research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)piperazine: a three-dimensional hydrogen-bonded framework, augmented by ππ stacking inter­actions and I⋯N halogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 December 2018; accepted 20 December 2018; online 4 January 2019)

In 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)piperazine, C15H15IN4O, the central piperazine ring adopts an almost perfect chair conformation with the pyrimidine substituent in an equatorial site. The planar amide unit makes a dihedral angle of 80.44 (7)° with the phenyl ring. A combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into a complex three-dimensional network structure, augmented by a ππ stacking inter­action and an I⋯N halogen bond, all involving different pairs of inversion-related mol­ecules. Comparisons are made with the structures of a number of related compounds.

1. Chemical context

Pyrimidine derivatives are well represented amongst the range of heterocyclic compounds that exhibit a broad spectrum of biological activities such as analgesic and anti-inflammatory activity (Amin et al., 2009[Amin, K. M., Hanna, M. M., Abo-Youssef, H. E. & George, R. F. (2009). Eur. J. Med. Chem. 44, 4572-4584.]), anti­bacterial (Kuyper et al., 1996[Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. 4, 593-602.]), anti­depressant (Kim et al., 2010[Kim, J. Y., Kim, D., Kang, S. Y., Park, W.-K., Kim, H. J., Jung, M. E., Son, E.-J., Pae, A. N., Kim, J. & Lee, J. (2010). Bioorg. Med. Chem. Lett. 20, 6439-6442.]), anti­microbial and anti-oxidant (Padmaja et al., 2009[Padmaja, A., Payani, T., Reddy, G. D. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557-4566.]) and anti­viral activities (Ibrahim & El-Metwally, 2010[Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158-1166.]). Piperazine-based compounds also exhibit anti-cancer properties (Abdel-Jalil et al., 2005[Abdel-Jalil, R. J., Aldoqum, H. M., Ayoub, M. T. & Voeller, W. (2005). Heterocycles, 65, 2061-2070.]), while the combination of pyrimidine and piperazine units is found in bu­spirone, 8-[4-(4-pyrimidin-2-ylpiperazin-1-yl)but­yl]-8-aza­spiro­[4.5]decane-7,9-dione (Tollefson et al., 1991[Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163-170.]), which can be used in the treatment of anxiety. With these considerations in mind, we have now synthesized the title compound (I)[link] (Fig. 1[link]), and we report here its mol­ecular and supra­molecular structure. Compound (I)[link] was prepared by reaction of 1-(2-pyrimid­yl)piperazine with 2-iodo­benzoic acid in the presence of di­methyl­amino­prop­yl)-3-ethyl­carbodimide as the dehydrating agent.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Within the mol­ecule of compound (I)[link] (Fig. 1[link]), the piperazine ring adopts an almost perfect chair conformation. The ring-puckering parameters, calculated for the atom sequence (N1, C2, C3, N4, C5, C6) are Q = 0.557 (3) Å, θ = 1.2 (3) ° and φ = 258 (14)°, while for an idealized chair form the value of θ is 0.0° (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The pyrimidine substituent at the pyramidal atom N4 occupies an equatorial site, but the amidic unit at atom N1 is effectively planar, and the r.m.s. deviation from the mean plane of atoms (C2, N1, C6, C17, O17 and C11) is only 0.027 Å. The dihedral angle between this plane and the aryl ring (C11–C16) is 80.44 (7)°. The mol­ecules of (I)[link] thus exhibit no inter­nal symmetry and so are conformationally chiral, as confirmed by the centrosymmetric space group in which the molecule crystallizes.

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] is built from two C—H⋯O hydrogen bonds, involving the aryl and pyrimidyl atoms C16 and C45 as the donors (Table 1[link]), and one C—H⋯π(arene) hydrogen bond: there is a further inter­molecular C—H⋯O contact, involving atom C13, but here the D—H⋯A angle is less than 140°, and so this contact cannot be regarded as structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). There are also present in the structure a ππ stacking inter­action between pairs of pyrimidine rings and an I⋯N halogen bond.

Table 1
Hydrogen-bond geometry (Å, °)

# Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O17i 0.95 2.50 3.395 (3) 157
C45—H45⋯O17ii 0.95 2.57 3.508 (3) 169
C46—H46⋯Cg1iii 0.95 2.72 3.596 (3) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

The hydrogen bonds give rise to a three-dimensional network structure of considerable complexity, but this is readily analysed in terms of three one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The action of the two C—H⋯O hydrogen bonds in combination links mol­ecules related by inversion and translation into a chain of edge-fused rings running parallel to the [001] direction (Fig. 2[link]), in which R22(10) (Etter, 1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (0.5, 0.5, n + 0.5) alternate with R42(28) rings centred at (0.5, 0.5, n), where n represents an integer in each case.

[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of edge-fused rings parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The I atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (1 − x, 1 − y, 1 − z), (x, y, 1 + z) and (1 − x, 1 − y, 2 − z), respectively.

A second sub-structure can be identified in which the C—H⋯π(arene) hydrogen bond links mol­ecules related by a 21 screw axis to form a chain running parallel to the [010] direction (Fig. 3[link]). The chains parallel to [010] and [001] each use only one type of hydrogen bond, but the alternating action of the C—H⋯O and C—H⋯π(arene) hydrogen bonds involving atoms C16 and C46 as the donors (Table 1[link]) links the mol­ecules into a chain of rings running parallel to the [[\overline{1}]11] direction (Fig. 4[link]). The combination of chains running parallel to [010], [001] and [[\overline{1}]11] suffices to generate a continuous three-dimensional network structure.

[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The I atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) and (x, 1 + y, z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of rings parallel to the [[\overline{1}]11] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The I atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or a percent sign (%) are at the symmetry positions (1 − x, 1 − y, 1 − z), ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), (−[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z), ([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z) and (1.5 − x, −[{1\over 2}] + y, [{1\over 2}] − z) respectively.

The formation of the hydrogen-bonded network is augmented by two further inter­molecular inter­actions, each of which involves inversion related pairs of mol­ecules. The pyrimidine rings of the mol­ecules at (x, y, z) and (1 − x, 1 − y, 2 − z), which are components of the hydrogen-bonded chain along [001], are strictly parallel with an inter­planar spacing of 3.4295 (10) Å and a ring-centroid separation of 3.4924 (6) Å, thus giving rise to a ππ stacking inter­action (Fig. 5[link]). Finally, we note a short inter­molecular I⋯N contact with geometrical parameters of I12⋯N41i = 3.168 (2) Å and C12—I12⋯N41i 174.83 (7)° [symmetry code: (i) −x, 1 − y, 1 − z], which can be regarded as a halogen bond (Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]).

[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the ππ stacking inter­action between adjacent pyrimidine rings. For the sake of clarity, the unit-cell outline and the H atoms have been omitted. The I atom marked with an asterisk (*) is at the symmetry position (1 − x, 1 − y, 2 − z).

4. Database survey

It is of inter­est briefly to compare the structure of compound (I)[link] reported here with those of some related structures which have been recently reported. In 2-{4-[(1,3-benzodioxol-5-yl)meth­yl]piperazin-1-yl}pyrimidine (II), the mol­ecules are linked into sheets by a combination of C—H⋯π(arene) and C—H⋯π(pyrimidine) hydrogen bonds (Wu et al., 2013[Wu, C., Li, J., Wei, H., Hang, Y. & Jiang, Y. (2013). Acta Cryst. E69, o1140.]). N-(4-Chloro­phen­yl)-4-(pyrimidin-2-yl)piperazine-1-carboxamide (III) crystallizes with Z′ = 2 in space group P21/c (Li, 2011b[Li, Y.-F. (2011b). Acta Cryst. E67, o2575.]), and the mol­ecules are linked into chains by two independent N—H⋯O hydrogen bonds: these chains, parallel to [100], are of the C22(8) type rather than of the C(4) type as originally reported. However, the original report overlooked the presence of C—H⋯O hydrogen bonds which, in combin­ation with the N—H⋯O hydrogen bond within the selected asymmetric unit, generates a second chain, this time running parallel to the [010] direction (Fig. 6[link]), so that overall the supra­molecular assembly takes the form of a sheet parallel to (001). In the simpler analogue N-(4-chloro­phen­yl)-4-methyl­piperidine-1-carboxamide (IV), the assembly was reported (Li, 2011a[Li, Y.-F. (2011a). Acta Cryst. E67, o1796.]) as consisting of simple C(4) chains built from N—H⋯O hydrogen bonds. However, the presence in (IV) of a C—H⋯O hydrogen bond was overlooked, and the two hydrogen bonds together generate a complex sheet structure lying parallel to (100) (Fig. 7[link]). Finally, we note also the structures of a number of salts of the 4-(pyrimidin-2-yl)piperazin-1-ium cation, including the chloride and nitrate (Yamuna et al., 2014a[Yamuna, T. S., Jasinski, J. P., Kaur, M., Anderson, B. J. & Yathirajan, H. S. (2014a). Acta Cryst. E70, 203-206.]), the hydrogenfumarate (Yamuna et al., 2014b[Yamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o702-o703.]) and the butano­ate (Yamuna et al., 2014c[Yamuna, T. S., Jasinski, J. P., Kaur, M., Anderson, B. J. & Yathirajan, H. S. (2014c). Acta Cryst. E70, o1063-o1064.]).

[Figure 6]
Figure 6
Part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain parallel to [010]. The original atomic coordinates (Li, 2011b[Li, Y.-F. (2011b). Acta Cryst. E67, o2575.]) have been used and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded sheet parallel to (100). The original atomic coordinates (Li, 2011a[Li, Y.-F. (2011a). Acta Cryst. E67, o1796.]) have been used and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

5. Synthesis and crystallization

1-(2-Pyrimid­yl)piperazine was purchased from Sigma–Aldrich. For the synthesis of compound (I)[link], 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide (52 mg, 0.6 mmol), 1-hy­droxy­benzotriazole (81 mg, 0.6 mmol) and tri­ethyl­amine (0.5 ml, 1.8 mmol) were added to a solution of 2-iodo­benzoic acid (0.6 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixture stirred for 20 mins at 273 K. A solution of 1-(2-pyrimid­yl)piperazine (100 mg, 0.6 mmol) in N,N-di­methyl­formamide (5 ml) was then added and stirring was continued overnight at ambient temperature. The reaction was confirmed to be complete using thin-layer chromatography, and the mixture was then quenched with water (10 ml) and extracted with ethyl acetate (20 ml). The organic layer was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogencarbonate and then with brine. The organic phase was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol; m. p. 450–452 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps, and they were subsequently treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H15IN4O
Mr 394.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.6417 (17), 13.604 (2), 12.174 (2)
β (°) 105.155 (2)
V3) 1541.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.08
Crystal size (mm) 0.67 × 0.56 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.345, 0.717
No. of measured, independent and observed [I > 2σ(I)] reflections 8152, 3452, 3188
Rint 0.067
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.05
No. of reflections 3452
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.74
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

1-(2-Iodobenzoyl)-4-(pyrimidin-2-yl)piperazine top
Crystal data top
C15H15IN4OF(000) = 776
Mr = 394.21Dx = 1.699 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6417 (17) ÅCell parameters from 3152 reflections
b = 13.604 (2) Åθ = 2.3–27.6°
c = 12.174 (2) ŵ = 2.08 mm1
β = 105.155 (2)°T = 173 K
V = 1541.3 (4) Å3Plate, colour
Z = 40.67 × 0.56 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3452 independent reflections
Radiation source: fine focus sealed tube3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 0.3333 pixels mm-1θmax = 27.6°, θmin = 2.3°
φ and ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1716
Tmin = 0.345, Tmax = 0.717l = 1515
8152 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.7279P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3452 reflectionsΔρmax = 0.96 e Å3
190 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2388 (2)0.44984 (14)0.52539 (16)0.0253 (4)
C20.2263 (3)0.36447 (15)0.5950 (2)0.0282 (6)
H2A0.25670.30460.56130.034*
H2B0.12480.35590.59640.034*
C30.3195 (3)0.37777 (17)0.7159 (2)0.0290 (6)
H3A0.30330.32250.76400.035*
H3B0.42220.37770.71590.035*
N40.2839 (2)0.47043 (14)0.76229 (16)0.0260 (4)
C50.2977 (3)0.55610 (16)0.69257 (18)0.0247 (5)
H5A0.39910.56370.69040.030*
H5B0.26890.61630.72650.030*
C60.2028 (3)0.54263 (17)0.57233 (19)0.0273 (5)
H6A0.10050.54210.57350.033*
H6B0.21740.59800.52390.033*
C170.2929 (3)0.45026 (16)0.43404 (17)0.0211 (4)
O170.3118 (2)0.52552 (12)0.38448 (14)0.0334 (4)
C110.3328 (3)0.35268 (15)0.39109 (19)0.0195 (5)
C120.2434 (2)0.30692 (15)0.29625 (17)0.0191 (4)
I120.03709 (2)0.36186 (2)0.21850 (2)0.02547 (8)
C130.2883 (3)0.22226 (16)0.25098 (19)0.0257 (5)
H130.22680.19090.18670.031*
C140.4237 (3)0.18428 (17)0.3008 (2)0.0327 (6)
H140.45530.12690.26990.039*
C150.5130 (3)0.22889 (19)0.3947 (2)0.0346 (6)
H150.60540.20210.42840.042*
C160.4677 (3)0.31314 (18)0.4401 (2)0.0279 (5)
H160.52930.34380.50480.033*
N410.2769 (2)0.57158 (16)0.91400 (17)0.0301 (5)
C420.3025 (2)0.48172 (17)0.87784 (18)0.0221 (4)
N430.3414 (2)0.40176 (15)0.94349 (17)0.0280 (4)
C440.3528 (3)0.4150 (2)1.0545 (2)0.0328 (6)
H440.37900.36011.10390.039*
C450.3288 (3)0.5033 (2)1.1012 (2)0.0318 (6)
H450.33810.51081.18040.038*
C460.2902 (3)0.5804 (2)1.0258 (2)0.0338 (6)
H460.27210.64271.05460.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (12)0.0171 (8)0.0180 (9)0.0026 (9)0.0095 (8)0.0025 (7)
C20.0455 (17)0.0190 (11)0.0247 (13)0.0072 (10)0.0172 (12)0.0029 (8)
C30.0496 (17)0.0193 (10)0.0211 (12)0.0030 (12)0.0149 (11)0.0016 (9)
N40.0421 (12)0.0213 (9)0.0161 (9)0.0009 (10)0.0101 (8)0.0012 (7)
C50.0377 (13)0.0191 (10)0.0182 (11)0.0013 (11)0.0088 (9)0.0022 (8)
C60.0411 (14)0.0223 (10)0.0181 (10)0.0059 (11)0.0069 (10)0.0043 (9)
C170.0304 (11)0.0176 (9)0.0124 (9)0.0005 (10)0.0007 (8)0.0020 (8)
O170.0646 (13)0.0173 (7)0.0196 (8)0.0013 (9)0.0133 (8)0.0014 (6)
C110.0302 (12)0.0145 (9)0.0150 (10)0.0006 (9)0.0079 (9)0.0014 (7)
C120.0263 (11)0.0174 (9)0.0153 (9)0.0017 (9)0.0084 (8)0.0003 (8)
I120.02670 (12)0.02407 (11)0.02409 (11)0.00088 (5)0.00387 (8)0.00347 (5)
C130.0421 (14)0.0163 (10)0.0218 (11)0.0010 (11)0.0141 (10)0.0016 (8)
C140.0491 (16)0.0192 (11)0.0374 (14)0.0070 (12)0.0250 (12)0.0005 (10)
C150.0345 (13)0.0304 (13)0.0408 (14)0.0108 (13)0.0132 (11)0.0083 (11)
C160.0313 (12)0.0261 (11)0.0238 (11)0.0009 (11)0.0031 (9)0.0020 (9)
N410.0378 (12)0.0343 (11)0.0186 (10)0.0082 (10)0.0081 (8)0.0043 (8)
C420.0214 (10)0.0286 (11)0.0174 (10)0.0028 (10)0.0070 (8)0.0009 (9)
N430.0368 (12)0.0279 (10)0.0214 (10)0.0055 (10)0.0115 (8)0.0019 (8)
C440.0384 (14)0.0388 (14)0.0224 (12)0.0092 (13)0.0099 (10)0.0063 (10)
C450.0351 (13)0.0452 (14)0.0169 (11)0.0073 (13)0.0098 (9)0.0023 (10)
C460.0400 (14)0.0428 (14)0.0199 (12)0.0034 (13)0.0102 (10)0.0060 (11)
Geometric parameters (Å, º) top
N1—C171.346 (3)C11—C121.394 (3)
N1—C21.461 (3)C12—C131.393 (3)
N1—C61.464 (3)C12—I122.104 (2)
C2—C31.521 (4)C13—C141.388 (4)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.379 (4)
C3—N41.459 (3)C14—H140.9500
C3—H3A0.9900C15—C161.391 (3)
C3—H3B0.9900C15—H150.9500
N4—C421.379 (3)C16—H160.9500
N4—C51.468 (3)N41—C461.339 (3)
C5—C61.521 (3)N41—C421.344 (3)
C5—H5A0.9900C42—N431.344 (3)
C5—H5B0.9900N43—C441.340 (3)
C6—H6A0.9900C44—C451.375 (4)
C6—H6B0.9900C44—H440.9500
C17—O171.226 (3)C45—C461.380 (4)
C17—C111.513 (3)C45—H450.9500
C11—C161.390 (3)C46—H460.9500
C17—N1—C2126.25 (18)C16—C11—C12119.3 (2)
C17—N1—C6120.10 (19)C16—C11—C17119.1 (2)
C2—N1—C6113.23 (17)C12—C11—C17121.3 (2)
N1—C2—C3110.4 (2)C13—C12—C11120.5 (2)
N1—C2—H2A109.6C13—C12—I12118.05 (18)
C3—C2—H2A109.6C11—C12—I12121.41 (16)
N1—C2—H2B109.6C14—C13—C12119.2 (2)
C3—C2—H2B109.6C14—C13—H13120.4
H2A—C2—H2B108.1C12—C13—H13120.4
N4—C3—C2109.7 (2)C15—C14—C13120.7 (2)
N4—C3—H3A109.7C15—C14—H14119.6
C2—C3—H3A109.7C13—C14—H14119.6
N4—C3—H3B109.7C14—C15—C16119.9 (2)
C2—C3—H3B109.7C14—C15—H15120.0
H3A—C3—H3B108.2C16—C15—H15120.0
C42—N4—C3120.7 (2)C11—C16—C15120.3 (2)
C42—N4—C5119.60 (18)C11—C16—H16119.8
C3—N4—C5113.33 (17)C15—C16—H16119.8
N4—C5—C6109.75 (19)C46—N41—C42116.0 (2)
N4—C5—H5A109.7N41—C42—N43126.0 (2)
C6—C5—H5A109.7N41—C42—N4116.7 (2)
N4—C5—H5B109.7N43—C42—N4117.3 (2)
C6—C5—H5B109.7C44—N43—C42115.3 (2)
H5A—C5—H5B108.2N43—C44—C45123.8 (2)
N1—C6—C5109.6 (2)N43—C44—H44118.1
N1—C6—H6A109.8C45—C44—H44118.1
C5—C6—H6A109.8C44—C45—C46115.8 (2)
N1—C6—H6B109.8C44—C45—H45122.1
C5—C6—H6B109.8C46—C45—H45122.1
H6A—C6—H6B108.2N41—C46—C45123.1 (2)
O17—C17—N1123.3 (2)N41—C46—H46118.5
O17—C17—C11118.59 (19)C45—C46—H46118.5
N1—C17—C11118.07 (19)
C17—N1—C2—C3116.2 (3)C17—C11—C12—I127.2 (3)
C6—N1—C2—C356.4 (3)C11—C12—C13—C140.6 (3)
N1—C2—C3—N454.1 (3)I12—C12—C13—C14179.83 (16)
C2—C3—N4—C42151.8 (2)C12—C13—C14—C150.6 (3)
C2—C3—N4—C556.4 (3)C13—C14—C15—C160.3 (4)
C42—N4—C5—C6150.6 (2)C12—C11—C16—C150.1 (3)
C3—N4—C5—C657.3 (3)C17—C11—C16—C15173.4 (2)
C17—N1—C6—C5116.3 (2)C14—C15—C16—C110.1 (4)
C2—N1—C6—C556.8 (3)C46—N41—C42—N431.0 (4)
N4—C5—C6—N155.3 (2)C46—N41—C42—N4177.6 (2)
C2—N1—C17—O17173.7 (3)C3—N4—C42—N41175.3 (2)
C6—N1—C17—O171.6 (4)C5—N4—C42—N4125.3 (3)
C2—N1—C17—C116.0 (4)C3—N4—C42—N436.0 (3)
C6—N1—C17—C11178.1 (2)C5—N4—C42—N43156.1 (2)
O17—C17—C11—C1694.4 (3)N41—C42—N43—C441.1 (4)
N1—C17—C11—C1685.3 (3)N4—C42—N43—C44177.5 (2)
O17—C17—C11—C1278.9 (3)C42—N43—C44—C450.7 (4)
N1—C17—C11—C12101.4 (3)N43—C44—C45—C460.4 (4)
C16—C11—C12—C130.2 (3)C42—N41—C46—C450.5 (4)
C17—C11—C12—C13173.52 (19)C44—C45—C46—N410.3 (4)
C16—C11—C12—I12179.44 (16)
Hydrogen-bond geometry (Å, º) top
# Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O17i0.952.403.160 (3)136
C16—H16···O17ii0.952.503.395 (3)157
C45—H45···O17iii0.952.573.508 (3)169
C46—H46···Cg1iv0.952.723.596 (3)153
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

NM is grateful to the University of Mysore for research facilities.

Funding information

HSY is grateful to the UGC, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAbdel-Jalil, R. J., Aldoqum, H. M., Ayoub, M. T. & Voeller, W. (2005). Heterocycles, 65, 2061–2070.  CAS Google Scholar
First citationAmin, K. M., Hanna, M. M., Abo-Youssef, H. E. & George, R. F. (2009). Eur. J. Med. Chem. 44, 4572–4584.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, J. Y., Kim, D., Kang, S. Y., Park, W.-K., Kim, H. J., Jung, M. E., Son, E.-J., Pae, A. N., Kim, J. & Lee, J. (2010). Bioorg. Med. Chem. Lett. 20, 6439–6442.  CrossRef CAS Google Scholar
First citationKuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. 4, 593–602.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, Y.-F. (2011a). Acta Cryst. E67, o1796.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011b). Acta Cryst. E67, o2575.  CrossRef IUCr Journals Google Scholar
First citationPadmaja, A., Payani, T., Reddy, G. D. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163–170.  PubMed CAS Web of Science Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationWu, C., Li, J., Wei, H., Hang, Y. & Jiang, Y. (2013). Acta Cryst. E69, o1140.  CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Kaur, M., Anderson, B. J. & Yathirajan, H. S. (2014a). Acta Cryst. E70, 203–206.  CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Kaur, M., Anderson, B. J. & Yathirajan, H. S. (2014c). Acta Cryst. E70, o1063–o1064.  CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o702–o703.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds