research communications
of benzyl 2-naphthyl ether, a sensitiser for thermal paper
aGraduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogaya-ku, Yokohama 240-8501, Japan, bFunctional Chemicals R&D Laboratories, Nippon Kayaku Corporation Limited, Shimo 3-31-2, Kita-ku, Tokyo 115-8588, Japan, and cColor Materials Division in Functional Chemicals Group, Nippon Kayaku Corporation Limited, Shimo 3-31-2, Kita-ku, Tokyo 115-8588, Japan
*Correspondence e-mail: matsumoto-shinya-py@ynu.ac.jp
The title compound [systematic name: 2-(benzyloxy)naphthalene], C17H14O, which is used as a sensitiser for thermal paper, has a twisted conformation with a dihedral angle of 48.71 (12)° between the phenyl ring and the naphthyl ring system. In the crystal, one molecule interacts with six neighbouring molecules via intermolecular C—H⋯π interactions to form a herringbone molecular arrangement.
CCDC reference: 1890872
1. Chemical context
Thermal printing is a rapid and inexpensive printing technology widely used in commercial applications such as receipts, faxes and tickets (Gregory, 1991; Mendum et al., 2011). Many structural reports are available for thermosensitive dyes and developers (Matsumoto et al., 2010; Kodama et al., 2013; Gontani et al., 2017; Ohashi et al., 2017). On the other hand, we found only one report on the of a compound commonly used as a sensitiser for the thermosensitive layer (Rudolph et al., 2010), which can facilitate the dye coloration process by lowering the melting point of the dye/developer composite on thermal paper (US EPA, 2014). The title compound, benzyl 2-naphthyl ether, 1, is known as another commonly used sensitiser. Herein, we report the of 1 as fundamental data for the investigation of its influence on the solid-state physicochemical properties of the thermosensitive layer of the thermal paper.
2. Structural commentary
The title compound (Fig. 1) is a simple ether compound in which a benzyl group is connected to a naphthyl group via an ether bond. The two aromatic rings are twisted, which is mainly attributable to the rotation about the C11—C12 bond. The dihedral angle between the mean planes of the naphthyl ring system (C1–C10) and the phenyl ring (C12–C17) is 48.71 (12)°. The related torsion angles for this dihedral angle are −44.9 (3)° (O1—C11—C12—C17), 178.7 (2)° (C1—O1—C11—C12) and −5.6 (3)° (C6—C1—O1—C11).
3. Supramolecular features
In the crystal, one molecule interacts with six neighbouring molecules via intermolecular C—H⋯π interactions (Table 1; Fig. 2). The molecules are linked by a C—H⋯π interaction between the benzene C1–C6 rings (C3—H3⋯Cg1i; symmetry code as in Table 1), forming a zigzag chain along the a-axis direction. The chains are connected into a layer structure parallel to the ab plane via a C—H⋯π interaction between the benzene C4/C5/C7–C10 ring and the methylene hydrogen atom (C11—H11A⋯Cg2ii; Table 1). A weak C—H⋯π interaction between the C12–C17 phenyl rings (C16—H16⋯Cg3iii; Table 1) links the layers and thus the molecules form a herringbone arrangement when viewed along the a axis, as shown in Fig. 3.
4. Database survey
Three analogous compounds of 1, namely, 2-benzyloxy-1-naphthaldehyde, 2 [CSD (Groom et al., 2016) refcode SOLVUL; Gao et al., 2009], 2-benzyloxy-3-methoxynaphthalene, 3 (MEBYIC; Huang et al., 2004) and 2-benzyloxy-3-hydroxynaphthalene, 4 (SICGEQ; Peters et al., 1998), have been reported. Compounds, 2, 3 and 4, crystallize in the centrosymmetric space groups P21/c, P21/c and P, respectively. Fig. 4 shows an overlay of the molecular geometries of compounds 1–4, which indicates significant geometrical differences in the conformation of the benzyl unit caused by the rotations around the C1—O1 and C11—C12 bonds. Fig. 5 shows packing diagrams for compounds 2–4. In the crystals of 2–4, the molecules form zigzag chains via C—H⋯O interactions. In 2, the chains are linked by π–π interactions into a three-dimensional network, whereas C—H⋯π interactions contribute to the arrangement of the chains in 3 and 4.
5. Synthesis and crystallization
The title compound was purchased from Tokyo Kasei Kogyo Co., Ltd., and used without further purification. X-ray diffraction quality colourless platelets were obtained using a liquid–liquid diffusion method, with combination of chloroform and ethanol at 278 K.
6. Refinement
The crystal data, data collection and structure . All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1890872
https://doi.org/10.1107/S2056989019000690/is5508sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019000690/is5508Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019000690/is5508Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2018); software used to prepare material for publication: CrystalStructure (Rigaku, 2018).C17H14O | Dx = 1.253 Mg m−3 |
Mr = 234.30 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2523 reflections |
a = 6.10537 (10) Å | θ = 6.1–71.1° |
b = 7.58687 (13) Å | µ = 0.59 mm−1 |
c = 26.8196 (5) Å | T = 298 K |
V = 1242.30 (4) Å3 | Plate, colourless |
Z = 4 | 0.61 × 0.42 × 0.04 mm |
F(000) = 496.00 |
Rigaku XtaLAB PRO diffractometer | 1841 reflections with F2 > 2.0σ(F2) |
Detector resolution: 5.811 pixels mm-1 | Rint = 0.033 |
ω scans | θmax = 66.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −3→7 |
Tmin = 0.396, Tmax = 0.976 | k = −9→8 |
3724 measured reflections | l = −31→31 |
2017 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2017 reflections | Δρmax = 0.12 e Å−3 |
163 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 601 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.3 (3) |
Secondary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5853 (3) | 0.5557 (2) | 0.39703 (5) | 0.0492 (4) | |
C1 | 0.6358 (4) | 0.5250 (3) | 0.44606 (8) | 0.0394 (5) | |
C5 | 0.5738 (4) | 0.5198 (3) | 0.53498 (7) | 0.0380 (5) | |
C3 | 0.9115 (3) | 0.4027 (3) | 0.50010 (8) | 0.0432 (5) | |
H3 | 1.0488 | 0.3518 | 0.5045 | 0.052* | |
C4 | 0.7789 (4) | 0.4363 (3) | 0.54226 (8) | 0.0393 (5) | |
C12 | 0.3435 (4) | 0.6519 (3) | 0.33234 (8) | 0.0446 (5) | |
C6 | 0.5058 (3) | 0.5652 (3) | 0.48601 (8) | 0.0405 (5) | |
H6 | 0.3728 | 0.6223 | 0.4811 | 0.049* | |
C7 | 0.8415 (4) | 0.3848 (3) | 0.59097 (9) | 0.0494 (6) | |
H7 | 0.9760 | 0.3300 | 0.5960 | 0.059* | |
C2 | 0.8426 (4) | 0.4432 (3) | 0.45349 (9) | 0.0447 (5) | |
H2 | 0.9310 | 0.4173 | 0.4262 | 0.054* | |
C10 | 0.4399 (4) | 0.5505 (3) | 0.57705 (8) | 0.0466 (5) | |
H10 | 0.3060 | 0.6072 | 0.5731 | 0.056* | |
C11 | 0.3713 (4) | 0.6215 (4) | 0.38720 (8) | 0.0491 (6) | |
H11A | 0.3492 | 0.7313 | 0.4051 | 0.059* | |
H11B | 0.2628 | 0.5374 | 0.3987 | 0.059* | |
C8 | 0.7069 (5) | 0.4148 (4) | 0.63052 (9) | 0.0561 (6) | |
H8 | 0.7496 | 0.3798 | 0.6623 | 0.067* | |
C9 | 0.5047 (5) | 0.4980 (3) | 0.62363 (9) | 0.0547 (6) | |
H9 | 0.4136 | 0.5177 | 0.6509 | 0.066* | |
C13 | 0.1486 (4) | 0.6077 (4) | 0.30972 (9) | 0.0572 (6) | |
H13 | 0.0402 | 0.5509 | 0.3280 | 0.069* | |
C17 | 0.5030 (5) | 0.7337 (4) | 0.30452 (9) | 0.0557 (6) | |
H17 | 0.6365 | 0.7617 | 0.3192 | 0.067* | |
C16 | 0.4669 (6) | 0.7750 (4) | 0.25472 (10) | 0.0650 (8) | |
H16 | 0.5752 | 0.8315 | 0.2363 | 0.078* | |
C14 | 0.1122 (5) | 0.6472 (5) | 0.25993 (10) | 0.0721 (9) | |
H14 | −0.0195 | 0.6162 | 0.2449 | 0.086* | |
C15 | 0.2717 (5) | 0.7322 (4) | 0.23289 (10) | 0.0706 (9) | |
H15 | 0.2467 | 0.7607 | 0.1996 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0436 (8) | 0.0647 (10) | 0.0394 (8) | 0.0042 (7) | 0.0028 (7) | 0.0050 (7) |
C1 | 0.0388 (11) | 0.0405 (11) | 0.0387 (11) | −0.0026 (9) | 0.0009 (9) | 0.0015 (8) |
C5 | 0.0394 (11) | 0.0352 (10) | 0.0393 (11) | −0.0026 (8) | 0.0009 (9) | −0.0017 (9) |
C3 | 0.0325 (9) | 0.0461 (11) | 0.0510 (13) | 0.0024 (9) | 0.0007 (11) | −0.0012 (10) |
C4 | 0.0366 (10) | 0.0367 (10) | 0.0448 (11) | −0.0015 (9) | −0.0019 (10) | −0.0017 (9) |
C12 | 0.0473 (12) | 0.0465 (11) | 0.0401 (11) | 0.0038 (10) | −0.0003 (10) | −0.0054 (9) |
C6 | 0.0342 (10) | 0.0439 (11) | 0.0435 (11) | 0.0035 (8) | 0.0025 (10) | 0.0006 (9) |
C7 | 0.0474 (12) | 0.0489 (12) | 0.0517 (13) | 0.0047 (11) | −0.0082 (12) | 0.0020 (10) |
C2 | 0.0342 (10) | 0.0509 (12) | 0.0490 (12) | −0.0003 (9) | 0.0086 (10) | −0.0012 (10) |
C10 | 0.0438 (12) | 0.0505 (12) | 0.0454 (12) | 0.0058 (10) | 0.0058 (11) | −0.0035 (10) |
C11 | 0.0433 (12) | 0.0619 (14) | 0.0423 (12) | 0.0026 (11) | 0.0017 (10) | 0.0014 (10) |
C8 | 0.0682 (16) | 0.0590 (14) | 0.0411 (12) | 0.0024 (13) | −0.0041 (13) | 0.0023 (11) |
C9 | 0.0633 (15) | 0.0595 (14) | 0.0414 (12) | 0.0015 (13) | 0.0100 (12) | −0.0025 (11) |
C13 | 0.0472 (12) | 0.0702 (16) | 0.0542 (14) | −0.0016 (12) | −0.0033 (12) | −0.0035 (12) |
C17 | 0.0600 (14) | 0.0602 (15) | 0.0470 (13) | −0.0119 (12) | −0.0011 (13) | −0.0033 (11) |
C16 | 0.085 (2) | 0.0626 (16) | 0.0473 (14) | −0.0058 (16) | 0.0077 (15) | 0.0040 (12) |
C14 | 0.0624 (17) | 0.099 (2) | 0.0545 (16) | 0.0074 (17) | −0.0178 (15) | −0.0066 (16) |
C15 | 0.092 (2) | 0.0753 (19) | 0.0444 (13) | 0.0178 (18) | −0.0101 (16) | 0.0030 (13) |
O1—C1 | 1.370 (2) | C2—H2 | 0.9300 |
O1—C11 | 1.423 (3) | C10—C9 | 1.370 (3) |
C1—C6 | 1.368 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.421 (3) | C11—H11A | 0.9700 |
C5—C10 | 1.413 (3) | C11—H11B | 0.9700 |
C5—C4 | 1.417 (3) | C8—C9 | 1.399 (4) |
C5—C6 | 1.420 (3) | C8—H8 | 0.9300 |
C3—C2 | 1.354 (3) | C9—H9 | 0.9300 |
C3—C4 | 1.414 (3) | C13—C14 | 1.387 (4) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C7 | 1.416 (3) | C17—C16 | 1.390 (4) |
C12—C17 | 1.374 (3) | C17—H17 | 0.9300 |
C12—C13 | 1.377 (3) | C16—C15 | 1.367 (4) |
C12—C11 | 1.499 (3) | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | C14—C15 | 1.375 (4) |
C7—C8 | 1.361 (4) | C14—H14 | 0.9300 |
C7—H7 | 0.9300 | C15—H15 | 0.9300 |
C1—O1—C11 | 116.36 (18) | O1—C11—C12 | 109.85 (19) |
C6—C1—O1 | 125.7 (2) | O1—C11—H11A | 109.7 |
C6—C1—C2 | 120.2 (2) | C12—C11—H11A | 109.7 |
O1—C1—C2 | 114.1 (2) | O1—C11—H11B | 109.7 |
C10—C5—C4 | 118.4 (2) | C12—C11—H11B | 109.7 |
C10—C5—C6 | 122.0 (2) | H11A—C11—H11B | 108.2 |
C4—C5—C6 | 119.61 (19) | C7—C8—C9 | 120.4 (2) |
C2—C3—C4 | 121.3 (2) | C7—C8—H8 | 119.8 |
C2—C3—H3 | 119.4 | C9—C8—H8 | 119.8 |
C4—C3—H3 | 119.4 | C10—C9—C8 | 120.4 (2) |
C3—C4—C7 | 122.2 (2) | C10—C9—H9 | 119.8 |
C3—C4—C5 | 118.47 (19) | C8—C9—H9 | 119.8 |
C7—C4—C5 | 119.3 (2) | C12—C13—C14 | 120.7 (3) |
C17—C12—C13 | 118.9 (2) | C12—C13—H13 | 119.7 |
C17—C12—C11 | 121.5 (2) | C14—C13—H13 | 119.7 |
C13—C12—C11 | 119.5 (2) | C12—C17—C16 | 120.8 (3) |
C1—C6—C5 | 120.1 (2) | C12—C17—H17 | 119.6 |
C1—C6—H6 | 120.0 | C16—C17—H17 | 119.6 |
C5—C6—H6 | 120.0 | C15—C16—C17 | 119.8 (3) |
C8—C7—C4 | 120.6 (2) | C15—C16—H16 | 120.1 |
C8—C7—H7 | 119.7 | C17—C16—H16 | 120.1 |
C4—C7—H7 | 119.7 | C15—C14—C13 | 119.7 (3) |
C3—C2—C1 | 120.3 (2) | C15—C14—H14 | 120.1 |
C3—C2—H2 | 119.8 | C13—C14—H14 | 120.1 |
C1—C2—H2 | 119.8 | C16—C15—C14 | 120.2 (3) |
C9—C10—C5 | 120.9 (2) | C16—C15—H15 | 119.9 |
C9—C10—H10 | 119.5 | C14—C15—H15 | 119.9 |
C5—C10—H10 | 119.5 | ||
C11—O1—C1—C6 | −5.6 (3) | C4—C5—C10—C9 | −1.2 (3) |
C11—O1—C1—C2 | 174.04 (19) | C6—C5—C10—C9 | 176.9 (2) |
C2—C3—C4—C7 | 175.9 (2) | C1—O1—C11—C12 | 178.72 (19) |
C2—C3—C4—C5 | −2.3 (3) | C17—C12—C11—O1 | −44.9 (3) |
C10—C5—C4—C3 | 178.9 (2) | C13—C12—C11—O1 | 139.5 (2) |
C6—C5—C4—C3 | 0.8 (3) | C4—C7—C8—C9 | −0.3 (4) |
C10—C5—C4—C7 | 0.8 (3) | C5—C10—C9—C8 | 0.9 (4) |
C6—C5—C4—C7 | −177.4 (2) | C7—C8—C9—C10 | −0.1 (4) |
O1—C1—C6—C5 | 177.4 (2) | C17—C12—C13—C14 | −0.8 (4) |
C2—C1—C6—C5 | −2.2 (3) | C11—C12—C13—C14 | 174.9 (3) |
C10—C5—C6—C1 | −176.7 (2) | C13—C12—C17—C16 | 1.4 (4) |
C4—C5—C6—C1 | 1.4 (3) | C11—C12—C17—C16 | −174.2 (2) |
C3—C4—C7—C8 | −178.1 (2) | C12—C17—C16—C15 | −0.7 (4) |
C5—C4—C7—C8 | 0.0 (3) | C12—C13—C14—C15 | −0.4 (4) |
C4—C3—C2—C1 | 1.6 (3) | C17—C16—C15—C14 | −0.6 (5) |
C6—C1—C2—C3 | 0.7 (3) | C13—C14—C15—C16 | 1.2 (5) |
O1—C1—C2—C3 | −178.9 (2) |
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C4/C5/C7–C10 and C12–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg1i | 0.93 | 2.71 | 3.439 (2) | 135 |
C11—H11A···Cg2ii | 0.97 | 2.63 | 3.512 (3) | 150 |
C16—H16···Cg3iii | 0.93 | 2.87 | 3.586 (3) | 135 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iii) −x+1, y+1/2, −z+1/2. |
References
Gao, R., Li, W.-H., Liu, P. & Wang, P.-A. (2009). Acta Cryst. E65, o534. CrossRef IUCr Journals Google Scholar
Gontani, S., Ohashi, T., Miyanaga, K., Kurata, T., Akatani, Y. & Matsumoto, S. (2017). Dyes Pigments, 139, 549–555. CrossRef CAS Google Scholar
Gregory, P. (1991). High-technology Applications of Organic Colorants. New York: Plenum Press. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, K.-S., Wang, E.-C. & Chen, H.-M. (2004). Jnl Chin. Chem. Soc. 51, 585–605. CrossRef CAS Google Scholar
Kodama, S., Johmoto, K., Sekine, A., Fujii, K. & Uekusa, H. (2013). CrystEngComm, 15, 4667–4675. CrossRef CAS Google Scholar
Matsumoto, S., Takeshima, S., Satoh, S. & Kabashima, K. (2010). Dyes Pigments, 85, 139–142. CrossRef CAS Google Scholar
Mendum, T., Stoler, E., VanBenschoten, H. & Warner, J. C. (2011). Green Chem. Lett. Rev. 4, 81–86. CrossRef CAS Google Scholar
Ohashi, T., Gontani, S., Miyanaga, K., Kurata, T., Akatani, Y. & Matsumoto, S. (2017). Dyes Pigments, 142, 198–200. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peters, K., Peters, E.-M., Wuzik, A. & Bringmann, G. (1998). Z. Kristallogr. NCS213, 565–567. Google Scholar
Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Crystallogr. 40, 253–265. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
US EPA (2014). Bisphenol A Alternative in Thermal Paper. Final report. United States Environmental Protection Agency. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.