research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, mol­ecular and crystal structure of 1-(1,2-di­hydro­phthalazin-1-yl­­idene)-2-[1-(thio­phen-2-yl)ethyl­­idene]hydrazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Buea, PO Box 63 Buea, Cameroon, and bDepartment of Chemistry, University of Dschang, PO Box 67, Dschang, Cameroon
*Correspondence e-mail: fmajoumo@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 13 December 2018; accepted 16 January 2019; online 22 January 2019)

The title compound, C14H12N4S, was synthesized by the condensation reaction of hydralazine and 2-acetyl­thio­phene and during the reaction, a proton transfer from the imino nitro­gen atom to one of the endocylic nitro­gen atoms occurred. The compound crystallizes in the monoclinic crystal system with two independent mol­ecules (mol­ecules 1 and 2) in the asymmetric unit. In each mol­ecule, there is a slight difference in the orientation of the thio­phene ring with respect to phthalazine ring system, mol­ecule 1 showing a dihedral angle of 42.51 (1)° compared to 8.48 (1)° in mol­ecule 2. This implies an r.m.s deviation of 0.428 (1) Å between the two mol­ecules for the 19 non-H atoms. The two independent mol­ecules are connected via two N—H⋯N hydrogen bonds, forming dimers which inter­act by two bifurcated ππ stacking inter­actions to build tetra­meric motifs. The latter are packed in the ac plane via weak C—H⋯π inter­actions and along the b axis via C—H ⋯N and C—H⋯π inter­actions. This results a three-dimensional architecture with a tilted herringbone packing mode.

1. Chemical context

Hydralazine compounds are being studied intensively for their biological and chemical properties, the former giving them inter­esting pharmacological properties (anti­microbial, anti­malarial and anti­tumor activity; Jackson et al., 1990[Jackson, S. H., Shepherd, A. M. M., Ludden, T. M., Jamieson, M. J., Woodworth, J., Rogers, D., Ludden, L. K. & Muir, K. T. (1990). J. Cardiovasc. Pharmacol. 16, 624-628.]; Zelenin et al., 1992[Zelenin, K. N., Khorseeva, L. A. & Alekseev, V. V. (1992). Pharm. Chem. J. 26, 395-405.]; Kaminskas et al., 2004[Kaminskas, L. M., Pyke, S. M. & Burcham, P. C. (2004). J. Pharmacol. Exp. Ther. 310, 1003-1010.]; Vicini et al., 2006[Vicini, P., Incerti, M., Doytchinova, I. A., La Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624-632.]). They also find wide applications in the treatment of tuberculosis, leprosy and mental disorder. Furthermore, there is considerable research inter­est in 1-hydrazinophthalazine (hydralazine) because its hydro­chloride is an effective drug for the emergency reduction of blood pressure in hypertensive crises (Draey & Tripod, 1967[Draey, J. & Tripod, I. (1967). Antihypertensive Agent, 7, 223.]). It has also been reported that a combination of hydralazine and hydro­chloro­thia­zide is being used to treat high blood pressure, as they work by relaxing blood vessels and increasing the supply of blood oxygen to the heart while reducing its workload (Shoukry & Shoukry, 2008[Shoukry, A. A. & Shoukry, M. M. (2008). Spectrochim. Acta Part A, 70, 686-691.]). The chemical properties of hydrazone compounds are also inter­esting because their nature as polydentate ligands makes them very versatile mol­ecules. The physiological importance of hydralazine derivatives has led to great inter­est in their complexation tendency with metal ions, especially with transition-metal ions of biological importance. The coordination chemistry of hydrazones is being studied in connection with their increasing use as pharmaceuticals and analytical reagents. Few complexes of 1-phthalazinylhydrazone have been reported (Al'-Assar et al., 1992[Al'-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P. & Chakchir, B. A. (1992). Pharm. Chem. 36, 598-603.]; Kogan et al., 2009[Kogan, V. A., Levchenkov, S. I., Popov, L. D. & Shcherbakov, I. A. (2009). Russ. J. Gen. Chem. 79, 2767-2775.]; Holló et al., 2014[Holló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). Polyhedron, 80, 142-150.]; Bakale et al., 2014b[Bakale, R. S., Pathan, A. H., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2014b). Appl. Organomet. Chem. 28, 720-724.]; Levchenkov et al., 2015[Levchenkov, S. I., Popov, L. D., Efimov, N. N., Minin, V. V., Ugolkova, E. A., Aleksandrov, G. G., Starikova, Z. A., Shcherbakov, I. N., Ionov, A. M. & Kogan, V. A. (2015). Russ. J. Inorg. Chem. 60, 1129-1136.]). In a continuation of our studies of hydralazine derivatives and their complexes (Nfor et al., 2013[Nfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207-213.]; Majoumo-Mbe et al., 2015[Majoumo-Mbe, F., Nfor, E. N., Sengeh, E. B., Njong, R. N. & Ofiong, O. E. (2015). Commun. Inorg. Synth, 3, 40-46.]), we herein report the preparation and the structural study of the title compound, also known as 2-acetyl­thio­phene-1-phthalazinylhydrazone.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system (space group P21/n) with two independent mol­ecules, 1 and 2, in the asymmetric unit, as shown in Fig. 1[link] (atoms in mol­ecule 2 have the suffix B).

[Figure 1]
Figure 1
Mol­ecular structure of the two independent mol­ecules (1 and 2) with the labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

There are slight differences between the mol­ecules, as shown in Fig. 2[link], with an r.m.s. fit of 0.428 (1) Å for the 19 non-H atoms. This deviation arises from the different orientations of the thio­phene moiety. The dihedral angle between the thio­phene ring and the phthalazine ring system is 42.51 (1)° in mol­ecule 1 compared to 8.48 (1)° in mol­ecule 2.

[Figure 2]
Figure 2
A view of the overlay (Mercury; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) of the two independent mol­ecules (colour code: red = mol­ecule 1, black = mol­ecule 2).

In both mol­ecules, the thio­phene rings (C10–C13/S1) are in a planar conformation with a maximum deviation of 0.006 (1) Å for S1 in mol­ecule 1 and of 0.003 (1) Å for S1B in mol­ecule 2. The phthalazine ring systems are also essentially planar with maximum deviations from the best plane of the ten-membered ring systems of 0.003 (1) Å for N1 in mol­ecule 1 and 0.022 (1) Å for C8B in mol­ecule 2. The lengths of the N4—C9 and N4B—C9B bonds of 1.294 (2) and 1.296 (2) Å, respectively, are in agreement with that of an N=Csp2 bond (1.282 ±0.060) Å found in the CSD (Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for acyclic nitro­gen and carbon atoms in organic compounds. This confirms the condensation reaction between the two reagents. The hydrogen atoms H2 and H2B bonded respectively to N2 and N2B (see Table 1[link]) indicate that proton transfer from the imino nitro­gen atoms N3 and N3B has occurred. The latter is confirmed by the double-bond character of N3—C8 [1.306 (2) Å] and N3B—C8B [1.309 (2) Å] and the single-bond character of N3—N4 [1.398 (2) Å] and N3B—N4B [1.400 (2) Å]. Indeed, these values are in agreement with the bond lengths for C=N and N-N bonds (1.3 ± 0.1 and 1.4 ± 0.1 Å, respectively) in the C=N—N fragment with a cyclic carbon atom and acyclic nitro­gen atoms for organic compounds in the CSD. Such a proton transfer has been reported in other hydrazinophthal­azine derivatives (Ianelli et al., 2002[Ianelli, S. & Carcelli, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 203-204.]; Butcher et al., 2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Vijesh, A. M. & Narayana, B. (2007). Acta Cryst. E63, o3674.]; Popov et al., 2012[Popov, L. D., Levchenkov, S. I., Scherbakov, I. N., Starikova, Z. A., Kaimakan, E. B. & Lukov, V. V. (2012). Russ. J. Gen. Chem. 82, 465-467.]; Nfor et al., 2013[Nfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207-213.]; Majoumo-Mbe et al., 2015[Majoumo-Mbe, F., Nfor, E. N., Sengeh, E. B., Njong, R. N. & Ofiong, O. E. (2015). Commun. Inorg. Synth, 3, 40-46.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–4 are the centroids of the S1B/C10B–C13B, N1B/C1B/C2B/C7B/C8B/N2B, C2B–C7B, and S1/C10–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4B 0.90 (2) 2.26 (2) 3.131 (2) 165 (2)
C13—H13⋯N1i 0.94 (2) 2.61 (2) 3.387 (2) 140 (2)
N2B—H2B⋯N4 0.91 (2) 2.04 (2) 2.897 (2) 157 (2)
C3B—H3BCg4ii 0.96 (2) 2.94 (2) 3.808 (2) 151 (2)
C11—H11⋯Cg2iii 0.93 (2) 2.59 (2) 3.3796 (19) 143 (2)
Cg1⋯Cg2iv     3.519 (2)  
Cg1⋯Cg3iv     3.829 (2)  
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y, -z.

3. Supra­molecular features

Mol­ecules 1 and 2 are linked via two N—H⋯N hydrogen bonds (see Table 1[link]), forming dimers which are held together by two bifurcated ππ inter­actions (Table 1[link]) between the phthalazine and thio­phene moieties, as shown in Fig. 3[link]. Similar bifurcated ππ inter­actions are also observed in 3-(benzo­thia­zol-2-yl)thio­phene (Nguyen Ngoc et al., 2017[Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647-1651.]). The resulting tetra­mers in the title compound are packed in a tilted herringbone motif. As shown in Fig. 4[link], they inter­act via the C13—H13⋯N1i hydrogen bonds and C3B—H3BCg4ii inter­actions along the b-axis direction (Fig. 4[link]) and in the ac plane via C11—H11⋯Cg2iii inter­actions (Fig. 5[link]). The resulting packing shows small voids of 12.94 Å3 (0.5% of the unit cell; calculated with a probe radius of 1.2 Å by using the contact surface).

[Figure 3]
Figure 3
The packing of dimers of mol­ecules 1 and 2 (symmetry code as in Table 1[link]).
[Figure 4]
Figure 4
Packing mode of the tetra­mers in a herringbone motif. [Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z; (iv) −x + 1, −y, −z; (v) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (vi) x, y − 1, z; (vii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]].
[Figure 5]
Figure 5
Packing mode of the tetra­mers in the ac plane. [Symmetry codes: (iii) 1 + x, y, z; (viii) x − 1, y, z; (ix) −x, −y, −z.]

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-acetyl­thio­phene-1-phthalazinylhydrazone derivatives did not give any hits. A search for structures in which the phthalazine ring exhibits bifurcated ππ inter­actions similar to those observed in the title structure gave six hits for organic compounds, all of which have six-membered rings: GUTYAX, GUTYOL, GUTYUR and GUTZIG (Trzesowska-Kruszynska, 2015[Trzesowska-Kruszynska, A. (2015). CrystEngComm, 17, 7702-7716.]), HILWAB (Büyükgüngör et al., 2007[Büyükgüngör, O., Odabaşoğlu, M., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4084-o4085.]) and TOMKIR (Bakale et al., 2014a[Bakale, R. P., Naik, G. N., Mangannavar, C. V., Muchchandi, I. S., Shcherbakov, I. N., Frampton, C. & Gudasi, K. B. (2014a). Eur. J. Med. Chem. 73, 38-45.]). None of these crystals exhibits a packing mode with a tetra­meric motif similar to that reported in this work.

5. Synthesis and crystallization

The title mol­ecule was prepared by condensation of 2-acetyl­thio­phene (2.54 g, 20 mmol) and hydralazine hydro­chloride (3.94 g, 20 mmol) in 20 ml of methanol and 10 ml of aqueous solution of sodium acetate (1.64 g, 20 mmol) as buffering agent. The mixture was refluxed at 338 K under stirring for four h. The product was left overnight to cool. The yellow precipitate was filtered off and washed several times with water and methanol, and finally crystallized from a mixture of DMF/methanol (2:1) as yellow crystals (in a yield of around 80%) suitable for single-crystal X-ray diffraction studies.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms could be located in difference-density Fourier maps. They were refined isotropically with Uiso(H)= 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C14H12N4S
Mr 268.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 130
a, b, c (Å) 8.9210 (2), 11.6792 (2), 24.7020 (4)
β (°) 90.051 (2)
V3) 2573.70 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.995, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 22778, 7849, 5743
Rint 0.043
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.02
No. of reflections 7849
No. of parameters 415
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.32, −0.40
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

1-(1,2-Dihydrophthalazin-1-ylidene)-2-[1-(thiophen-2-yl)ethylidene]hydrazine top
Crystal data top
C14H12N4SF(000) = 1120
Mr = 268.34Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9210 (2) ÅCell parameters from 5823 reflections
b = 11.6792 (2) Åθ = 2.9–31.2°
c = 24.7020 (4) ŵ = 0.24 mm1
β = 90.051 (2)°T = 130 K
V = 2573.70 (8) Å3Prism, clear intense yellow
Z = 80.2 × 0.2 × 0.1 mm
Data collection top
Agilent Xcalibur, Sapphire3, Gemini
diffractometer
7849 independent reflections
Radiation source: Enhance (Mo) X-ray Source5743 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.043
ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1212
Tmin = 0.995, Tmax = 1k = 1614
22778 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.105Only H-atom coordinates refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.0293P]
where P = (Fo2 + 2Fc2)/3
7849 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94607 (5)0.48983 (4)0.18553 (2)0.02313 (10)
N10.38700 (18)0.24390 (13)0.23474 (6)0.0318 (4)
N20.49212 (17)0.28369 (13)0.19925 (6)0.0262 (3)
N30.66086 (16)0.42226 (12)0.16566 (6)0.0230 (3)
N40.68717 (16)0.34078 (12)0.12535 (6)0.0242 (3)
C10.3446 (2)0.31335 (17)0.27251 (8)0.0308 (4)
C20.39880 (19)0.42891 (15)0.27863 (7)0.0235 (3)
C30.3449 (2)0.50298 (17)0.31884 (7)0.0294 (4)
C40.3953 (2)0.61410 (17)0.32093 (7)0.0307 (4)
C50.5009 (2)0.65325 (16)0.28398 (8)0.0296 (4)
C60.5571 (2)0.58127 (15)0.24471 (7)0.0232 (3)
C70.50579 (18)0.46846 (14)0.24163 (6)0.0199 (3)
C80.55718 (18)0.38990 (14)0.19964 (6)0.0207 (3)
C90.82401 (19)0.33588 (14)0.10820 (6)0.0218 (3)
C100.95080 (18)0.39951 (14)0.12963 (6)0.0204 (3)
C111.0950 (2)0.39353 (15)0.10989 (7)0.0256 (4)
C121.1994 (2)0.45958 (16)0.13921 (8)0.0300 (4)
C131.1348 (2)0.51514 (16)0.18139 (8)0.0296 (4)
C140.8531 (2)0.25334 (18)0.06250 (8)0.0307 (4)
H20.512 (2)0.2355 (18)0.1720 (8)0.037*
H10.269 (2)0.2820 (17)0.2976 (8)0.037*
H30.274 (2)0.4743 (17)0.3430 (8)0.037*
H40.358 (2)0.6664 (18)0.3478 (8)0.037*
H50.535 (2)0.7318 (18)0.2848 (8)0.037*
H60.631 (2)0.6036 (17)0.2200 (8)0.037*
H111.119 (2)0.3497 (18)0.0797 (9)0.037*
H121.304 (2)0.4642 (17)0.1304 (8)0.037*
H131.178 (2)0.5639 (18)0.2072 (8)0.037*
H14A0.893 (2)0.2920 (18)0.0310 (9)0.037*
H14B0.932 (2)0.1956 (18)0.0732 (8)0.037*
H14C0.764 (2)0.2144 (18)0.0526 (8)0.037*
S1B0.36400 (5)0.14245 (4)0.06118 (2)0.02429 (10)
N1B0.41957 (17)0.39056 (12)0.03070 (6)0.0272 (3)
N2B0.43791 (16)0.28603 (12)0.05466 (6)0.0227 (3)
N3B0.38510 (15)0.08995 (12)0.06759 (6)0.0224 (3)
N4B0.49714 (16)0.09992 (12)0.10701 (6)0.0232 (3)
C1B0.3204 (2)0.39742 (16)0.00702 (7)0.0278 (4)
C2B0.22946 (19)0.30252 (15)0.02516 (7)0.0241 (3)
C3B0.1233 (2)0.31324 (17)0.06684 (7)0.0308 (4)
C4B0.0420 (2)0.21961 (18)0.08347 (7)0.0310 (4)
C5B0.0654 (2)0.11288 (16)0.05935 (7)0.0280 (4)
C6B0.16841 (19)0.10032 (15)0.01843 (7)0.0237 (3)
C7B0.25136 (18)0.19541 (14)0.00046 (6)0.0208 (3)
C8B0.36158 (18)0.18738 (14)0.04280 (6)0.0203 (3)
C9B0.54790 (18)0.00318 (14)0.12500 (6)0.0215 (3)
C10B0.49778 (18)0.11113 (14)0.10992 (6)0.0213 (3)
C11B0.5481 (2)0.21069 (16)0.13366 (7)0.0273 (4)
C12B0.4792 (2)0.31014 (17)0.11303 (8)0.0321 (4)
C13B0.3777 (2)0.28606 (16)0.07399 (8)0.0302 (4)
C14B0.6704 (2)0.01133 (18)0.16641 (8)0.0287 (4)
H2B0.512 (2)0.2829 (17)0.0797 (8)0.034*
H1B0.310 (2)0.4713 (18)0.0238 (8)0.034*
H3B0.110 (2)0.3875 (18)0.0833 (8)0.034*
H4B0.029 (2)0.2277 (17)0.1119 (8)0.034*
H5B0.008 (2)0.0479 (18)0.0722 (8)0.034*
H6B0.184 (2)0.0280 (18)0.0021 (8)0.034*
H11B0.623 (2)0.2118 (17)0.1613 (8)0.034*
H12B0.499 (2)0.3842 (18)0.1251 (8)0.034*
H13B0.318 (2)0.3381 (18)0.0541 (8)0.034*
H14D0.639 (2)0.0227 (17)0.2010 (9)0.034*
H14E0.696 (2)0.0877 (18)0.1720 (8)0.034*
H14F0.759 (2)0.0329 (17)0.1540 (8)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0273 (2)0.0221 (2)0.02000 (19)0.00066 (16)0.00166 (16)0.00281 (16)
N10.0351 (9)0.0281 (8)0.0324 (8)0.0089 (7)0.0047 (7)0.0011 (7)
N20.0319 (8)0.0216 (7)0.0250 (7)0.0041 (6)0.0033 (6)0.0033 (6)
N30.0234 (7)0.0238 (7)0.0218 (7)0.0014 (6)0.0006 (6)0.0056 (6)
N40.0254 (7)0.0253 (7)0.0219 (7)0.0024 (6)0.0013 (6)0.0062 (6)
C10.0314 (10)0.0323 (10)0.0287 (9)0.0063 (8)0.0050 (8)0.0020 (8)
C20.0228 (8)0.0265 (9)0.0213 (8)0.0015 (7)0.0024 (6)0.0012 (7)
C30.0257 (9)0.0384 (11)0.0240 (9)0.0051 (8)0.0019 (7)0.0001 (8)
C40.0331 (10)0.0342 (10)0.0248 (9)0.0101 (8)0.0035 (7)0.0082 (8)
C50.0352 (10)0.0243 (9)0.0293 (9)0.0034 (8)0.0065 (8)0.0047 (8)
C60.0247 (8)0.0227 (8)0.0222 (8)0.0002 (7)0.0037 (7)0.0005 (7)
C70.0190 (8)0.0229 (8)0.0178 (7)0.0018 (6)0.0038 (6)0.0014 (6)
C80.0199 (8)0.0207 (8)0.0214 (8)0.0009 (6)0.0034 (6)0.0016 (6)
C90.0247 (8)0.0214 (8)0.0192 (7)0.0015 (6)0.0004 (6)0.0011 (6)
C100.0255 (8)0.0176 (7)0.0181 (7)0.0008 (6)0.0010 (6)0.0000 (6)
C110.0249 (9)0.0249 (9)0.0270 (9)0.0012 (7)0.0024 (7)0.0024 (7)
C120.0230 (9)0.0290 (10)0.0380 (10)0.0028 (7)0.0013 (8)0.0039 (8)
C130.0304 (9)0.0264 (9)0.0319 (10)0.0041 (7)0.0070 (8)0.0030 (8)
C140.0283 (10)0.0369 (11)0.0271 (9)0.0037 (8)0.0014 (8)0.0114 (8)
S1B0.0258 (2)0.0226 (2)0.0244 (2)0.00187 (17)0.00405 (16)0.00243 (17)
N1B0.0334 (8)0.0215 (7)0.0267 (7)0.0059 (6)0.0031 (6)0.0010 (6)
N2B0.0247 (7)0.0217 (7)0.0217 (7)0.0039 (6)0.0014 (6)0.0000 (6)
N3B0.0229 (7)0.0221 (7)0.0223 (7)0.0035 (6)0.0045 (6)0.0007 (6)
N4B0.0234 (7)0.0246 (7)0.0218 (7)0.0022 (6)0.0051 (6)0.0020 (6)
C1B0.0344 (10)0.0211 (8)0.0280 (9)0.0034 (7)0.0011 (8)0.0033 (7)
C2B0.0263 (9)0.0243 (8)0.0216 (8)0.0011 (7)0.0021 (7)0.0025 (7)
C3B0.0360 (10)0.0305 (10)0.0260 (9)0.0019 (8)0.0032 (8)0.0075 (8)
C4B0.0279 (9)0.0410 (11)0.0240 (9)0.0005 (8)0.0056 (7)0.0032 (8)
C5B0.0270 (9)0.0307 (10)0.0263 (9)0.0053 (7)0.0023 (7)0.0012 (8)
C6B0.0239 (8)0.0226 (8)0.0245 (8)0.0030 (7)0.0007 (7)0.0002 (7)
C7B0.0199 (8)0.0233 (8)0.0192 (7)0.0019 (6)0.0026 (6)0.0013 (6)
C8B0.0205 (8)0.0213 (8)0.0191 (7)0.0022 (6)0.0026 (6)0.0016 (6)
C9B0.0220 (8)0.0252 (8)0.0173 (7)0.0022 (6)0.0006 (6)0.0017 (6)
C10B0.0208 (8)0.0242 (8)0.0190 (7)0.0014 (6)0.0007 (6)0.0012 (6)
C11B0.0287 (9)0.0261 (9)0.0271 (9)0.0009 (7)0.0034 (7)0.0028 (7)
C12B0.0365 (11)0.0230 (9)0.0369 (10)0.0028 (8)0.0015 (8)0.0037 (8)
C13B0.0345 (10)0.0223 (9)0.0337 (10)0.0049 (8)0.0016 (8)0.0045 (8)
C14B0.0302 (10)0.0305 (10)0.0255 (9)0.0001 (8)0.0082 (7)0.0022 (8)
Geometric parameters (Å, º) top
S1—C101.7383 (16)S1B—C10B1.7336 (17)
S1—C131.7122 (19)S1B—C13B1.7112 (19)
N1—N21.366 (2)N1B—N2B1.366 (2)
N1—C11.293 (2)N1B—C1B1.287 (2)
N2—C81.369 (2)N2B—C8B1.370 (2)
N2—H20.90 (2)N2B—H2B0.91 (2)
N3—N41.3975 (18)N3B—N4B1.3996 (19)
N3—C81.306 (2)N3B—C8B1.309 (2)
N4—C91.294 (2)N4B—C9B1.296 (2)
C1—C21.442 (3)C1B—C2B1.445 (2)
C1—H10.99 (2)C1B—H1B0.96 (2)
C2—C31.402 (2)C2B—C3B1.404 (2)
C2—C71.400 (2)C2B—C7B1.405 (2)
C3—C41.374 (3)C3B—C4B1.375 (3)
C3—H30.93 (2)C3B—H3B0.96 (2)
C4—C51.389 (3)C4B—C5B1.397 (3)
C4—H40.96 (2)C4B—H4B0.95 (2)
C5—C61.379 (2)C5B—C6B1.373 (2)
C5—H50.97 (2)C5B—H5B0.97 (2)
C6—C71.397 (2)C6B—C7B1.406 (2)
C6—H60.93 (2)C6B—H6B0.95 (2)
C7—C81.459 (2)C7B—C8B1.454 (2)
C9—C101.453 (2)C9B—C10B1.456 (2)
C9—C141.507 (2)C9B—C14B1.499 (2)
C10—C111.378 (2)C10B—C11B1.377 (2)
C11—C121.409 (3)C11B—C12B1.409 (3)
C11—H110.93 (2)C11B—H11B0.96 (2)
C12—C131.357 (3)C12B—C13B1.352 (3)
C12—H120.96 (2)C12B—H12B0.93 (2)
C13—H130.94 (2)C13B—H13B0.94 (2)
C14—H14A0.97 (2)C14B—H14D0.98 (2)
C14—H14B1.01 (2)C14B—H14E0.93 (2)
C14—H14C0.95 (2)C14B—H14F0.99 (2)
C13—S1—C1091.87 (9)C13B—S1B—C10B91.68 (9)
C1—N1—N2116.82 (15)C1B—N1B—N2B116.82 (15)
N1—N2—C8126.50 (15)N1B—N2B—C8B126.83 (15)
N1—N2—H2113.9 (13)N1B—N2B—H2B114.7 (13)
C8—N2—H2119.4 (13)C8B—N2B—H2B118.4 (13)
C8—N3—N4112.37 (14)C8B—N3B—N4B111.54 (13)
C9—N4—N3115.00 (14)C9B—N4B—N3B114.53 (14)
N1—C1—C2124.37 (17)N1B—C1B—C2B124.21 (17)
N1—C1—H1114.9 (12)N1B—C1B—H1B115.9 (12)
C2—C1—H1120.7 (12)C2B—C1B—H1B119.9 (12)
C3—C2—C1122.45 (16)C3B—C2B—C1B122.50 (16)
C7—C2—C1117.98 (16)C3B—C2B—C7B119.42 (16)
C7—C2—C3119.54 (16)C7B—C2B—C1B118.07 (16)
C2—C3—H3117.7 (13)C2B—C3B—H3B118.1 (12)
C4—C3—C2119.78 (17)C4B—C3B—C2B120.23 (17)
C4—C3—H3122.5 (13)C4B—C3B—H3B121.7 (12)
C3—C4—C5120.53 (17)C3B—C4B—C5B120.24 (17)
C3—C4—H4120.8 (13)C3B—C4B—H4B119.5 (12)
C5—C4—H4118.7 (13)C5B—C4B—H4B120.2 (12)
C4—C5—H5120.9 (12)C4B—C5B—H5B118.6 (12)
C6—C5—C4120.59 (18)C6B—C5B—C4B120.59 (17)
C6—C5—H5118.5 (12)C6B—C5B—H5B120.8 (12)
C5—C6—C7119.60 (17)C5B—C6B—C7B119.97 (17)
C5—C6—H6123.1 (13)C5B—C6B—H6B120.4 (13)
C7—C6—H6117.3 (13)C7B—C6B—H6B119.6 (13)
C2—C7—C8118.12 (15)C2B—C7B—C6B119.54 (16)
C6—C7—C2119.94 (15)C2B—C7B—C8B118.03 (15)
C6—C7—C8121.92 (15)C6B—C7B—C8B122.42 (15)
N2—C8—C7116.19 (14)N2B—C8B—C7B116.01 (15)
N3—C8—N2123.93 (15)N3B—C8B—N2B123.47 (15)
N3—C8—C7119.88 (15)N3B—C8B—C7B120.52 (15)
N4—C9—C10126.35 (15)N4B—C9B—C10B127.20 (15)
N4—C9—C14115.90 (15)N4B—C9B—C14B115.65 (15)
C10—C9—C14117.73 (15)C10B—C9B—C14B117.14 (15)
C9—C10—S1125.48 (12)C9B—C10B—S1B125.60 (13)
C11—C10—S1109.58 (13)C11B—C10B—S1B109.97 (13)
C11—C10—C9124.89 (15)C11B—C10B—C9B124.41 (16)
C10—C11—C12114.04 (16)C10B—C11B—C12B113.57 (17)
C10—C11—H11121.9 (13)C10B—C11B—H11B122.9 (12)
C12—C11—H11124.1 (13)C12B—C11B—H11B123.5 (12)
C11—C12—H12123.9 (12)C11B—C12B—H12B124.4 (13)
C13—C12—C11112.03 (17)C13B—C12B—C11B112.22 (17)
C13—C12—H12124.1 (12)C13B—C12B—H12B123.4 (13)
S1—C13—H13118.1 (13)S1B—C13B—H13B119.7 (13)
C12—C13—S1112.47 (14)C12B—C13B—S1B112.55 (15)
C12—C13—H13129.4 (13)C12B—C13B—H13B127.8 (13)
C9—C14—H14A111.6 (12)C9B—C14B—H14D111.0 (12)
C9—C14—H14B110.6 (12)C9B—C14B—H14E110.1 (13)
C9—C14—H14C110.8 (13)C9B—C14B—H14F109.7 (12)
H14A—C14—H14B105.4 (17)H14D—C14B—H14E109.2 (17)
H14A—C14—H14C108.9 (18)H14D—C14B—H14F106.6 (16)
H14B—C14—H14C109.3 (17)H14E—C14B—H14F110.1 (17)
Hydrogen-bond geometry (Å, º) top
Cg1–4 are the centroids of the S1B/C10B–C13B, N1B/C1B/C2B/C7B/C8B/N2B, C2B–C7B, and S1/C10–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N4B0.90 (2)2.26 (2)3.131 (2)165 (2)
C13—H13···N1i0.94 (2)2.61 (2)3.387 (2)140 (2)
N2B—H2B···N40.91 (2)2.04 (2)2.897 (2)157 (2)
C3B—H3B···Cg4ii0.96 (2)2.94 (2)3.808 (2)151 (2)
C11—H11···Cg2iii0.93 (2)2.59 (2)3.3796 (19)143 (2)
Cg1···Cg2iv3.519 (2)
Cg1···Cg3iv3.829 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z.
 

Acknowledgements

The authors thank Dr Peter Loennecke of the University of Leipzig, Germany, for the crystal structure determination. The Cambridge Crystallographic Data Center (CCDC) is thanked for their initiative to promote structural studies in Africa and particularly in the University of Dschang (Cameroon) through the FAIRE Programme.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAl'-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P. & Chakchir, B. A. (1992). Pharm. Chem. 36, 598–603.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBakale, R. P., Naik, G. N., Mangannavar, C. V., Muchchandi, I. S., Shcherbakov, I. N., Frampton, C. & Gudasi, K. B. (2014a). Eur. J. Med. Chem. 73, 38–45.  CrossRef CAS Google Scholar
First citationBakale, R. S., Pathan, A. H., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2014b). Appl. Organomet. Chem. 28, 720–724.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Vijesh, A. M. & Narayana, B. (2007). Acta Cryst. E63, o3674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4084–o4085.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDraey, J. & Tripod, I. (1967). Antihypertensive Agent, 7, 223.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). Polyhedron, 80, 142–150.  Google Scholar
First citationIanelli, S. & Carcelli, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 203–204.  CAS Google Scholar
First citationJackson, S. H., Shepherd, A. M. M., Ludden, T. M., Jamieson, M. J., Woodworth, J., Rogers, D., Ludden, L. K. & Muir, K. T. (1990). J. Cardiovasc. Pharmacol. 16, 624–628.  CrossRef CAS Google Scholar
First citationKaminskas, L. M., Pyke, S. M. & Burcham, P. C. (2004). J. Pharmacol. Exp. Ther. 310, 1003–1010.  CrossRef CAS Google Scholar
First citationKogan, V. A., Levchenkov, S. I., Popov, L. D. & Shcherbakov, I. A. (2009). Russ. J. Gen. Chem. 79, 2767–2775.  CrossRef CAS Google Scholar
First citationLevchenkov, S. I., Popov, L. D., Efimov, N. N., Minin, V. V., Ugolkova, E. A., Aleksandrov, G. G., Starikova, Z. A., Shcherbakov, I. N., Ionov, A. M. & Kogan, V. A. (2015). Russ. J. Inorg. Chem. 60, 1129–1136.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajoumo-Mbe, F., Nfor, E. N., Sengeh, E. B., Njong, R. N. & Ofiong, O. E. (2015). Commun. Inorg. Synth, 3, 40–46.  Google Scholar
First citationNfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207–213.  CrossRef CAS Google Scholar
First citationNguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651.  CrossRef IUCr Journals Google Scholar
First citationPopov, L. D., Levchenkov, S. I., Scherbakov, I. N., Starikova, Z. A., Kaimakan, E. B. & Lukov, V. V. (2012). Russ. J. Gen. Chem. 82, 465–467.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoukry, A. A. & Shoukry, M. M. (2008). Spectrochim. Acta Part A, 70, 686–691.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzesowska-Kruszynska, A. (2015). CrystEngComm, 17, 7702–7716.  CAS Google Scholar
First citationVicini, P., Incerti, M., Doytchinova, I. A., La Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624–632.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZelenin, K. N., Khorseeva, L. A. & Alekseev, V. V. (1992). Pharm. Chem. J. 26, 395–405.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds