research communications
Four 1-aryl-1H-pyrazole-3,4-dicarboxylate derivatives: synthesis, molecular conformation and hydrogen bonding
aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824 236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com
Four 1-aryl-1H-pyrazole-3,4-dicarboxylate derivatives, one acid, two and a dicarbohydrazide have been synthesized starting from 3-aryl and structurally characterized. There is an intramolecular O—H⋯O hydrogen bond in 1-phenyl-1H-pyrazole-3,4-dicarboxylic acid, C11H8N2O4, (I), and the molecules are linked into a three-dimensional framework structure by a combination of O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. In each of the two dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate, C13H12N2O4, (II), and dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate, C14H14N2O4, (III), C—H⋯O hydrogen bonds lead to the formation of cyclic centrosymmetric dimers: in (III), one of the methoxycarbonyl groups is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2). An intramolecular N—H⋯O hydrogen bond is present in the structure of 1-(4-methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide, C12H14N6O3, (IV), and the molecules are linked into a three-dimensional framework structure by a combination of N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O hydrogen bonds. Comparisons are made with the structures of a number of related compounds.
1. Chemical context
Pyrazole derivatives have been shown to exhibit a wide range of biological activities including analgesic (Girisha et al., 2010), anticonvulsant (Owen et al., 1958), antimicrobial (Satheesha & Kalluraya, 2007; Asma et al., 2018), antitumour (Park et al., 2005), and insecticidal and larvicidal activity (Yang et al., 2018). Pyrazole carboxylic acids and their derivatives are versatile precursors for the synthesis of numerous substituted analogues (Asma et al., 2018; Devi et al., 2018) and, with these considerations in mind, we have now synthesized a series of new pyrazole carboxylate derivatives as intermediates for the synthesis of new pharmacologically active products. Here we report the syntheses, and the molecular and supramolecular structures of four such compounds, namely 1-phenyl-1H-pyrazole-3,4-dicarboxylic acid (I), dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II), dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) and 1-(4-methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) (Figs. 1–4).
The products (II) and (III) and the intermediate ester (B) (Fig. 5) used in the formation of compound (IV) were all prepared using the 1,3-dipolar between dimethyl acetylenedicarboxylate and the 3-arylsyndones [3-aryl-1,2,3-oxadiazol-3-ium-5-olates] (A), with loss of carbon dioxide in entropy-driven reactions (Huisgen et al., 1962) (Fig. 5). Hydrolysis of the ester (II) gave the dicarboxylic acid (I), while hydrazinolysis of the ester (B) gave the dicarbohyrazide (IV). The sydnone precursors (A) were all prepared from the corresponding anilines via the substituted N-aryl-N-nitrosoglycines (Greco et al., 1962; Fun et al., 2010).
2. Structural commentary
The bond distances in compounds (I)–(IV) show no unexpected values: all are typical of their types (Allen et al., 1987). However, the molecular conformations show some interesting features. In each of (I) and (IV), the two carboxy substituents on the pyrazole ring are nearly coplanar with this ring, as shown by the leading torsional angles (Table 1): this is almost certainly a consequence of the presence on an intramolecular O—H⋯O in (I) and an intramolecular N—H⋯O hydrogen bond in (IV) (Table 2). In compounds (I) and (III), where such intramolecular interactions are not possible, the carboxyl groups at C3 are by no means coplanar with the pyrazole ring (Table 1), and in compound (III) the 3-methoxycarbonyl substituent is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2) in the crystal selected for data collection: the orientations of the two disorder components are related to one another by a rotation about the C3—C31 bond of approximately 23° (Table 1). It may be noted here that the ketonic O atom O31 acts as a hydrogen-bond acceptor in each of (I) and (IV), but not in (II) and (III) (Table 2), and the disorder in (III) may be associated with this.
|
In each of (I) and (II), the planes of the aryl and pyrazole rings make much larger dihedral angles than these planes do in (II) and (IV) (Table 1). This may be associated with the cooperative effect in (III) and (IV) of the C—H⋯O hydrogen bonds involving atoms C5 and C12 as donors (Table 2), whereas no such cooperation is found in the structures of (I) and (II).
3. Supramolecular features
The supramolecular assembly of compound (I) to form a three-dimensional framework structure depends upon four types of hydrogen bonds (Table 2), and the framework formation can readily be analysed in terms of one-dimensional sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000). A combination of O—H⋯O and O—H⋯N hydrogen bonds, the latter rather weak, links molecules related by translation into a C(6)C(7)[R12(5)] (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain of rings running parallel to the [010] direction (Fig. 6). In the second sub-structure, molecules related by the c-glide plane at y = 0.25 are linked by a C—H⋯O hydrogen bond to form a simple C(10) chain running parallel to the [001] direction, and the combination of these two chain motifs generates an almost planar sheet lying parallel to (100) in the domain < x < (Fig. 6). Finally, two weak C—H⋯π(arene) hydrogen bonds link this sheet to the adjacent sheets in the domains 0 < x < and < x < , and in this way all of the (100) sheets are linked to form a three-dimensional framework structure.
By contrast, the supramolecular assembly in the ester (II) is extremely simple, with inversion-related pairs of molecules linked by C—H⋯O hydrogen bonds (Table 2) to form a centrosymmetric R22(10) dimer (Fig. 7). A similar, but more complex centrosymmetric dimer is formed by the ester (III), where the same R22(10) motif as found in (II) is present, along with two flanking R21(7) rings within an outer R22(16) ring (Fig. 8). In neither (II) nor (III) are there any direction-specific interactions between adjacent dimers.
The supramolecular assembly in the hydrazide (IV) is the most complex of those reported here. A three-dimensional framework structure is built from four types of hydrogen bonds: N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O (Table 2). As for (I), the assembly is readily analysed in terms of simpler substructures. The hydrogen bond involving atom H42A links an inversion-related pair of molecules into an R22(10) dimer centred at (, , 0), and this finite, zero-dimensional sub-structure can be regarded as the basic building block of the overall structure, which can then be analysed in terms of the ways in which these dimers are linked together. The hydrogen bonds involving the atoms H31 and H32B directly link the reference dimer centred at (, , 0) to four similar dimers, centred at (0, 0, −), (0, 1, −), (1, 0, ) and (1, 1, ), so forming a sheet lying parallel to (10) (Fig. 9), which is reinforced by the N—H⋯π hydrogen bond (Table 2). The final sub-structure in the assembly of (IV) is one-dimensional: two C—H⋯O hydrogen bonds link the basic R22(10) dimers into a chain of rings running parallel to the [001] direction. Within this chain, two types of centrosymmetric R22(10) ring can be identified, one containing N—H⋯O hydrogen bonds and the other containing C—H⋯O hydrogen bonds, along with R21(7) rings (Fig. 10).
4. Database survey
It is of interest to compare briefly the structures of compounds (I)–(IV) reported here with those of some related compounds. In dimethyl 1-(3-chloro-4-methyl)-1H-pyrazole-3,4-dicarboxylate, which differs from (III) only in the presence of the additional 3-chloro substituent, there are again two C—H⋯O hydrogen bonds in the structure, involving exactly the same pair of C—H bonds as in (III), but here the molecules are linked into a C(5)C(8)[R21(7)] chain of rings, rather than into cyclic dimers (Thamotharan et al., 2003). The dimethyl 5-(4-chlorophenyl)-1-phenyl-1H-pyrazole-3,4-dicarboxylate (Li et al., 2014) and dimethyl 5-(4-bromophenyl)-1-phenyl-1H-pyrazole-3,4-dicarboxylate (Alizadeh et al., 2010), which carry an additional substituent in the pyrazole ring, are isostructural, and the molecules are linked by C—H⋯O hydrogen bonds to form simple chains.
The structures of several H-pyrazole-3,5-dicarboxylic acids have been reported, including dimethyl 1-(2-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate (Xiao & Zhao, 2009), dimethyl 1-(4-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate (Yao et al., 2009) and dimethyl 1-cyanomethyl-1H-pyrazole-3,5-dicarboxylate (Qu, 2009). There are no significant intermolecular interactions in either of the benzyl derivatives, but the inversion-related pairs of molecules of the 1-cyanomethyl compound are linked by C—H⋯O hydrogen bonds to form centrosymmetric R22(10) dimers.
derived from 1-substituted-1In each of 1-benzyl-3-phenyl-1H-pyrazole-5-carboxylic acid (Tang et al., 2007) and 1-cyclohexyl-5-(4-methoxyphenyl)-1H-pyrazole-4-carboxylic acid (Fun et al., 2011), inversion-related pairs of molecules are linked by O—H⋯O hydrogen bonds to form centrosymmetric R22(8) dimers. For the simpler analogue 3-phenyl-1H-pyrazole-5-carboxylic acid, the structure was described (Zhang et al., 2007) as consisting of chains built from O—H⋯O and N—H⋯N hydrogen bonds, which were then linked into sheets by C—H⋯O hydrogen bonds. However, scrutiny of the atomic coordinates shows that the structure contains no C—H⋯O hydrogen bonds, and that the combination of one O—H⋯O hydrogen bond and one N—H⋯N hydrogen bond generates sheets lying parallel to (100) and containing alternating R22(8) and R66(28) rings (Fig. 11).
Finally, we note that structures have been reported for each of the precursor ), for X = H (Hope, 1978), X = Me (Wang et al., 1984) and X = MeO (Fun et al., 2010) although, when X = H, there are no atomic coordinates deposited in the Cambridge Structural Database (Groom et al., 2016).
employed here (Fig. 55. Synthesis and crystallization
The precursor A) (Fig. 5) were prepared from the corresponding anilines (Greco et al., 1962; Wang et al., 1984; Fun et al., 2010). For the synthesis of the (II) and (III), a mixture of the sydnone of type (A) having X = H for (II) or X = CH3 for (III), (1 mmol) and dimethyl acetylenedicarboxylate (1 mmol) in dry p-xylene (10 ml) was heated under reflux for 1 h. The mixtures were then cooled to ambient temperature, the solvent was removed under reduced pressure and the resulting solid products were recrystallized from ethanol. (II): yield 95%, m.p. 373 K. IR (ATR, cm−1) 1712 (C=O), 1582 (C=N). NMR (CDCl3) δ(1H) 3.81 (s, 3H, O—CH3), 4.08 (s, 3H, O—CH3), 7.31 (m, 1H, H14), 7.40 (d, J = 7.5 Hz, 2H, H13 & H15), 7.81 (d, J = 7.5 Hz, 2H, H12 & H16), 9.28 (s, 1H, H5). Analysis found C 60.2, H 4.7, N 10.8%, C13H12N2O4 requires C 60.0, H 4.6, N 10.8%. (III): yield 93%, m.p. 371 K. IR (ATR, cm−1) 1732 (C=O), 1532 (C=N). NMR (CDCl3) δ(1H) 2.21 (s, 3H, C—CH3), 3.82 (s, 3H, O—CH3), 4.10 (s, 3H, O—CH3), 7.48 (d, J = 7.6 Hz, 2H, H13 & H15), 7.88 (d, J = 7.6 Hz, 2H, H12 & H16), 8.94 (s, 1H, H5). Analysis found C 61.4, H 5.2, N 10.4%, C14H14N2O4 requires C 61.3, H 5.1, N 10.2%.
(For the synthesis of the acid (I), the ester (II) (1 mmol) and solid sodium hydroxide (2 mmol) were dissolved in a water–ethanol mixture (water:ethanol 80:20 v/v, 50 ml). This mixture was heated under reflux for 2h, cooled to ambient temperature and then acidified to pH 2 using dilute aqueous hydrochloric acid. The resulting solid product was collected by filtration, washed with water and then recrystallized from ethanol. (I): yield 71%, m.p. 508–509 K. IR (ATR, cm−1) 3427 (O—H), 1717 (C=O), 1542 (C=N). NMR (CDCl3) δ(1H) 7.41 (m, 1H, H14), 7.53 (d, J = 7.6 Hz, 2H, H13 & H15), 7.93 (d, J = 7.6 Hz, 2H, H12 & H16), ?.10 (s, 1H, H5). LC–MS m/z 230.9. Analysis found C 57.1, H 3.6, N 12.2%, C11H8N2O4 requires C 56.9, H 3.5, N 12.1%. For the synthesis of the hydrazide (IV), the intermediate ester (B) (Fig. 5) was prepared in exactly the same fashion of the (II) and (III), yield 90%, m.p. 458 K. A mixture of ester (B) (1 mmol) and hydrazine hydrate (99% aqueous solution, 10 mmol) in ethanol (10 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the resulting solid product was collected by filtration and then recrystallized from ethanol. (IV): yield 75%, m.p. 502 K. IR (ATR, cm−1) 3354 (N—H), 3308 (N—H), 1650 (C=O), 1562 (C=N). NMR (DMSO-d6) δ(1H) 3.67 (br, 6H, N-H), 3.82 (s, 3H, O-CH3), 6.98 (d, J = 7.7 Hz, 2H, H13 & H15), 7.69 (d, J = 7.7 Hz, 2H, H12 & H16), 8.91 (s, 1H, H5). LC-MS m/z 290.3. Analysis found C 49.5, H 4.8, N 28.8%, C12H14N6O3 requires C 49.6, H 4.9, N 29.0%. Crystals of compounds (I)–(IV) suitable for single-crystal X-ray diffraction were selected directly from the purified samples.
6. Refinement
Crystal data, data collection and structure . One low-angle reflection, (001) in compound (III), which had been attenuated by the beam stop was removed from the data set. All H atoms were located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized position with C—H distances 0.93 Å (aryl and pyrazole) or 0.96 Å (CH3) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to O or N atoms, the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N), leading to the O—H and N—H distances shown in Table 2. It was apparent that one of the ester substituents in compound (III) was disordered over two sets of atomic sites. For the minor disorder component, the bonded distances and the 1,2 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for the corresponding pairs of atoms in the two disorder components were constrained to be the same, and the two disordered carboxylate fragments were constrained to be planar. Subject to these conditions, the occupancies of the two sets of sites refined to 0.71 (2) and 0.29 (2).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018015864/zl2741sup1.cif
contains datablocks global, I, II, III, IV. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015864/zl2741Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IVsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015864/zl2741Isup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IIsup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IIIsup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015864/zl2741IVsup9.cml
For all structures, data collection: APEX2 (Bruker, 2004); cell
APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C11H8N2O4 | Dx = 1.482 Mg m−3 |
Mr = 232.19 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 2218 reflections |
a = 13.164 (2) Å | θ = 2.5–26.8° |
b = 7.4692 (9) Å | µ = 0.12 mm−1 |
c = 21.173 (3) Å | T = 296 K |
V = 2081.8 (6) Å3 | Block, colourless |
Z = 8 | 0.16 × 0.14 × 0.11 mm |
F(000) = 960 |
Bruker Kappa APEXII CCD diffractometer | 2218 independent reflections |
Radiation source: fine focus sealed tube | 1304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
φ and ω scans | θmax = 26.8°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −16→16 |
Tmin = 0.931, Tmax = 0.987 | k = −9→9 |
31526 measured reflections | l = −26→26 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.9866P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.19 e Å−3 |
2218 reflections | Δρmin = −0.16 e Å−3 |
161 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0015 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.37444 (14) | 0.5732 (2) | 0.38946 (7) | 0.0382 (4) | |
N2 | 0.37411 (13) | 0.4662 (2) | 0.44062 (7) | 0.0361 (4) | |
C3 | 0.37378 (16) | 0.5767 (2) | 0.48951 (9) | 0.0318 (4) | |
C4 | 0.37462 (16) | 0.7576 (2) | 0.46953 (10) | 0.0341 (5) | |
C5 | 0.37519 (17) | 0.7475 (3) | 0.40517 (10) | 0.0416 (5) | |
H5 | 0.3760 | 0.8437 | 0.3773 | 0.050* | |
C11 | 0.37392 (17) | 0.4958 (3) | 0.32759 (9) | 0.0415 (5) | |
C12 | 0.3296 (2) | 0.5877 (4) | 0.27889 (11) | 0.0572 (7) | |
H12 | 0.2988 | 0.6978 | 0.2863 | 0.069* | |
C13 | 0.3311 (2) | 0.5164 (4) | 0.21895 (11) | 0.0691 (8) | |
H13 | 0.3017 | 0.5787 | 0.1856 | 0.083* | |
C14 | 0.3756 (2) | 0.3540 (5) | 0.20857 (13) | 0.0718 (9) | |
H14 | 0.3771 | 0.3063 | 0.1680 | 0.086* | |
C15 | 0.4181 (2) | 0.2612 (4) | 0.25766 (13) | 0.0665 (8) | |
H15 | 0.4474 | 0.1499 | 0.2503 | 0.080* | |
C16 | 0.41776 (19) | 0.3311 (3) | 0.31810 (12) | 0.0548 (7) | |
H16 | 0.4465 | 0.2682 | 0.3515 | 0.066* | |
C31 | 0.37166 (17) | 0.4926 (3) | 0.55265 (9) | 0.0377 (5) | |
O31 | 0.37408 (14) | 0.33081 (19) | 0.55896 (7) | 0.0540 (5) | |
O32 | 0.36707 (14) | 0.5958 (2) | 0.60230 (7) | 0.0524 (5) | |
H32 | 0.3671 (19) | 0.724 (4) | 0.5880 (13) | 0.079* | |
C41 | 0.37522 (17) | 0.9202 (3) | 0.50785 (11) | 0.0412 (5) | |
O41 | 0.37173 (14) | 0.91999 (19) | 0.56526 (8) | 0.0578 (5) | |
O42 | 0.37916 (14) | 1.06752 (19) | 0.47441 (8) | 0.0528 (5) | |
H42 | 0.375 (2) | 1.164 (4) | 0.4979 (13) | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0500 (11) | 0.0337 (9) | 0.0309 (9) | 0.0033 (9) | −0.0029 (8) | −0.0027 (7) |
N2 | 0.0487 (11) | 0.0296 (9) | 0.0301 (9) | 0.0015 (8) | −0.0021 (9) | −0.0017 (7) |
C3 | 0.0375 (11) | 0.0287 (9) | 0.0293 (10) | 0.0002 (9) | −0.0010 (9) | −0.0059 (8) |
C4 | 0.0404 (12) | 0.0279 (10) | 0.0340 (12) | 0.0011 (10) | 0.0015 (11) | −0.0031 (8) |
C5 | 0.0562 (14) | 0.0302 (11) | 0.0383 (12) | 0.0037 (10) | −0.0012 (12) | 0.0011 (9) |
C11 | 0.0487 (14) | 0.0483 (12) | 0.0276 (11) | −0.0013 (12) | −0.0019 (10) | −0.0099 (10) |
C12 | 0.0711 (18) | 0.0649 (16) | 0.0356 (13) | 0.0016 (14) | −0.0049 (12) | −0.0026 (12) |
C13 | 0.083 (2) | 0.092 (2) | 0.0323 (14) | −0.0064 (18) | −0.0068 (13) | −0.0047 (14) |
C14 | 0.074 (2) | 0.107 (2) | 0.0348 (14) | −0.0165 (19) | 0.0040 (15) | −0.0250 (15) |
C15 | 0.0658 (18) | 0.0745 (18) | 0.0591 (18) | 0.0048 (16) | 0.0012 (15) | −0.0330 (15) |
C16 | 0.0606 (16) | 0.0594 (16) | 0.0445 (14) | 0.0108 (13) | −0.0067 (13) | −0.0193 (12) |
C31 | 0.0493 (13) | 0.0329 (11) | 0.0309 (11) | −0.0019 (10) | 0.0021 (11) | −0.0031 (9) |
O31 | 0.0923 (13) | 0.0305 (8) | 0.0392 (9) | 0.0023 (9) | 0.0035 (9) | 0.0028 (7) |
O32 | 0.0871 (13) | 0.0404 (9) | 0.0296 (8) | −0.0052 (9) | 0.0042 (8) | −0.0071 (7) |
C41 | 0.0431 (13) | 0.0297 (11) | 0.0507 (14) | −0.0011 (10) | 0.0061 (11) | −0.0054 (10) |
O41 | 0.0945 (14) | 0.0358 (9) | 0.0432 (10) | −0.0070 (9) | 0.0135 (9) | −0.0126 (7) |
O42 | 0.0783 (13) | 0.0255 (8) | 0.0547 (11) | 0.0011 (8) | 0.0056 (9) | −0.0049 (7) |
N1—C5 | 1.344 (2) | C13—C14 | 1.365 (4) |
N1—N2 | 1.346 (2) | C13—H13 | 0.9300 |
N1—C11 | 1.432 (2) | C14—C15 | 1.369 (4) |
N2—C3 | 1.324 (2) | C14—H14 | 0.9300 |
C3—C4 | 1.416 (3) | C15—C16 | 1.382 (3) |
C3—C31 | 1.477 (3) | C15—H15 | 0.9300 |
C4—C5 | 1.365 (3) | C16—H16 | 0.9300 |
C4—C41 | 1.461 (3) | C31—O31 | 1.216 (2) |
C5—H5 | 0.9300 | C31—O32 | 1.305 (2) |
C11—C12 | 1.369 (3) | O32—H32 | 1.00 (3) |
C11—C16 | 1.374 (3) | C41—O41 | 1.216 (3) |
C12—C13 | 1.377 (3) | C41—O42 | 1.309 (2) |
C12—H12 | 0.9300 | O42—H42 | 0.88 (3) |
C5—N1—N2 | 112.07 (16) | C14—C13—H13 | 120.1 |
C5—N1—C11 | 128.16 (18) | C12—C13—H13 | 120.1 |
N2—N1—C11 | 119.77 (17) | C13—C14—C15 | 120.2 (2) |
C3—N2—N1 | 105.03 (15) | C13—C14—H14 | 119.9 |
N2—C3—C4 | 111.17 (17) | C15—C14—H14 | 119.9 |
N2—C3—C31 | 116.28 (16) | C14—C15—C16 | 120.7 (3) |
C4—C3—C31 | 132.55 (17) | C14—C15—H15 | 119.7 |
C5—C4—C3 | 104.21 (16) | C16—C15—H15 | 119.7 |
C5—C4—C41 | 126.91 (18) | C11—C16—C15 | 118.4 (2) |
C3—C4—C41 | 128.87 (19) | C11—C16—H16 | 120.8 |
N1—C5—C4 | 107.50 (18) | C15—C16—H16 | 120.8 |
N1—C5—H5 | 126.2 | O31—C31—O32 | 119.95 (19) |
C4—C5—H5 | 126.2 | O31—C31—C3 | 121.43 (18) |
C12—C11—C16 | 121.2 (2) | O32—C31—C3 | 118.62 (17) |
C12—C11—N1 | 119.2 (2) | C31—O32—H32 | 108.6 (15) |
C16—C11—N1 | 119.6 (2) | O41—C41—O42 | 122.89 (19) |
C11—C12—C13 | 119.6 (3) | O41—C41—C4 | 123.62 (19) |
C11—C12—H12 | 120.2 | O42—C41—C4 | 113.48 (19) |
C13—C12—H12 | 120.2 | C41—O42—H42 | 112.5 (18) |
C14—C13—C12 | 119.9 (3) | ||
C5—N1—N2—C3 | 0.5 (2) | C16—C11—C12—C13 | −1.6 (4) |
C11—N1—N2—C3 | −179.43 (19) | N1—C11—C12—C13 | 178.4 (2) |
N1—N2—C3—C4 | −0.4 (2) | C11—C12—C13—C14 | 0.6 (4) |
N1—N2—C3—C31 | 179.03 (18) | C12—C13—C14—C15 | 0.6 (4) |
N2—C3—C4—C5 | 0.2 (3) | C13—C14—C15—C16 | −0.9 (4) |
C31—C3—C4—C5 | −179.2 (2) | C12—C11—C16—C15 | 1.3 (4) |
N2—C3—C4—C41 | −179.6 (2) | N1—C11—C16—C15 | −178.7 (2) |
C31—C3—C4—C41 | 1.1 (4) | C14—C15—C16—C11 | −0.1 (4) |
N2—N1—C5—C4 | −0.4 (3) | N2—C3—C31—O31 | 2.7 (3) |
C11—N1—C5—C4 | 179.5 (2) | C4—C3—C31—O31 | −178.0 (2) |
C3—C4—C5—N1 | 0.2 (3) | N2—C3—C31—O32 | −177.2 (2) |
C41—C4—C5—N1 | 179.9 (2) | C4—C3—C31—O32 | 2.1 (4) |
C5—N1—C11—C12 | −29.3 (4) | C5—C4—C41—O41 | 177.8 (2) |
N2—N1—C11—C12 | 150.6 (2) | C3—C4—C41—O41 | −2.5 (4) |
C5—N1—C11—C16 | 150.6 (2) | C5—C4—C41—O42 | −1.7 (3) |
N2—N1—C11—C16 | −29.4 (3) | C3—C4—C41—O42 | 178.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O32—H32···O41 | 1.00 (3) | 1.54 (3) | 2.546 (2) | 178 (2) |
O42—H42···O31i | 0.88 (3) | 1.80 (3) | 2.660 (2) | 168 (3) |
O42—H42···N2i | 0.88 (3) | 2.56 (3) | 3.063 (2) | 117 (2) |
C14—H14···O31ii | 0.93 | 2.53 | 3.456 (3) | 177 |
C12—H12···Cg1iii | 0.93 | 2.86 | 3.685 (3) | 148 |
C15—H15···Cg1iv | 0.93 | 2.92 | 3.755 (3) | 151 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1, y+1/2, −z+1/2. |
C13H12N2O4 | F(000) = 544 |
Mr = 260.25 | Dx = 1.372 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9000 (4) Å | Cell parameters from 2704 reflections |
b = 14.5273 (12) Å | θ = 2.8–26.8° |
c = 14.8726 (12) Å | µ = 0.10 mm−1 |
β = 98.867 (3)° | T = 296 K |
V = 1259.51 (17) Å3 | Block, orange |
Z = 4 | 0.17 × 0.14 × 0.13 mm |
Bruker Kappa APEXII CCD diffractometer | 2704 independent reflections |
Radiation source: fine focus sealed tube | 1624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
φ and ω scans | θmax = 26.8°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −6→7 |
Tmin = 0.960, Tmax = 0.987 | k = −18→18 |
21653 measured reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3996P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.129 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.19 e Å−3 |
2704 reflections | Δρmin = −0.18 e Å−3 |
175 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.014 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.5660 (3) | 0.34915 (11) | 0.69867 (11) | 0.0412 (4) | |
N2 | 0.4302 (3) | 0.27659 (11) | 0.71300 (11) | 0.0437 (4) | |
C3 | 0.2695 (3) | 0.27445 (13) | 0.64031 (13) | 0.0410 (5) | |
C4 | 0.3003 (3) | 0.34570 (14) | 0.57864 (13) | 0.0416 (5) | |
C5 | 0.4919 (3) | 0.39140 (14) | 0.61917 (13) | 0.0438 (5) | |
H5 | 0.5587 | 0.4424 | 0.5959 | 0.053* | |
C11 | 0.7563 (3) | 0.37397 (13) | 0.76566 (13) | 0.0414 (5) | |
C12 | 0.9342 (3) | 0.42372 (15) | 0.73977 (15) | 0.0490 (5) | |
H12 | 0.9325 | 0.4396 | 0.6791 | 0.059* | |
C13 | 1.1146 (4) | 0.44954 (17) | 0.80489 (17) | 0.0617 (6) | |
H13 | 1.2344 | 0.4838 | 0.7880 | 0.074* | |
C14 | 1.1201 (4) | 0.42556 (18) | 0.89396 (18) | 0.0683 (7) | |
H14 | 1.2442 | 0.4423 | 0.9373 | 0.082* | |
C15 | 0.9413 (4) | 0.3766 (2) | 0.91897 (17) | 0.0738 (8) | |
H15 | 0.9443 | 0.3608 | 0.9797 | 0.089* | |
C16 | 0.7567 (4) | 0.35049 (16) | 0.85540 (15) | 0.0588 (6) | |
H16 | 0.6353 | 0.3177 | 0.8728 | 0.071* | |
C31 | 0.0986 (4) | 0.19862 (14) | 0.62958 (15) | 0.0461 (5) | |
O31 | 0.0528 (3) | 0.15354 (14) | 0.56252 (12) | 0.0900 (7) | |
O32 | 0.0058 (3) | 0.18661 (10) | 0.70371 (10) | 0.0596 (4) | |
C32 | −0.1630 (4) | 0.11423 (17) | 0.70126 (19) | 0.0701 (7) | |
H32A | −0.2925 | 0.1283 | 0.6559 | 0.105* | |
H32B | −0.2120 | 0.1094 | 0.7597 | 0.105* | |
H32C | −0.0966 | 0.0569 | 0.6866 | 0.105* | |
C41 | 0.1559 (3) | 0.37509 (14) | 0.49430 (14) | 0.0453 (5) | |
O41 | 0.2172 (3) | 0.42800 (13) | 0.44075 (11) | 0.0740 (5) | |
O42 | −0.0501 (2) | 0.33820 (12) | 0.48518 (10) | 0.0614 (5) | |
C42 | −0.2056 (4) | 0.3587 (2) | 0.40269 (17) | 0.0704 (7) | |
H42A | −0.2395 | 0.4233 | 0.4004 | 0.106* | |
H42B | −0.3449 | 0.3244 | 0.4020 | 0.106* | |
H42C | −0.1355 | 0.3419 | 0.3509 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0431 (9) | 0.0388 (9) | 0.0406 (10) | −0.0017 (7) | 0.0024 (7) | 0.0039 (7) |
N2 | 0.0470 (9) | 0.0380 (9) | 0.0449 (10) | −0.0039 (7) | 0.0027 (8) | 0.0052 (7) |
C3 | 0.0437 (11) | 0.0410 (11) | 0.0379 (11) | −0.0009 (9) | 0.0049 (9) | −0.0003 (9) |
C4 | 0.0433 (11) | 0.0430 (11) | 0.0382 (11) | 0.0000 (9) | 0.0055 (9) | 0.0021 (9) |
C5 | 0.0456 (11) | 0.0450 (11) | 0.0407 (11) | −0.0029 (9) | 0.0065 (9) | 0.0057 (9) |
C11 | 0.0408 (10) | 0.0389 (11) | 0.0425 (12) | 0.0041 (9) | −0.0002 (9) | −0.0004 (9) |
C12 | 0.0407 (11) | 0.0571 (13) | 0.0493 (12) | 0.0034 (10) | 0.0069 (10) | −0.0016 (10) |
C13 | 0.0429 (12) | 0.0712 (16) | 0.0695 (17) | −0.0039 (11) | 0.0043 (12) | −0.0028 (13) |
C14 | 0.0550 (14) | 0.0788 (18) | 0.0641 (17) | −0.0031 (13) | −0.0130 (12) | −0.0067 (14) |
C15 | 0.0765 (17) | 0.091 (2) | 0.0477 (15) | −0.0081 (15) | −0.0110 (13) | 0.0077 (13) |
C16 | 0.0609 (14) | 0.0625 (15) | 0.0500 (14) | −0.0100 (11) | −0.0010 (11) | 0.0084 (11) |
C31 | 0.0522 (12) | 0.0398 (11) | 0.0445 (12) | −0.0027 (9) | 0.0018 (10) | −0.0008 (9) |
O31 | 0.1229 (16) | 0.0839 (13) | 0.0665 (12) | −0.0478 (12) | 0.0247 (11) | −0.0260 (10) |
O32 | 0.0649 (10) | 0.0556 (9) | 0.0613 (10) | −0.0205 (8) | 0.0191 (8) | −0.0043 (8) |
C32 | 0.0586 (14) | 0.0551 (15) | 0.100 (2) | −0.0169 (11) | 0.0222 (14) | 0.0029 (14) |
C41 | 0.0473 (11) | 0.0485 (12) | 0.0398 (11) | −0.0036 (10) | 0.0057 (9) | 0.0000 (9) |
O41 | 0.0718 (11) | 0.0869 (13) | 0.0584 (10) | −0.0226 (9) | −0.0054 (8) | 0.0310 (9) |
O42 | 0.0476 (9) | 0.0812 (11) | 0.0519 (10) | −0.0100 (8) | −0.0034 (7) | 0.0123 (8) |
C42 | 0.0536 (14) | 0.0910 (19) | 0.0593 (16) | 0.0017 (13) | −0.0144 (12) | 0.0035 (13) |
N1—C5 | 1.344 (2) | C14—H14 | 0.9300 |
N1—N2 | 1.360 (2) | C15—C16 | 1.381 (3) |
N1—C11 | 1.428 (2) | C15—H15 | 0.9300 |
N2—C3 | 1.324 (2) | C16—H16 | 0.9300 |
C3—C4 | 1.413 (3) | C31—O31 | 1.189 (2) |
C3—C31 | 1.485 (3) | C31—O32 | 1.316 (2) |
C4—C5 | 1.368 (3) | O32—C32 | 1.445 (3) |
C4—C41 | 1.467 (3) | C32—H32A | 0.9600 |
C5—H5 | 0.9300 | C32—H32B | 0.9600 |
C11—C16 | 1.377 (3) | C32—H32C | 0.9600 |
C11—C12 | 1.377 (3) | C41—O41 | 1.202 (2) |
C12—C13 | 1.376 (3) | C41—O42 | 1.316 (2) |
C12—H12 | 0.9300 | O42—C42 | 1.445 (3) |
C13—C14 | 1.365 (3) | C42—H42A | 0.9600 |
C13—H13 | 0.9300 | C42—H42B | 0.9600 |
C14—C15 | 1.370 (4) | C42—H42C | 0.9600 |
C5—N1—N2 | 111.86 (15) | C14—C15—H15 | 119.5 |
C5—N1—C11 | 127.77 (16) | C16—C15—H15 | 119.5 |
N2—N1—C11 | 120.34 (15) | C11—C16—C15 | 118.6 (2) |
C3—N2—N1 | 104.78 (15) | C11—C16—H16 | 120.7 |
N2—C3—C4 | 111.42 (17) | C15—C16—H16 | 120.7 |
N2—C3—C31 | 119.60 (17) | O31—C31—O32 | 124.04 (19) |
C4—C3—C31 | 128.80 (18) | O31—C31—C3 | 124.1 (2) |
C5—C4—C3 | 104.46 (17) | O32—C31—C3 | 111.82 (17) |
C5—C4—C41 | 124.54 (18) | C31—O32—C32 | 116.71 (18) |
C3—C4—C41 | 130.71 (18) | O32—C32—H32A | 109.5 |
N1—C5—C4 | 107.48 (17) | O32—C32—H32B | 109.5 |
N1—C5—H5 | 126.3 | H32A—C32—H32B | 109.5 |
C4—C5—H5 | 126.3 | O32—C32—H32C | 109.5 |
C16—C11—C12 | 120.88 (19) | H32A—C32—H32C | 109.5 |
C16—C11—N1 | 119.82 (18) | H32B—C32—H32C | 109.5 |
C12—C11—N1 | 119.27 (18) | O41—C41—O42 | 124.03 (19) |
C13—C12—C11 | 119.1 (2) | O41—C41—C4 | 123.92 (19) |
C13—C12—H12 | 120.5 | O42—C41—C4 | 112.03 (17) |
C11—C12—H12 | 120.5 | C41—O42—C42 | 117.33 (18) |
C14—C13—C12 | 120.9 (2) | O42—C42—H42A | 109.5 |
C14—C13—H13 | 119.5 | O42—C42—H42B | 109.5 |
C12—C13—H13 | 119.5 | H42A—C42—H42B | 109.5 |
C13—C14—C15 | 119.4 (2) | O42—C42—H42C | 109.5 |
C13—C14—H14 | 120.3 | H42A—C42—H42C | 109.5 |
C15—C14—H14 | 120.3 | H42B—C42—H42C | 109.5 |
C14—C15—C16 | 121.0 (2) | ||
C5—N1—N2—C3 | 0.1 (2) | C11—C12—C13—C14 | 0.8 (3) |
C11—N1—N2—C3 | 178.19 (16) | C12—C13—C14—C15 | −1.3 (4) |
N1—N2—C3—C4 | −0.1 (2) | C13—C14—C15—C16 | 0.6 (4) |
N1—N2—C3—C31 | 175.56 (16) | C12—C11—C16—C15 | −1.0 (3) |
N2—C3—C4—C5 | 0.0 (2) | N1—C11—C16—C15 | −179.0 (2) |
C31—C3—C4—C5 | −175.11 (19) | C14—C15—C16—C11 | 0.5 (4) |
N2—C3—C4—C41 | −173.87 (19) | N2—C3—C31—O31 | −130.0 (2) |
C31—C3—C4—C41 | 11.0 (3) | C4—C3—C31—O31 | 44.8 (3) |
N2—N1—C5—C4 | −0.1 (2) | N2—C3—C31—O32 | 49.3 (2) |
C11—N1—C5—C4 | −177.99 (17) | C4—C3—C31—O32 | −135.9 (2) |
C3—C4—C5—N1 | 0.0 (2) | O31—C31—O32—C32 | −0.6 (3) |
C41—C4—C5—N1 | 174.43 (18) | C3—C31—O32—C32 | −179.80 (17) |
C5—N1—C11—C16 | 153.3 (2) | C5—C4—C41—O41 | 18.7 (3) |
N2—N1—C11—C16 | −24.4 (3) | C3—C4—C41—O41 | −168.5 (2) |
C5—N1—C11—C12 | −24.7 (3) | C5—C4—C41—O42 | −160.01 (19) |
N2—N1—C11—C12 | 157.57 (17) | C3—C4—C41—O42 | 12.8 (3) |
C16—C11—C12—C13 | 0.3 (3) | O41—C41—O42—C42 | 4.0 (3) |
N1—C11—C12—C13 | 178.35 (18) | C4—C41—O42—C42 | −177.34 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O41i | 0.93 | 2.41 | 3.331 (3) | 170 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C14H14N2O4 | Z = 2 |
Mr = 274.27 | F(000) = 288 |
Triclinic, P1 | Dx = 1.329 Mg m−3 |
a = 7.6546 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0959 (5) Å | Cell parameters from 2526 reflections |
c = 11.3065 (6) Å | θ = 2.6–25.5° |
α = 78.988 (3)° | µ = 0.10 mm−1 |
β = 85.527 (3)° | T = 296 K |
γ = 87.548 (4)° | Block, brown |
V = 685.40 (7) Å3 | 0.16 × 0.15 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2526 independent reflections |
Radiation source: fine focus sealed tube | 1777 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 25.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −9→9 |
Tmin = 0.955, Tmax = 0.988 | k = −9→9 |
12818 measured reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2439P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.128 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.24 e Å−3 |
2526 reflections | Δρmin = −0.24 e Å−3 |
196 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
7 restraints | Extinction coefficient: 0.024 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.3938 (2) | 0.7228 (2) | 0.38159 (13) | 0.0446 (4) | |
N2 | 0.4458 (2) | 0.7773 (2) | 0.26297 (14) | 0.0477 (4) | |
C3 | 0.3163 (2) | 0.7413 (3) | 0.20267 (16) | 0.0426 (5) | |
C4 | 0.1791 (2) | 0.6623 (2) | 0.28127 (16) | 0.0428 (5) | |
C5 | 0.2362 (3) | 0.6525 (3) | 0.39480 (17) | 0.0464 (5) | |
H5 | 0.1765 | 0.6057 | 0.4675 | 0.056* | |
C11 | 0.5036 (3) | 0.7482 (3) | 0.47287 (17) | 0.0446 (5) | |
C12 | 0.4529 (3) | 0.6979 (3) | 0.59269 (19) | 0.0634 (7) | |
H12 | 0.3468 | 0.6450 | 0.6157 | 0.076* | |
C13 | 0.5596 (3) | 0.7261 (3) | 0.6790 (2) | 0.0663 (7) | |
H13 | 0.5240 | 0.6911 | 0.7602 | 0.080* | |
C14 | 0.7168 (3) | 0.8041 (3) | 0.6491 (2) | 0.0567 (6) | |
C15 | 0.7647 (3) | 0.8500 (4) | 0.5289 (2) | 0.0758 (8) | |
H15 | 0.8717 | 0.9011 | 0.5059 | 0.091* | |
C16 | 0.6612 (3) | 0.8238 (3) | 0.4403 (2) | 0.0686 (7) | |
H16 | 0.6979 | 0.8572 | 0.3592 | 0.082* | |
C141 | 0.8328 (4) | 0.8354 (3) | 0.7436 (2) | 0.0797 (8) | |
H14A | 0.7677 | 0.8190 | 0.8208 | 0.119* | |
H14B | 0.8726 | 0.9489 | 0.7233 | 0.119* | |
H14C | 0.9319 | 0.7584 | 0.7470 | 0.119* | |
C31A | 0.3342 (3) | 0.7907 (3) | 0.06874 (18) | 0.0505 (5) | 0.71 (2) |
O31A | 0.4587 (11) | 0.7554 (17) | 0.0048 (5) | 0.093 (3) | 0.71 (2) |
O32A | 0.2044 (10) | 0.8936 (9) | 0.0288 (6) | 0.0542 (14) | 0.71 (2) |
C32A | 0.2113 (19) | 0.9575 (17) | −0.0998 (7) | 0.0653 (16) | 0.71 (2) |
H32A | 0.2195 | 0.8650 | −0.1421 | 0.098* | 0.71 (2) |
H32B | 0.3121 | 1.0261 | −0.1233 | 0.098* | 0.71 (2) |
H32C | 0.1070 | 1.0239 | −0.1196 | 0.098* | 0.71 (2) |
C31B | 0.3342 (3) | 0.7907 (3) | 0.06874 (18) | 0.0505 (5) | 0.29 (2) |
O31B | 0.413 (2) | 0.6979 (19) | 0.0113 (14) | 0.093 (3) | 0.29 (2) |
O32B | 0.233 (2) | 0.9199 (19) | 0.0250 (15) | 0.0542 (14) | 0.29 (2) |
C32B | 0.234 (5) | 0.966 (4) | −0.1050 (17) | 0.0653 (16) | 0.29 (2) |
H32D | 0.1476 | 0.9035 | −0.1334 | 0.098* | 0.29 (2) |
H32E | 0.3479 | 0.9404 | −0.1404 | 0.098* | 0.29 (2) |
H32F | 0.2080 | 1.0842 | −0.1275 | 0.098* | 0.29 (2) |
C41 | 0.0150 (3) | 0.5929 (3) | 0.25809 (17) | 0.0456 (5) | |
O41 | −0.0860 (2) | 0.5221 (2) | 0.33564 (14) | 0.0756 (6) | |
O42 | −0.01086 (18) | 0.61505 (19) | 0.14123 (12) | 0.0550 (4) | |
C42 | −0.1738 (3) | 0.5551 (3) | 0.1112 (2) | 0.0679 (7) | |
H42A | −0.2701 | 0.6035 | 0.1538 | 0.102* | |
H42B | −0.1748 | 0.4346 | 0.1339 | 0.102* | |
H42C | −0.1847 | 0.5873 | 0.0258 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0440 (9) | 0.0561 (11) | 0.0331 (8) | −0.0093 (8) | −0.0050 (7) | −0.0041 (7) |
N2 | 0.0458 (10) | 0.0613 (11) | 0.0345 (9) | −0.0105 (8) | −0.0028 (7) | −0.0030 (8) |
C3 | 0.0397 (11) | 0.0511 (12) | 0.0369 (10) | −0.0032 (9) | −0.0047 (8) | −0.0067 (9) |
C4 | 0.0407 (10) | 0.0505 (12) | 0.0372 (10) | −0.0050 (9) | −0.0045 (8) | −0.0063 (9) |
C5 | 0.0436 (11) | 0.0567 (13) | 0.0373 (10) | −0.0110 (10) | −0.0009 (8) | −0.0036 (9) |
C11 | 0.0449 (11) | 0.0505 (12) | 0.0390 (11) | −0.0044 (9) | −0.0084 (8) | −0.0073 (9) |
C12 | 0.0539 (13) | 0.0937 (19) | 0.0424 (12) | −0.0174 (12) | −0.0051 (10) | −0.0085 (12) |
C13 | 0.0673 (16) | 0.0924 (19) | 0.0403 (12) | −0.0055 (14) | −0.0108 (11) | −0.0117 (12) |
C14 | 0.0644 (15) | 0.0543 (13) | 0.0555 (14) | 0.0014 (11) | −0.0219 (11) | −0.0142 (10) |
C15 | 0.0671 (16) | 0.097 (2) | 0.0649 (16) | −0.0367 (14) | −0.0163 (12) | −0.0063 (14) |
C16 | 0.0661 (15) | 0.0951 (19) | 0.0441 (12) | −0.0334 (14) | −0.0082 (11) | −0.0035 (12) |
C141 | 0.092 (2) | 0.0787 (19) | 0.0782 (18) | 0.0009 (15) | −0.0441 (15) | −0.0260 (14) |
C31A | 0.0409 (11) | 0.0727 (15) | 0.0380 (11) | −0.0064 (11) | −0.0031 (9) | −0.0093 (10) |
O31A | 0.070 (3) | 0.159 (6) | 0.0434 (12) | 0.035 (4) | 0.0031 (17) | −0.010 (2) |
O32A | 0.054 (2) | 0.062 (2) | 0.0395 (9) | −0.008 (2) | 0.0009 (13) | 0.0060 (12) |
C32A | 0.075 (4) | 0.0739 (19) | 0.0406 (14) | −0.017 (3) | −0.0089 (17) | 0.0103 (13) |
C31B | 0.0409 (11) | 0.0727 (15) | 0.0380 (11) | −0.0064 (11) | −0.0031 (9) | −0.0093 (10) |
O31B | 0.070 (3) | 0.159 (6) | 0.0434 (12) | 0.035 (4) | 0.0031 (17) | −0.010 (2) |
O32B | 0.054 (2) | 0.062 (2) | 0.0395 (9) | −0.008 (2) | 0.0009 (13) | 0.0060 (12) |
C32B | 0.075 (4) | 0.0739 (19) | 0.0406 (14) | −0.017 (3) | −0.0089 (17) | 0.0103 (13) |
C41 | 0.0421 (11) | 0.0557 (13) | 0.0387 (11) | −0.0047 (10) | −0.0025 (9) | −0.0077 (9) |
O41 | 0.0581 (10) | 0.1211 (15) | 0.0449 (9) | −0.0394 (10) | 0.0017 (7) | −0.0031 (9) |
O42 | 0.0519 (9) | 0.0729 (10) | 0.0403 (8) | −0.0177 (7) | −0.0088 (6) | −0.0048 (7) |
C42 | 0.0550 (14) | 0.0942 (19) | 0.0590 (14) | −0.0187 (13) | −0.0173 (11) | −0.0169 (13) |
N1—C5 | 1.341 (2) | C141—H14A | 0.9600 |
N1—N2 | 1.363 (2) | C141—H14B | 0.9600 |
N1—C11 | 1.430 (2) | C141—H14C | 0.9600 |
N2—C3 | 1.319 (2) | C31A—O31A | 1.209 (4) |
C3—C4 | 1.413 (3) | C31A—O32A | 1.319 (3) |
C3—C31A | 1.487 (3) | O32A—C32A | 1.446 (3) |
C4—C5 | 1.375 (3) | C32A—H32A | 0.9600 |
C4—C41 | 1.459 (3) | C32A—H32B | 0.9600 |
C5—H5 | 0.9300 | C32A—H32C | 0.9600 |
C11—C12 | 1.368 (3) | O32B—C32B | 1.445 (5) |
C11—C16 | 1.369 (3) | C32B—H32D | 0.9600 |
C12—C13 | 1.378 (3) | C32B—H32E | 0.9600 |
C12—H12 | 0.9300 | C32B—H32F | 0.9600 |
C13—C14 | 1.372 (3) | C41—O41 | 1.198 (2) |
C13—H13 | 0.9300 | C41—O42 | 1.328 (2) |
C14—C15 | 1.363 (3) | O42—C42 | 1.445 (2) |
C14—C141 | 1.505 (3) | C42—H42A | 0.9600 |
C15—C16 | 1.377 (3) | C42—H42B | 0.9600 |
C15—H15 | 0.9300 | C42—H42C | 0.9600 |
C16—H16 | 0.9300 | ||
C5—N1—N2 | 111.67 (15) | C14—C141—H14B | 109.5 |
C5—N1—C11 | 128.79 (16) | H14A—C141—H14B | 109.5 |
N2—N1—C11 | 119.52 (15) | C14—C141—H14C | 109.5 |
C3—N2—N1 | 105.05 (15) | H14A—C141—H14C | 109.5 |
N2—C3—C4 | 111.50 (16) | H14B—C141—H14C | 109.5 |
N2—C3—C31A | 117.41 (17) | O31A—C31A—O32A | 123.5 (3) |
C4—C3—C31A | 131.07 (17) | O31A—C31A—C3 | 125.0 (3) |
C5—C4—C3 | 104.27 (16) | O32A—C31A—C3 | 111.1 (3) |
C5—C4—C41 | 123.78 (17) | C31A—O32A—C32A | 116.5 (3) |
C3—C4—C41 | 131.86 (17) | O32A—C32A—H32A | 109.5 |
N1—C5—C4 | 107.50 (17) | O32A—C32A—H32B | 109.5 |
N1—C5—H5 | 126.2 | H32A—C32A—H32B | 109.5 |
C4—C5—H5 | 126.2 | O32A—C32A—H32C | 109.5 |
C12—C11—C16 | 119.48 (19) | H32A—C32A—H32C | 109.5 |
C12—C11—N1 | 120.75 (18) | H32B—C32A—H32C | 109.5 |
C16—C11—N1 | 119.77 (18) | O32B—C32B—H32D | 109.5 |
C11—C12—C13 | 119.7 (2) | O32B—C32B—H32E | 109.5 |
C11—C12—H12 | 120.1 | H32D—C32B—H32E | 109.5 |
C13—C12—H12 | 120.1 | O32B—C32B—H32F | 109.5 |
C14—C13—C12 | 122.1 (2) | H32D—C32B—H32F | 109.5 |
C14—C13—H13 | 119.0 | H32E—C32B—H32F | 109.5 |
C12—C13—H13 | 119.0 | O41—C41—O42 | 123.08 (18) |
C15—C14—C13 | 116.7 (2) | O41—C41—C4 | 123.97 (18) |
C15—C14—C141 | 121.4 (2) | O42—C41—C4 | 112.95 (17) |
C13—C14—C141 | 121.9 (2) | C41—O42—C42 | 116.23 (16) |
C14—C15—C16 | 122.7 (2) | O42—C42—H42A | 109.5 |
C14—C15—H15 | 118.6 | O42—C42—H42B | 109.5 |
C16—C15—H15 | 118.6 | H42A—C42—H42B | 109.5 |
C11—C16—C15 | 119.3 (2) | O42—C42—H42C | 109.5 |
C11—C16—H16 | 120.4 | H42A—C42—H42C | 109.5 |
C15—C16—H16 | 120.4 | H42B—C42—H42C | 109.5 |
C14—C141—H14A | 109.5 | ||
C5—N1—N2—C3 | 0.7 (2) | C12—C13—C14—C15 | −1.3 (4) |
C11—N1—N2—C3 | −177.91 (17) | C12—C13—C14—C141 | 179.7 (2) |
N1—N2—C3—C4 | −0.2 (2) | C13—C14—C15—C16 | 1.3 (4) |
N1—N2—C3—C31A | 178.57 (18) | C141—C14—C15—C16 | −179.7 (3) |
N2—C3—C4—C5 | −0.3 (2) | C12—C11—C16—C15 | −0.9 (4) |
C31A—C3—C4—C5 | −178.9 (2) | N1—C11—C16—C15 | 179.1 (2) |
N2—C3—C4—C41 | −176.7 (2) | C14—C15—C16—C11 | −0.2 (4) |
C31A—C3—C4—C41 | 4.7 (4) | N2—C3—C31A—O31A | 52.4 (9) |
N2—N1—C5—C4 | −0.9 (2) | C4—C3—C31A—O31A | −129.1 (9) |
C11—N1—C5—C4 | 177.57 (18) | N2—C3—C31A—O32A | −121.0 (5) |
C3—C4—C5—N1 | 0.7 (2) | C4—C3—C31A—O32A | 57.5 (6) |
C41—C4—C5—N1 | 177.50 (18) | O31A—C31A—O32A—C32A | 3.6 (10) |
C5—N1—C11—C12 | 0.3 (3) | C3—C31A—O32A—C32A | 177.1 (8) |
N2—N1—C11—C12 | 178.6 (2) | C5—C4—C41—O41 | 0.6 (3) |
C5—N1—C11—C16 | −179.7 (2) | C3—C4—C41—O41 | 176.5 (2) |
N2—N1—C11—C16 | −1.4 (3) | C5—C4—C41—O42 | −178.86 (19) |
C16—C11—C12—C13 | 0.9 (4) | C3—C4—C41—O42 | −3.0 (3) |
N1—C11—C12—C13 | −179.0 (2) | O41—C41—O42—C42 | 2.7 (3) |
C11—C12—C13—C14 | 0.2 (4) | C4—C41—O42—C42 | −177.82 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O41i | 0.93 | 2.33 | 3.249 (3) | 168 |
C12—H12···O41i | 0.93 | 2.43 | 3.352 (3) | 173 |
Symmetry code: (i) −x, −y+1, −z+1. |
C12H14N6O3 | F(000) = 608 |
Mr = 290.29 | Dx = 1.492 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6030 (6) Å | Cell parameters from 2521 reflections |
b = 22.6605 (19) Å | θ = 2.9–26.1° |
c = 7.6751 (7) Å | µ = 0.11 mm−1 |
β = 102.284 (3)° | T = 296 K |
V = 1292.05 (19) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.13 × 0.11 mm |
Bruker Kappa APEXII CCD diffractometer | 2521 independent reflections |
Radiation source: fine focus sealed tube | 1722 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
φ and ω scans | θmax = 26.1°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −9→9 |
Tmin = 0.929, Tmax = 0.988 | k = −27→27 |
20456 measured reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.027P)2 + 1.1086P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.20 e Å−3 |
2521 reflections | Δρmin = −0.21 e Å−3 |
210 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0045 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7660 (2) | 0.36969 (8) | 0.6437 (2) | 0.0283 (4) | |
N2 | 0.7948 (2) | 0.32224 (8) | 0.5473 (2) | 0.0314 (5) | |
C3 | 0.7018 (3) | 0.33229 (9) | 0.3822 (3) | 0.0275 (5) | |
C4 | 0.6115 (3) | 0.38765 (9) | 0.3717 (3) | 0.0280 (5) | |
C5 | 0.6564 (3) | 0.40941 (10) | 0.5433 (3) | 0.0298 (5) | |
H5 | 0.6181 | 0.4450 | 0.5828 | 0.036* | |
C11 | 0.8572 (3) | 0.37355 (9) | 0.8268 (3) | 0.0276 (5) | |
C12 | 0.8449 (3) | 0.42341 (10) | 0.9244 (3) | 0.0344 (6) | |
H12 | 0.7747 | 0.4550 | 0.8727 | 0.041* | |
C13 | 0.9380 (3) | 0.42666 (11) | 1.1013 (3) | 0.0365 (6) | |
H13 | 0.9289 | 0.4603 | 1.1681 | 0.044* | |
C14 | 1.0436 (3) | 0.38002 (10) | 1.1778 (3) | 0.0317 (5) | |
C15 | 1.0555 (3) | 0.33004 (10) | 1.0777 (3) | 0.0368 (6) | |
H15 | 1.1270 | 0.2986 | 1.1285 | 0.044* | |
C16 | 0.9622 (3) | 0.32644 (10) | 0.9034 (3) | 0.0352 (6) | |
H16 | 0.9696 | 0.2925 | 0.8372 | 0.042* | |
O14 | 1.1404 (2) | 0.37883 (8) | 1.3504 (2) | 0.0444 (5) | |
C141 | 1.1307 (4) | 0.42931 (12) | 1.4580 (3) | 0.0493 (7) | |
H14A | 1.1762 | 0.4631 | 1.4063 | 0.074* | |
H14B | 1.2016 | 0.4227 | 1.5757 | 0.074* | |
H14C | 1.0077 | 0.4362 | 1.4647 | 0.074* | |
C31 | 0.7103 (3) | 0.28637 (9) | 0.2463 (3) | 0.0295 (5) | |
O31 | 0.6069 (2) | 0.28624 (7) | 0.0961 (2) | 0.0414 (5) | |
N31 | 0.8329 (3) | 0.24513 (8) | 0.2954 (3) | 0.0356 (5) | |
H31 | 0.911 (3) | 0.2477 (11) | 0.397 (3) | 0.043* | |
N32 | 0.8637 (3) | 0.19995 (10) | 0.1787 (3) | 0.0520 (6) | |
H32A | 0.782 (4) | 0.2047 (12) | 0.064 (4) | 0.062* | |
H32B | 0.841 (4) | 0.1612 (13) | 0.232 (4) | 0.062* | |
C41 | 0.5024 (3) | 0.42229 (10) | 0.2236 (3) | 0.0301 (5) | |
O41 | 0.4610 (2) | 0.47395 (7) | 0.2471 (2) | 0.0456 (5) | |
N41 | 0.4562 (3) | 0.39535 (9) | 0.0672 (2) | 0.0358 (5) | |
H41 | 0.500 (3) | 0.3563 (12) | 0.058 (3) | 0.043* | |
N42 | 0.3537 (3) | 0.42254 (10) | −0.0869 (3) | 0.0435 (6) | |
H42A | 0.412 (4) | 0.4577 (13) | −0.110 (3) | 0.052* | |
H42B | 0.262 (4) | 0.4361 (13) | −0.060 (4) | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0298 (10) | 0.0300 (10) | 0.0239 (10) | 0.0028 (8) | 0.0031 (8) | −0.0014 (8) |
N2 | 0.0341 (11) | 0.0310 (10) | 0.0265 (11) | 0.0033 (8) | 0.0006 (9) | −0.0032 (8) |
C3 | 0.0260 (12) | 0.0287 (11) | 0.0264 (12) | −0.0016 (9) | 0.0022 (10) | 0.0004 (9) |
C4 | 0.0274 (12) | 0.0288 (11) | 0.0266 (12) | −0.0023 (9) | 0.0027 (10) | 0.0022 (9) |
C5 | 0.0289 (12) | 0.0277 (11) | 0.0317 (13) | 0.0018 (10) | 0.0040 (10) | 0.0021 (10) |
C11 | 0.0265 (12) | 0.0319 (12) | 0.0238 (12) | −0.0003 (9) | 0.0040 (10) | 0.0010 (9) |
C12 | 0.0356 (14) | 0.0342 (13) | 0.0306 (13) | 0.0061 (11) | 0.0006 (11) | 0.0018 (10) |
C13 | 0.0401 (14) | 0.0369 (13) | 0.0316 (14) | 0.0014 (11) | 0.0055 (11) | −0.0053 (11) |
C14 | 0.0286 (13) | 0.0412 (13) | 0.0235 (12) | −0.0034 (10) | 0.0010 (10) | 0.0028 (10) |
C15 | 0.0371 (14) | 0.0356 (13) | 0.0337 (14) | 0.0078 (11) | −0.0011 (11) | 0.0040 (11) |
C16 | 0.0387 (14) | 0.0325 (12) | 0.0325 (13) | 0.0055 (11) | 0.0035 (11) | −0.0036 (10) |
O14 | 0.0503 (11) | 0.0495 (11) | 0.0273 (9) | 0.0030 (9) | −0.0051 (8) | −0.0007 (8) |
C141 | 0.0546 (18) | 0.0587 (18) | 0.0313 (14) | −0.0021 (14) | 0.0016 (13) | −0.0058 (13) |
C31 | 0.0289 (13) | 0.0281 (12) | 0.0296 (13) | −0.0025 (10) | 0.0018 (10) | 0.0001 (10) |
O31 | 0.0433 (10) | 0.0387 (10) | 0.0340 (10) | 0.0029 (8) | −0.0103 (8) | −0.0066 (7) |
N31 | 0.0417 (12) | 0.0299 (10) | 0.0309 (11) | 0.0056 (9) | −0.0018 (9) | −0.0036 (9) |
N32 | 0.0701 (17) | 0.0366 (13) | 0.0440 (14) | 0.0127 (12) | 0.0003 (12) | −0.0093 (11) |
C41 | 0.0297 (12) | 0.0311 (12) | 0.0288 (13) | 0.0003 (10) | 0.0050 (10) | 0.0024 (10) |
O41 | 0.0640 (12) | 0.0331 (9) | 0.0364 (10) | 0.0141 (8) | 0.0030 (9) | 0.0014 (8) |
N41 | 0.0391 (12) | 0.0367 (11) | 0.0274 (11) | 0.0063 (9) | −0.0022 (9) | 0.0022 (9) |
N42 | 0.0436 (14) | 0.0509 (14) | 0.0314 (12) | 0.0039 (11) | −0.0019 (10) | 0.0086 (10) |
N1—N2 | 1.349 (2) | C15—H15 | 0.9300 |
N1—C5 | 1.351 (3) | C16—H16 | 0.9300 |
N1—C11 | 1.431 (3) | O14—C141 | 1.422 (3) |
N2—C3 | 1.333 (3) | C141—H14A | 0.9600 |
C3—C4 | 1.424 (3) | C141—H14B | 0.9600 |
C3—C31 | 1.485 (3) | C141—H14C | 0.9600 |
C4—C5 | 1.380 (3) | C31—O31 | 1.249 (3) |
C4—C41 | 1.482 (3) | C31—N31 | 1.317 (3) |
C5—H5 | 0.9300 | N31—N32 | 1.412 (3) |
C11—C12 | 1.369 (3) | N31—H31 | 0.87 (3) |
C11—C16 | 1.387 (3) | N32—H32A | 0.97 (3) |
C12—C13 | 1.394 (3) | N32—H32B | 1.00 (3) |
C12—H12 | 0.9300 | C41—O41 | 1.236 (3) |
C13—C14 | 1.381 (3) | C41—N41 | 1.325 (3) |
C13—H13 | 0.9300 | N41—N42 | 1.412 (3) |
C14—O14 | 1.371 (3) | N41—H41 | 0.95 (3) |
C14—C15 | 1.382 (3) | N42—H42A | 0.95 (3) |
C15—C16 | 1.377 (3) | N42—H42B | 0.83 (3) |
N2—N1—C5 | 111.78 (17) | C15—C16—C11 | 119.8 (2) |
N2—N1—C11 | 119.05 (17) | C15—C16—H16 | 120.1 |
C5—N1—C11 | 129.07 (18) | C11—C16—H16 | 120.1 |
C3—N2—N1 | 105.65 (17) | C14—O14—C141 | 117.50 (19) |
N2—C3—C4 | 110.88 (19) | O14—C141—H14A | 109.5 |
N2—C3—C31 | 117.06 (19) | O14—C141—H14B | 109.5 |
C4—C3—C31 | 132.06 (19) | H14A—C141—H14B | 109.5 |
C5—C4—C3 | 104.01 (18) | O14—C141—H14C | 109.5 |
C5—C4—C41 | 121.8 (2) | H14A—C141—H14C | 109.5 |
C3—C4—C41 | 134.0 (2) | H14B—C141—H14C | 109.5 |
N1—C5—C4 | 107.67 (19) | O31—C31—N31 | 122.0 (2) |
N1—C5—H5 | 126.2 | O31—C31—C3 | 122.5 (2) |
C4—C5—H5 | 126.2 | N31—C31—C3 | 115.47 (19) |
C12—C11—C16 | 120.2 (2) | C31—N31—N32 | 122.4 (2) |
C12—C11—N1 | 120.81 (19) | C31—N31—H31 | 120.9 (17) |
C16—C11—N1 | 118.97 (19) | N32—N31—H31 | 116.0 (17) |
C11—C12—C13 | 119.8 (2) | N31—N32—H32A | 109.5 (17) |
C11—C12—H12 | 120.1 | N31—N32—H32B | 108.1 (16) |
C13—C12—H12 | 120.1 | H32A—N32—H32B | 110 (2) |
C14—C13—C12 | 120.2 (2) | O41—C41—N41 | 122.8 (2) |
C14—C13—H13 | 119.9 | O41—C41—C4 | 120.6 (2) |
C12—C13—H13 | 119.9 | N41—C41—C4 | 116.59 (19) |
O14—C14—C13 | 124.7 (2) | C41—N41—N42 | 123.4 (2) |
O14—C14—C15 | 115.8 (2) | C41—N41—H41 | 118.0 (15) |
C13—C14—C15 | 119.5 (2) | N42—N41—H41 | 118.6 (15) |
C16—C15—C14 | 120.5 (2) | N41—N42—H42A | 109.1 (16) |
C16—C15—H15 | 119.7 | N41—N42—H42B | 107 (2) |
C14—C15—H15 | 119.7 | H42A—N42—H42B | 101 (3) |
C5—N1—N2—C3 | 0.2 (2) | C12—C13—C14—C15 | −0.3 (3) |
C11—N1—N2—C3 | −176.56 (18) | O14—C14—C15—C16 | 179.4 (2) |
N1—N2—C3—C4 | 0.2 (2) | C13—C14—C15—C16 | −0.4 (4) |
N1—N2—C3—C31 | 179.81 (18) | C14—C15—C16—C11 | 0.8 (4) |
N2—C3—C4—C5 | −0.6 (2) | C12—C11—C16—C15 | −0.5 (3) |
C31—C3—C4—C5 | 179.9 (2) | N1—C11—C16—C15 | 178.0 (2) |
N2—C3—C4—C41 | 175.1 (2) | C13—C14—O14—C141 | 0.1 (3) |
C31—C3—C4—C41 | −4.4 (4) | C15—C14—O14—C141 | −179.6 (2) |
N2—N1—C5—C4 | −0.6 (2) | N2—C3—C31—O31 | 168.0 (2) |
C11—N1—C5—C4 | 175.8 (2) | C4—C3—C31—O31 | −12.5 (4) |
C3—C4—C5—N1 | 0.7 (2) | N2—C3—C31—N31 | −11.1 (3) |
C41—C4—C5—N1 | −175.66 (19) | C4—C3—C31—N31 | 168.4 (2) |
N2—N1—C11—C12 | 173.8 (2) | O31—C31—N31—N32 | 3.9 (4) |
C5—N1—C11—C12 | −2.3 (3) | C3—C31—N31—N32 | −177.0 (2) |
N2—N1—C11—C16 | −4.7 (3) | C5—C4—C41—O41 | 6.1 (3) |
C5—N1—C11—C16 | 179.2 (2) | C3—C4—C41—O41 | −169.0 (2) |
C16—C11—C12—C13 | −0.2 (3) | C5—C4—C41—N41 | −175.2 (2) |
N1—C11—C12—C13 | −178.6 (2) | C3—C4—C41—N41 | 9.8 (4) |
C11—C12—C13—C14 | 0.6 (4) | O41—C41—N41—N42 | −0.8 (4) |
C12—C13—C14—O14 | 180.0 (2) | C4—C41—N41—N42 | −179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N31—H31···O31i | 0.88 (2) | 2.04 (2) | 2.851 (3) | 153 (2) |
N32—H32A···O14ii | 0.97 (3) | 2.58 (3) | 3.256 (3) | 127 (2) |
N32—H32B···N42i | 1.00 (2) | 2.34 (3) | 3.317 (3) | 165 (2) |
N41—H41···O31 | 0.95 (3) | 1.78 (3) | 2.714 (3) | 166 (2) |
N42—H42A···O41iii | 0.95 (3) | 2.21 (3) | 3.120 (3) | 162 (2) |
N42—H42B···Cg1iv | 0.83 (3) | 2.85 (3) | 3.442 (3) | 130 (2) |
C5—H5···O41v | 0.93 | 2.40 | 3.314 (3) | 166 |
C12—H12···O41v | 0.93 | 2.44 | 3.354 (3) | 168 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−3/2; (iii) −x+1, −y+1, −z; (iv) x−1, y, z−1; (v) −x+1, −y+1, −z+1. |
φ1 represents the dihedral angle between the planes of the aryl and pyrazole rings and φ2 represents the dihedral angle between the planes (C3,C31,O31A,O32A) and (C3,C31,O31B,O32B) |
(I) | (II) | (III) | (IV) | |
C4—C3—C31—O31 | -178.0 (2) | 44.8 (3) | -12.5 (4) | |
C4—C3—C31—O32 | 2.1 (4) | -135.9 (2) | ||
C4—C3—C31—O31A | -129.1 (9) | |||
C4—C3—C31—O31B | -96.6 (9) | |||
C4—C3—C31—O32A | 57.5 (6) | |||
C4—C3—C31—O32B | 71.6 (8) | |||
C4—C3—C31—N31 | 168.4 (2) | |||
C3—C4—C41—O41 | -2.5 (4) | -168.5 (2) | 176.5 (2) | -169.0 (2) |
C3—C4—C41—O42 | 178.0 (2) | 12.8 (3) | -3.0 (3) | |
C3—C4—C41—N41 | 9.8 (4) | |||
φ1 | 29.38 (8) | 24.38 (12) | 2.78 (12) | 5.82 (13) |
φ2 | 22.7 (5) |
Cg1 represents the centroid of the C11–C16 ring. |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | O32—H32···O41 | 1.00 (3) | 1.54 (3) | 3.546 (2) | 178 (2) |
O42—H42···O31i | 0.88 (3) | 1.80 (3) | 2.660 (2) | 168 (3) | |
O42—H42···N2i | 0.88 (3) | 2.56 (3) | 3.063 (3) | 117 (2) | |
C14—H14···O31ii | 0.93 | 2.53 | 3.456 (3) | 177 | |
C12—H12···Cg1iii | 0.93 | 2.86 | 3.685 (3) | 148 | |
C15—H15···Cg1iv | 0.93 | 2.92 | 3.755 (3) | 151 | |
(II) | C5—H5···O41v | 0.93 | 2.41 | 3.331 (3) | 170 |
(III) | C5—H5···O41vi | 0.93 | 2.33 | 3.249 (3) | 168 |
C12—H12···O41vi | 0.93 | 2.43 | 3.352 (3) | 173 | |
(IV) | N31—H31···O31vii | 0.88 (2) | 2.04 (2) | 2.851 (3) | 153 (2) |
N32—H32A···O14viii | 0.97 (3) | 2.58 (3) | 3.256 (3) | 127 (2) | |
N32—H32B···N42vii | 1.00 (2) | 2.34 (3) | 3.317 (3) | 165 (2) | |
N41—H41···O31 | 0.95 (3) | 1.78 (3) | 2.714 (3) | 166 (2) | |
N42—H42A···O41ix | 0.95 (3) | 2.21 (3) | 3.120 (3) | 162 (2) | |
N42—H42B···Cg1x | 0.83 (3) | 2.85 (3) | 3.442 (3) | 130 (2) | |
C5—H5···O41v | 0.93 | 2.40 | 3.314 (3) | 166 | |
C12—H12···O41v | 0.93 | 2.44 | 3.354 (3) | 168 |
Symmetry codes: (i) x, 1 + y, z; (ii) x, 1/2 - y, -1/2 + z; (iii) 1/2 - x, 1/2 + y, z; (iv) 1 - x, -1/2 + y, 1/2 - z; (v) 1 - x, 1 - y, 1 - z; (vi) -x, 1 - y, 1 - z; (vii) 1/2 + x, 1/2 - y, 1/2 + z; (viii) -1/2 + x, 1/2 - y, -3/2 + z; (ix) 1 - x, 1 - y, -z; (x) -1 + x, y, -1 + z. |
Acknowledgements
BK thanks Mangalore University for research facilities.
Funding information
Asma acknowledges the UGC (India) for the award of a UGC-MANF-SRF Fellowship. HSY thanks the UGC (India) for the award of a UGC-BSR Faculty Fellowship.
References
Alizadeh, A., Firuzyar, T. & Zhu, L.-G. (2010). Tetrahedron, 66, 9835–9839. CrossRef Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Asma, Kalluraya, B., Manju, N., Adhikari, A. V., Chandra & Mahendra, M. (2018). Indian J. Heterocycl. Chem. 28, 335–345. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Devi, N., Shankar, R. & Singh, V. (2018). J. Heterocycl. Chem. 55, 373–390. CrossRef Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252. Google Scholar
Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513. Web of Science CrossRef IUCr Journals Google Scholar
Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644. Google Scholar
Greco, C. V., Nyberg, W. H. & Cheng, C. C. (1962). J. Med. Chem. 5, 861–865. CrossRef Google Scholar
Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hope, H. (1978). Acta Cryst. A34, S20. Google Scholar
Huisgen, R., Grashey, R., Gotthardt, H. & Schmidt, R. (1962). Angew. Chem. Int. Ed. Engl. 1, 48–49. CrossRef Google Scholar
Li, D. Y., Mao, Y. F., Chen, H. J., Chen, G. B. & Liu, P. N. (2014). Org. Lett. 16, 3476–3479. CrossRef PubMed Google Scholar
Owen, J. E., Swanson, E. E. & Meyers, D. B. (1958). J. Am. Pharm. Assoc. (Sci. ed.), 47, 70–72. CrossRef Google Scholar
Park, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312. Web of Science CrossRef PubMed CAS Google Scholar
Qu, Z.-R. (2009). Acta Cryst. E65, o1646. Web of Science CrossRef IUCr Journals Google Scholar
Satheesha, R. N. & Kalluraya, B. (2007). Indian J. Chem. Sect. B, 46, 375–378. Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473. Web of Science CrossRef IUCr Journals Google Scholar
Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami Bharati, V. & Linden, A. (2003). Acta Cryst. E59, o44–o45. CrossRef IUCr Journals Google Scholar
Wang, Y., Lee, P. L. & Yeh, M.-H. (1984). Acta Cryst. C40, 1226–1228. CrossRef IUCr Journals Google Scholar
Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1175. Web of Science CrossRef IUCr Journals Google Scholar
Yang, R., Xu, T., Fan, J., Zhang, Q., Ding, M., Huang, M., Deng, L., Lu, Y. & Guo, Y. (2018). Ind. Crops Prod. 117, 50–57. CrossRef Google Scholar
Yao, J.-Y., Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1158. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, X.-Y., Liu, W., Tang, W. & Lai, Y.-B. (2007). Acta Cryst. E63, o3764. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.