research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three closely related 1-[(1,3-benzodioxol-5-yl)methyl]-4-(halobenzo­yl)piperazines: similar mol­ecular structures but different inter­molecular inter­actions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 8 January 2019; accepted 9 January 2019; online 11 January 2019)

In each of the compounds 1-[(1,3-benzodioxol-5-yl)methyl]-4-(3-fluoro­benzo­yl)piperazine, C19H19FN2O3 (I), 1-[(1,3-benzodioxol-5-yl)methyl]-4-(2,6-di­fluoro­benzo­yl)piperazine, C19H18F2N2O3 (II), and 1-[(1,3-benzodioxol-5-yl)methyl]-4-(2,4-di­chloro­benzo­yl)piperazine, C19H19Cl2N2O3 (III), the piperazine rings adopt a chair conformation with the (1,3-benzodioxol-5-yl)methyl substituent occupying an equatorial site: the five-membered rings are all slightly folded across the O⋯O line leading to envelope conformations. The dihedral angle between the planar amidic fragment and the haloaryl ring is 62.97 (5)° in (I) but 77.72 (12)° and 75.50 (5)° in (II) and (III), respectively. Despite their similarity in constitution and conformation, the supra­molecular inter­actions in (I)–(III) differ: in (I), a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into a three-dimensional framework structure, but there are no hydrogen bonds of any sort in either (II) or (III), although the structure of (III) contains a short Cl⋯Cl contact between inversion-related pairs of mol­ecules.

1. Chemical context

1-[(1,3-Benzodioxol-5-yl)meth­yl]piperazine is an important inter­mediate for the synthesis (Duncton et al., 2006[Duncton, M. A. J., Roffey, J. R. A., Hamlyn, R. J. & Adams, D. R. (2006). Tetrahedron Lett. 47, 2549-2552.]; Hamid & Williams, 2007[Hamid, M. H. S. A. & Williams, J. M. J. (2007). Tetrahedron Lett. 48, 8263-8265.]) of piribedil, 1-[(1,3-benzodioxol-5-yl)meth­yl]-4-(pyrimidin-2-yl)piperazine, which is used in the treatment of Parkinson's disease, particularly in the reduction of tremor (Rondot & Ziegler, 1992[Rondot, P. & Ziegler, M. (1992). J. Neurol. 239, S28-S34.]; Millan et al., 2001[Millan, M. J., Cussac, D., Milligan, G., Carr, C., Audinot, V., Gobert, A., Lejeune, F., Rivet, J.-M., Brocco, M., Duqueyroix, D., Nicolas, J.-P., Boutin, J. A. & Newman-Tancredi, A. (2001). J. Pharmacol. Exp. Ther. 297, 876-887.]). The synthetic routes to piribedil reported hitherto have utilized either palladium-catalysed (Duncton et al., 2006[Duncton, M. A. J., Roffey, J. R. A., Hamlyn, R. J. & Adams, D. R. (2006). Tetrahedron Lett. 47, 2549-2552.]) or ruthenium-catalysed (Hamid & Williams, 2007[Hamid, M. H. S. A. & Williams, J. M. J. (2007). Tetrahedron Lett. 48, 8263-8265.]) processes, requiring extensive purification procedures to ensure that the final product is free of heavy metals. With this in mind, we have now synthesized a series of N-aroyl analogues (I)–(III) (Figs. 1[link]–3[link][link]) using a metal-free procedure involving a straightforward coupling reaction between 1-[(1,3-benzodioxol-5-yl)meth­yl]piperazine and a carb­oxy­lic acid, promoted by 1-(3-di­meth­yl­amino­prop­yl)-3-ethyl­carbodimide as the dehydrating agent, and we report here the mol­ecular and supra­molecular structures of compounds (I)–(III).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

In each of (I)–(III), the five-membered ring is slightly non-planar: while the atoms O11, C7A, C3A and O13 are co-planar, as expected, the atom C12 is slightly displaced from this plane by 0.150 (2), 0.099 (6) and 0.210 (2) Å in (I)–(III), respectively, giving an envelope conformation in each case, with the ring folded across the line O11⋯O13. The piperazine rings all adopt chair conformations with the substituent at atom N1 in an equatorial site, while the atoms of the amide fragment (C3, N4, C5, C47, O47 and C41) are coplanar. The only significant conformational difference between the mol­ecules in (I)–(III) lies in the dihedral angle between the amide unit and the adjacent aryl ring (C41–C46), 62.97 (5)° in (I)[link] but 77.72 (12) and 75.50 (5)° in (II)[link] and (III)[link], respectively. The mol­ecules of (I)–(III) exhibit no inter­nal symmetry and hence they are all conformationally chiral, but the space groups (Table 2[link]) confirm that equal numbers of the two conformational enanti­omorphs are present in each crystal.

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H19FN2O3 C19H18F2N2O3 C19H18Cl2N2O3
Mr 342.36 360.35 393.25
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pca21 Monoclinic, P21/n
Temperature (K) 173 173 173
a, b, c (Å) 12.2358 (16), 10.3185 (14), 14.2310 (19) 14.2762 (9), 15.9821 (10), 7.3753 (5) 12.2889 (14), 12.3034 (14), 13.3667 (15)
α, β, γ (°) 90, 111.199 (2), 90 90, 90, 90 90, 116.295 (1), 90
V3) 1675.2 (4) 1682.78 (19) 1811.9 (4)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.11 0.38
Crystal size (mm) 0.48 × 0.29 × 0.28 0.91 × 0.35 × 0.17 0.49 × 0.48 × 0.38
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.813, 0.972 0.587, 0.981 0.776, 0.867
No. of measured, independent and observed [I > 2σ(I)] reflections 8635, 3674, 2975 9016, 3743, 3449 9718, 4054, 3545
Rint 0.021 0.057 0.017
(sin θ/λ)max−1) 0.651 0.650 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.10 0.054, 0.155, 1.16 0.031, 0.087, 1.04
No. of reflections 3674 3743 4054
No. of parameters 226 235 235
No. of restraints 0 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.18 0.17, −0.22 0.37, −0.38
Absolute structure Flack x determined using 1369 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) SAINT (Bruker, 2013[Bruker (2013). SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick,2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Supra­molecular features

Despite their similar mol­ecular constitutions and conformations, compounds (I)–(III) all exhibit different types of direction-specific inter­molecular inter­actions. In the crystal structure of compound (I)[link], a combination of one C—H⋯O hydrogen bond and two C—H⋯π(arene) hydrogen bonds (Table 1[link]) links the mol­ecules into a three-dimensional framework structure, whose formation can readily be analysed in terms of simple sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The C—H⋯O hydrogen bond links mol­ecules related by the 21 screw axis along (0.25, y, 0.25) to form a C(5) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction. In addition, the C—H⋯π(arene) hydrogen bond having atom C5 as the donor links mol­ecules related by the 21 screw axis along (0.75, y, 0.25) into a second chain running parallel to [010] and, together, these two inter­actions generate a sheet lying parallel to (001) (Fig. 4[link]). The second C—H⋯π(arene) hydrogen bond, having atom C45 as the donor, links mol­ecules related by the n-glide plane at y = 0.75 into a chain running parallel to the [10[\overline{1}]] direction (Fig. 5[link]), and chains of this type link the (001) sheets into a continuous three-dimensional structure. It is inter­esting to note that both C—H⋯π(arene) hydrogen bonds utilize the same ring as the acceptor, with one donor approaching each face of this ring (Fig. 6[link]), with the angle H5iCg1⋯H45ii = 152°, where Cg1 represents the centroid of the ring (C3A, C14, C15, C16, C17, C7A) and the symmetry codes are (i) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z) and (ii) ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z). Hence, the two mol­ecules providing the donor atoms here are related by inversion across (1, 1/2, 0). In this structure, the atoms of type O11 in the mol­ecules at (x, y, z) and (2 − x, 1 − y, −z) are separated by a distance of only 2.7888 (18) Å. At the same time, the atoms C12 and H12 at (x, y, z) are distant from O11 at (2 − x, 1 − y, −z) by 2.66 and 3.008 (2) Å, respectively, with an associated C—H⋯O angle of 101°; the H⋯O distance is too long and the C—H⋯O angle is too small for this contact to be regarded as a hydrogen bond, but the short O⋯O distance here is perhaps associated with this `failed' hydrogen bond involving atom C12.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 represents the centroid of the C3A, C14, C15, C16, C17, C7A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42⋯O47i 0.95 2.34 3.273 (2) 168
C5—H5ACg1ii 0.99 2.76 3.7310 (18) 168
C45—H45⋯Cg1iii 0.95 2.90 3.7470 (18) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a sheet lying parallel to (001) and built from C—H⋯O and C—H⋯π(arene) hydrogen bonds, which are drawn as dashed lines. For the sake of clarity, the H atoms bonded to the C atoms not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a chain running parallel to [10[\overline{1}]] and built from C—H⋯π(arene) hydrogen bonds, which are drawn as dashed lines. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the two C—H⋯π(arene) hydrogen bonds with a common aryl acceptor. The hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms bonded to the C atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) and ([{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z), respectively.

In contrast to the three-dimensional supra­molecular assembly in (I)[link] generated by three hydrogen bonds, the only direction-specific inter­molecular inter­action in (II)[link] is a single C—H⋯O contact, in which the D–-H⋯A angle is only 123° so that this cannot be regarded as structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). The only direction-specific inter­molecular inter­actions in (III)[link] are a C—Cl⋯(ring) contact involving the 1,3-dioxolane ring, but since this ring is not aromatic, this contact cannot be regarded as structurally significant; and a short Cl⋯Cl contact between inversion-related pairs of mol­ecules. For the atoms of type Cl44 in the mol­ecules at (x, y, z) and (−x, −y, 2 − z), the Cl⋯Cli distance is 3.3963 (7) Å with an associated C—Cl⋯Cli angle of 137.68 (5)° [symmetry code: (i) −x, −y, 2 − z]. For C—Cl⋯Cl angles of 90 and 180°, values of 1.78 and 1.58 Å have been suggested (Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]) for the major and minor van der Waals radii: on this basis, a value of around 1.68 Å would seem appropriate to a C—Cl⋯Cl angle close to 135°, so that the observed Cl⋯Cl contact distance in (III)[link] is not exceptional, and is probably therefore of no structural significance. Thus for both (II)[link] and (III)[link], the mol­ecular packing depends solely on mol­ecular shape and van der Waals forces.

4. Database survey

It is of inter­est briefly to compare the supra­molecular assembly found here for compounds (I)–(III) with that observed in some related compounds. In 1-[(1,3-benzodioxol-5-yl)meth­yl]-4-(pyrimidin-2-yl)piperazine (piribedil), the mol­ecules are linked into sheets by three independent C—H⋯π hydrogen bonds (Wu et al., 2013[Wu, C., Li, J., Wei, H., Hang, Y. & Jiang, Y. (2013). Acta Cryst. E69, o1140.]), and in 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)piperazine, the mol­ecules are linked by a combination of C—H⋯O and C—H⋯π hydrogen bonds to form a three-dimensional structure which is augmented by ππ stacking inter­actions and N⋯I inter­actions (Mahesha et al., 2019[Mahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129-133.]). The amidic compound N-(4-chloro­phen­yl)-4-(pyrimidin-2-yl)piperazine-1-carboxamide crystallizes with Z′ = 2 in space group P21/c, and the mol­ecules are linked by two independent N—H⋯O hydrogen bonds to form chains of C22(8) type, although these are described as C(4) in the original report (Li, 2011[Li, Y.-F. (2011). Acta Cryst. E67, o2575.]). Finally, we note the structures of three salts derived by monoprotonation of the starting material 1-[(1,3-benzodioxol-5-yl)meth­yl]piperazine used in the synthesis of compounds (I)–(III): protonation occurs at the unsubstituted N atom of the piperazine unit in each of the picrate (Kavitha et al., 2014a[Kavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o208-o209.]), 4-nitro­benzoate (Kavitha et al., 2014b[Kavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o270-o271.]) and 4-chloro­benzoate (Kavitha et al., 2014c[Kavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014c). Acta Cryst. E70, o283-o284.]) salts, although the schematic diagrams given for the two carboxyl­ate salts depict protonation at the substituted N atom.

5. Synthesis and crystallization

1-[(1,3-Benzodioxol-5-yl)methyl]piperazine was purchased from Sigma–Aldrich and used as received. For the synthesis of compounds (I)–(III), 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide (207 mg, 1.08 mmol), 1-hy­droxy­benzotriazole (121.6 mg, 0.9 mmol) and tri­ethyl­amine (0.5 ml, 3.7 mmol) were added to solutions of the appropriately substituted benzoic acid [3-fluoro­benzoic acid for (I)[link], 2,6-di­fluoro­benzoic acid for (II)[link] or 2,4-di­chloro­benzoic acid for (III)] (0.9 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixtures were then stirred at 273 K for 20 min. A solution of 1-[(1,3-benzodioxol-5-yl)methyl]­piperazine (200 mg, 0.9 mmol) in N,N-di­methyl­formamide (5 ml) was then added to each mixture and stirring was continued overnight at ambient temperature. When the reactions were complete as confirmed using thin-layer chromatography, an excess of water was added to each of the mixtures, which were then exhaustively extracted using ethyl acetate. Each of the organic fractions was then washed successively with aqueous hydro­chloric acid (1 mol dm−3), then with a saturated aqueous solution of sodium hydrogencarbonate, and finally with brine. The organic fractions were then dried over anhydrous sodium sulfate and concentrated under reduced pressure. Slow evaporation of these solutions, at ambient temperature and in the presence of air, gave crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction: m.p. (I)[link] 383–386 K, (II)[link] 373 K, (III)[link] 394–396 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps, and they were subsequently treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic) or 0.99 Å (CH2) and with Uiso(H) = 1.2Ueq(C). For compound (I)[link], fifteen bad outlier reflections were omitted from the data set. For compound (II)[link], the correct orientation of the structure with respect to the polar axis direction could not be established because of the lack of significant resonant scattering: thus calculation of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) using using 1369 quotients of the type [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) gave a value −0.3 (10), which must be regarded as indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), despite the 93% coverage of Friedel pairs, while the value of the Hooft y parameter (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), y = −0.2 (6), is likewise indeterminate.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXS97 (Sheldrick 2015) for (I); SHELXS97 (Sheldrick, 2015) for (II), (III). Program(s) used to refine structure: SHELXL2014 (Sheldrick,2015) for (I); SHELXL2014 (Sheldrick, 2015) for (II), (III). For all structures, molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).

1-[(1,3-Benzodioxol-5-yl)methyl]-4-(3-fluorobenzoyl)piperazine (I) top
Crystal data top
C19H19FN2O3F(000) = 720
Mr = 342.36Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2358 (16) ÅCell parameters from 3689 reflections
b = 10.3185 (14) Åθ = 1.9–27.6°
c = 14.2310 (19) ŵ = 0.10 mm1
β = 111.199 (2)°T = 173 K
V = 1675.2 (4) Å3Block, colourless
Z = 40.48 × 0.29 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
3674 independent reflections
Radiation source: fine focus sealed tube2975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0.3333 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 1015
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1313
Tmin = 0.813, Tmax = 0.972l = 189
8635 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.4713P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3674 reflectionsΔρmax = 0.24 e Å3
226 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57212 (10)0.47476 (11)0.26954 (9)0.0303 (3)
C20.51223 (13)0.44782 (14)0.33984 (11)0.0330 (3)
H2A0.56220.39180.39520.040*
H2B0.43790.40140.30430.040*
C30.48694 (13)0.57400 (15)0.38272 (11)0.0356 (3)
H3A0.44380.55600.42830.043*
H3B0.56160.61730.42240.043*
N40.41697 (11)0.65903 (12)0.30093 (9)0.0327 (3)
C50.47088 (13)0.68273 (14)0.22552 (11)0.0327 (3)
H5A0.54440.73250.25640.039*
H5B0.41700.73440.16910.039*
C60.49704 (13)0.55452 (14)0.18609 (11)0.0313 (3)
H6A0.42280.50810.15020.038*
H6B0.53680.57040.13770.038*
C110.60711 (14)0.35498 (14)0.23287 (12)0.0368 (3)
H11A0.53670.31240.18450.044*
H11B0.64240.29510.29030.044*
O110.95161 (10)0.44449 (12)0.06543 (9)0.0460 (3)
C121.01387 (15)0.54464 (18)0.13322 (13)0.0450 (4)
H12A1.09840.52320.16240.054*
H12B1.00490.62790.09670.054*
O130.96722 (10)0.55552 (12)0.21141 (9)0.0453 (3)
C3A0.86787 (13)0.48056 (14)0.18111 (11)0.0317 (3)
C140.78769 (13)0.46591 (14)0.22718 (11)0.0323 (3)
H140.79500.51180.28700.039*
C150.69410 (13)0.37999 (14)0.18201 (11)0.0327 (3)
C160.68486 (14)0.31574 (15)0.09369 (12)0.0384 (4)
H160.62030.25920.06360.046*
C170.76762 (14)0.33156 (16)0.04750 (12)0.0399 (4)
H170.76100.28690.01270.048*
C7A0.85801 (14)0.41432 (14)0.09347 (11)0.0347 (3)
C470.32103 (13)0.72461 (14)0.29797 (11)0.0328 (3)
O470.27475 (12)0.80626 (13)0.23290 (10)0.0583 (4)
C410.26784 (12)0.69823 (13)0.37650 (11)0.0291 (3)
C420.22151 (13)0.57722 (14)0.38544 (11)0.0333 (3)
H420.23060.50490.34760.040*
C430.16209 (14)0.56607 (15)0.45098 (12)0.0367 (3)
F430.11374 (10)0.44972 (10)0.45775 (9)0.0590 (3)
C440.14867 (13)0.66616 (16)0.50952 (12)0.0377 (4)
H440.10790.65420.55440.045*
C450.19660 (13)0.78531 (16)0.50088 (12)0.0381 (4)
H450.18960.85630.54090.046*
C460.25459 (13)0.80141 (14)0.43428 (12)0.0345 (3)
H460.28570.88390.42800.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0328 (6)0.0277 (6)0.0323 (6)0.0018 (5)0.0140 (5)0.0033 (5)
C20.0307 (7)0.0341 (8)0.0338 (8)0.0021 (6)0.0113 (6)0.0106 (6)
C30.0349 (8)0.0444 (9)0.0275 (7)0.0076 (6)0.0114 (6)0.0080 (6)
N40.0373 (7)0.0345 (7)0.0283 (6)0.0068 (5)0.0145 (5)0.0068 (5)
C50.0388 (8)0.0300 (7)0.0317 (7)0.0015 (6)0.0157 (6)0.0061 (6)
C60.0350 (8)0.0311 (7)0.0285 (7)0.0005 (6)0.0121 (6)0.0025 (6)
C110.0408 (8)0.0276 (7)0.0427 (9)0.0007 (6)0.0160 (7)0.0009 (6)
O110.0512 (7)0.0504 (7)0.0447 (7)0.0015 (5)0.0275 (6)0.0093 (5)
C120.0400 (9)0.0524 (10)0.0469 (10)0.0013 (7)0.0209 (8)0.0054 (8)
O130.0426 (6)0.0511 (7)0.0478 (7)0.0086 (5)0.0231 (6)0.0146 (5)
C3A0.0325 (7)0.0279 (7)0.0318 (7)0.0059 (6)0.0082 (6)0.0006 (6)
C140.0367 (8)0.0306 (7)0.0290 (7)0.0048 (6)0.0113 (6)0.0022 (6)
C150.0351 (8)0.0273 (7)0.0344 (8)0.0064 (6)0.0108 (6)0.0013 (6)
C160.0358 (8)0.0344 (8)0.0391 (8)0.0030 (6)0.0066 (7)0.0068 (6)
C170.0465 (9)0.0388 (8)0.0324 (8)0.0077 (7)0.0117 (7)0.0073 (6)
C7A0.0401 (8)0.0330 (8)0.0330 (8)0.0109 (6)0.0160 (7)0.0023 (6)
C470.0369 (8)0.0260 (7)0.0370 (8)0.0018 (6)0.0150 (6)0.0059 (6)
O470.0624 (8)0.0576 (8)0.0686 (9)0.0303 (6)0.0401 (7)0.0385 (7)
C410.0263 (7)0.0280 (7)0.0303 (7)0.0019 (5)0.0071 (6)0.0036 (5)
C420.0400 (8)0.0268 (7)0.0329 (7)0.0001 (6)0.0128 (7)0.0002 (6)
C430.0383 (8)0.0311 (8)0.0398 (8)0.0047 (6)0.0130 (7)0.0068 (6)
F430.0759 (8)0.0378 (6)0.0757 (7)0.0142 (5)0.0424 (6)0.0061 (5)
C440.0342 (8)0.0466 (9)0.0337 (8)0.0027 (7)0.0141 (7)0.0058 (7)
C450.0368 (8)0.0382 (8)0.0387 (8)0.0020 (6)0.0127 (7)0.0064 (7)
C460.0332 (8)0.0270 (7)0.0431 (8)0.0020 (6)0.0135 (7)0.0006 (6)
Geometric parameters (Å, º) top
N1—C61.4638 (18)O13—C3A1.3722 (18)
N1—C111.4645 (18)C3A—C141.371 (2)
N1—C21.4647 (18)C3A—C7A1.389 (2)
C2—C31.517 (2)C14—C151.406 (2)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.389 (2)
C3—N41.4619 (18)C16—C171.402 (2)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C7A1.363 (2)
N4—C471.3423 (19)C17—H170.9500
N4—C51.4692 (17)C47—O471.2283 (18)
C5—C61.5156 (19)C47—C411.507 (2)
C5—H5A0.9900C41—C461.390 (2)
C5—H5B0.9900C41—C421.3960 (19)
C6—H6A0.9900C42—C431.379 (2)
C6—H6B0.9900C42—H420.9500
C11—C151.510 (2)C43—F431.3572 (17)
C11—H11A0.9900C43—C441.374 (2)
C11—H11B0.9900C44—C451.387 (2)
O11—C7A1.3777 (19)C44—H440.9500
O11—C121.431 (2)C45—C461.384 (2)
C12—O131.4268 (19)C45—H450.9500
C12—H12A0.9900C46—H460.9500
C12—H12B0.9900
C6—N1—C11111.35 (11)H12A—C12—H12B108.4
C6—N1—C2109.80 (11)C3A—O13—C12105.63 (12)
C11—N1—C2111.48 (11)C14—C3A—O13128.14 (13)
N1—C2—C3109.70 (12)C14—C3A—C7A122.03 (14)
N1—C2—H2A109.7O13—C3A—C7A109.82 (13)
C3—C2—H2A109.7C3A—C14—C15117.14 (13)
N1—C2—H2B109.7C3A—C14—H14121.4
C3—C2—H2B109.7C15—C14—H14121.4
H2A—C2—H2B108.2C16—C15—C14120.05 (14)
N4—C3—C2109.93 (12)C16—C15—C11120.75 (14)
N4—C3—H3A109.7C14—C15—C11119.16 (13)
C2—C3—H3A109.7C15—C16—C17122.17 (15)
N4—C3—H3B109.7C15—C16—H16118.9
C2—C3—H3B109.7C17—C16—H16118.9
H3A—C3—H3B108.2C7A—C17—C16116.51 (14)
C47—N4—C3125.54 (12)C7A—C17—H17121.7
C47—N4—C5120.78 (12)C16—C17—H17121.7
C3—N4—C5113.15 (11)C17—C7A—O11128.17 (14)
N4—C5—C6109.62 (11)C17—C7A—C3A122.10 (14)
N4—C5—H5A109.7O11—C7A—C3A109.73 (14)
C6—C5—H5A109.7O47—C47—N4121.94 (13)
N4—C5—H5B109.7O47—C47—C41118.54 (13)
C6—C5—H5B109.7N4—C47—C41119.52 (12)
H5A—C5—H5B108.2C46—C41—C42119.54 (13)
N1—C6—C5110.19 (12)C46—C41—C47118.31 (12)
N1—C6—H6A109.6C42—C41—C47121.84 (13)
C5—C6—H6A109.6C43—C42—C41117.84 (13)
N1—C6—H6B109.6C43—C42—H42121.1
C5—C6—H6B109.6C41—C42—H42121.1
H6A—C6—H6B108.1F43—C43—C44118.11 (14)
N1—C11—C15111.97 (12)F43—C43—C42118.15 (14)
N1—C11—H11A109.2C44—C43—C42123.73 (14)
C15—C11—H11A109.2C43—C44—C45117.76 (14)
N1—C11—H11B109.2C43—C44—H44121.1
C15—C11—H11B109.2C45—C44—H44121.1
H11A—C11—H11B107.9C46—C45—C44120.34 (14)
C7A—O11—C12105.29 (11)C46—C45—H45119.8
O13—C12—O11108.48 (13)C44—C45—H45119.8
O13—C12—H12A110.0C45—C46—C41120.77 (14)
O11—C12—H12A110.0C45—C46—H46119.6
O13—C12—H12B110.0C41—C46—H46119.6
O11—C12—H12B110.0
C6—N1—C2—C360.96 (15)C16—C17—C7A—C3A0.4 (2)
C11—N1—C2—C3175.17 (12)C12—O11—C7A—C17174.64 (16)
N1—C2—C3—N457.23 (15)C12—O11—C7A—C3A6.53 (16)
C2—C3—N4—C47133.38 (15)C14—C3A—C7A—C170.5 (2)
C2—C3—N4—C555.00 (16)O13—C3A—C7A—C17179.30 (14)
C47—N4—C5—C6133.39 (14)C14—C3A—C7A—O11178.38 (13)
C3—N4—C5—C654.54 (16)O13—C3A—C7A—O110.39 (17)
C11—N1—C6—C5175.10 (11)C3—N4—C47—O47171.03 (16)
C2—N1—C6—C560.95 (15)C5—N4—C47—O470.0 (2)
N4—C5—C6—N156.63 (15)C3—N4—C47—C418.9 (2)
C6—N1—C11—C1571.31 (15)C5—N4—C47—C41179.92 (13)
C2—N1—C11—C15165.70 (12)O47—C47—C41—C4656.5 (2)
C7A—O11—C12—O1310.19 (17)N4—C47—C41—C46123.39 (16)
O11—C12—O13—C3A9.99 (17)O47—C47—C41—C42116.97 (17)
C12—O13—C3A—C14175.37 (15)N4—C47—C41—C4263.11 (19)
C12—O13—C3A—C7A5.95 (17)C46—C41—C42—C431.1 (2)
O13—C3A—C14—C15178.36 (14)C47—C41—C42—C43172.33 (13)
C7A—C3A—C14—C150.2 (2)C41—C42—C43—F43178.02 (14)
C3A—C14—C15—C160.9 (2)C41—C42—C43—C441.7 (2)
C3A—C14—C15—C11176.73 (13)F43—C43—C44—C45178.92 (14)
N1—C11—C15—C16138.33 (14)C42—C43—C44—C450.8 (2)
N1—C11—C15—C1444.02 (18)C43—C44—C45—C460.7 (2)
C14—C15—C16—C171.1 (2)C44—C45—C46—C411.3 (2)
C11—C15—C16—C17176.55 (14)C42—C41—C46—C450.4 (2)
C15—C16—C17—C7A0.4 (2)C47—C41—C46—C45174.01 (13)
C16—C17—C7A—O11178.28 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the C3A, C14, C15, C16, C17, C7A ring.
D—H···AD—HH···AD···AD—H···A
C42—H42···O47i0.952.343.273 (2)168
C5—H5A···Cg1ii0.992.763.7310 (18)168
C45—H45···Cg1iii0.952.903.7470 (18)149
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2.
1-[(1,3-Benzodioxol-5-yl)methyl]-4-(2,6-difluorobenzoyl)piperazine (II) top
Crystal data top
C19H18F2N2O3Dx = 1.422 Mg m3
Mr = 360.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 3743 reflections
a = 14.2762 (9) Åθ = 1.9–27.5°
b = 15.9821 (10) ŵ = 0.11 mm1
c = 7.3753 (5) ÅT = 173 K
V = 1682.78 (19) Å3Needle, colourless
Z = 40.91 × 0.35 × 0.17 mm
F(000) = 752
Data collection top
Bruker APEXII CCD
diffractometer
3743 independent reflections
Radiation source: fine focus sealed tube3449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 0.3333 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scansh = 1418
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1620
Tmin = 0.587, Tmax = 0.981l = 99
9016 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.096P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.17 e Å3
3743 reflectionsΔρmin = 0.21 e Å3
235 parametersAbsolute structure: Flack x determined using 1369 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36051 (17)0.62727 (15)0.3017 (3)0.0249 (5)
C20.3856 (2)0.71107 (18)0.2369 (5)0.0302 (6)
H2A0.35970.71970.11380.036*
H2B0.45460.71630.22990.036*
C30.3470 (2)0.77682 (17)0.3641 (4)0.0302 (6)
H3A0.36860.83280.32490.036*
H3B0.27770.77620.35900.036*
N40.37766 (17)0.76146 (14)0.5509 (4)0.0265 (5)
C50.3658 (2)0.67513 (15)0.6138 (4)0.0247 (5)
H5A0.29840.66330.63170.030*
H5B0.39790.66790.73170.030*
C60.40582 (18)0.61456 (18)0.4776 (4)0.0243 (6)
H6A0.47420.62360.46590.029*
H6B0.39530.55640.51930.029*
C110.3880 (2)0.5620 (2)0.1720 (4)0.0320 (7)
H11A0.45690.56280.15660.038*
H11B0.35920.57400.05260.038*
O110.26117 (18)0.25056 (13)0.4272 (4)0.0445 (6)
C120.1638 (3)0.2617 (2)0.3896 (6)0.0426 (8)
H12A0.14310.22080.29710.051*
H12B0.12660.25260.50110.051*
O130.15012 (16)0.34454 (15)0.3247 (4)0.0436 (6)
C3A0.2382 (2)0.37818 (18)0.3049 (5)0.0295 (6)
C140.2621 (2)0.45542 (17)0.2400 (4)0.0299 (6)
H140.21570.49370.19930.036*
C150.35761 (19)0.47614 (18)0.2356 (4)0.0276 (6)
C160.4231 (2)0.4189 (2)0.2983 (4)0.0309 (6)
H160.48750.43390.29610.037*
C170.3983 (2)0.34019 (19)0.3646 (5)0.0336 (7)
H170.44380.30150.40670.040*
C7A0.3045 (2)0.32183 (18)0.3656 (4)0.0317 (6)
C470.4015 (2)0.82057 (17)0.6718 (4)0.0262 (6)
O470.41835 (17)0.80559 (13)0.8317 (3)0.0366 (5)
C410.4064 (2)0.91022 (16)0.6064 (5)0.0277 (6)
C420.3281 (2)0.96071 (19)0.5945 (6)0.0384 (8)
F420.24359 (14)0.92331 (12)0.6222 (4)0.0620 (8)
C430.3316 (3)1.0447 (2)0.5555 (7)0.0476 (9)
H430.27601.07720.54920.057*
C440.4181 (3)1.0804 (2)0.5258 (5)0.0432 (9)
H440.42211.13830.49800.052*
C450.4992 (2)1.03346 (19)0.5357 (5)0.0375 (8)
H450.55871.05840.51580.045*
C460.4913 (2)0.94955 (18)0.5754 (5)0.0303 (6)
F460.56966 (12)0.90206 (13)0.5843 (4)0.0464 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0308 (11)0.0227 (11)0.0214 (11)0.0015 (9)0.0005 (9)0.0023 (9)
C20.0356 (14)0.0296 (15)0.0254 (14)0.0041 (12)0.0029 (12)0.0090 (13)
C30.0399 (14)0.0214 (12)0.0293 (16)0.0025 (11)0.0088 (12)0.0068 (12)
N40.0347 (11)0.0173 (10)0.0274 (13)0.0015 (9)0.0039 (10)0.0052 (9)
C50.0328 (12)0.0169 (11)0.0243 (13)0.0024 (10)0.0002 (11)0.0029 (11)
C60.0267 (12)0.0220 (13)0.0241 (14)0.0012 (10)0.0000 (11)0.0044 (11)
C110.0400 (15)0.0328 (15)0.0232 (14)0.0002 (13)0.0051 (12)0.0003 (12)
O110.0469 (14)0.0305 (11)0.0563 (17)0.0005 (10)0.0008 (12)0.0081 (11)
C120.0465 (19)0.0387 (17)0.043 (2)0.0081 (14)0.0024 (15)0.0013 (15)
O130.0332 (11)0.0427 (13)0.0547 (16)0.0046 (10)0.0009 (11)0.0050 (12)
C3A0.0282 (13)0.0343 (14)0.0260 (14)0.0040 (12)0.0012 (11)0.0043 (12)
C140.0338 (13)0.0308 (13)0.0252 (14)0.0072 (12)0.0048 (12)0.0008 (13)
C150.0371 (14)0.0266 (13)0.0191 (12)0.0031 (11)0.0018 (11)0.0044 (11)
C160.0283 (12)0.0336 (16)0.0307 (15)0.0059 (11)0.0018 (12)0.0063 (13)
C170.0374 (14)0.0270 (14)0.0365 (17)0.0093 (12)0.0025 (13)0.0011 (13)
C7A0.0420 (15)0.0242 (13)0.0289 (16)0.0036 (12)0.0004 (13)0.0027 (12)
C470.0293 (11)0.0188 (12)0.0304 (15)0.0014 (10)0.0014 (11)0.0043 (11)
O470.0560 (13)0.0233 (10)0.0305 (13)0.0055 (9)0.0064 (10)0.0021 (9)
C410.0365 (14)0.0183 (12)0.0284 (15)0.0031 (11)0.0002 (12)0.0023 (11)
C420.0344 (14)0.0295 (16)0.051 (2)0.0016 (12)0.0038 (14)0.0095 (15)
F420.0323 (9)0.0451 (11)0.109 (2)0.0006 (10)0.0056 (12)0.0293 (14)
C430.0502 (19)0.0283 (16)0.064 (3)0.0091 (14)0.0094 (18)0.0128 (16)
C440.068 (2)0.0187 (14)0.043 (2)0.0038 (14)0.0079 (17)0.0061 (13)
C450.0461 (17)0.0282 (14)0.038 (2)0.0127 (14)0.0074 (13)0.0019 (14)
C460.0331 (14)0.0265 (13)0.0313 (17)0.0021 (11)0.0026 (12)0.0003 (13)
F460.0330 (9)0.0404 (11)0.0658 (16)0.0006 (8)0.0054 (10)0.0060 (11)
Geometric parameters (Å, º) top
N1—C61.464 (4)O13—C3A1.375 (4)
N1—C21.466 (3)C3A—C141.367 (4)
N1—C111.469 (4)C3A—C7A1.381 (4)
C2—C31.513 (4)C14—C151.404 (4)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.388 (4)
C3—N41.466 (4)C16—C171.395 (5)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C7A1.370 (4)
N4—C471.343 (4)C17—H170.9500
N4—C51.465 (3)C47—O471.227 (4)
C5—C61.507 (4)C47—C411.513 (4)
C5—H5A0.9900C41—C421.382 (4)
C5—H5B0.9900C41—C461.384 (4)
C6—H6A0.9900C42—F421.362 (3)
C6—H6B0.9900C42—C431.373 (4)
C11—C151.514 (4)C43—C441.379 (5)
C11—H11A0.9900C43—H430.9500
C11—H11B0.9900C44—C451.381 (5)
O11—C7A1.374 (4)C44—H440.9500
O11—C121.429 (4)C45—C461.377 (4)
C12—O131.422 (4)C45—H450.9500
C12—H12A0.9900C46—F461.354 (3)
C12—H12B0.9900
C6—N1—C2107.9 (2)H12A—C12—H12B108.4
C6—N1—C11111.2 (2)C3A—O13—C12105.9 (2)
C2—N1—C11111.8 (2)C14—C3A—O13128.2 (3)
N1—C2—C3110.1 (3)C14—C3A—C7A122.1 (3)
N1—C2—H2A109.6O13—C3A—C7A109.7 (3)
C3—C2—H2A109.6C3A—C14—C15117.6 (3)
N1—C2—H2B109.6C3A—C14—H14121.2
C3—C2—H2B109.6C15—C14—H14121.2
H2A—C2—H2B108.2C16—C15—C14119.4 (3)
N4—C3—C2111.0 (2)C16—C15—C11120.5 (3)
N4—C3—H3A109.4C14—C15—C11120.0 (3)
C2—C3—H3A109.4C15—C16—C17122.6 (3)
N4—C3—H3B109.4C15—C16—H16118.7
C2—C3—H3B109.4C17—C16—H16118.7
H3A—C3—H3B108.0C7A—C17—C16116.3 (3)
C47—N4—C5118.8 (3)C7A—C17—H17121.8
C47—N4—C3125.6 (2)C16—C17—H17121.8
C5—N4—C3114.9 (2)C17—C7A—O11128.3 (3)
N4—C5—C6110.5 (2)C17—C7A—C3A121.9 (3)
N4—C5—H5A109.6O11—C7A—C3A109.8 (3)
C6—C5—H5A109.6O47—C47—N4123.4 (3)
N4—C5—H5B109.6O47—C47—C41118.8 (3)
C6—C5—H5B109.6N4—C47—C41117.8 (3)
H5A—C5—H5B108.1C42—C41—C46115.6 (2)
N1—C6—C5109.5 (2)C42—C41—C47122.4 (2)
N1—C6—H6A109.8C46—C41—C47121.6 (3)
C5—C6—H6A109.8F42—C42—C43119.5 (3)
N1—C6—H6B109.8F42—C42—C41116.8 (2)
C5—C6—H6B109.8C43—C42—C41123.7 (3)
H6A—C6—H6B108.2C42—C43—C44118.0 (3)
N1—C11—C15111.4 (2)C42—C43—H43121.0
N1—C11—H11A109.3C44—C43—H43121.0
C15—C11—H11A109.3C43—C44—C45121.2 (3)
N1—C11—H11B109.3C43—C44—H44119.4
C15—C11—H11B109.3C45—C44—H44119.4
H11A—C11—H11B108.0C46—C45—C44118.1 (3)
C7A—O11—C12105.7 (2)C46—C45—H45120.9
O13—C12—O11108.4 (3)C44—C45—H45120.9
O13—C12—H12A110.0F46—C46—C45119.2 (3)
O11—C12—H12A110.0F46—C46—C41117.4 (2)
O13—C12—H12B110.0C45—C46—C41123.3 (3)
O11—C12—H12B110.0
C6—N1—C2—C363.5 (3)C12—O11—C7A—C3A4.4 (4)
C11—N1—C2—C3173.9 (2)C14—C3A—C7A—C170.1 (5)
N1—C2—C3—N454.5 (3)O13—C3A—C7A—C17178.7 (3)
C2—C3—N4—C47142.2 (3)C14—C3A—C7A—O11178.5 (3)
C2—C3—N4—C548.1 (3)O13—C3A—C7A—O110.4 (4)
C47—N4—C5—C6140.1 (3)C5—N4—C47—O473.6 (4)
C3—N4—C5—C649.5 (3)C3—N4—C47—O47173.0 (3)
C2—N1—C6—C565.0 (3)C5—N4—C47—C41175.7 (2)
C11—N1—C6—C5172.1 (2)C3—N4—C47—C416.3 (4)
N4—C5—C6—N157.3 (3)O47—C47—C41—C4295.9 (4)
C6—N1—C11—C1562.1 (3)N4—C47—C41—C4283.4 (4)
C2—N1—C11—C15177.2 (2)O47—C47—C41—C4676.3 (4)
C7A—O11—C12—O136.7 (4)N4—C47—C41—C46104.4 (4)
O11—C12—O13—C3A6.5 (4)C46—C41—C42—F42179.2 (3)
C12—O13—C3A—C14177.4 (3)C47—C41—C42—F428.2 (5)
C12—O13—C3A—C7A3.9 (4)C46—C41—C42—C430.2 (6)
O13—C3A—C14—C15179.0 (3)C47—C41—C42—C43172.4 (4)
C7A—C3A—C14—C150.4 (5)F42—C42—C43—C44179.1 (4)
C3A—C14—C15—C160.8 (4)C41—C42—C43—C440.3 (7)
C3A—C14—C15—C11177.6 (3)C42—C43—C44—C450.3 (7)
N1—C11—C15—C16107.8 (3)C43—C44—C45—C460.3 (6)
N1—C11—C15—C1469.0 (4)C44—C45—C46—F46179.4 (3)
C14—C15—C16—C170.8 (5)C44—C45—C46—C410.3 (5)
C11—C15—C16—C17177.6 (3)C42—C41—C46—F46179.5 (3)
C15—C16—C17—C7A0.3 (5)C47—C41—C46—F467.8 (5)
C16—C17—C7A—O11178.2 (3)C42—C41—C46—C450.3 (5)
C16—C17—C7A—C3A0.2 (5)C47—C41—C46—C45172.4 (3)
C12—O11—C7A—C17177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C45—H45···O47i0.952.583.204 (4)123
Symmetry code: (i) x+1, y+2, z1/2.
1-[(1,3-Benzodioxol-5-yl)methyl]-4-(2,4-dichlorobenzoyl)piperazine (III) top
Crystal data top
C19H18Cl2N2O3F(000) = 816
Mr = 393.25Dx = 1.442 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2889 (14) ÅCell parameters from 4054 reflections
b = 12.3034 (14) Åθ = 2.4–27.4°
c = 13.3667 (15) ŵ = 0.38 mm1
β = 116.295 (1)°T = 173 K
V = 1811.9 (4) Å3Block, colourless
Z = 40.49 × 0.48 × 0.38 mm
Data collection top
Bruker APEXII CCD
diffractometer
4054 independent reflections
Radiation source: fine focus sealed tube3545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 0.3333 pixels mm-1θmax = 27.4°, θmin = 2.4°
φ and ω scansh = 1511
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1515
Tmin = 0.776, Tmax = 0.867l = 1717
9718 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.043P)2 + 0.6034P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4054 reflectionsΔρmax = 0.37 e Å3
235 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52986 (10)0.18706 (10)0.64831 (10)0.0293 (3)
C20.48214 (12)0.13857 (13)0.72047 (12)0.0335 (3)
H2A0.54510.14070.79890.040*
H2B0.46090.06160.69930.040*
C30.37079 (12)0.19934 (13)0.71033 (11)0.0321 (3)
H3A0.33600.16220.75530.038*
H3B0.39390.27400.73980.038*
N40.27950 (10)0.20437 (11)0.59349 (9)0.0310 (3)
C50.32597 (13)0.24338 (15)0.51615 (12)0.0376 (3)
H5A0.34570.32170.52920.045*
H5B0.26290.23430.43840.045*
C60.43884 (13)0.18029 (13)0.53272 (12)0.0342 (3)
H6A0.41730.10320.51220.041*
H6B0.47230.21030.48340.041*
C110.64509 (13)0.13691 (12)0.66549 (15)0.0371 (3)
H11A0.62950.06250.63410.045*
H11B0.69880.13130.74650.045*
O110.87114 (9)0.40074 (9)0.46855 (9)0.0362 (2)
C120.83867 (16)0.50226 (13)0.49898 (14)0.0407 (4)
H12A0.77430.53750.43260.049*
H12B0.91000.55110.52960.049*
O130.79616 (10)0.48304 (9)0.58078 (10)0.0391 (3)
C3A0.77539 (12)0.37264 (11)0.57687 (12)0.0280 (3)
C140.71953 (12)0.31497 (12)0.62874 (12)0.0312 (3)
H140.68970.34980.67510.037*
C150.70819 (12)0.20229 (12)0.61057 (12)0.0299 (3)
C160.75523 (12)0.15362 (12)0.54436 (12)0.0316 (3)
H160.74710.07730.53300.038*
C170.81427 (12)0.21356 (12)0.49382 (11)0.0311 (3)
H170.84790.17950.45010.037*
C7A0.82108 (11)0.32314 (12)0.51047 (11)0.0269 (3)
C470.15968 (12)0.18798 (11)0.55740 (11)0.0273 (3)
O470.08510 (9)0.19648 (11)0.45924 (8)0.0426 (3)
C410.11656 (11)0.15520 (11)0.64264 (10)0.0240 (3)
C420.09914 (11)0.22960 (10)0.71238 (10)0.0236 (3)
Cl420.13921 (3)0.36508 (3)0.71225 (3)0.03486 (11)
C430.04921 (11)0.19988 (11)0.78313 (11)0.0261 (3)
H430.03840.25180.83060.031*
C440.01549 (11)0.09273 (12)0.78272 (11)0.0276 (3)
Cl440.04771 (4)0.05479 (4)0.87079 (3)0.04291 (12)
C450.02990 (12)0.01613 (11)0.71408 (12)0.0310 (3)
H450.00520.05700.71430.037*
C460.08095 (12)0.04794 (11)0.64495 (12)0.0291 (3)
H460.09200.00440.59800.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0239 (5)0.0337 (6)0.0344 (6)0.0016 (5)0.0165 (5)0.0087 (5)
C20.0262 (6)0.0420 (8)0.0328 (7)0.0015 (6)0.0135 (6)0.0125 (6)
C30.0253 (6)0.0480 (9)0.0241 (6)0.0042 (6)0.0119 (5)0.0031 (6)
N40.0243 (5)0.0478 (7)0.0239 (5)0.0012 (5)0.0135 (5)0.0061 (5)
C50.0304 (7)0.0575 (10)0.0312 (7)0.0080 (7)0.0194 (6)0.0154 (7)
C60.0313 (7)0.0454 (9)0.0332 (7)0.0022 (6)0.0208 (6)0.0042 (6)
C110.0294 (7)0.0333 (8)0.0526 (9)0.0061 (6)0.0217 (7)0.0129 (7)
O110.0389 (6)0.0424 (6)0.0378 (6)0.0031 (5)0.0265 (5)0.0000 (5)
C120.0499 (9)0.0396 (8)0.0452 (9)0.0087 (7)0.0326 (8)0.0021 (7)
O130.0537 (6)0.0300 (5)0.0509 (6)0.0066 (5)0.0388 (6)0.0041 (5)
C3A0.0256 (6)0.0292 (7)0.0320 (7)0.0002 (5)0.0153 (6)0.0009 (5)
C140.0307 (7)0.0328 (7)0.0389 (8)0.0036 (6)0.0235 (6)0.0016 (6)
C150.0214 (6)0.0319 (7)0.0377 (7)0.0051 (5)0.0143 (6)0.0062 (6)
C160.0250 (6)0.0287 (7)0.0378 (8)0.0046 (5)0.0110 (6)0.0008 (6)
C170.0255 (6)0.0386 (8)0.0291 (7)0.0053 (6)0.0120 (5)0.0041 (6)
C7A0.0193 (6)0.0379 (7)0.0241 (6)0.0003 (5)0.0103 (5)0.0004 (5)
C470.0259 (6)0.0336 (7)0.0251 (6)0.0026 (5)0.0137 (5)0.0010 (5)
O470.0286 (5)0.0743 (8)0.0238 (5)0.0021 (5)0.0106 (4)0.0031 (5)
C410.0186 (5)0.0306 (7)0.0226 (6)0.0011 (5)0.0090 (5)0.0002 (5)
C420.0232 (6)0.0246 (6)0.0233 (6)0.0024 (5)0.0105 (5)0.0000 (5)
Cl420.0493 (2)0.02548 (18)0.03616 (19)0.00753 (14)0.02471 (17)0.00147 (13)
C430.0246 (6)0.0315 (7)0.0237 (6)0.0015 (5)0.0121 (5)0.0013 (5)
C440.0211 (6)0.0351 (7)0.0261 (6)0.0021 (5)0.0101 (5)0.0063 (5)
Cl440.0431 (2)0.0533 (2)0.0397 (2)0.01166 (17)0.02503 (17)0.00825 (17)
C450.0276 (7)0.0253 (7)0.0361 (7)0.0013 (5)0.0105 (6)0.0046 (6)
C460.0274 (6)0.0271 (7)0.0311 (7)0.0039 (5)0.0115 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—C61.4540 (19)O13—C3A1.3787 (17)
N1—C21.4600 (17)C3A—C141.3701 (19)
N1—C111.4665 (17)C3A—C7A1.3839 (19)
C2—C31.512 (2)C14—C151.404 (2)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.389 (2)
C3—N41.4660 (17)C16—C171.400 (2)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C7A1.363 (2)
N4—C471.3462 (17)C17—H170.9500
N4—C51.4658 (17)C47—O471.2276 (17)
C5—C61.518 (2)C47—C411.5088 (17)
C5—H5A0.9900C41—C421.3890 (18)
C5—H5B0.9900C41—C461.3950 (19)
C6—H6A0.9900C42—C431.3852 (17)
C6—H6B0.9900C42—Cl421.7383 (13)
C11—C151.5138 (19)C43—C441.381 (2)
C11—H11A0.9900C43—H430.9500
C11—H11B0.9900C44—C451.380 (2)
O11—C7A1.3817 (17)C44—Cl441.7370 (13)
O11—C121.4242 (19)C45—C461.384 (2)
C12—O131.4249 (17)C45—H450.9500
C12—H12A0.9900C46—H460.9500
C12—H12B0.9900
C6—N1—C2109.49 (11)H12A—C12—H12B108.4
C6—N1—C11112.16 (12)C3A—O13—C12105.01 (11)
C2—N1—C11111.54 (11)C14—C3A—O13128.09 (13)
N1—C2—C3110.56 (11)C14—C3A—C7A122.22 (13)
N1—C2—H2A109.5O13—C3A—C7A109.69 (12)
C3—C2—H2A109.5C3A—C14—C15117.23 (13)
N1—C2—H2B109.5C3A—C14—H14121.4
C3—C2—H2B109.5C15—C14—H14121.4
H2A—C2—H2B108.1C16—C15—C14119.91 (13)
N4—C3—C2110.58 (12)C16—C15—C11121.81 (13)
N4—C3—H3A109.5C14—C15—C11118.28 (13)
C2—C3—H3A109.5C15—C16—C17122.09 (14)
N4—C3—H3B109.5C15—C16—H16119.0
C2—C3—H3B109.5C17—C16—H16119.0
H3A—C3—H3B108.1C7A—C17—C16116.72 (13)
C47—N4—C5120.16 (11)C7A—C17—H17121.6
C47—N4—C3125.09 (11)C16—C17—H17121.6
C5—N4—C3114.32 (11)C17—C7A—O11128.57 (12)
N4—C5—C6110.25 (12)C17—C7A—C3A121.80 (13)
N4—C5—H5A109.6O11—C7A—C3A109.63 (12)
C6—C5—H5A109.6O47—C47—N4123.39 (13)
N4—C5—H5B109.6O47—C47—C41118.97 (12)
C6—C5—H5B109.6N4—C47—C41117.62 (11)
H5A—C5—H5B108.1C42—C41—C46117.74 (12)
N1—C6—C5110.42 (12)C42—C41—C47122.74 (12)
N1—C6—H6A109.6C46—C41—C47119.22 (12)
C5—C6—H6A109.6C43—C42—C41122.06 (12)
N1—C6—H6B109.6C43—C42—Cl42117.72 (10)
C5—C6—H6B109.6C41—C42—Cl42120.22 (10)
H6A—C6—H6B108.1C44—C43—C42118.17 (12)
N1—C11—C15111.53 (11)C44—C43—H43120.9
N1—C11—H11A109.3C42—C43—H43120.9
C15—C11—H11A109.3C45—C44—C43121.85 (12)
N1—C11—H11B109.3C45—C44—Cl44119.64 (11)
C15—C11—H11B109.3C43—C44—Cl44118.50 (11)
H11A—C11—H11B108.0C44—C45—C46118.71 (13)
C7A—O11—C12105.00 (10)C44—C45—H45120.6
O11—C12—O13108.54 (12)C46—C45—H45120.6
O11—C12—H12A110.0C45—C46—C41121.47 (13)
O13—C12—H12A110.0C45—C46—H46119.3
O11—C12—H12B110.0C41—C46—H46119.3
O13—C12—H12B110.0
C6—N1—C2—C361.31 (16)C12—O11—C7A—C17172.09 (14)
C11—N1—C2—C3173.95 (13)C12—O11—C7A—C3A8.17 (15)
N1—C2—C3—N455.00 (16)C14—C3A—C7A—C170.7 (2)
C2—C3—N4—C47136.85 (14)O13—C3A—C7A—C17178.96 (13)
C2—C3—N4—C550.77 (17)C14—C3A—C7A—O11179.50 (12)
C47—N4—C5—C6136.22 (14)O13—C3A—C7A—O110.81 (15)
C3—N4—C5—C650.99 (18)C5—N4—C47—O475.4 (2)
C2—N1—C6—C561.64 (16)C3—N4—C47—O47177.41 (14)
C11—N1—C6—C5173.97 (12)C5—N4—C47—C41175.89 (13)
N4—C5—C6—N155.75 (17)C3—N4—C47—C413.9 (2)
C6—N1—C11—C1569.26 (16)O47—C47—C41—C42100.59 (16)
C2—N1—C11—C15167.51 (13)N4—C47—C41—C4280.68 (17)
C7A—O11—C12—O1314.03 (16)O47—C47—C41—C4672.85 (18)
O11—C12—O13—C3A14.51 (16)N4—C47—C41—C46105.88 (15)
C12—O13—C3A—C14170.92 (15)C46—C41—C42—C430.52 (19)
C12—O13—C3A—C7A9.41 (16)C47—C41—C42—C43174.06 (12)
O13—C3A—C14—C15179.33 (14)C46—C41—C42—Cl42178.99 (10)
C7A—C3A—C14—C151.0 (2)C47—C41—C42—Cl425.46 (17)
C3A—C14—C15—C161.5 (2)C41—C42—C43—C440.42 (19)
C3A—C14—C15—C11179.07 (12)Cl42—C42—C43—C44179.11 (10)
N1—C11—C15—C16132.47 (14)C42—C43—C44—C450.3 (2)
N1—C11—C15—C1448.08 (19)C42—C43—C44—Cl44179.77 (10)
C14—C15—C16—C170.2 (2)C43—C44—C45—C460.8 (2)
C11—C15—C16—C17179.64 (13)Cl44—C44—C45—C46179.70 (10)
C15—C16—C17—C7A1.5 (2)C44—C45—C46—C410.7 (2)
C16—C17—C7A—O11178.31 (12)C42—C41—C46—C450.03 (19)
C16—C17—C7A—C3A2.0 (2)C47—C41—C46—C45173.74 (12)
 

Acknowledgements

NM is grateful to the University of Mysore for research facilities.

Funding information

HSY is grateful to the UGC, New Delhi for the award of a BSR Faculty Fellowship for three years. BKS thanks the UGC for the award of a Rajeev Gandhi Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuncton, M. A. J., Roffey, J. R. A., Hamlyn, R. J. & Adams, D. R. (2006). Tetrahedron Lett. 47, 2549–2552.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamid, M. H. S. A. & Williams, J. M. J. (2007). Tetrahedron Lett. 48, 8263–8265.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o208–o209.  CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o270–o271.  CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014c). Acta Cryst. E70, o283–o284.  CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o2575.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129–133.  CrossRef IUCr Journals Google Scholar
First citationMillan, M. J., Cussac, D., Milligan, G., Carr, C., Audinot, V., Gobert, A., Lejeune, F., Rivet, J.-M., Brocco, M., Duqueyroix, D., Nicolas, J.-P., Boutin, J. A. & Newman-Tancredi, A. (2001). J. Pharmacol. Exp. Ther. 297, 876–887.  CAS Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRondot, P. & Ziegler, M. (1992). J. Neurol. 239, S28–S34.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationWu, C., Li, J., Wei, H., Hang, Y. & Jiang, Y. (2013). Acta Cryst. E69, o1140.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds