546 (15)0.0551 (18)0.0616 (16)0.0000.0165 (14)0.000
C110.0642 (16)0.0530 (18)0.0550 (15)0.0000.0112 (14)0.000
C120.0595 (16)0.065 (2)0.0611 (17)0.0000.0016 (13)0.000
C130.0554 (15)0.0556 (18)0.0669 (17)0.0000.0113 (14)0.000
C140.0574 (15)0.0524 (17)0.0566 (16)0.0000.0128 (13)0.000
C150.0519 (16)0.082 (2)0.083 (2)0.0000.0124 (15)0.000
C160.0684 (14)0.090 (2)0.139 (2)0.0156 (13)0.0353 (16)0.0004 (17)
C170.0520 (18)0.219 (6)0.110 (3)0.0000.002 (2)0.000
C180.079 (2)0.091 (3)0.0563 (17)0.0000.0149 (16)0.000
C190.204 (4)0.235 (5)0.095 (2)0.106 (4)0.061 (3)0.087 (3)
C200.102 (3)0.168 (4)0.073 (2)0.0000.036 (2)0.000
Cl10.1117 (8)0.1390 (10)0.0595 (5)0.0000.0104 (5)0.000
N10.0608 (13)0.0617 (16)0.0578 (14)0.0000.0075 (11)0.000
O10.0613 (11)0.1072 (18)0.0574 (12)0.0000.0166 (10)0.000
Geometric parameters (Å, º) top
C1—C21.494 (5)C12—C131.389 (4)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.395 (4)
C1—H1Bi0.9600C13—C151.536 (4)
C2—C71.383 (4)C14—O11.349 (3)
C2—C31.387 (4)C15—C171.523 (5)
C3—C41.359 (4)C15—C161.534 (3)
C3—H30.9300C15—C16i1.534 (3)
C4—C51.383 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.379 (4)C16—H16C0.9600
C5—N11.412 (4)C17—H17A0.9600
C6—C71.376 (4)C17—H17C0.9600
C6—H60.9300C17—H17Ci0.9600
C7—Cl11.744 (3)C18—C19i1.491 (4)
C8—N11.278 (4)C18—C191.491 (4)
C8—C91.429 (4)C18—C201.537 (5)
C8—H80.9300C19—H19A0.9600
C9—C101.396 (4)C19—H19B0.9600
C9—C141.412 (3)C19—H19C0.9600
C10—C111.360 (4)C20—H20A0.9600
C10—H100.9300C20—H20B0.9595
C11—C121.407 (4)C20—H20Ai0.9600
C11—C181.530 (4)O1—H10.8200
C2—C1—H1A108.6O1—C14—C13119.7 (2)
C2—C1—H1B109.9O1—C14—C9119.5 (3)
H1A—C1—H1B109.5C13—C14—C9120.8 (2)
C2—C1—H1Bi109.91 (9)C17—C15—C16108.31 (19)
H1A—C1—H1Bi109.5C17—C15—C16i108.3 (2)
H1B—C1—H1Bi109.5C16—C15—C16i109.7 (3)
C7—C2—C3114.6 (3)C17—C15—C13111.6 (3)
C7—C2—C1123.8 (3)C16—C15—C13109.45 (18)
C3—C2—C1121.5 (3)C16i—C15—C13109.45 (18)
C4—C3—C2123.1 (3)C15—C16—H16A109.5
C4—C3—H3118.4C15—C16—H16B109.5
C2—C3—H3118.4H16A—C16—H16B109.5
C3—C4—C5121.1 (3)C15—C16—H16C109.5
C3—C4—H4119.5H16A—C16—H16C109.5
C5—C4—H4119.5H16B—C16—H16C109.5
C6—C5—C4117.6 (3)C15—C17—H17A109.4
C6—C5—N1116.2 (2)C15—C17—H17C109.5
C4—C5—N1126.1 (2)H17A—C17—H17C109.5
C7—C6—C5120.0 (3)C15—C17—H17Ci109.48 (8)
C7—C6—H6120.0H17A—C17—H17Ci109.5
C5—C6—H6120.0H17C—C17—H17Ci109.5
C6—C7—C2123.6 (3)C19i—C18—C19115.8 (5)
C6—C7—Cl1117.2 (2)C19i—C18—C11109.23 (18)
C2—C7—Cl1119.2 (3)C19—C18—C11109.23 (18)
N1—C8—C9123.2 (2)C19i—C18—C20105.8 (2)
N1—C8—H8118.4C19—C18—C20105.8 (2)
C9—C8—H8118.4C11—C18—C20110.9 (3)
C10—C9—C14119.1 (3)C18—C19—H19A109.5
C10—C9—C8119.2 (2)C18—C19—H19B109.5
C14—C9—C8121.7 (2)H19A—C19—H19B109.5
C11—C10—C9122.3 (2)C18—C19—H19C109.5
C11—C10—H10118.9H19A—C19—H19C109.5
C9—C10—H10118.9H19B—C19—H19C109.5
C10—C11—C12116.9 (2)C18—C20—H20A109.5
C10—C11—C18123.5 (2)C18—C20—H20B109.4
C12—C11—C18119.6 (3)H20A—C20—H20B108.1
C13—C12—C11124.2 (3)C18—C20—H20Ai109.49 (9)
C13—C12—H12117.9H20A—C20—H20Ai112.2
C11—C12—H12117.9H20B—C20—H20Ai108.1
C12—C13—C14116.8 (2)C8—N1—C5122.8 (2)
C12—C13—C15121.8 (3)C14—O1—H1109.5
C14—C13—C15121.5 (3)
C7—C2—C3—C40.000 (1)C12—C13—C14—O1180.000 (1)
C1—C2—C3—C4180.000 (1)C15—C13—C14—O10.000 (1)
C2—C3—C4—C50.000 (1)C12—C13—C14—C90.000 (1)
C3—C4—C5—C60.000 (1)C15—C13—C14—C9180.000 (1)
C3—C4—C5—N1180.000 (1)C10—C9—C14—O1180.000 (1)
C4—C5—C6—C70.000 (1)C8—C9—C14—O10.000 (1)
N1—C5—C6—C7180.000 (1)C10—C9—C14—C130.000 (1)
C5—C6—C7—C20.000 (1)C8—C9—C14—C13180.000 (1)
C5—C6—C7—Cl1180.000 (1)C12—C13—C15—C170.000 (1)
C3—C2—C7—C60.000 (1)C14—C13—C15—C17180.000 (1)
C1—C2—C7—C6180.000 (1)C12—C13—C15—C16119.9 (2)
C3—C2—C7—Cl1180.000 (1)C14—C13—C15—C1660.1 (2)
C1—C2—C7—Cl10.000 (1)C12—C13—C15—C16i119.9 (2)
N1—C8—C9—C10180.000 (1)C14—C13—C15—C16i60.1 (2)
N1—C8—C9—C140.000 (1)C10—C11—C18—C19i116.2 (3)
C14—C9—C10—C110.000 (1)C12—C11—C18—C19i63.8 (3)
C8—C9—C10—C11180.000 (1)C10—C11—C18—C19116.2 (3)
C9—C10—C11—C120.000 (1)C12—C11—C18—C1963.8 (3)
C9—C10—C11—C18180.000 (1)C10—C11—C18—C200.000 (2)
C10—C11—C12—C130.000 (2)C12—C11—C18—C20180.000 (1)
C18—C11—C12—C13180.000 (1)C9—C8—N1—C5180.000 (1)
C11—C12—C13—C140.000 (1)C6—C5—N1—C8180.000 (1)
C11—C12—C13—C15180.000 (1)C4—C5—N1—C80.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.582 (3)149
C1—H1B···Cg1ii0.962.773.5072 (4)134
Symmetry code: (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAtalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.  Google Scholar
First citationCalligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationElmalı, A., Kabak, M., Kavlakoğlu, E. & Elerman, Y. (1999). J. Mol. Struct. 510, 207–214.  Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214.  CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041.  CrossRef Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516.  CrossRef IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147–1150.  CrossRef IUCr Journals Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSu, D.-C., Wang, F.-T., Mao, C.-G. & Qian, S.-S. (2012). Acta Cryst. E68, o303.  CrossRef IUCr Journals Google Scholar
First citationToprak, Ş., Tanak, H., Macit, M., Dege, N. & Orbay, M. (2018). J. Mol. Struct. 1174, 184–191.  CrossRef Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWang, H. (2010). Acta Cryst. E66, m1571.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds