research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Four 1-aryl-1H-pyrazole-3,4-di­carboxyl­ate derivatives: synthesis, mol­ecular conformation and hydrogen bonding

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824 236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 7 November 2018; accepted 8 November 2018; online 13 November 2018)

Four 1-aryl-1H-pyrazole-3,4-di­carboxyl­ate derivatives, one acid, two esters and a dicarbohydrazide have been synthesized starting from 3-aryl sydnones, and structurally characterized. There is an intra­molecular O—H⋯O hydrogen bond in 1-phenyl-1H-pyrazole-3,4-di­carb­oxy­lic acid, C11H8N2O4, (I), and the mol­ecules are linked into a three-dimensional framework structure by a combination of O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. In each of the two esters dimethyl 1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate, C13H12N2O4, (II), and dimethyl 1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­carboxyl­ate, C14H14N2O4, (III), C—H⋯O hydrogen bonds lead to the formation of cyclic centrosymmetric dimers: in (III), one of the meth­oxy­carbonyl groups is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2). An intra­molecular N—H⋯O hydrogen bond is present in the structure of 1-(4-meth­oxy­phen­yl)-1H-pyrazole-3,4-dicarbohydrazide, C12H14N6O3, (IV), and the mol­ecules are linked into a three-dimensional framework structure by a combination of N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O hydrogen bonds. Comparisons are made with the structures of a number of related compounds.

1. Chemical context

Pyrazole derivatives have been shown to exhibit a wide range of biological activities including analgesic (Girisha et al., 2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]), anti­convulsant (Owen et al., 1958[Owen, J. E., Swanson, E. E. & Meyers, D. B. (1958). J. Am. Pharm. Assoc. (Sci. ed.), 47, 70-72.]), anti­microbial (Satheesha & Kalluraya, 2007[Satheesha, R. N. & Kalluraya, B. (2007). Indian J. Chem. Sect. B, 46, 375-378.]; Asma et al., 2018[Asma, Kalluraya, B., Manju, N., Adhikari, A. V., Chandra & Mahendra, M. (2018). Indian J. Heterocycl. Chem. 28, 335-345.]), anti­tumour (Park et al., 2005[Park, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]), and insecticidal and larvicidal activity (Yang et al., 2018[Yang, R., Xu, T., Fan, J., Zhang, Q., Ding, M., Huang, M., Deng, L., Lu, Y. & Guo, Y. (2018). Ind. Crops Prod. 117, 50-57.]). Pyrazole carb­oxy­lic acids and their derivatives are versatile precursors for the synthesis of numerous substituted analogues (Asma et al., 2018[Asma, Kalluraya, B., Manju, N., Adhikari, A. V., Chandra & Mahendra, M. (2018). Indian J. Heterocycl. Chem. 28, 335-345.]; Devi et al., 2018[Devi, N., Shankar, R. & Singh, V. (2018). J. Heterocycl. Chem. 55, 373-390.]) and, with these considerations in mind, we have now synthesized a series of new pyrazole carboxyl­ate derivatives as inter­mediates for the synthesis of new pharmacologically active products. Here we report the syntheses, and the mol­ecular and supra­molecular structures of four such compounds, namely 1-phenyl-1H-pyrazole-3,4-di­carb­oxy­lic acid (I)[link], dimethyl 1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (II)[link], dimethyl 1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­carboxyl­ate (III)[link] and 1-(4-meth­oxy­phen­yl)-1H-pyrazole-3,4-dicarbohydrazide (IV)[link] (Figs. 1[link]–4[link][link][link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme. The major disorder component, occupancy 0.71 (2), is drawn using full lines and the minor component, occupancy 0.29 (2), is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IV)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The products (II)[link] and (III)[link] and the inter­mediate ester (B) (Fig. 5[link]) used in the formation of compound (IV)[link] were all prepared using the 1,3-dipolar addition reaction between dimethyl acetyl­enedi­carboxyl­ate and the 3-aryl­syndones [3-aryl-1,2,3-oxa­diazol-3-ium-5-olates] (A), with loss of carbon dioxide in entropy-driven reactions (Huisgen et al., 1962[Huisgen, R., Grashey, R., Gotthardt, H. & Schmidt, R. (1962). Angew. Chem. Int. Ed. Engl. 1, 48-49.]) (Fig. 5[link]). Hydrolysis of the ester (II)[link] gave the di­carb­oxy­lic acid (I)[link], while hydrazinolysis of the ester (B) gave the dicarbohyrazide (IV)[link]. The sydnone precursors (A) were all prepared from the corresponding anilines via the substituted N-aryl-N-nitro­soglycines (Greco et al., 1962[Greco, C. V., Nyberg, W. H. & Cheng, C. C. (1962). J. Med. Chem. 5, 861-865.]; Fun et al., 2010[Fun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252.]).

[Figure 5]
Figure 5
The synthetic routes to compounds (I)–(IV).

2. Structural commentary

The bond distances in compounds (I)–(IV) show no unexpected values: all are typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). However, the mol­ecular conformations show some inter­esting features. In each of (I)[link] and (IV)[link], the two carb­oxy substituents on the pyrazole ring are nearly coplanar with this ring, as shown by the leading torsional angles (Table 1[link]): this is almost certainly a consequence of the presence on an intra­molecular O—H⋯O in (I)[link] and an intra­molecular N—H⋯O hydrogen bond in (IV)[link] (Table 2[link]). In compounds (I)[link] and (III)[link], where such intra­molecular inter­actions are not possible, the carboxyl groups at C3 are by no means coplanar with the pyrazole ring (Table 1[link]), and in compound (III)[link] the 3-meth­oxy­carbonyl substituent is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2) in the crystal selected for data collection: the orientations of the two disorder components are related to one another by a rotation about the C3—C31 bond of approximately 23° (Table 1[link]). It may be noted here that the ketonic O atom O31 acts as a hydrogen-bond acceptor in each of (I)[link] and (IV)[link], but not in (II)[link] and (III)[link] (Table 2[link]), and the disorder in (III)[link] may be associated with this.

Table 1
Selected torsional and dihedral angles (°)

φ1 represents the dihedral angle between the planes of the aryl and pyrazole rings and φ2 represents the dihedral angle between the planes (C3,C31,O31A,O32A) and (C3,C31,O31B,O32B)

  (I) (II) (III) (IV)
C4—C3—C31—O31 −178.0 (2) 44.8 (3)   −12.5 (4)
C4—C3—C31—O32 2.1 (4) −135.9 (2)    
C4—C3—C31—O31A     −129.1 (9)  
C4—C3—C31—O31B     −96.6 (9)  
C4—C3—C31—O32A     57.5 (6)  
C4—C3—C31—O32B     71.6 (8)  
C4—C3—C31—N31       168.4 (2)
C3—C4—C41—O41 −2.5 (4) −168.5 (2) 176.5 (2) −169.0 (2)
C3—C4—C41—O42 178.0 (2) 12.8 (3) −3.0 (3)  
C3—C4—C41—N41       9.8 (4)
φ1 29.38 (8) 24.38 (12) 2.78 (12) 5.82 (13)
φ2     22.7 (5)  

Table 2
Hydrogen bonds and short inter­molecular contacts (Å, °)

Cg1 represents the centroid of the C11–C16 ring.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) O32—H32⋯O41 1.00 (3) 1.54 (3) 3.546 (2) 178 (2)
  O42—H42⋯O31i 0.88 (3) 1.80 (3) 2.660 (2) 168 (3)
  O42—H42⋯N2i 0.88 (3) 2.56 (3) 3.063 (3) 117 (2)
  C14—H14⋯O31ii 0.93 2.53 3.456 (3) 177
  C12—H12⋯Cg1iii 0.93 2.86 3.685 (3) 148
  C15—H15⋯Cg1iv 0.93 2.92 3.755 (3) 151
(II) C5—H5⋯O41v 0.93 2.41 3.331 (3) 170
(III) C5—H5⋯O41vi 0.93 2.33 3.249 (3) 168
  C12—H12⋯O41vi 0.93 2.43 3.352 (3) 173
(IV) N31—H31⋯O31vii 0.88 (2) 2.04 (2) 2.851 (3) 153 (2)
  N32—H32A⋯O14viii 0.97 (3) 2.58 (3) 3.256 (3) 127 (2)
  N32—H32B⋯N42vii 1.00 (2) 2.34 (3) 3.317 (3) 165 (2)
  N41—H41⋯O31 0.95 (3) 1.78 (3) 2.714 (3) 166 (2)
  N42—H42A⋯O41ix 0.95 (3) 2.21 (3) 3.120 (3) 162 (2)
  N42—H42BCg1x 0.83 (3) 2.85 (3) 3.442 (3) 130 (2)
  C5—H5⋯O41v 0.93 2.40 3.314 (3) 166
  C12—H12⋯O41v 0.93 2.44 3.354 (3) 168
Symmetry codes: (i) x, 1 + y, z; (ii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) [{1\over 2}] − x, [{1\over 2}] + y, z; (iv) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) 1 − x, 1 − y, 1 − z; (vi) −x, 1 − y, 1 − z; (vii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (viii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{3\over 2}] + z; (ix) 1 − x, 1 − y, −z; (x) −1 + x, y, −1 + z.

In each of (I)[link] and (II)[link], the planes of the aryl and pyrazole rings make much larger dihedral angles than these planes do in (II)[link] and (IV)[link] (Table 1[link]). This may be associated with the cooperative effect in (III)[link] and (IV)[link] of the C—H⋯O hydrogen bonds involving atoms C5 and C12 as donors (Table 2[link]), whereas no such cooperation is found in the structures of (I)[link] and (II)[link].

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] to form a three-dimensional framework structure depends upon four types of hydrogen bonds (Table 2[link]), and the framework formation can readily be analysed in terms of one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). A combination of O—H⋯O and O—H⋯N hydrogen bonds, the latter rather weak, links mol­ecules related by translation into a C(6)C(7)[R12(5)] (Etter, 1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain of rings running parallel to the [010] direction (Fig. 6[link]). In the second sub-structure, mol­ecules related by the c-glide plane at y = 0.25 are linked by a C—H⋯O hydrogen bond to form a simple C(10) chain running parallel to the [001] direction, and the combination of these two chain motifs generates an almost planar sheet lying parallel to (100) in the domain [1\over4] < x < [1\over2] (Fig. 6[link]). Finally, two weak C—H⋯π(arene) hydrogen bonds link this sheet to the adjacent sheets in the domains 0 < x < [1\over4] and [1\over2] < x < [3\over4], and in this way all of the (100) sheets are linked to form a three-dimensional framework structure.

[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded sheet parallel to (100). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms but not involved in the motifs shown have been omitted.

By contrast, the supra­molecular assembly in the ester (II)[link] is extremely simple, with inversion-related pairs of mol­ecules linked by C—H⋯O hydrogen bonds (Table 2[link]) to form a centrosymmetric R22(10) dimer (Fig. 7[link]). A similar, but more complex centrosymmetric dimer is formed by the ester (III)[link], where the same R22(10) motif as found in (II)[link] is present, along with two flanking R21(7) rings within an outer R22(16) ring (Fig. 8[link]). In neither (II)[link] nor (III)[link] are there any direction-specific inter­actions between adjacent dimers.

[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded R22(10) dimer. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded dimer containing R21(7), R22(10) and R22(16) ring motifs. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).

The supra­molecular assembly in the hydrazide (IV)[link] is the most complex of those reported here. A three-dimensional framework structure is built from four types of hydrogen bonds: N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O (Table 2[link]). As for (I)[link], the assembly is readily analysed in terms of simpler substructures. The hydrogen bond involving atom H42A links an inversion-related pair of mol­ecules into an R22(10) dimer centred at ([1\over2], [1\over2], 0), and this finite, zero-dimensional sub-structure can be regarded as the basic building block of the overall structure, which can then be analysed in terms of the ways in which these dimers are linked together. The hydrogen bonds involving the atoms H31 and H32B directly link the reference dimer centred at ([1\over2], [1\over2], 0) to four similar dimers, centred at (0, 0, −[1\over2]), (0, 1, −[1\over2]), (1, 0, [1\over2]) and (1, 1, [1\over2]), so forming a sheet lying parallel to (10[\overline{1}]) (Fig. 9[link]), which is reinforced by the N—H⋯π hydrogen bond (Table 2[link]). The final sub-structure in the assembly of (IV)[link] is one-dimensional: two C—H⋯O hydrogen bonds link the basic R22(10) dimers into a chain of rings running parallel to the [001] direction. Within this chain, two types of centrosymmetric R22(10) ring can be identified, one containing N—H⋯O hydrogen bonds and the other containing C—H⋯O hydrogen bonds, along with R21(7) rings (Fig. 10[link]).

[Figure 9]
Figure 9
Part of the crystal structure of compound (IV)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (10[\overline{1}]) and built from N—H⋯O, N—H⋯N and N—H⋯π(arene) hydrogen bonds. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 10]
Figure 10
Part of the crystal structure of compound (IV)[link] showing the formation of a hydrogen-bonded chain of rings parallel to [001] and built from N—H⋯O and C—H⋯O hydrogen bonds. Hydrogen bonds are shown as broken lines and, for the sake of clarity, the H atoms bonded to C atoms but not involved in the motifs shown have been omitted.

4. Database survey

It is of inter­est to compare briefly the structures of compounds (I)–(IV) reported here with those of some related compounds. In dimethyl 1-(3-chloro-4-meth­yl)-1H-pyrazole-3,4-di­carb­oxyl­ate, which differs from (III)[link] only in the presence of the additional 3-chloro substituent, there are again two C—H⋯O hydrogen bonds in the structure, involving exactly the same pair of C—H bonds as in (III)[link], but here the mol­ecules are linked into a C(5)C(8)[R21(7)] chain of rings, rather than into cyclic dimers (Thamotharan et al., 2003[Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami Bharati, V. & Linden, A. (2003). Acta Cryst. E59, o44-o45.]). The esters dimethyl 5-(4-chloro­phen­yl)-1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (Li et al., 2014[Li, D. Y., Mao, Y. F., Chen, H. J., Chen, G. B. & Liu, P. N. (2014). Org. Lett. 16, 3476-3479.]) and dimethyl 5-(4-bromo­phen­yl)-1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (Alizadeh et al., 2010[Alizadeh, A., Firuzyar, T. & Zhu, L.-G. (2010). Tetrahedron, 66, 9835-9839.]), which carry an additional substituent in the pyrazole ring, are isostructural, and the mol­ecules are linked by C—H⋯O hydrogen bonds to form simple chains.

The structures of several esters derived from 1-substituted-1H-pyrazole-3,5-di­carb­oxy­lic acids have been reported, including dimethyl 1-(2-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate (Xiao & Zhao, 2009[Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1175.]), dimethyl 1-(4-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate (Yao et al., 2009[Yao, J.-Y., Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1158.]) and dimethyl 1-cyano­methyl-1H-pyrazole-3,5-di­carboxyl­ate (Qu, 2009[Qu, Z.-R. (2009). Acta Cryst. E65, o1646.]). There are no significant inter­molecular inter­actions in either of the benzyl derivatives, but the inversion-related pairs of mol­ecules of the 1-cyano­methyl compound are linked by C—H⋯O hydrogen bonds to form centrosymmetric R22(10) dimers.

In each of 1-benzyl-3-phenyl-1H-pyrazole-5-carb­oxy­lic acid (Tang et al., 2007[Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473.]) and 1-cyclo­hexyl-5-(4-meth­oxy­phen­yl)-1H-pyrazole-4-carb­oxy­lic acid (Fun et al., 2011[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513.]), inversion-related pairs of mol­ecules are linked by O—H⋯O hydrogen bonds to form centrosymmetric R22(8) dimers. For the simpler analogue 3-phenyl-1H-pyrazole-5-carb­oxy­lic acid, the structure was described (Zhang et al., 2007[Zhang, X.-Y., Liu, W., Tang, W. & Lai, Y.-B. (2007). Acta Cryst. E63, o3764.]) as consisting of chains built from O—H⋯O and N—H⋯N hydrogen bonds, which were then linked into sheets by C—H⋯O hydrogen bonds. However, scrutiny of the atomic coordinates shows that the structure contains no C—H⋯O hydrogen bonds, and that the combin­ation of one O—H⋯O hydrogen bond and one N—H⋯N hydrogen bond generates sheets lying parallel to (100) and containing alternating R22(8) and R66(28) rings (Fig. 11[link]).

[Figure 11]
Figure 11
Part of the crystal structure of 3-phenyl-1H-pyrazole-5-carb­oxy­lic acid showing the formation of a sheet of R22(8) and R66(28) rings lying parallel to (100): hydrogen bonds are shown as dashed lines. The original atomic coordinates (Zhang et al., 2007[Zhang, X.-Y., Liu, W., Tang, W. & Lai, Y.-B. (2007). Acta Cryst. E63, o3764.]) have been used and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Finally, we note that structures have been reported for each of the precursor sydnones employed here (Fig. 5[link]), for X = H (Hope, 1978[Hope, H. (1978). Acta Cryst. A34, S20.]), X = Me (Wang et al., 1984[Wang, Y., Lee, P. L. & Yeh, M.-H. (1984). Acta Cryst. C40, 1226-1228.]) and X = MeO (Fun et al., 2010[Fun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252.]) although, when X = H, there are no atomic coordinates deposited in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

5. Synthesis and crystallization

The precursor sydnones (A) (Fig. 5[link]) were prepared from the corresponding anilines (Greco et al., 1962[Greco, C. V., Nyberg, W. H. & Cheng, C. C. (1962). J. Med. Chem. 5, 861-865.]; Wang et al., 1984[Wang, Y., Lee, P. L. & Yeh, M.-H. (1984). Acta Cryst. C40, 1226-1228.]; Fun et al., 2010[Fun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252.]). For the synthesis of the esters (II)[link] and (III)[link], a mixture of the sydnone of type (A) having X = H for (II)[link] or X = CH3 for (III)[link], (1 mmol) and dimethyl acetyl­enedi­carboxyl­ate (1 mmol) in dry p-xylene (10 ml) was heated under reflux for 1 h. The mixtures were then cooled to ambient temperature, the solvent was removed under reduced pressure and the resulting solid products were recrystallized from ethanol. (II)[link]: yield 95%, m.p. 373 K. IR (ATR, cm−1) 1712 (C=O), 1582 (C=N). NMR (CDCl3) δ(1H) 3.81 (s, 3H, O—CH3), 4.08 (s, 3H, O—CH3), 7.31 (m, 1H, H14), 7.40 (d, J = 7.5 Hz, 2H, H13 & H15), 7.81 (d, J = 7.5 Hz, 2H, H12 & H16), 9.28 (s, 1H, H5). Analysis found C 60.2, H 4.7, N 10.8%, C13H12N2O4 requires C 60.0, H 4.6, N 10.8%. (III)[link]: yield 93%, m.p. 371 K. IR (ATR, cm−1) 1732 (C=O), 1532 (C=N). NMR (CDCl3) δ(1H) 2.21 (s, 3H, C—CH3), 3.82 (s, 3H, O—CH3), 4.10 (s, 3H, O—CH3), 7.48 (d, J = 7.6 Hz, 2H, H13 & H15), 7.88 (d, J = 7.6 Hz, 2H, H12 & H16), 8.94 (s, 1H, H5). Analysis found C 61.4, H 5.2, N 10.4%, C14H14N2O4 requires C 61.3, H 5.1, N 10.2%.

For the synthesis of the acid (I)[link], the ester (II)[link] (1 mmol) and solid sodium hydroxide (2 mmol) were dissolved in a water–ethanol mixture (water:ethanol 80:20 v/v, 50 ml). This mixture was heated under reflux for 2h, cooled to ambient temperature and then acidified to pH 2 using dilute aqueous hydro­chloric acid. The resulting solid product was collected by filtration, washed with water and then recrystallized from ethanol. (I)[link]: yield 71%, m.p. 508–509 K. IR (ATR, cm−1) 3427 (O—H), 1717 (C=O), 1542 (C=N). NMR (CDCl3) δ(1H) 7.41 (m, 1H, H14), 7.53 (d, J = 7.6 Hz, 2H, H13 & H15), 7.93 (d, J = 7.6 Hz, 2H, H12 & H16), ?.10 (s, 1H, H5). LC–MS m/z 230.9. Analysis found C 57.1, H 3.6, N 12.2%, C11H8N2O4 requires C 56.9, H 3.5, N 12.1%. For the synthesis of the hydrazide (IV)[link], the inter­mediate ester (B) (Fig. 5[link]) was prepared in exactly the same fashion of the esters (II)[link] and (III)[link], yield 90%, m.p. 458 K. A mixture of ester (B) (1 mmol) and hydrazine hydrate (99% aqueous solution, 10 mmol) in ethanol (10 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the resulting solid product was collected by filtration and then recrystallized from ethanol. (IV)[link]: yield 75%, m.p. 502 K. IR (ATR, cm−1) 3354 (N—H), 3308 (N—H), 1650 (C=O), 1562 (C=N). NMR (DMSO-d6) δ(1H) 3.67 (br, 6H, N-H), 3.82 (s, 3H, O-CH3), 6.98 (d, J = 7.7 Hz, 2H, H13 & H15), 7.69 (d, J = 7.7 Hz, 2H, H12 & H16), 8.91 (s, 1H, H5). LC-MS m/z 290.3. Analysis found C 49.5, H 4.8, N 28.8%, C12H14N6O3 requires C 49.6, H 4.9, N 29.0%. Crystals of compounds (I)–(IV) suitable for single-crystal X-ray diffraction were selected directly from the purified samples.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One low-angle reflection, (001) in compound (III)[link], which had been attenuated by the beam stop was removed from the data set. All H atoms were located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized position with C—H distances 0.93 Å (aryl and pyrazole) or 0.96 Å (CH3) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to O or N atoms, the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N), leading to the O—H and N—H distances shown in Table 2[link]. It was apparent that one of the ester substituents in compound (III)[link] was disordered over two sets of atomic sites. For the minor disorder component, the bonded distances and the 1,2 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for the corresponding pairs of atoms in the two disorder components were constrained to be the same, and the two disordered carboxyl­ate fragments were constrained to be planar. Subject to these conditions, the occupancies of the two sets of sites refined to 0.71 (2) and 0.29 (2).

Table 3
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H8N2O4 C13H12N2O4 C14H14N2O4 C12H14N6O3
Mr 232.19 260.25 274.27 290.29
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 296 296 296 296
a, b, c (Å) 13.164 (2), 7.4692 (9), 21.173 (3) 5.9000 (4), 14.5273 (12), 14.8726 (12) 7.6546 (5), 8.0959 (5), 11.3065 (6) 7.6030 (6), 22.6605 (19), 7.6751 (7)
α, β, γ (°) 90, 90, 90 90, 98.867 (3), 90 78.988 (3), 85.527 (3), 87.548 (4) 90, 102.284 (3), 90
V3) 2081.8 (6) 1259.51 (17) 685.40 (7) 1292.05 (19)
Z 8 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 0.10 0.10 0.11
Crystal size (mm) 0.16 × 0.14 × 0.11 0.17 × 0.14 × 0.13 0.16 × 0.15 × 0.12 0.14 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.931, 0.987 0.960, 0.987 0.955, 0.988 0.929, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 31526, 2218, 1304 21653, 2704, 1624 12818, 2526, 1777 20456, 2521, 1722
Rint 0.063 0.046 0.030 0.053
(sin θ/λ)max−1) 0.634 0.635 0.605 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.03 0.042, 0.129, 1.04 0.044, 0.128, 1.05 0.046, 0.108, 1.05
No. of reflections 2218 2704 2526 2521
No. of parameters 161 175 196 210
No. of restraints 0 0 7 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.16 0.19, −0.18 0.24, −0.24 0.20, −0.21
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) top
Crystal data top
C11H8N2O4Dx = 1.482 Mg m3
Mr = 232.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2218 reflections
a = 13.164 (2) Åθ = 2.5–26.8°
b = 7.4692 (9) ŵ = 0.12 mm1
c = 21.173 (3) ÅT = 296 K
V = 2081.8 (6) Å3Block, colourless
Z = 80.16 × 0.14 × 0.11 mm
F(000) = 960
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2218 independent reflections
Radiation source: fine focus sealed tube1304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 26.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1616
Tmin = 0.931, Tmax = 0.987k = 99
31526 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.043P)2 + 0.9866P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.19 e Å3
2218 reflectionsΔρmin = 0.16 e Å3
161 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0015 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37444 (14)0.5732 (2)0.38946 (7)0.0382 (4)
N20.37411 (13)0.4662 (2)0.44062 (7)0.0361 (4)
C30.37378 (16)0.5767 (2)0.48951 (9)0.0318 (4)
C40.37462 (16)0.7576 (2)0.46953 (10)0.0341 (5)
C50.37519 (17)0.7475 (3)0.40517 (10)0.0416 (5)
H50.37600.84370.37730.050*
C110.37392 (17)0.4958 (3)0.32759 (9)0.0415 (5)
C120.3296 (2)0.5877 (4)0.27889 (11)0.0572 (7)
H120.29880.69780.28630.069*
C130.3311 (2)0.5164 (4)0.21895 (11)0.0691 (8)
H130.30170.57870.18560.083*
C140.3756 (2)0.3540 (5)0.20857 (13)0.0718 (9)
H140.37710.30630.16800.086*
C150.4181 (2)0.2612 (4)0.25766 (13)0.0665 (8)
H150.44740.14990.25030.080*
C160.41776 (19)0.3311 (3)0.31810 (12)0.0548 (7)
H160.44650.26820.35150.066*
C310.37166 (17)0.4926 (3)0.55265 (9)0.0377 (5)
O310.37408 (14)0.33081 (19)0.55896 (7)0.0540 (5)
O320.36707 (14)0.5958 (2)0.60230 (7)0.0524 (5)
H320.3671 (19)0.724 (4)0.5880 (13)0.079*
C410.37522 (17)0.9202 (3)0.50785 (11)0.0412 (5)
O410.37173 (14)0.91999 (19)0.56526 (8)0.0578 (5)
O420.37916 (14)1.06752 (19)0.47441 (8)0.0528 (5)
H420.375 (2)1.164 (4)0.4979 (13)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0500 (11)0.0337 (9)0.0309 (9)0.0033 (9)0.0029 (8)0.0027 (7)
N20.0487 (11)0.0296 (9)0.0301 (9)0.0015 (8)0.0021 (9)0.0017 (7)
C30.0375 (11)0.0287 (9)0.0293 (10)0.0002 (9)0.0010 (9)0.0059 (8)
C40.0404 (12)0.0279 (10)0.0340 (12)0.0011 (10)0.0015 (11)0.0031 (8)
C50.0562 (14)0.0302 (11)0.0383 (12)0.0037 (10)0.0012 (12)0.0011 (9)
C110.0487 (14)0.0483 (12)0.0276 (11)0.0013 (12)0.0019 (10)0.0099 (10)
C120.0711 (18)0.0649 (16)0.0356 (13)0.0016 (14)0.0049 (12)0.0026 (12)
C130.083 (2)0.092 (2)0.0323 (14)0.0064 (18)0.0068 (13)0.0047 (14)
C140.074 (2)0.107 (2)0.0348 (14)0.0165 (19)0.0040 (15)0.0250 (15)
C150.0658 (18)0.0745 (18)0.0591 (18)0.0048 (16)0.0012 (15)0.0330 (15)
C160.0606 (16)0.0594 (16)0.0445 (14)0.0108 (13)0.0067 (13)0.0193 (12)
C310.0493 (13)0.0329 (11)0.0309 (11)0.0019 (10)0.0021 (11)0.0031 (9)
O310.0923 (13)0.0305 (8)0.0392 (9)0.0023 (9)0.0035 (9)0.0028 (7)
O320.0871 (13)0.0404 (9)0.0296 (8)0.0052 (9)0.0042 (8)0.0071 (7)
C410.0431 (13)0.0297 (11)0.0507 (14)0.0011 (10)0.0061 (11)0.0054 (10)
O410.0945 (14)0.0358 (9)0.0432 (10)0.0070 (9)0.0135 (9)0.0126 (7)
O420.0783 (13)0.0255 (8)0.0547 (11)0.0011 (8)0.0056 (9)0.0049 (7)
Geometric parameters (Å, º) top
N1—C51.344 (2)C13—C141.365 (4)
N1—N21.346 (2)C13—H130.9300
N1—C111.432 (2)C14—C151.369 (4)
N2—C31.324 (2)C14—H140.9300
C3—C41.416 (3)C15—C161.382 (3)
C3—C311.477 (3)C15—H150.9300
C4—C51.365 (3)C16—H160.9300
C4—C411.461 (3)C31—O311.216 (2)
C5—H50.9300C31—O321.305 (2)
C11—C121.369 (3)O32—H321.00 (3)
C11—C161.374 (3)C41—O411.216 (3)
C12—C131.377 (3)C41—O421.309 (2)
C12—H120.9300O42—H420.88 (3)
C5—N1—N2112.07 (16)C14—C13—H13120.1
C5—N1—C11128.16 (18)C12—C13—H13120.1
N2—N1—C11119.77 (17)C13—C14—C15120.2 (2)
C3—N2—N1105.03 (15)C13—C14—H14119.9
N2—C3—C4111.17 (17)C15—C14—H14119.9
N2—C3—C31116.28 (16)C14—C15—C16120.7 (3)
C4—C3—C31132.55 (17)C14—C15—H15119.7
C5—C4—C3104.21 (16)C16—C15—H15119.7
C5—C4—C41126.91 (18)C11—C16—C15118.4 (2)
C3—C4—C41128.87 (19)C11—C16—H16120.8
N1—C5—C4107.50 (18)C15—C16—H16120.8
N1—C5—H5126.2O31—C31—O32119.95 (19)
C4—C5—H5126.2O31—C31—C3121.43 (18)
C12—C11—C16121.2 (2)O32—C31—C3118.62 (17)
C12—C11—N1119.2 (2)C31—O32—H32108.6 (15)
C16—C11—N1119.6 (2)O41—C41—O42122.89 (19)
C11—C12—C13119.6 (3)O41—C41—C4123.62 (19)
C11—C12—H12120.2O42—C41—C4113.48 (19)
C13—C12—H12120.2C41—O42—H42112.5 (18)
C14—C13—C12119.9 (3)
C5—N1—N2—C30.5 (2)C16—C11—C12—C131.6 (4)
C11—N1—N2—C3179.43 (19)N1—C11—C12—C13178.4 (2)
N1—N2—C3—C40.4 (2)C11—C12—C13—C140.6 (4)
N1—N2—C3—C31179.03 (18)C12—C13—C14—C150.6 (4)
N2—C3—C4—C50.2 (3)C13—C14—C15—C160.9 (4)
C31—C3—C4—C5179.2 (2)C12—C11—C16—C151.3 (4)
N2—C3—C4—C41179.6 (2)N1—C11—C16—C15178.7 (2)
C31—C3—C4—C411.1 (4)C14—C15—C16—C110.1 (4)
N2—N1—C5—C40.4 (3)N2—C3—C31—O312.7 (3)
C11—N1—C5—C4179.5 (2)C4—C3—C31—O31178.0 (2)
C3—C4—C5—N10.2 (3)N2—C3—C31—O32177.2 (2)
C41—C4—C5—N1179.9 (2)C4—C3—C31—O322.1 (4)
C5—N1—C11—C1229.3 (4)C5—C4—C41—O41177.8 (2)
N2—N1—C11—C12150.6 (2)C3—C4—C41—O412.5 (4)
C5—N1—C11—C16150.6 (2)C5—C4—C41—O421.7 (3)
N2—N1—C11—C1629.4 (3)C3—C4—C41—O42178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O411.00 (3)1.54 (3)2.546 (2)178 (2)
O42—H42···O31i0.88 (3)1.80 (3)2.660 (2)168 (3)
O42—H42···N2i0.88 (3)2.56 (3)3.063 (2)117 (2)
C14—H14···O31ii0.932.533.456 (3)177
C12—H12···Cg1iii0.932.863.685 (3)148
C15—H15···Cg1iv0.932.923.755 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1/2, z+1/2.
Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) top
Crystal data top
C13H12N2O4F(000) = 544
Mr = 260.25Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.9000 (4) ÅCell parameters from 2704 reflections
b = 14.5273 (12) Åθ = 2.8–26.8°
c = 14.8726 (12) ŵ = 0.10 mm1
β = 98.867 (3)°T = 296 K
V = 1259.51 (17) Å3Block, orange
Z = 40.17 × 0.14 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2704 independent reflections
Radiation source: fine focus sealed tube1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 26.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 67
Tmin = 0.960, Tmax = 0.987k = 1818
21653 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3996P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.19 e Å3
2704 reflectionsΔρmin = 0.18 e Å3
175 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.014 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5660 (3)0.34915 (11)0.69867 (11)0.0412 (4)
N20.4302 (3)0.27659 (11)0.71300 (11)0.0437 (4)
C30.2695 (3)0.27445 (13)0.64031 (13)0.0410 (5)
C40.3003 (3)0.34570 (14)0.57864 (13)0.0416 (5)
C50.4919 (3)0.39140 (14)0.61917 (13)0.0438 (5)
H50.55870.44240.59590.053*
C110.7563 (3)0.37397 (13)0.76566 (13)0.0414 (5)
C120.9342 (3)0.42372 (15)0.73977 (15)0.0490 (5)
H120.93250.43960.67910.059*
C131.1146 (4)0.44954 (17)0.80489 (17)0.0617 (6)
H131.23440.48380.78800.074*
C141.1201 (4)0.42556 (18)0.89396 (18)0.0683 (7)
H141.24420.44230.93730.082*
C150.9413 (4)0.3766 (2)0.91897 (17)0.0738 (8)
H150.94430.36080.97970.089*
C160.7567 (4)0.35049 (16)0.85540 (15)0.0588 (6)
H160.63530.31770.87280.071*
C310.0986 (4)0.19862 (14)0.62958 (15)0.0461 (5)
O310.0528 (3)0.15354 (14)0.56252 (12)0.0900 (7)
O320.0058 (3)0.18661 (10)0.70371 (10)0.0596 (4)
C320.1630 (4)0.11423 (17)0.70126 (19)0.0701 (7)
H32A0.29250.12830.65590.105*
H32B0.21200.10940.75970.105*
H32C0.09660.05690.68660.105*
C410.1559 (3)0.37509 (14)0.49430 (14)0.0453 (5)
O410.2172 (3)0.42800 (13)0.44075 (11)0.0740 (5)
O420.0501 (2)0.33820 (12)0.48518 (10)0.0614 (5)
C420.2056 (4)0.3587 (2)0.40269 (17)0.0704 (7)
H42A0.23950.42330.40040.106*
H42B0.34490.32440.40200.106*
H42C0.13550.34190.35090.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0431 (9)0.0388 (9)0.0406 (10)0.0017 (7)0.0024 (7)0.0039 (7)
N20.0470 (9)0.0380 (9)0.0449 (10)0.0039 (7)0.0027 (8)0.0052 (7)
C30.0437 (11)0.0410 (11)0.0379 (11)0.0009 (9)0.0049 (9)0.0003 (9)
C40.0433 (11)0.0430 (11)0.0382 (11)0.0000 (9)0.0055 (9)0.0021 (9)
C50.0456 (11)0.0450 (11)0.0407 (11)0.0029 (9)0.0065 (9)0.0057 (9)
C110.0408 (10)0.0389 (11)0.0425 (12)0.0041 (9)0.0002 (9)0.0004 (9)
C120.0407 (11)0.0571 (13)0.0493 (12)0.0034 (10)0.0069 (10)0.0016 (10)
C130.0429 (12)0.0712 (16)0.0695 (17)0.0039 (11)0.0043 (12)0.0028 (13)
C140.0550 (14)0.0788 (18)0.0641 (17)0.0031 (13)0.0130 (12)0.0067 (14)
C150.0765 (17)0.091 (2)0.0477 (15)0.0081 (15)0.0110 (13)0.0077 (13)
C160.0609 (14)0.0625 (15)0.0500 (14)0.0100 (11)0.0010 (11)0.0084 (11)
C310.0522 (12)0.0398 (11)0.0445 (12)0.0027 (9)0.0018 (10)0.0008 (9)
O310.1229 (16)0.0839 (13)0.0665 (12)0.0478 (12)0.0247 (11)0.0260 (10)
O320.0649 (10)0.0556 (9)0.0613 (10)0.0205 (8)0.0191 (8)0.0043 (8)
C320.0586 (14)0.0551 (15)0.100 (2)0.0169 (11)0.0222 (14)0.0029 (14)
C410.0473 (11)0.0485 (12)0.0398 (11)0.0036 (10)0.0057 (9)0.0000 (9)
O410.0718 (11)0.0869 (13)0.0584 (10)0.0226 (9)0.0054 (8)0.0310 (9)
O420.0476 (9)0.0812 (11)0.0519 (10)0.0100 (8)0.0034 (7)0.0123 (8)
C420.0536 (14)0.0910 (19)0.0593 (16)0.0017 (13)0.0144 (12)0.0035 (13)
Geometric parameters (Å, º) top
N1—C51.344 (2)C14—H140.9300
N1—N21.360 (2)C15—C161.381 (3)
N1—C111.428 (2)C15—H150.9300
N2—C31.324 (2)C16—H160.9300
C3—C41.413 (3)C31—O311.189 (2)
C3—C311.485 (3)C31—O321.316 (2)
C4—C51.368 (3)O32—C321.445 (3)
C4—C411.467 (3)C32—H32A0.9600
C5—H50.9300C32—H32B0.9600
C11—C161.377 (3)C32—H32C0.9600
C11—C121.377 (3)C41—O411.202 (2)
C12—C131.376 (3)C41—O421.316 (2)
C12—H120.9300O42—C421.445 (3)
C13—C141.365 (3)C42—H42A0.9600
C13—H130.9300C42—H42B0.9600
C14—C151.370 (4)C42—H42C0.9600
C5—N1—N2111.86 (15)C14—C15—H15119.5
C5—N1—C11127.77 (16)C16—C15—H15119.5
N2—N1—C11120.34 (15)C11—C16—C15118.6 (2)
C3—N2—N1104.78 (15)C11—C16—H16120.7
N2—C3—C4111.42 (17)C15—C16—H16120.7
N2—C3—C31119.60 (17)O31—C31—O32124.04 (19)
C4—C3—C31128.80 (18)O31—C31—C3124.1 (2)
C5—C4—C3104.46 (17)O32—C31—C3111.82 (17)
C5—C4—C41124.54 (18)C31—O32—C32116.71 (18)
C3—C4—C41130.71 (18)O32—C32—H32A109.5
N1—C5—C4107.48 (17)O32—C32—H32B109.5
N1—C5—H5126.3H32A—C32—H32B109.5
C4—C5—H5126.3O32—C32—H32C109.5
C16—C11—C12120.88 (19)H32A—C32—H32C109.5
C16—C11—N1119.82 (18)H32B—C32—H32C109.5
C12—C11—N1119.27 (18)O41—C41—O42124.03 (19)
C13—C12—C11119.1 (2)O41—C41—C4123.92 (19)
C13—C12—H12120.5O42—C41—C4112.03 (17)
C11—C12—H12120.5C41—O42—C42117.33 (18)
C14—C13—C12120.9 (2)O42—C42—H42A109.5
C14—C13—H13119.5O42—C42—H42B109.5
C12—C13—H13119.5H42A—C42—H42B109.5
C13—C14—C15119.4 (2)O42—C42—H42C109.5
C13—C14—H14120.3H42A—C42—H42C109.5
C15—C14—H14120.3H42B—C42—H42C109.5
C14—C15—C16121.0 (2)
C5—N1—N2—C30.1 (2)C11—C12—C13—C140.8 (3)
C11—N1—N2—C3178.19 (16)C12—C13—C14—C151.3 (4)
N1—N2—C3—C40.1 (2)C13—C14—C15—C160.6 (4)
N1—N2—C3—C31175.56 (16)C12—C11—C16—C151.0 (3)
N2—C3—C4—C50.0 (2)N1—C11—C16—C15179.0 (2)
C31—C3—C4—C5175.11 (19)C14—C15—C16—C110.5 (4)
N2—C3—C4—C41173.87 (19)N2—C3—C31—O31130.0 (2)
C31—C3—C4—C4111.0 (3)C4—C3—C31—O3144.8 (3)
N2—N1—C5—C40.1 (2)N2—C3—C31—O3249.3 (2)
C11—N1—C5—C4177.99 (17)C4—C3—C31—O32135.9 (2)
C3—C4—C5—N10.0 (2)O31—C31—O32—C320.6 (3)
C41—C4—C5—N1174.43 (18)C3—C31—O32—C32179.80 (17)
C5—N1—C11—C16153.3 (2)C5—C4—C41—O4118.7 (3)
N2—N1—C11—C1624.4 (3)C3—C4—C41—O41168.5 (2)
C5—N1—C11—C1224.7 (3)C5—C4—C41—O42160.01 (19)
N2—N1—C11—C12157.57 (17)C3—C4—C41—O4212.8 (3)
C16—C11—C12—C130.3 (3)O41—C41—O42—C424.0 (3)
N1—C11—C12—C13178.35 (18)C4—C41—O42—C42177.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O41i0.932.413.331 (3)170
Symmetry code: (i) x+1, y+1, z+1.
Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) top
Crystal data top
C14H14N2O4Z = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.329 Mg m3
a = 7.6546 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0959 (5) ÅCell parameters from 2526 reflections
c = 11.3065 (6) Åθ = 2.6–25.5°
α = 78.988 (3)°µ = 0.10 mm1
β = 85.527 (3)°T = 296 K
γ = 87.548 (4)°Block, brown
V = 685.40 (7) Å30.16 × 0.15 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2526 independent reflections
Radiation source: fine focus sealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.955, Tmax = 0.988k = 99
12818 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2439P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
2526 reflectionsΔρmin = 0.24 e Å3
196 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.024 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3938 (2)0.7228 (2)0.38159 (13)0.0446 (4)
N20.4458 (2)0.7773 (2)0.26297 (14)0.0477 (4)
C30.3163 (2)0.7413 (3)0.20267 (16)0.0426 (5)
C40.1791 (2)0.6623 (2)0.28127 (16)0.0428 (5)
C50.2362 (3)0.6525 (3)0.39480 (17)0.0464 (5)
H50.17650.60570.46750.056*
C110.5036 (3)0.7482 (3)0.47287 (17)0.0446 (5)
C120.4529 (3)0.6979 (3)0.59269 (19)0.0634 (7)
H120.34680.64500.61570.076*
C130.5596 (3)0.7261 (3)0.6790 (2)0.0663 (7)
H130.52400.69110.76020.080*
C140.7168 (3)0.8041 (3)0.6491 (2)0.0567 (6)
C150.7647 (3)0.8500 (4)0.5289 (2)0.0758 (8)
H150.87170.90110.50590.091*
C160.6612 (3)0.8238 (3)0.4403 (2)0.0686 (7)
H160.69790.85720.35920.082*
C1410.8328 (4)0.8354 (3)0.7436 (2)0.0797 (8)
H14A0.76770.81900.82080.119*
H14B0.87260.94890.72330.119*
H14C0.93190.75840.74700.119*
C31A0.3342 (3)0.7907 (3)0.06874 (18)0.0505 (5)0.71 (2)
O31A0.4587 (11)0.7554 (17)0.0048 (5)0.093 (3)0.71 (2)
O32A0.2044 (10)0.8936 (9)0.0288 (6)0.0542 (14)0.71 (2)
C32A0.2113 (19)0.9575 (17)0.0998 (7)0.0653 (16)0.71 (2)
H32A0.21950.86500.14210.098*0.71 (2)
H32B0.31211.02610.12330.098*0.71 (2)
H32C0.10701.02390.11960.098*0.71 (2)
C31B0.3342 (3)0.7907 (3)0.06874 (18)0.0505 (5)0.29 (2)
O31B0.413 (2)0.6979 (19)0.0113 (14)0.093 (3)0.29 (2)
O32B0.233 (2)0.9199 (19)0.0250 (15)0.0542 (14)0.29 (2)
C32B0.234 (5)0.966 (4)0.1050 (17)0.0653 (16)0.29 (2)
H32D0.14760.90350.13340.098*0.29 (2)
H32E0.34790.94040.14040.098*0.29 (2)
H32F0.20801.08420.12750.098*0.29 (2)
C410.0150 (3)0.5929 (3)0.25809 (17)0.0456 (5)
O410.0860 (2)0.5221 (2)0.33564 (14)0.0756 (6)
O420.01086 (18)0.61505 (19)0.14123 (12)0.0550 (4)
C420.1738 (3)0.5551 (3)0.1112 (2)0.0679 (7)
H42A0.27010.60350.15380.102*
H42B0.17480.43460.13390.102*
H42C0.18470.58730.02580.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0440 (9)0.0561 (11)0.0331 (8)0.0093 (8)0.0050 (7)0.0041 (7)
N20.0458 (10)0.0613 (11)0.0345 (9)0.0105 (8)0.0028 (7)0.0030 (8)
C30.0397 (11)0.0511 (12)0.0369 (10)0.0032 (9)0.0047 (8)0.0067 (9)
C40.0407 (10)0.0505 (12)0.0372 (10)0.0050 (9)0.0045 (8)0.0063 (9)
C50.0436 (11)0.0567 (13)0.0373 (10)0.0110 (10)0.0009 (8)0.0036 (9)
C110.0449 (11)0.0505 (12)0.0390 (11)0.0044 (9)0.0084 (8)0.0073 (9)
C120.0539 (13)0.0937 (19)0.0424 (12)0.0174 (12)0.0051 (10)0.0085 (12)
C130.0673 (16)0.0924 (19)0.0403 (12)0.0055 (14)0.0108 (11)0.0117 (12)
C140.0644 (15)0.0543 (13)0.0555 (14)0.0014 (11)0.0219 (11)0.0142 (10)
C150.0671 (16)0.097 (2)0.0649 (16)0.0367 (14)0.0163 (12)0.0063 (14)
C160.0661 (15)0.0951 (19)0.0441 (12)0.0334 (14)0.0082 (11)0.0035 (12)
C1410.092 (2)0.0787 (19)0.0782 (18)0.0009 (15)0.0441 (15)0.0260 (14)
C31A0.0409 (11)0.0727 (15)0.0380 (11)0.0064 (11)0.0031 (9)0.0093 (10)
O31A0.070 (3)0.159 (6)0.0434 (12)0.035 (4)0.0031 (17)0.010 (2)
O32A0.054 (2)0.062 (2)0.0395 (9)0.008 (2)0.0009 (13)0.0060 (12)
C32A0.075 (4)0.0739 (19)0.0406 (14)0.017 (3)0.0089 (17)0.0103 (13)
C31B0.0409 (11)0.0727 (15)0.0380 (11)0.0064 (11)0.0031 (9)0.0093 (10)
O31B0.070 (3)0.159 (6)0.0434 (12)0.035 (4)0.0031 (17)0.010 (2)
O32B0.054 (2)0.062 (2)0.0395 (9)0.008 (2)0.0009 (13)0.0060 (12)
C32B0.075 (4)0.0739 (19)0.0406 (14)0.017 (3)0.0089 (17)0.0103 (13)
C410.0421 (11)0.0557 (13)0.0387 (11)0.0047 (10)0.0025 (9)0.0077 (9)
O410.0581 (10)0.1211 (15)0.0449 (9)0.0394 (10)0.0017 (7)0.0031 (9)
O420.0519 (9)0.0729 (10)0.0403 (8)0.0177 (7)0.0088 (6)0.0048 (7)
C420.0550 (14)0.0942 (19)0.0590 (14)0.0187 (13)0.0173 (11)0.0169 (13)
Geometric parameters (Å, º) top
N1—C51.341 (2)C141—H14A0.9600
N1—N21.363 (2)C141—H14B0.9600
N1—C111.430 (2)C141—H14C0.9600
N2—C31.319 (2)C31A—O31A1.209 (4)
C3—C41.413 (3)C31A—O32A1.319 (3)
C3—C31A1.487 (3)O32A—C32A1.446 (3)
C4—C51.375 (3)C32A—H32A0.9600
C4—C411.459 (3)C32A—H32B0.9600
C5—H50.9300C32A—H32C0.9600
C11—C121.368 (3)O32B—C32B1.445 (5)
C11—C161.369 (3)C32B—H32D0.9600
C12—C131.378 (3)C32B—H32E0.9600
C12—H120.9300C32B—H32F0.9600
C13—C141.372 (3)C41—O411.198 (2)
C13—H130.9300C41—O421.328 (2)
C14—C151.363 (3)O42—C421.445 (2)
C14—C1411.505 (3)C42—H42A0.9600
C15—C161.377 (3)C42—H42B0.9600
C15—H150.9300C42—H42C0.9600
C16—H160.9300
C5—N1—N2111.67 (15)C14—C141—H14B109.5
C5—N1—C11128.79 (16)H14A—C141—H14B109.5
N2—N1—C11119.52 (15)C14—C141—H14C109.5
C3—N2—N1105.05 (15)H14A—C141—H14C109.5
N2—C3—C4111.50 (16)H14B—C141—H14C109.5
N2—C3—C31A117.41 (17)O31A—C31A—O32A123.5 (3)
C4—C3—C31A131.07 (17)O31A—C31A—C3125.0 (3)
C5—C4—C3104.27 (16)O32A—C31A—C3111.1 (3)
C5—C4—C41123.78 (17)C31A—O32A—C32A116.5 (3)
C3—C4—C41131.86 (17)O32A—C32A—H32A109.5
N1—C5—C4107.50 (17)O32A—C32A—H32B109.5
N1—C5—H5126.2H32A—C32A—H32B109.5
C4—C5—H5126.2O32A—C32A—H32C109.5
C12—C11—C16119.48 (19)H32A—C32A—H32C109.5
C12—C11—N1120.75 (18)H32B—C32A—H32C109.5
C16—C11—N1119.77 (18)O32B—C32B—H32D109.5
C11—C12—C13119.7 (2)O32B—C32B—H32E109.5
C11—C12—H12120.1H32D—C32B—H32E109.5
C13—C12—H12120.1O32B—C32B—H32F109.5
C14—C13—C12122.1 (2)H32D—C32B—H32F109.5
C14—C13—H13119.0H32E—C32B—H32F109.5
C12—C13—H13119.0O41—C41—O42123.08 (18)
C15—C14—C13116.7 (2)O41—C41—C4123.97 (18)
C15—C14—C141121.4 (2)O42—C41—C4112.95 (17)
C13—C14—C141121.9 (2)C41—O42—C42116.23 (16)
C14—C15—C16122.7 (2)O42—C42—H42A109.5
C14—C15—H15118.6O42—C42—H42B109.5
C16—C15—H15118.6H42A—C42—H42B109.5
C11—C16—C15119.3 (2)O42—C42—H42C109.5
C11—C16—H16120.4H42A—C42—H42C109.5
C15—C16—H16120.4H42B—C42—H42C109.5
C14—C141—H14A109.5
C5—N1—N2—C30.7 (2)C12—C13—C14—C151.3 (4)
C11—N1—N2—C3177.91 (17)C12—C13—C14—C141179.7 (2)
N1—N2—C3—C40.2 (2)C13—C14—C15—C161.3 (4)
N1—N2—C3—C31A178.57 (18)C141—C14—C15—C16179.7 (3)
N2—C3—C4—C50.3 (2)C12—C11—C16—C150.9 (4)
C31A—C3—C4—C5178.9 (2)N1—C11—C16—C15179.1 (2)
N2—C3—C4—C41176.7 (2)C14—C15—C16—C110.2 (4)
C31A—C3—C4—C414.7 (4)N2—C3—C31A—O31A52.4 (9)
N2—N1—C5—C40.9 (2)C4—C3—C31A—O31A129.1 (9)
C11—N1—C5—C4177.57 (18)N2—C3—C31A—O32A121.0 (5)
C3—C4—C5—N10.7 (2)C4—C3—C31A—O32A57.5 (6)
C41—C4—C5—N1177.50 (18)O31A—C31A—O32A—C32A3.6 (10)
C5—N1—C11—C120.3 (3)C3—C31A—O32A—C32A177.1 (8)
N2—N1—C11—C12178.6 (2)C5—C4—C41—O410.6 (3)
C5—N1—C11—C16179.7 (2)C3—C4—C41—O41176.5 (2)
N2—N1—C11—C161.4 (3)C5—C4—C41—O42178.86 (19)
C16—C11—C12—C130.9 (4)C3—C4—C41—O423.0 (3)
N1—C11—C12—C13179.0 (2)O41—C41—O42—C422.7 (3)
C11—C12—C13—C140.2 (4)C4—C41—O42—C42177.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O41i0.932.333.249 (3)168
C12—H12···O41i0.932.433.352 (3)173
Symmetry code: (i) x, y+1, z+1.
1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) top
Crystal data top
C12H14N6O3F(000) = 608
Mr = 290.29Dx = 1.492 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6030 (6) ÅCell parameters from 2521 reflections
b = 22.6605 (19) Åθ = 2.9–26.1°
c = 7.6751 (7) ŵ = 0.11 mm1
β = 102.284 (3)°T = 296 K
V = 1292.05 (19) Å3Block, colourless
Z = 40.14 × 0.13 × 0.11 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2521 independent reflections
Radiation source: fine focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.929, Tmax = 0.988k = 2727
20456 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.027P)2 + 1.1086P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.20 e Å3
2521 reflectionsΔρmin = 0.21 e Å3
210 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0045 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7660 (2)0.36969 (8)0.6437 (2)0.0283 (4)
N20.7948 (2)0.32224 (8)0.5473 (2)0.0314 (5)
C30.7018 (3)0.33229 (9)0.3822 (3)0.0275 (5)
C40.6115 (3)0.38765 (9)0.3717 (3)0.0280 (5)
C50.6564 (3)0.40941 (10)0.5433 (3)0.0298 (5)
H50.61810.44500.58280.036*
C110.8572 (3)0.37355 (9)0.8268 (3)0.0276 (5)
C120.8449 (3)0.42341 (10)0.9244 (3)0.0344 (6)
H120.77470.45500.87270.041*
C130.9380 (3)0.42666 (11)1.1013 (3)0.0365 (6)
H130.92890.46031.16810.044*
C141.0436 (3)0.38002 (10)1.1778 (3)0.0317 (5)
C151.0555 (3)0.33004 (10)1.0777 (3)0.0368 (6)
H151.12700.29861.12850.044*
C160.9622 (3)0.32644 (10)0.9034 (3)0.0352 (6)
H160.96960.29250.83720.042*
O141.1404 (2)0.37883 (8)1.3504 (2)0.0444 (5)
C1411.1307 (4)0.42931 (12)1.4580 (3)0.0493 (7)
H14A1.17620.46311.40630.074*
H14B1.20160.42271.57570.074*
H14C1.00770.43621.46470.074*
C310.7103 (3)0.28637 (9)0.2463 (3)0.0295 (5)
O310.6069 (2)0.28624 (7)0.0961 (2)0.0414 (5)
N310.8329 (3)0.24513 (8)0.2954 (3)0.0356 (5)
H310.911 (3)0.2477 (11)0.397 (3)0.043*
N320.8637 (3)0.19995 (10)0.1787 (3)0.0520 (6)
H32A0.782 (4)0.2047 (12)0.064 (4)0.062*
H32B0.841 (4)0.1612 (13)0.232 (4)0.062*
C410.5024 (3)0.42229 (10)0.2236 (3)0.0301 (5)
O410.4610 (2)0.47395 (7)0.2471 (2)0.0456 (5)
N410.4562 (3)0.39535 (9)0.0672 (2)0.0358 (5)
H410.500 (3)0.3563 (12)0.058 (3)0.043*
N420.3537 (3)0.42254 (10)0.0869 (3)0.0435 (6)
H42A0.412 (4)0.4577 (13)0.110 (3)0.052*
H42B0.262 (4)0.4361 (13)0.060 (4)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0298 (10)0.0300 (10)0.0239 (10)0.0028 (8)0.0031 (8)0.0014 (8)
N20.0341 (11)0.0310 (10)0.0265 (11)0.0033 (8)0.0006 (9)0.0032 (8)
C30.0260 (12)0.0287 (11)0.0264 (12)0.0016 (9)0.0022 (10)0.0004 (9)
C40.0274 (12)0.0288 (11)0.0266 (12)0.0023 (9)0.0027 (10)0.0022 (9)
C50.0289 (12)0.0277 (11)0.0317 (13)0.0018 (10)0.0040 (10)0.0021 (10)
C110.0265 (12)0.0319 (12)0.0238 (12)0.0003 (9)0.0040 (10)0.0010 (9)
C120.0356 (14)0.0342 (13)0.0306 (13)0.0061 (11)0.0006 (11)0.0018 (10)
C130.0401 (14)0.0369 (13)0.0316 (14)0.0014 (11)0.0055 (11)0.0053 (11)
C140.0286 (13)0.0412 (13)0.0235 (12)0.0034 (10)0.0010 (10)0.0028 (10)
C150.0371 (14)0.0356 (13)0.0337 (14)0.0078 (11)0.0011 (11)0.0040 (11)
C160.0387 (14)0.0325 (12)0.0325 (13)0.0055 (11)0.0035 (11)0.0036 (10)
O140.0503 (11)0.0495 (11)0.0273 (9)0.0030 (9)0.0051 (8)0.0007 (8)
C1410.0546 (18)0.0587 (18)0.0313 (14)0.0021 (14)0.0016 (13)0.0058 (13)
C310.0289 (13)0.0281 (12)0.0296 (13)0.0025 (10)0.0018 (10)0.0001 (10)
O310.0433 (10)0.0387 (10)0.0340 (10)0.0029 (8)0.0103 (8)0.0066 (7)
N310.0417 (12)0.0299 (10)0.0309 (11)0.0056 (9)0.0018 (9)0.0036 (9)
N320.0701 (17)0.0366 (13)0.0440 (14)0.0127 (12)0.0003 (12)0.0093 (11)
C410.0297 (12)0.0311 (12)0.0288 (13)0.0003 (10)0.0050 (10)0.0024 (10)
O410.0640 (12)0.0331 (9)0.0364 (10)0.0141 (8)0.0030 (9)0.0014 (8)
N410.0391 (12)0.0367 (11)0.0274 (11)0.0063 (9)0.0022 (9)0.0022 (9)
N420.0436 (14)0.0509 (14)0.0314 (12)0.0039 (11)0.0019 (10)0.0086 (10)
Geometric parameters (Å, º) top
N1—N21.349 (2)C15—H150.9300
N1—C51.351 (3)C16—H160.9300
N1—C111.431 (3)O14—C1411.422 (3)
N2—C31.333 (3)C141—H14A0.9600
C3—C41.424 (3)C141—H14B0.9600
C3—C311.485 (3)C141—H14C0.9600
C4—C51.380 (3)C31—O311.249 (3)
C4—C411.482 (3)C31—N311.317 (3)
C5—H50.9300N31—N321.412 (3)
C11—C121.369 (3)N31—H310.87 (3)
C11—C161.387 (3)N32—H32A0.97 (3)
C12—C131.394 (3)N32—H32B1.00 (3)
C12—H120.9300C41—O411.236 (3)
C13—C141.381 (3)C41—N411.325 (3)
C13—H130.9300N41—N421.412 (3)
C14—O141.371 (3)N41—H410.95 (3)
C14—C151.382 (3)N42—H42A0.95 (3)
C15—C161.377 (3)N42—H42B0.83 (3)
N2—N1—C5111.78 (17)C15—C16—C11119.8 (2)
N2—N1—C11119.05 (17)C15—C16—H16120.1
C5—N1—C11129.07 (18)C11—C16—H16120.1
C3—N2—N1105.65 (17)C14—O14—C141117.50 (19)
N2—C3—C4110.88 (19)O14—C141—H14A109.5
N2—C3—C31117.06 (19)O14—C141—H14B109.5
C4—C3—C31132.06 (19)H14A—C141—H14B109.5
C5—C4—C3104.01 (18)O14—C141—H14C109.5
C5—C4—C41121.8 (2)H14A—C141—H14C109.5
C3—C4—C41134.0 (2)H14B—C141—H14C109.5
N1—C5—C4107.67 (19)O31—C31—N31122.0 (2)
N1—C5—H5126.2O31—C31—C3122.5 (2)
C4—C5—H5126.2N31—C31—C3115.47 (19)
C12—C11—C16120.2 (2)C31—N31—N32122.4 (2)
C12—C11—N1120.81 (19)C31—N31—H31120.9 (17)
C16—C11—N1118.97 (19)N32—N31—H31116.0 (17)
C11—C12—C13119.8 (2)N31—N32—H32A109.5 (17)
C11—C12—H12120.1N31—N32—H32B108.1 (16)
C13—C12—H12120.1H32A—N32—H32B110 (2)
C14—C13—C12120.2 (2)O41—C41—N41122.8 (2)
C14—C13—H13119.9O41—C41—C4120.6 (2)
C12—C13—H13119.9N41—C41—C4116.59 (19)
O14—C14—C13124.7 (2)C41—N41—N42123.4 (2)
O14—C14—C15115.8 (2)C41—N41—H41118.0 (15)
C13—C14—C15119.5 (2)N42—N41—H41118.6 (15)
C16—C15—C14120.5 (2)N41—N42—H42A109.1 (16)
C16—C15—H15119.7N41—N42—H42B107 (2)
C14—C15—H15119.7H42A—N42—H42B101 (3)
C5—N1—N2—C30.2 (2)C12—C13—C14—C150.3 (3)
C11—N1—N2—C3176.56 (18)O14—C14—C15—C16179.4 (2)
N1—N2—C3—C40.2 (2)C13—C14—C15—C160.4 (4)
N1—N2—C3—C31179.81 (18)C14—C15—C16—C110.8 (4)
N2—C3—C4—C50.6 (2)C12—C11—C16—C150.5 (3)
C31—C3—C4—C5179.9 (2)N1—C11—C16—C15178.0 (2)
N2—C3—C4—C41175.1 (2)C13—C14—O14—C1410.1 (3)
C31—C3—C4—C414.4 (4)C15—C14—O14—C141179.6 (2)
N2—N1—C5—C40.6 (2)N2—C3—C31—O31168.0 (2)
C11—N1—C5—C4175.8 (2)C4—C3—C31—O3112.5 (4)
C3—C4—C5—N10.7 (2)N2—C3—C31—N3111.1 (3)
C41—C4—C5—N1175.66 (19)C4—C3—C31—N31168.4 (2)
N2—N1—C11—C12173.8 (2)O31—C31—N31—N323.9 (4)
C5—N1—C11—C122.3 (3)C3—C31—N31—N32177.0 (2)
N2—N1—C11—C164.7 (3)C5—C4—C41—O416.1 (3)
C5—N1—C11—C16179.2 (2)C3—C4—C41—O41169.0 (2)
C16—C11—C12—C130.2 (3)C5—C4—C41—N41175.2 (2)
N1—C11—C12—C13178.6 (2)C3—C4—C41—N419.8 (4)
C11—C12—C13—C140.6 (4)O41—C41—N41—N420.8 (4)
C12—C13—C14—O14180.0 (2)C4—C41—N41—N42179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31···O31i0.88 (2)2.04 (2)2.851 (3)153 (2)
N32—H32A···O14ii0.97 (3)2.58 (3)3.256 (3)127 (2)
N32—H32B···N42i1.00 (2)2.34 (3)3.317 (3)165 (2)
N41—H41···O310.95 (3)1.78 (3)2.714 (3)166 (2)
N42—H42A···O41iii0.95 (3)2.21 (3)3.120 (3)162 (2)
N42—H42B···Cg1iv0.83 (3)2.85 (3)3.442 (3)130 (2)
C5—H5···O41v0.932.403.314 (3)166
C12—H12···O41v0.932.443.354 (3)168
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z3/2; (iii) x+1, y+1, z; (iv) x1, y, z1; (v) x+1, y+1, z+1.
Selected torsional and dihedral angles (°) top
φ1 represents the dihedral angle between the planes of the aryl and pyrazole rings and φ2 represents the dihedral angle between the planes (C3,C31,O31A,O32A) and (C3,C31,O31B,O32B)
(I)(II)(III)(IV)
C4—C3—C31—O31-178.0 (2)44.8 (3)-12.5 (4)
C4—C3—C31—O322.1 (4)-135.9 (2)
C4—C3—C31—O31A-129.1 (9)
C4—C3—C31—O31B-96.6 (9)
C4—C3—C31—O32A57.5 (6)
C4—C3—C31—O32B71.6 (8)
C4—C3—C31—N31168.4 (2)
C3—C4—C41—O41-2.5 (4)-168.5 (2)176.5 (2)-169.0 (2)
C3—C4—C41—O42178.0 (2)12.8 (3)-3.0 (3)
C3—C4—C41—N419.8 (4)
φ129.38 (8)24.38 (12)2.78 (12)5.82 (13)
φ222.7 (5)
Hydrogen bonds and short intermolecular contacts (Å, °) top
Cg1 represents the centroid of the C11–C16 ring.
CompoundD—H···AD—HH···AD···AD—H···A
(I)O32—H32···O411.00 (3)1.54 (3)3.546 (2)178 (2)
O42—H42···O31i0.88 (3)1.80 (3)2.660 (2)168 (3)
O42—H42···N2i0.88 (3)2.56 (3)3.063 (3)117 (2)
C14—H14···O31ii0.932.533.456 (3)177
C12—H12···Cg1iii0.932.863.685 (3)148
C15—H15···Cg1iv0.932.923.755 (3)151
(II)C5—H5···O41v0.932.413.331 (3)170
(III)C5—H5···O41vi0.932.333.249 (3)168
C12—H12···O41vi0.932.433.352 (3)173
(IV)N31—H31···O31vii0.88 (2)2.04 (2)2.851 (3)153 (2)
N32—H32A···O14viii0.97 (3)2.58 (3)3.256 (3)127 (2)
N32—H32B···N42vii1.00 (2)2.34 (3)3.317 (3)165 (2)
N41—H41···O310.95 (3)1.78 (3)2.714 (3)166 (2)
N42—H42A···O41ix0.95 (3)2.21 (3)3.120 (3)162 (2)
N42—H42B···Cg1x0.83 (3)2.85 (3)3.442 (3)130 (2)
C5—H5···O41v0.932.403.314 (3)166
C12—H12···O41v0.932.443.354 (3)168
Symmetry codes: (i) x, 1 + y, z; (ii) x, 1/2 - y, -1/2 + z; (iii) 1/2 - x, 1/2 + y, z; (iv) 1 - x, -1/2 + y, 1/2 - z; (v) 1 - x, 1 - y, 1 - z; (vi) -x, 1 - y, 1 - z; (vii) 1/2 + x, 1/2 - y, 1/2 + z; (viii) -1/2 + x, 1/2 - y, -3/2 + z; (ix) 1 - x, 1 - y, -z; (x) -1 + x, y, -1 + z.
 

Acknowledgements

BK thanks Mangalore University for research facilities.

Funding information

Asma acknowledges the UGC (India) for the award of a UGC-MANF-SRF Fellowship. HSY thanks the UGC (India) for the award of a UGC-BSR Faculty Fellowship.

References

First citationAlizadeh, A., Firuzyar, T. & Zhu, L.-G. (2010). Tetrahedron, 66, 9835–9839.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAsma, Kalluraya, B., Manju, N., Adhikari, A. V., Chandra & Mahendra, M. (2018). Indian J. Heterocycl. Chem. 28, 335–345.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevi, N., Shankar, R. & Singh, V. (2018). J. Heterocycl. Chem. 55, 373–390.  CrossRef Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252.  Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationGreco, C. V., Nyberg, W. H. & Cheng, C. C. (1962). J. Med. Chem. 5, 861–865.  CrossRef Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHope, H. (1978). Acta Cryst. A34, S20.  Google Scholar
First citationHuisgen, R., Grashey, R., Gotthardt, H. & Schmidt, R. (1962). Angew. Chem. Int. Ed. Engl. 1, 48–49.  CrossRef Google Scholar
First citationLi, D. Y., Mao, Y. F., Chen, H. J., Chen, G. B. & Liu, P. N. (2014). Org. Lett. 16, 3476–3479.  CrossRef PubMed Google Scholar
First citationOwen, J. E., Swanson, E. E. & Meyers, D. B. (1958). J. Am. Pharm. Assoc. (Sci. ed.), 47, 70–72.  CrossRef Google Scholar
First citationPark, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R. (2009). Acta Cryst. E65, o1646.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSatheesha, R. N. & Kalluraya, B. (2007). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThamotharan, S., Parthasarathi, V., Sanyal, R., Badami Bharati, V. & Linden, A. (2003). Acta Cryst. E59, o44–o45.  CrossRef IUCr Journals Google Scholar
First citationWang, Y., Lee, P. L. & Yeh, M.-H. (1984). Acta Cryst. C40, 1226–1228.  CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1175.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, R., Xu, T., Fan, J., Zhang, Q., Ding, M., Huang, M., Deng, L., Lu, Y. & Guo, Y. (2018). Ind. Crops Prod. 117, 50–57.  CrossRef Google Scholar
First citationYao, J.-Y., Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1158.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X.-Y., Liu, W., Tang, W. & Lai, Y.-B. (2007). Acta Cryst. E63, o3764.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds