research communications
Synthesis, molecular and
of 1-(1,2-dihydrophthalazin-1-ylidene)-2-[1-(thiophen-2-yl)ethylidene]hydrazineaDepartment of Chemistry, University of Buea, PO Box 63 Buea, Cameroon, and bDepartment of Chemistry, University of Dschang, PO Box 67, Dschang, Cameroon
*Correspondence e-mail: fmajoumo@yahoo.fr
The title compound, C14H12N4S, was synthesized by the condensation reaction of hydralazine and 2-acetylthiophene and during the reaction, a proton transfer from the imino nitrogen atom to one of the endocylic nitrogen atoms occurred. The compound crystallizes in the monoclinic with two independent molecules (molecules 1 and 2) in the In each molecule, there is a slight difference in the orientation of the thiophene ring with respect to phthalazine ring system, molecule 1 showing a dihedral angle of 42.51 (1)° compared to 8.48 (1)° in molecule 2. This implies an r.m.s deviation of 0.428 (1) Å between the two molecules for the 19 non-H atoms. The two independent molecules are connected via two N—H⋯N hydrogen bonds, forming dimers which interact by two bifurcated π–π stacking interactions to build tetrameric motifs. The latter are packed in the ac plane via weak C—H⋯π interactions and along the b axis via C—H ⋯N and C—H⋯π interactions. This results a three-dimensional architecture with a tilted herringbone packing mode.
Keywords: 2-Acetylthiophene-1-phthalazinylhydrazone; bifurcated stacking interactions; tetramers; condensation reaction; co-planar rings; chevron-shaped motifs; C—H⋯π interactions; crystal structure.
CCDC reference: 1891271
1. Chemical context
Hydralazine compounds are being studied intensively for their biological and chemical properties, the former giving them interesting pharmacological properties (antimicrobial, antimalarial and antitumor activity; Jackson et al., 1990; Zelenin et al., 1992; Kaminskas et al., 2004; Vicini et al., 2006). They also find wide applications in the treatment of tuberculosis, leprosy and mental disorder. Furthermore, there is considerable research interest in 1-hydrazinophthalazine (hydralazine) because its hydrochloride is an effective drug for the emergency reduction of blood pressure in hypertensive crises (Draey & Tripod, 1967). It has also been reported that a combination of hydralazine and hydrochlorothiazide is being used to treat high blood pressure, as they work by relaxing blood vessels and increasing the supply of blood oxygen to the heart while reducing its workload (Shoukry & Shoukry, 2008). The chemical properties of hydrazone compounds are also interesting because their nature as polydentate ligands makes them very versatile molecules. The physiological importance of hydralazine derivatives has led to great interest in their complexation tendency with metal ions, especially with transition-metal ions of biological importance. The coordination chemistry of is being studied in connection with their increasing use as pharmaceuticals and analytical reagents. Few complexes of 1-phthalazinylhydrazone have been reported (Al'-Assar et al., 1992; Kogan et al., 2009; Holló et al., 2014; Bakale et al., 2014b; Levchenkov et al., 2015). In a continuation of our studies of hydralazine derivatives and their complexes (Nfor et al., 2013; Majoumo-Mbe et al., 2015), we herein report the preparation and the structural study of the title compound, also known as 2-acetylthiophene-1-phthalazinylhydrazone.
2. Structural commentary
The title compound crystallizes in the monoclinic P21/n) with two independent molecules, 1 and 2, in the as shown in Fig. 1 (atoms in molecule 2 have the suffix B).
(space groupThere are slight differences between the molecules, as shown in Fig. 2, with an r.m.s. fit of 0.428 (1) Å for the 19 non-H atoms. This deviation arises from the different orientations of the thiophene moiety. The dihedral angle between the thiophene ring and the phthalazine ring system is 42.51 (1)° in molecule 1 compared to 8.48 (1)° in molecule 2.
In both molecules, the thiophene rings (C10–C13/S1) are in a planar conformation with a maximum deviation of 0.006 (1) Å for S1 in molecule 1 and of 0.003 (1) Å for S1B in molecule 2. The phthalazine ring systems are also essentially planar with maximum deviations from the best plane of the ten-membered ring systems of 0.003 (1) Å for N1 in molecule 1 and 0.022 (1) Å for C8B in molecule 2. The lengths of the N4—C9 and N4B—C9B bonds of 1.294 (2) and 1.296 (2) Å, respectively, are in agreement with that of an N=Csp2 bond (1.282 ±0.060) Å found in the CSD (Version 5.39, update of August 2018; Groom et al., 2016) for acyclic nitrogen and carbon atoms in organic compounds. This confirms the condensation reaction between the two reagents. The hydrogen atoms H2 and H2B bonded respectively to N2 and N2B (see Table 1) indicate that proton transfer from the imino nitrogen atoms N3 and N3B has occurred. The latter is confirmed by the double-bond character of N3—C8 [1.306 (2) Å] and N3B—C8B [1.309 (2) Å] and the single-bond character of N3—N4 [1.398 (2) Å] and N3B—N4B [1.400 (2) Å]. Indeed, these values are in agreement with the bond lengths for C=N and N-N bonds (1.3 ± 0.1 and 1.4 ± 0.1 Å, respectively) in the C=N—N fragment with a cyclic carbon atom and acyclic nitrogen atoms for organic compounds in the CSD. Such a proton transfer has been reported in other hydrazinophthalazine derivatives (Ianelli et al., 2002; Butcher et al., 2007; Popov et al., 2012; Nfor et al., 2013; Majoumo-Mbe et al., 2015).
3. Supramolecular features
Molecules 1 and 2 are linked via two N—H⋯N hydrogen bonds (see Table 1), forming dimers which are held together by two bifurcated π–π interactions (Table 1) between the phthalazine and thiophene moieties, as shown in Fig. 3. Similar bifurcated π–π interactions are also observed in 3-(benzothiazol-2-yl)thiophene (Nguyen Ngoc et al., 2017). The resulting tetramers in the title compound are packed in a tilted herringbone motif. As shown in Fig. 4, they interact via the C13—H13⋯N1i hydrogen bonds and C3B—H3B⋯Cg4ii interactions along the b-axis direction (Fig. 4) and in the ac plane via C11—H11⋯Cg2iii interactions (Fig. 5). The resulting packing shows small voids of 12.94 Å3 (0.5% of the calculated with a probe radius of 1.2 Å by using the contact surface).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) for 2-acetylthiophene-1-phthalazinylhydrazone derivatives did not give any hits. A search for structures in which the phthalazine ring exhibits bifurcated π–π interactions similar to those observed in the title structure gave six hits for organic compounds, all of which have six-membered rings: GUTYAX, GUTYOL, GUTYUR and GUTZIG (Trzesowska-Kruszynska, 2015), HILWAB (Büyükgüngör et al., 2007) and TOMKIR (Bakale et al., 2014a). None of these crystals exhibits a packing mode with a tetrameric motif similar to that reported in this work.
5. Synthesis and crystallization
The title molecule was prepared by condensation of 2-acetylthiophene (2.54 g, 20 mmol) and hydralazine hydrochloride (3.94 g, 20 mmol) in 20 ml of methanol and 10 ml of aqueous solution of sodium acetate (1.64 g, 20 mmol) as buffering agent. The mixture was refluxed at 338 K under stirring for four h. The product was left overnight to cool. The yellow precipitate was filtered off and washed several times with water and methanol, and finally crystallized from a mixture of DMF/methanol (2:1) as yellow crystals (in a yield of around 80%) suitable for single-crystal X-ray diffraction studies.
6. Refinement
Crystal data, data collection and structure . All H atoms could be located in difference-density Fourier maps. They were refined isotropically with Uiso(H)= 1.2Ueq(C,N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1891271
https://doi.org/10.1107/S2056989019000732/lh5889sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989019000732/lh5889Isup2.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).C14H12N4S | F(000) = 1120 |
Mr = 268.34 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9210 (2) Å | Cell parameters from 5823 reflections |
b = 11.6792 (2) Å | θ = 2.9–31.2° |
c = 24.7020 (4) Å | µ = 0.24 mm−1 |
β = 90.051 (2)° | T = 130 K |
V = 2573.70 (8) Å3 | Prism, clear intense yellow |
Z = 8 | 0.2 × 0.2 × 0.1 mm |
Agilent Xcalibur, Sapphire3, Gemini diffractometer | 7849 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5743 reflections with I > 2σ(I) |
Detector resolution: 16.356 pixels mm-1 | Rint = 0.043 |
ω scans | θmax = 30.5°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −12→12 |
Tmin = 0.995, Tmax = 1 | k = −16→14 |
22778 measured reflections | l = −34→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.105 | Only H-atom coordinates refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0334P)2 + 1.0293P] where P = (Fo2 + 2Fc2)/3 |
7849 reflections | (Δ/σ)max < 0.001 |
415 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.94607 (5) | 0.48983 (4) | 0.18553 (2) | 0.02313 (10) | |
N1 | 0.38700 (18) | 0.24390 (13) | 0.23474 (6) | 0.0318 (4) | |
N2 | 0.49212 (17) | 0.28369 (13) | 0.19925 (6) | 0.0262 (3) | |
N3 | 0.66086 (16) | 0.42226 (12) | 0.16566 (6) | 0.0230 (3) | |
N4 | 0.68717 (16) | 0.34078 (12) | 0.12535 (6) | 0.0242 (3) | |
C1 | 0.3446 (2) | 0.31335 (17) | 0.27251 (8) | 0.0308 (4) | |
C2 | 0.39880 (19) | 0.42891 (15) | 0.27863 (7) | 0.0235 (3) | |
C3 | 0.3449 (2) | 0.50298 (17) | 0.31884 (7) | 0.0294 (4) | |
C4 | 0.3953 (2) | 0.61410 (17) | 0.32093 (7) | 0.0307 (4) | |
C5 | 0.5009 (2) | 0.65325 (16) | 0.28398 (8) | 0.0296 (4) | |
C6 | 0.5571 (2) | 0.58127 (15) | 0.24471 (7) | 0.0232 (3) | |
C7 | 0.50579 (18) | 0.46846 (14) | 0.24163 (6) | 0.0199 (3) | |
C8 | 0.55718 (18) | 0.38990 (14) | 0.19964 (6) | 0.0207 (3) | |
C9 | 0.82401 (19) | 0.33588 (14) | 0.10820 (6) | 0.0218 (3) | |
C10 | 0.95080 (18) | 0.39951 (14) | 0.12963 (6) | 0.0204 (3) | |
C11 | 1.0950 (2) | 0.39353 (15) | 0.10989 (7) | 0.0256 (4) | |
C12 | 1.1994 (2) | 0.45958 (16) | 0.13921 (8) | 0.0300 (4) | |
C13 | 1.1348 (2) | 0.51514 (16) | 0.18139 (8) | 0.0296 (4) | |
C14 | 0.8531 (2) | 0.25334 (18) | 0.06250 (8) | 0.0307 (4) | |
H2 | 0.512 (2) | 0.2355 (18) | 0.1720 (8) | 0.037* | |
H1 | 0.269 (2) | 0.2820 (17) | 0.2976 (8) | 0.037* | |
H3 | 0.274 (2) | 0.4743 (17) | 0.3430 (8) | 0.037* | |
H4 | 0.358 (2) | 0.6664 (18) | 0.3478 (8) | 0.037* | |
H5 | 0.535 (2) | 0.7318 (18) | 0.2848 (8) | 0.037* | |
H6 | 0.631 (2) | 0.6036 (17) | 0.2200 (8) | 0.037* | |
H11 | 1.119 (2) | 0.3497 (18) | 0.0797 (9) | 0.037* | |
H12 | 1.304 (2) | 0.4642 (17) | 0.1304 (8) | 0.037* | |
H13 | 1.178 (2) | 0.5639 (18) | 0.2072 (8) | 0.037* | |
H14A | 0.893 (2) | 0.2920 (18) | 0.0310 (9) | 0.037* | |
H14B | 0.932 (2) | 0.1956 (18) | 0.0732 (8) | 0.037* | |
H14C | 0.764 (2) | 0.2144 (18) | 0.0526 (8) | 0.037* | |
S1B | 0.36400 (5) | −0.14245 (4) | 0.06118 (2) | 0.02429 (10) | |
N1B | 0.41957 (17) | 0.39056 (12) | 0.03070 (6) | 0.0272 (3) | |
N2B | 0.43791 (16) | 0.28603 (12) | 0.05466 (6) | 0.0227 (3) | |
N3B | 0.38510 (15) | 0.08995 (12) | 0.06759 (6) | 0.0224 (3) | |
N4B | 0.49714 (16) | 0.09992 (12) | 0.10701 (6) | 0.0232 (3) | |
C1B | 0.3204 (2) | 0.39742 (16) | −0.00702 (7) | 0.0278 (4) | |
C2B | 0.22946 (19) | 0.30252 (15) | −0.02516 (7) | 0.0241 (3) | |
C3B | 0.1233 (2) | 0.31324 (17) | −0.06684 (7) | 0.0308 (4) | |
C4B | 0.0420 (2) | 0.21961 (18) | −0.08347 (7) | 0.0310 (4) | |
C5B | 0.0654 (2) | 0.11288 (16) | −0.05935 (7) | 0.0280 (4) | |
C6B | 0.16841 (19) | 0.10032 (15) | −0.01843 (7) | 0.0237 (3) | |
C7B | 0.25136 (18) | 0.19541 (14) | −0.00046 (6) | 0.0208 (3) | |
C8B | 0.36158 (18) | 0.18738 (14) | 0.04280 (6) | 0.0203 (3) | |
C9B | 0.54790 (18) | 0.00318 (14) | 0.12500 (6) | 0.0215 (3) | |
C10B | 0.49778 (18) | −0.11113 (14) | 0.10992 (6) | 0.0213 (3) | |
C11B | 0.5481 (2) | −0.21069 (16) | 0.13366 (7) | 0.0273 (4) | |
C12B | 0.4792 (2) | −0.31014 (17) | 0.11303 (8) | 0.0321 (4) | |
C13B | 0.3777 (2) | −0.28606 (16) | 0.07399 (8) | 0.0302 (4) | |
C14B | 0.6704 (2) | 0.01133 (18) | 0.16641 (8) | 0.0287 (4) | |
H2B | 0.512 (2) | 0.2829 (17) | 0.0797 (8) | 0.034* | |
H1B | 0.310 (2) | 0.4713 (18) | −0.0238 (8) | 0.034* | |
H3B | 0.110 (2) | 0.3875 (18) | −0.0833 (8) | 0.034* | |
H4B | −0.029 (2) | 0.2277 (17) | −0.1119 (8) | 0.034* | |
H5B | 0.008 (2) | 0.0479 (18) | −0.0722 (8) | 0.034* | |
H6B | 0.184 (2) | 0.0280 (18) | −0.0021 (8) | 0.034* | |
H11B | 0.623 (2) | −0.2118 (17) | 0.1613 (8) | 0.034* | |
H12B | 0.499 (2) | −0.3842 (18) | 0.1251 (8) | 0.034* | |
H13B | 0.318 (2) | −0.3381 (18) | 0.0541 (8) | 0.034* | |
H14D | 0.639 (2) | −0.0227 (17) | 0.2010 (9) | 0.034* | |
H14E | 0.696 (2) | 0.0877 (18) | 0.1720 (8) | 0.034* | |
H14F | 0.759 (2) | −0.0329 (17) | 0.1540 (8) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0273 (2) | 0.0221 (2) | 0.02000 (19) | −0.00066 (16) | −0.00166 (16) | −0.00281 (16) |
N1 | 0.0351 (9) | 0.0281 (8) | 0.0324 (8) | −0.0089 (7) | 0.0047 (7) | 0.0011 (7) |
N2 | 0.0319 (8) | 0.0216 (7) | 0.0250 (7) | −0.0041 (6) | 0.0033 (6) | −0.0033 (6) |
N3 | 0.0234 (7) | 0.0238 (7) | 0.0218 (7) | −0.0014 (6) | 0.0006 (6) | −0.0056 (6) |
N4 | 0.0254 (7) | 0.0253 (7) | 0.0219 (7) | −0.0024 (6) | 0.0013 (6) | −0.0062 (6) |
C1 | 0.0314 (10) | 0.0323 (10) | 0.0287 (9) | −0.0063 (8) | 0.0050 (8) | 0.0020 (8) |
C2 | 0.0228 (8) | 0.0265 (9) | 0.0213 (8) | 0.0015 (7) | −0.0024 (6) | 0.0012 (7) |
C3 | 0.0257 (9) | 0.0384 (11) | 0.0240 (9) | 0.0051 (8) | 0.0019 (7) | −0.0001 (8) |
C4 | 0.0331 (10) | 0.0342 (10) | 0.0248 (9) | 0.0101 (8) | −0.0035 (7) | −0.0082 (8) |
C5 | 0.0352 (10) | 0.0243 (9) | 0.0293 (9) | 0.0034 (8) | −0.0065 (8) | −0.0047 (8) |
C6 | 0.0247 (8) | 0.0227 (8) | 0.0222 (8) | 0.0002 (7) | −0.0037 (7) | 0.0005 (7) |
C7 | 0.0190 (8) | 0.0229 (8) | 0.0178 (7) | 0.0018 (6) | −0.0038 (6) | −0.0014 (6) |
C8 | 0.0199 (8) | 0.0207 (8) | 0.0214 (8) | 0.0009 (6) | −0.0034 (6) | −0.0016 (6) |
C9 | 0.0247 (8) | 0.0214 (8) | 0.0192 (7) | −0.0015 (6) | −0.0004 (6) | −0.0011 (6) |
C10 | 0.0255 (8) | 0.0176 (7) | 0.0181 (7) | 0.0008 (6) | −0.0010 (6) | 0.0000 (6) |
C11 | 0.0249 (9) | 0.0249 (9) | 0.0270 (9) | −0.0012 (7) | 0.0024 (7) | −0.0024 (7) |
C12 | 0.0230 (9) | 0.0290 (10) | 0.0380 (10) | −0.0028 (7) | −0.0013 (8) | −0.0039 (8) |
C13 | 0.0304 (9) | 0.0264 (9) | 0.0319 (10) | −0.0041 (7) | −0.0070 (8) | −0.0030 (8) |
C14 | 0.0283 (10) | 0.0369 (11) | 0.0271 (9) | −0.0037 (8) | 0.0014 (8) | −0.0114 (8) |
S1B | 0.0258 (2) | 0.0226 (2) | 0.0244 (2) | −0.00187 (17) | −0.00405 (16) | −0.00243 (17) |
N1B | 0.0334 (8) | 0.0215 (7) | 0.0267 (7) | −0.0059 (6) | 0.0031 (6) | 0.0010 (6) |
N2B | 0.0247 (7) | 0.0217 (7) | 0.0217 (7) | −0.0039 (6) | −0.0014 (6) | 0.0000 (6) |
N3B | 0.0229 (7) | 0.0221 (7) | 0.0223 (7) | −0.0035 (6) | −0.0045 (6) | −0.0007 (6) |
N4B | 0.0234 (7) | 0.0246 (7) | 0.0218 (7) | −0.0022 (6) | −0.0051 (6) | −0.0020 (6) |
C1B | 0.0344 (10) | 0.0211 (8) | 0.0280 (9) | −0.0034 (7) | 0.0011 (8) | 0.0033 (7) |
C2B | 0.0263 (9) | 0.0243 (8) | 0.0216 (8) | −0.0011 (7) | 0.0021 (7) | 0.0025 (7) |
C3B | 0.0360 (10) | 0.0305 (10) | 0.0260 (9) | 0.0019 (8) | −0.0032 (8) | 0.0075 (8) |
C4B | 0.0279 (9) | 0.0410 (11) | 0.0240 (9) | −0.0005 (8) | −0.0056 (7) | 0.0032 (8) |
C5B | 0.0270 (9) | 0.0307 (10) | 0.0263 (9) | −0.0053 (7) | −0.0023 (7) | −0.0012 (8) |
C6B | 0.0239 (8) | 0.0226 (8) | 0.0245 (8) | −0.0030 (7) | 0.0007 (7) | 0.0002 (7) |
C7B | 0.0199 (8) | 0.0233 (8) | 0.0192 (7) | −0.0019 (6) | 0.0026 (6) | −0.0013 (6) |
C8B | 0.0205 (8) | 0.0213 (8) | 0.0191 (7) | −0.0022 (6) | 0.0026 (6) | −0.0016 (6) |
C9B | 0.0220 (8) | 0.0252 (8) | 0.0173 (7) | −0.0022 (6) | −0.0006 (6) | −0.0017 (6) |
C10B | 0.0208 (8) | 0.0242 (8) | 0.0190 (7) | −0.0014 (6) | 0.0007 (6) | −0.0012 (6) |
C11B | 0.0287 (9) | 0.0261 (9) | 0.0271 (9) | −0.0009 (7) | −0.0034 (7) | 0.0028 (7) |
C12B | 0.0365 (11) | 0.0230 (9) | 0.0369 (10) | −0.0028 (8) | −0.0015 (8) | 0.0037 (8) |
C13B | 0.0345 (10) | 0.0223 (9) | 0.0337 (10) | −0.0049 (8) | −0.0016 (8) | −0.0045 (8) |
C14B | 0.0302 (10) | 0.0305 (10) | 0.0255 (9) | 0.0001 (8) | −0.0082 (7) | −0.0022 (8) |
S1—C10 | 1.7383 (16) | S1B—C10B | 1.7336 (17) |
S1—C13 | 1.7122 (19) | S1B—C13B | 1.7112 (19) |
N1—N2 | 1.366 (2) | N1B—N2B | 1.366 (2) |
N1—C1 | 1.293 (2) | N1B—C1B | 1.287 (2) |
N2—C8 | 1.369 (2) | N2B—C8B | 1.370 (2) |
N2—H2 | 0.90 (2) | N2B—H2B | 0.91 (2) |
N3—N4 | 1.3975 (18) | N3B—N4B | 1.3996 (19) |
N3—C8 | 1.306 (2) | N3B—C8B | 1.309 (2) |
N4—C9 | 1.294 (2) | N4B—C9B | 1.296 (2) |
C1—C2 | 1.442 (3) | C1B—C2B | 1.445 (2) |
C1—H1 | 0.99 (2) | C1B—H1B | 0.96 (2) |
C2—C3 | 1.402 (2) | C2B—C3B | 1.404 (2) |
C2—C7 | 1.400 (2) | C2B—C7B | 1.405 (2) |
C3—C4 | 1.374 (3) | C3B—C4B | 1.375 (3) |
C3—H3 | 0.93 (2) | C3B—H3B | 0.96 (2) |
C4—C5 | 1.389 (3) | C4B—C5B | 1.397 (3) |
C4—H4 | 0.96 (2) | C4B—H4B | 0.95 (2) |
C5—C6 | 1.379 (2) | C5B—C6B | 1.373 (2) |
C5—H5 | 0.97 (2) | C5B—H5B | 0.97 (2) |
C6—C7 | 1.397 (2) | C6B—C7B | 1.406 (2) |
C6—H6 | 0.93 (2) | C6B—H6B | 0.95 (2) |
C7—C8 | 1.459 (2) | C7B—C8B | 1.454 (2) |
C9—C10 | 1.453 (2) | C9B—C10B | 1.456 (2) |
C9—C14 | 1.507 (2) | C9B—C14B | 1.499 (2) |
C10—C11 | 1.378 (2) | C10B—C11B | 1.377 (2) |
C11—C12 | 1.409 (3) | C11B—C12B | 1.409 (3) |
C11—H11 | 0.93 (2) | C11B—H11B | 0.96 (2) |
C12—C13 | 1.357 (3) | C12B—C13B | 1.352 (3) |
C12—H12 | 0.96 (2) | C12B—H12B | 0.93 (2) |
C13—H13 | 0.94 (2) | C13B—H13B | 0.94 (2) |
C14—H14A | 0.97 (2) | C14B—H14D | 0.98 (2) |
C14—H14B | 1.01 (2) | C14B—H14E | 0.93 (2) |
C14—H14C | 0.95 (2) | C14B—H14F | 0.99 (2) |
C13—S1—C10 | 91.87 (9) | C13B—S1B—C10B | 91.68 (9) |
C1—N1—N2 | 116.82 (15) | C1B—N1B—N2B | 116.82 (15) |
N1—N2—C8 | 126.50 (15) | N1B—N2B—C8B | 126.83 (15) |
N1—N2—H2 | 113.9 (13) | N1B—N2B—H2B | 114.7 (13) |
C8—N2—H2 | 119.4 (13) | C8B—N2B—H2B | 118.4 (13) |
C8—N3—N4 | 112.37 (14) | C8B—N3B—N4B | 111.54 (13) |
C9—N4—N3 | 115.00 (14) | C9B—N4B—N3B | 114.53 (14) |
N1—C1—C2 | 124.37 (17) | N1B—C1B—C2B | 124.21 (17) |
N1—C1—H1 | 114.9 (12) | N1B—C1B—H1B | 115.9 (12) |
C2—C1—H1 | 120.7 (12) | C2B—C1B—H1B | 119.9 (12) |
C3—C2—C1 | 122.45 (16) | C3B—C2B—C1B | 122.50 (16) |
C7—C2—C1 | 117.98 (16) | C3B—C2B—C7B | 119.42 (16) |
C7—C2—C3 | 119.54 (16) | C7B—C2B—C1B | 118.07 (16) |
C2—C3—H3 | 117.7 (13) | C2B—C3B—H3B | 118.1 (12) |
C4—C3—C2 | 119.78 (17) | C4B—C3B—C2B | 120.23 (17) |
C4—C3—H3 | 122.5 (13) | C4B—C3B—H3B | 121.7 (12) |
C3—C4—C5 | 120.53 (17) | C3B—C4B—C5B | 120.24 (17) |
C3—C4—H4 | 120.8 (13) | C3B—C4B—H4B | 119.5 (12) |
C5—C4—H4 | 118.7 (13) | C5B—C4B—H4B | 120.2 (12) |
C4—C5—H5 | 120.9 (12) | C4B—C5B—H5B | 118.6 (12) |
C6—C5—C4 | 120.59 (18) | C6B—C5B—C4B | 120.59 (17) |
C6—C5—H5 | 118.5 (12) | C6B—C5B—H5B | 120.8 (12) |
C5—C6—C7 | 119.60 (17) | C5B—C6B—C7B | 119.97 (17) |
C5—C6—H6 | 123.1 (13) | C5B—C6B—H6B | 120.4 (13) |
C7—C6—H6 | 117.3 (13) | C7B—C6B—H6B | 119.6 (13) |
C2—C7—C8 | 118.12 (15) | C2B—C7B—C6B | 119.54 (16) |
C6—C7—C2 | 119.94 (15) | C2B—C7B—C8B | 118.03 (15) |
C6—C7—C8 | 121.92 (15) | C6B—C7B—C8B | 122.42 (15) |
N2—C8—C7 | 116.19 (14) | N2B—C8B—C7B | 116.01 (15) |
N3—C8—N2 | 123.93 (15) | N3B—C8B—N2B | 123.47 (15) |
N3—C8—C7 | 119.88 (15) | N3B—C8B—C7B | 120.52 (15) |
N4—C9—C10 | 126.35 (15) | N4B—C9B—C10B | 127.20 (15) |
N4—C9—C14 | 115.90 (15) | N4B—C9B—C14B | 115.65 (15) |
C10—C9—C14 | 117.73 (15) | C10B—C9B—C14B | 117.14 (15) |
C9—C10—S1 | 125.48 (12) | C9B—C10B—S1B | 125.60 (13) |
C11—C10—S1 | 109.58 (13) | C11B—C10B—S1B | 109.97 (13) |
C11—C10—C9 | 124.89 (15) | C11B—C10B—C9B | 124.41 (16) |
C10—C11—C12 | 114.04 (16) | C10B—C11B—C12B | 113.57 (17) |
C10—C11—H11 | 121.9 (13) | C10B—C11B—H11B | 122.9 (12) |
C12—C11—H11 | 124.1 (13) | C12B—C11B—H11B | 123.5 (12) |
C11—C12—H12 | 123.9 (12) | C11B—C12B—H12B | 124.4 (13) |
C13—C12—C11 | 112.03 (17) | C13B—C12B—C11B | 112.22 (17) |
C13—C12—H12 | 124.1 (12) | C13B—C12B—H12B | 123.4 (13) |
S1—C13—H13 | 118.1 (13) | S1B—C13B—H13B | 119.7 (13) |
C12—C13—S1 | 112.47 (14) | C12B—C13B—S1B | 112.55 (15) |
C12—C13—H13 | 129.4 (13) | C12B—C13B—H13B | 127.8 (13) |
C9—C14—H14A | 111.6 (12) | C9B—C14B—H14D | 111.0 (12) |
C9—C14—H14B | 110.6 (12) | C9B—C14B—H14E | 110.1 (13) |
C9—C14—H14C | 110.8 (13) | C9B—C14B—H14F | 109.7 (12) |
H14A—C14—H14B | 105.4 (17) | H14D—C14B—H14E | 109.2 (17) |
H14A—C14—H14C | 108.9 (18) | H14D—C14B—H14F | 106.6 (16) |
H14B—C14—H14C | 109.3 (17) | H14E—C14B—H14F | 110.1 (17) |
Cg1–4 are the centroids of the S1B/C10B–C13B, N1B/C1B/C2B/C7B/C8B/N2B, C2B–C7B, and S1/C10–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N4B | 0.90 (2) | 2.26 (2) | 3.131 (2) | 165 (2) |
C13—H13···N1i | 0.94 (2) | 2.61 (2) | 3.387 (2) | 140 (2) |
N2B—H2B···N4 | 0.91 (2) | 2.04 (2) | 2.897 (2) | 157 (2) |
C3B—H3B···Cg4ii | 0.96 (2) | 2.94 (2) | 3.808 (2) | 151 (2) |
C11—H11···Cg2iii | 0.93 (2) | 2.59 (2) | 3.3796 (19) | 143 (2) |
Cg1···Cg2iv | 3.519 (2) | |||
Cg1···Cg3iv | 3.829 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y, −z. |
Acknowledgements
The authors thank Dr Peter Loennecke of the University of Leipzig, Germany, for the
determination. The Cambridge Crystallographic Data Center (CCDC) is thanked for their initiative to promote structural studies in Africa and particularly in the University of Dschang (Cameroon) through the FAIRE Programme.References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Al'-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P. & Chakchir, B. A. (1992). Pharm. Chem. 36, 598–603. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bakale, R. P., Naik, G. N., Mangannavar, C. V., Muchchandi, I. S., Shcherbakov, I. N., Frampton, C. & Gudasi, K. B. (2014a). Eur. J. Med. Chem. 73, 38–45. CrossRef CAS Google Scholar
Bakale, R. S., Pathan, A. H., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2014b). Appl. Organomet. Chem. 28, 720–724. CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Vijesh, A. M. & Narayana, B. (2007). Acta Cryst. E63, o3674. Web of Science CrossRef IUCr Journals Google Scholar
Büyükgüngör, O., Odabaşoğlu, M., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4084–o4085. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Draey, J. & Tripod, I. (1967). Antihypertensive Agent, 7, 223. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). Polyhedron, 80, 142–150. Google Scholar
Ianelli, S. & Carcelli, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 203–204. CAS Google Scholar
Jackson, S. H., Shepherd, A. M. M., Ludden, T. M., Jamieson, M. J., Woodworth, J., Rogers, D., Ludden, L. K. & Muir, K. T. (1990). J. Cardiovasc. Pharmacol. 16, 624–628. CrossRef CAS Google Scholar
Kaminskas, L. M., Pyke, S. M. & Burcham, P. C. (2004). J. Pharmacol. Exp. Ther. 310, 1003–1010. CrossRef CAS Google Scholar
Kogan, V. A., Levchenkov, S. I., Popov, L. D. & Shcherbakov, I. A. (2009). Russ. J. Gen. Chem. 79, 2767–2775. CrossRef CAS Google Scholar
Levchenkov, S. I., Popov, L. D., Efimov, N. N., Minin, V. V., Ugolkova, E. A., Aleksandrov, G. G., Starikova, Z. A., Shcherbakov, I. N., Ionov, A. M. & Kogan, V. A. (2015). Russ. J. Inorg. Chem. 60, 1129–1136. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Majoumo-Mbe, F., Nfor, E. N., Sengeh, E. B., Njong, R. N. & Ofiong, O. E. (2015). Commun. Inorg. Synth, 3, 40–46. Google Scholar
Nfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207–213. CrossRef CAS Google Scholar
Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651. CrossRef IUCr Journals Google Scholar
Popov, L. D., Levchenkov, S. I., Scherbakov, I. N., Starikova, Z. A., Kaimakan, E. B. & Lukov, V. V. (2012). Russ. J. Gen. Chem. 82, 465–467. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoukry, A. A. & Shoukry, M. M. (2008). Spectrochim. Acta Part A, 70, 686–691. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzesowska-Kruszynska, A. (2015). CrystEngComm, 17, 7702–7716. CAS Google Scholar
Vicini, P., Incerti, M., Doytchinova, I. A., La Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624–632. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zelenin, K. N., Khorseeva, L. A. & Alekseev, V. V. (1992). Pharm. Chem. J. 26, 395–405. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.