research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Co-crystallization of 3,5-di­nitro­benzoic acid with two anti­psychotic agents: a simple 1:1 salt with trihexyphenidyl and a 1:2 acid salt containing a very short O—H⋯O hydrogen bond with chlorprothixene

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824 236, India, cDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 18 January 2019; accepted 24 January 2019; online 31 January 2019)

Co-crystallization of racemic 1-cyclo­hexyl-1-phenyl-3-(piperidin-1-yl)propan-1-ol (trihexyphenid­yl) with 3,5-di­nitro­benzoic acid gives a simple 1:1 salt, namely 1-(3-cyclo­hexyl-3-hy­droxy-3-phenyl­prop­yl)piperidin-1-ium 3,5-di­nitro­benzoate, C20H32NO+·C7H3N2O6, (I), whereas a similar co-crystallization using (Z)-3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine (chlorprothixene) gives a 1:2 acid salt, namely (Z)-3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-aminium hydrogen bis­(3,5-di­nitro­benzoate), C18H19ClNS+·[H(C7H3N2O6)2], (II), the anion of which contains a very short O—H⋯O hydrogen bond, with dimensions O—H = 1.04 (3) Å, H⋯O = 1.41 (3) Å, O⋯O = 2.4197 (15) Å and O—H⋯O = 161 (3)°. In the cation of (I), the cyclo­hexyl and piperidyl rings both adopt chair conformations, whereas in the cation of (II), the central heterocyclic ring adopts a boat conformation, so that the dihedral angle between the two aryl rings is 41.56 (4)°. A combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the ions of (I) into a complex chain of rings, and these chains are linked into sheets by ππ stacking inter­actions between inversion-related pairs of anions. In compound (II), a different combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the ions into sheets. Comparisons are made with some related structures.

1. Chemical context

1-Cyclo­hexyl-1-phenyl-3-(piperidin-1-yl)propan-1-ol, trihexy­phenidyl, and 3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine, chlorprothixene, can both be used in the treatment of psychotic depression (Roth et al., 1994[Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J., Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharmacol. Exp. Ther. 268, 1403-1410.]; Seeman & Tallerico, 1998[Seeman, T. & Tallerico, T. (1998). Mol. Psychiatry, 3, 123-134.]; Silvestre & Prous, 2005[Silvestre, J. S. & Prous, J. (2005). Methods Find. Exp. Clin. Pharmacol. 27, 289-304.]). In addition, trihexyphenidyl is well established as a treatment for symptomatic relief in cases of Parkinson's disease (Doshay et al., 1954[Doshay, L. J., Constable, K. & Zier, A. (1954). J. Am. Med. Assoc. 154, 1334-1336.]). Trihexyphenidyl is generally administered as the hydro­chloride salt but, although the structures have been reported for both neutral trihexyphenidyl (Camerman & Camerman, 1972[Camerman, N. & Camerman, A. (1972). J. Am. Chem. Soc. 94, 8553-8556.]) and neutral chlorprothixene (Post et al., 1974[Post, M. L., Kennard, O. & Horn, A. S. (1974). Acta Cryst. B30, 1644-1646.]), there are few reported structures for salts derived from either of these two bases, although we note a powder diffraction study of trihexiphenidyl hydro­chloride (Maccaroni et al., 2010[Maccaroni, E., Malpezzi, L. & Masciocchi, N. (2010). Acta Cryst. E66, o2511.]). Accordingly, we have now investigated the salts formed by trihexyphenidyl and chlorprothixene with 3,5-di­nitro­benzoic acid. Crystallization of equimolar mixtures of racemic trihexiphenydine or (Z)-chlorprothixene with 3,5-dintro­benzoic acid yielded a simple 1:1 salt in the case of trihexyphenidyl (Fig. 1[link]), but a 1:2 acid salt in the case of chlorprothixene (Fig. 2[link]): within fairly wide limits, regardless of the initial stoichiometry of the co-crystallization mixtures, the same products were always obtained.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the (S)-enanti­omer of the cation, the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Co-crystallization from a methanol solution containing equimolar qu­anti­ties of racemic trihexyphenidine and 3,5-di­nitro­benzoic acid gave a simple 1:1 salt (I)[link] (Fig. 1[link]), but a similar crystallization using equimolar qu­anti­ties of (Z)-3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine and 3,5-di­nitro­benzoic acid gave an acid salt (II)[link] containing the hydrogen bis­(3,5-di­nitro­benzoate) anion (Fig. 2[link]). Within this anion, the O—H⋯O hydrogen bond (Table 2[link]) is very short (Speakman, 1972[Speakman, J. C. (1972). Struct. Bond. 12, 141-199.]; Emsley, 1980[Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.]; Gerlt et al., 1997[Gerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. (1997). Chem. & Biol. 4, 259-267.]) but, although it is nearly linear, it is not symmetric as the two independent O—H distances are significantly different (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O212 0.866 (17) 2.046 (17) 2.7476 (16) 137.9 (15)
N1—H1⋯O311 0.866 (17) 2.485 (17) 2.9848 (16) 117.5 (14)
O312—H312⋯O211 1.04 (3) 1.41 (3) 2.4197 (15) 161 (3)
C1—H1B⋯O211i 0.99 2.36 3.2621 (18) 151
C14—H14⋯O232ii 0.95 2.41 3.2917 (19) 155
C18—H18⋯O231 0.95 2.53 3.4386 (19) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

In the selected asymmetric unit of (I)[link] (Fig. 1[link]), the ionic components are linked by just two hydrogen bonds, one each of O—H⋯O and N—H⋯O types (Table 1[link]), to form a compact unit containing an R22(10) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring. By contrast, within the selected asymmetric unit of (II)[link], the components are linked not only by the short O—H⋯O hydrogen bond referred to above, but also by a three-centre N—H⋯(O)2 hydrogen bond and a two-centre C—H⋯O hydrogen bond (Fig. 2[link], Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O412 0.84 (2) 1.91 (2) 2.724 (2) 165.9 (16)
N31—H31⋯O411 0.942 (18) 1.762 (18) 2.7026 (18) 175.7 (14)
C33—H33A⋯O452i 0.99 2.49 3.4202 (17) 157
C36—H36A⋯O1ii 0.99 2.56 3.4025 (16) 144
C36—H36A⋯O412ii 0.99 2.51 3.3949 (19) 148
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1.

The cyclo­hexyl and piperidyl rings in the cation of compound (I)[link] both adopt chair conformations with the sole C-substituent occupying an equatorial site in each case (Fig. 1[link]). In the cation of compound (II)[link], the dihedral angle between the two aryl rings is 41.56 (4)°, indicating a butterfly conformation for the tricyclic component; the central ring adopts a boat conformation where the atoms C14A, C14B, C18A and C18B are coplanar with the atoms C19 and S10, which form the bow and stern of the boat (Fig. 3[link]), displaced from the plane of the other four ring atoms by 0.456 (2) and 0.541 (2) Å respectively. The ring-puckering parameters calculated for the atom sequence (S10, C14A, C18B, C19, C18A, C14B) are Q = 0.5721 (12) Å, θ = 86.71 (13)° and φ = 0.53 (14)°: for an idealized boat form the puckering angles are θ = 90.0° and φ = 60k°, where k represents an integer (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

[Figure 3]
Figure 3
The boat conformation of the thio­pyran ring in compound (II)[link], including all the immediate ring substituent atoms.

In the anion of (I)[link], the nitro group containing atom N43 forms a dihedral angle of only 3.03 (3)° with the adjacent ring, but the other nitro group and the carboxyl­ate group form angles of 21.3 (2) and 20.4 (2)°, respectively. Comparable differences are observed also in the anionic component of (II)[link], where the carboxyl­ate groups form dihedral angles with the adjacent rings of 3.6 (2) and 11.8 (2)°, while the corresponding angles for the four nitro groups range from 3.5 (2) to 18.2 (2)°.

3. Supra­molecular features

In addition to the hydrogen bonds within the selected asymmetric unit of compound (I)[link] (Fig. 1[link], Table 1[link]), the resulting ion-pairs are linked by three independent C—H⋯O hydrogen bonds, which together generate a complex chain structure (Fig. 4[link]). The hydrogen bond involving atom C33 as the donor links inversion-related pairs of cations and anions to form a four-ion aggregate characterized by an R44(24) motif. The hydrogen bond involving atom C36 as the donor, by contrast, forms an almost planar three-centre C—H⋯(O)2 system, again linking inversion-related ion pairs to form a complex motif in which a central R22(14) ring containing only cations is concentric with an outer R44(14) motif involving both cations and anions. The R44(24) rings are centred at (½, n, n) and the fourteen-membered rings are centred at (½, n + ½, n + ½), where n represents an integer in each case, so forming a chain of rings running parallel to the [011] direction (Fig. 4[link]). Chains of this type are linked by a ππ stacking inter­action involving the anions at (x, y, z) and (1 − x, −y, 1 − z). These rings are strictly parallel, with an inter­planar spacing of 3.4413 (6) Å: the ring-centroid separation is 3.5231 (10) Å, corresponding to a ring-centroid offset of 0.755 (2) Å (Fig. 5[link]), and this inter­action links the hydrogen-bonded chains into a sheet lying parallel to (100).

[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of rings parallel to [011]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the ππ stacking overlap between the anions at (x, y, z) and (1 − x, −y, 1 − z). For the sake of clarity, the unit-cell outline and all of the H atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).

In the structure of compound (II)[link] there are just two C—H⋯O hydrogen bonds linking the ion-pairs (Fig. 2[link], Table 2[link]) into sheets, whose formation is most easily analysed in terms of two simple-one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The hydrogen bond involving atom C14 as the donor links the ions into a C22(7) chain running parallel to the [010] direction (Fig. 6[link]), while that having atom C1 as the donor generates a second C22(7) chain, this time running parallel to the [001] direction (Fig. 7[link]). The combination of chains running parallel to [010] and [001] suffices to generate a sheet lying parallel to (100). The only significant ππ stacking inter­actions lie within the hydrogen-bonded sheets, rather than between adjacent sheets, so that the supra­molecular assembly is strictly two-dimensional.

[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded C22(7) chain running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded C22(7) chain running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted.

4. Database survey

It is of inter­est briefly to note the structures of some compounds related to (I)[link] and (II)[link]. In neutral trihexyphenidyl, there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) motif, but there are no significant direction-specific inter­actions between the mol­ecules (Camerman & Camerman, 1972[Camerman, N. & Camerman, A. (1972). J. Am. Chem. Soc. 94, 8553-8556.]), while in the hydro­chloride salt (Maccaroni et al., 2010[Maccaroni, E., Malpezzi, L. & Masciocchi, N. (2010). Acta Cryst. E66, o2511.]), a combination of O—H⋯Cl and N—H⋯Cl hydrogen bonds links the ions into C21(7) chains. By contrast, in the hydro­chloride salt of procyclidine, which differs from trihexy­phenidyl only in having a pyrrolidine ring in place of the piperidine ring, a combination of O—H⋯Cl and N—H⋯Cl hydrogen bonds generates an R21(8) ring, so that the hydrogen-bonded structure consists of ion pairs rather than chains (Camerman & Camerman, 1971[Camerman, N. & Camerman, A. (1971). Mol. Pharmacol. 7, 406-412.]). Neutral 3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine can exist in (E) and (Z) isomers, and the structures of both forms have been reported (Post et al., 1974[Post, M. L., Kennard, O. & Horn, A. S. (1974). Acta Cryst. B30, 1644-1646.]; Sylte & Dahl, 1991[Sylte, I. & Dahl, S. G. (1991). J. Pharm. Sci. 80, 735-740.]). Flupenthixol (sometimes called flupentixol) is an anti­psychotic agent related to chlorprothixene, but having a tri­fluoro­methyl substituent in place of the chloro substituent and a 4(2-hy­droxy­eth­yl)piperazine substituent in place of the di­methyl­amino group: the structures of both the E and Z isomers have been reported (Post et al., 1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]), as have those of the di­hydro­chloride salt (Siddegowda et al., 2011[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011). Acta Cryst. E67, o2017-o2018.]) and the tartrate salt (Yamuna et al., 2014[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o206-o207.]).

Very short O—H⋯O hydrogen bonds have been reported in a number of acid salts derived from simple carb­oxy­lic acids. In some examples, the anion lies across a symmetry element so that the two O—H distances are identical. Thus, for example, in sodium hydrogendi­acetate the anion lies across a twofold rotation axis with an O⋯O distance of 2.475 (2) Å (Barrow et al., 1975[Barrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15-18.]), while in the analogous potassium salt, which is polymeric, the asymmetric O—H⋯O unit has an O⋯O distance of 2.486 Å [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode KHACET02; Courtney & Fronczec, 2005[Courtney, B. H. & Fronczec, F. R. (2005). Private communication (Refcode KHACET02). CCDC, Cambridge, England.]: there are no s.u. values given for the deposited atomic coordinates]. In potassium hydrogenbis(tri­chloro­acetate) (CSD refcode KBTCAC02; Muir et al., 2001[Muir, K. W., Low, Y., MacDonald, A. & Murray, A. (2001). Private communication (Refcode KBTCAC02). CCDC, Cambridge, England.]), the asymmetric hydrogen bond has an O⋯O distance of 2.4496 Å (again, there are no s.u. values for the deposited atomic coordinates). By contrast, the anion in sodium hydrogenbis(phen­oxy­acetate) lies across a twofold rotation axis with an O⋯O distance of 2.413 (2) Å (Evans et al., 2001[Evans, J., Kapitan, A., Rosair, G., Roberts, K. J. & White, G. (2001). Acta Cryst. C57, 250-251.]). The anions in both ethyl­enedi­ammonium hydrogenbis(3,5-di­nitro­benzoate (Jones et al., 2005[Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823-o1825.]) and 2-pyridyl-4′-pyridinium hydrogenbis(3,5-di­nitro­benzoate (Chantrapromma et al., 2002[Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Cryst. C58, o589-o590.]) lie in a general position, with O⋯O distances of 2.507 (2) and 2.579 (2) Å, respectively, in asymmetric O—H⋯O hydrogen bonds. Finally, we note the extremely short O⋯O distance of 2.29 (2) Å reported for the simple anion [H(OH)2], which lies across a centre of inversion in a mixed salt containing both sodium and methyl­tri­ethyl­ammonium cations, as well as tris­(thio­benzo­hydroximato)chromium(III) anions and water mol­ecules (Abu-Dari et al., 1979[Abu-Dari, K., Raymond, K. N. & Freyberg, D. P. (1979). J. Am. Chem. Soc. 101, 3688-3689.]).

5. Synthesis and crystallization

Samples of racemic trihexyphenidine and (Z)-chlorprothixene were gifts from RL Fine Chem Pvt. Ltd., Bengaluru, India. For the synthesis of compound (I)[link], equimolar qu­anti­ties of trihexyphenidine and 3,5-di­nitro­benzoic acid (0.33 mmol of each) were dissolved in hot methanol (10 ml) and the resulting solution was stirred at 333 K for 30 min. The solution was then allowed to cool to ambient temperature, and the resulting crystalline product was collected by filtration. For the synthesis of (II)[link], equimolar qu­anti­ties of chlorprothixene and 3,5-di­nitro­benzoic acid (0.60 mmol of each) were dissolved in hot methanol (10 ml) and the resulting solution was stirred at 333 K for 10 min. The solution was then allowed to cool to ambient temperature, and the resulting crystalline product was collected by filtration. Use of initial molar ratios in the range 5:1 to 1:5 always yielded the same products (I)[link] and (II)[link]. Crystals of (I)[link] and (II)[link] suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol–di­methyl­sulfoxide (1:1, v/v) and N,N-di­methyl­formamide.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic C—H) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For atom H312 in the short O—H⋯O hydrogen bond, the atomic coordinates and the Uiso(H) value were all refined; for the remaining H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The resulting N—H and O—H distances are given in Tables 1[link] and 2[link]. For compound (II)[link], the largest peak in the final difference map, 0.53 e Å−3, was located near the bond C17—H17, at distances from these two atoms of 1.40 and 0.62 Å, but no plausible chemical inter­pretation of this seems possible.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H32NO+·C7H3N2O6 C18H19ClNS+·C7H3N2O6·C7H4N2O6
Mr 513.58 740.09
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 11.2743 (12), 11.2898 (12), 12.6478 (13) 11.3454 (8), 24.3857 (16), 11.6098 (8)
α, β, γ (°) 111.923 (1), 114.325 (1), 95.903 (1) 90, 93.691 (1), 90
V3) 1296.6 (2) 3205.4 (4)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.26
Crystal size (mm) 0.61 × 0.58 × 0.13 0.57 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.988 0.866, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 7191, 5525, 4819 17539, 7139, 6365
Rint 0.013 0.022
(sin θ/λ)max−1) 0.650 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.07 0.036, 0.098, 1.04
No. of reflections 5525 7139
No. of parameters 340 469
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.22 0.53, −0.40
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

1-(3-Cyclohexyl-3-hydroxy-3-phenylpropyl)piperidin-1-ium 3,5-dinitrobenzoate (I) top
Crystal data top
C20H32NO+·C7H3N2O6Z = 2
Mr = 513.58F(000) = 548
Triclinic, P1Dx = 1.315 Mg m3
a = 11.2743 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2898 (12) ÅCell parameters from 5525 reflections
c = 12.6478 (13) Åθ = 2.0–27.5°
α = 111.923 (1)°µ = 0.10 mm1
β = 114.325 (1)°T = 173 K
γ = 95.903 (1)°Plate, colourless
V = 1296.6 (2) Å30.61 × 0.58 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5525 independent reflections
Radiation source: fine focus sealed tube4819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 0.3333 pixels mm-1θmax = 27.5°, θmin = 2.0°
φ and ω scansh = 714
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1413
Tmin = 0.944, Tmax = 0.988l = 1615
7191 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3666P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5525 reflectionsΔρmax = 0.32 e Å3
340 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12573 (11)0.36273 (11)0.26416 (10)0.0190 (2)
O10.21852 (9)0.39505 (9)0.39566 (8)0.0248 (2)
H10.2717 (18)0.3492 (17)0.3928 (16)0.037*
C20.19972 (12)0.32806 (11)0.18280 (11)0.0208 (2)
H2A0.22960.24890.18380.025*
H2B0.13540.30470.09110.025*
C30.32358 (12)0.44489 (12)0.23607 (12)0.0225 (2)
H3A0.29420.50430.19590.027*
H3B0.36150.49760.33150.027*
C110.07862 (11)0.48561 (11)0.26615 (11)0.0199 (2)
C120.00040 (13)0.48954 (13)0.14936 (12)0.0266 (3)
H120.01930.41840.06880.032*
C130.05172 (14)0.59666 (15)0.14980 (14)0.0329 (3)
H130.10290.59940.06990.039*
C140.02874 (15)0.69892 (14)0.26556 (15)0.0343 (3)
H140.06620.77050.26520.041*
C150.04917 (14)0.69630 (13)0.38178 (14)0.0312 (3)
H150.06590.76670.46180.037*
C160.10342 (13)0.59084 (12)0.38237 (12)0.0262 (3)
H160.15800.59080.46300.031*
C210.00168 (12)0.24305 (11)0.20637 (11)0.0213 (2)
H210.06820.23000.11790.026*
C220.03208 (14)0.11178 (13)0.19039 (14)0.0304 (3)
H22A0.10270.12430.27610.037*
H22B0.07030.08850.13010.037*
C230.09347 (16)0.00389 (13)0.13718 (15)0.0358 (3)
H23A0.15930.02410.04680.043*
H23B0.06540.08480.13430.043*
C240.16323 (16)0.02887 (14)0.22054 (15)0.0373 (3)
H24A0.24760.04530.17950.045*
H24B0.10180.03840.30800.045*
C250.19849 (15)0.15810 (14)0.23433 (16)0.0373 (3)
H25A0.23930.18070.29250.045*
H25B0.26700.14540.14770.045*
C260.07169 (14)0.27333 (13)0.29049 (14)0.0295 (3)
H26A0.00630.29020.37980.035*
H26B0.09820.35560.29670.035*
N310.43308 (10)0.39959 (10)0.20951 (9)0.0199 (2)
H310.4499 (14)0.3329 (15)0.2365 (14)0.024*
C320.39085 (13)0.33636 (15)0.06744 (12)0.0297 (3)
H32A0.37000.40220.03370.036*
H32B0.30700.25940.01890.036*
C330.50410 (14)0.28851 (17)0.04548 (13)0.0387 (3)
H33A0.47560.24970.04870.046*
H33B0.51960.21740.07280.046*
C340.63655 (15)0.40357 (17)0.12266 (15)0.0400 (3)
H34A0.71010.36920.11140.048*
H34B0.62410.47050.08930.048*
C350.67691 (14)0.46939 (15)0.26640 (14)0.0349 (3)
H35A0.69950.40510.30190.042*
H35B0.75940.54780.31490.042*
C360.56213 (13)0.51417 (13)0.28592 (13)0.0314 (3)
H36A0.58940.55320.37980.038*
H36B0.54550.58470.25800.038*
C410.57048 (12)0.14707 (12)0.45254 (12)0.0236 (2)
C420.60720 (13)0.19029 (12)0.58292 (12)0.0251 (3)
H420.57430.25710.62420.030*
C430.69222 (13)0.13517 (12)0.65226 (12)0.0260 (3)
C440.73907 (13)0.03474 (13)0.59588 (13)0.0273 (3)
H440.79810.00180.64480.033*
C450.69577 (13)0.00984 (12)0.46483 (12)0.0246 (3)
C460.61418 (12)0.04496 (12)0.39155 (12)0.0231 (2)
H460.58890.01340.30200.028*
C4110.48388 (14)0.21494 (13)0.37987 (13)0.0298 (3)
O4110.48586 (11)0.20351 (11)0.27857 (10)0.0394 (3)
O4120.42093 (13)0.27683 (14)0.42999 (11)0.0571 (4)
N430.73412 (14)0.18513 (13)0.79160 (12)0.0387 (3)
O4310.68879 (14)0.27080 (13)0.83989 (11)0.0555 (3)
O4320.81408 (17)0.13945 (15)0.85243 (12)0.0690 (4)
N450.73858 (13)0.12129 (12)0.40094 (12)0.0341 (3)
O4510.83761 (16)0.14320 (16)0.46933 (13)0.0756 (5)
O4520.67240 (12)0.18761 (10)0.28288 (10)0.0433 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (5)0.0205 (5)0.0185 (5)0.0088 (4)0.0076 (4)0.0113 (4)
O10.0246 (4)0.0304 (5)0.0200 (4)0.0149 (4)0.0079 (3)0.0138 (3)
C20.0215 (6)0.0198 (5)0.0226 (5)0.0083 (4)0.0106 (4)0.0109 (4)
C30.0228 (6)0.0197 (5)0.0284 (6)0.0097 (5)0.0135 (5)0.0122 (5)
C110.0186 (5)0.0205 (5)0.0254 (6)0.0078 (4)0.0111 (5)0.0141 (4)
C120.0270 (6)0.0309 (6)0.0272 (6)0.0139 (5)0.0129 (5)0.0177 (5)
C130.0325 (7)0.0411 (8)0.0423 (7)0.0212 (6)0.0195 (6)0.0317 (6)
C140.0382 (8)0.0309 (7)0.0569 (9)0.0223 (6)0.0311 (7)0.0305 (7)
C150.0370 (7)0.0220 (6)0.0412 (7)0.0119 (5)0.0243 (6)0.0141 (5)
C160.0285 (6)0.0233 (6)0.0277 (6)0.0098 (5)0.0133 (5)0.0126 (5)
C210.0220 (6)0.0211 (6)0.0241 (5)0.0081 (5)0.0109 (5)0.0134 (4)
C220.0348 (7)0.0226 (6)0.0418 (7)0.0121 (5)0.0234 (6)0.0163 (5)
C230.0438 (8)0.0223 (6)0.0441 (8)0.0077 (6)0.0258 (7)0.0136 (6)
C240.0436 (8)0.0274 (7)0.0463 (8)0.0052 (6)0.0271 (7)0.0179 (6)
C250.0354 (8)0.0332 (7)0.0540 (9)0.0105 (6)0.0295 (7)0.0216 (6)
C260.0325 (7)0.0246 (6)0.0402 (7)0.0108 (5)0.0238 (6)0.0159 (5)
N310.0189 (5)0.0217 (5)0.0220 (5)0.0080 (4)0.0092 (4)0.0132 (4)
C320.0229 (6)0.0426 (7)0.0208 (6)0.0083 (5)0.0083 (5)0.0148 (5)
C330.0294 (7)0.0573 (9)0.0252 (6)0.0126 (7)0.0154 (6)0.0127 (6)
C340.0297 (7)0.0611 (10)0.0410 (8)0.0148 (7)0.0222 (6)0.0290 (7)
C350.0204 (6)0.0411 (8)0.0362 (7)0.0053 (6)0.0116 (5)0.0146 (6)
C360.0225 (6)0.0275 (6)0.0341 (7)0.0025 (5)0.0112 (5)0.0087 (5)
C410.0199 (6)0.0206 (5)0.0314 (6)0.0074 (5)0.0102 (5)0.0154 (5)
C420.0256 (6)0.0197 (6)0.0322 (6)0.0090 (5)0.0146 (5)0.0131 (5)
C430.0297 (6)0.0236 (6)0.0273 (6)0.0083 (5)0.0137 (5)0.0144 (5)
C440.0305 (7)0.0274 (6)0.0321 (6)0.0144 (5)0.0148 (5)0.0205 (5)
C450.0264 (6)0.0221 (6)0.0329 (6)0.0120 (5)0.0162 (5)0.0169 (5)
C460.0228 (6)0.0215 (6)0.0279 (6)0.0077 (5)0.0116 (5)0.0149 (5)
C4110.0291 (7)0.0258 (6)0.0328 (7)0.0148 (5)0.0100 (5)0.0158 (5)
O4110.0495 (6)0.0435 (6)0.0468 (6)0.0300 (5)0.0264 (5)0.0343 (5)
O4120.0659 (8)0.0780 (9)0.0382 (6)0.0600 (7)0.0233 (6)0.0298 (6)
N430.0522 (8)0.0376 (7)0.0314 (6)0.0204 (6)0.0202 (6)0.0192 (5)
O4310.0820 (9)0.0577 (7)0.0393 (6)0.0412 (7)0.0359 (6)0.0222 (5)
O4320.1064 (11)0.0804 (9)0.0373 (6)0.0633 (9)0.0315 (7)0.0383 (6)
N450.0459 (7)0.0346 (6)0.0365 (6)0.0258 (6)0.0237 (6)0.0231 (5)
O4510.0945 (11)0.1011 (11)0.0485 (7)0.0853 (10)0.0330 (7)0.0385 (7)
O4520.0612 (7)0.0328 (5)0.0372 (6)0.0235 (5)0.0239 (5)0.0151 (4)
Geometric parameters (Å, º) top
C1—O11.4243 (13)C26—H26A0.9900
C1—C111.5310 (15)C26—H26B0.9900
C1—C21.5432 (16)N31—C321.4941 (15)
C1—C211.5562 (16)N31—C361.4984 (15)
O1—H10.834 (18)N31—H310.942 (15)
C2—C31.5252 (16)C32—C331.5236 (19)
C2—H2A0.9900C32—H32A0.9900
C2—H2B0.9900C32—H32B0.9900
C3—N311.4972 (15)C33—C341.524 (2)
C3—H3A0.9900C33—H33A0.9900
C3—H3B0.9900C33—H33B0.9900
C11—C161.3926 (17)C34—C351.518 (2)
C11—C121.3966 (16)C34—H34A0.9900
C12—C131.3924 (18)C34—H34B0.9900
C12—H120.9500C35—C361.5151 (19)
C13—C141.381 (2)C35—H35A0.9900
C13—H130.9500C35—H35B0.9900
C14—C151.381 (2)C36—H36A0.9900
C14—H140.9500C36—H36B0.9900
C15—C161.3945 (18)C41—C421.3870 (18)
C15—H150.9500C41—C461.3902 (17)
C16—H160.9500C41—C4111.5250 (16)
C21—C221.5290 (16)C42—C431.3831 (17)
C21—C261.5322 (17)C42—H420.9500
C21—H211.0000C43—C441.3794 (18)
C22—C231.5298 (19)C43—N431.4712 (17)
C22—H22A0.9900C44—C451.3780 (18)
C22—H22B0.9900C44—H440.9500
C23—C241.523 (2)C45—C461.3895 (16)
C23—H23A0.9900C45—N451.4684 (16)
C23—H23B0.9900C46—H460.9500
C24—C251.518 (2)C411—O4121.2392 (17)
C24—H24A0.9900C411—O4111.2488 (17)
C24—H24B0.9900N43—O4311.2195 (17)
C25—C261.5269 (18)N43—O4321.2211 (16)
C25—H25A0.9900N45—O4511.2153 (16)
C25—H25B0.9900N45—O4521.2163 (16)
O1—C1—C11107.31 (9)C25—C26—H26A109.2
O1—C1—C2109.01 (9)C21—C26—H26A109.2
C11—C1—C2111.07 (9)C25—C26—H26B109.2
O1—C1—C21110.45 (9)C21—C26—H26B109.2
C11—C1—C21108.41 (9)H26A—C26—H26B107.9
C2—C1—C21110.55 (9)C32—N31—C3112.66 (9)
C1—O1—H1106.8 (11)C32—N31—C36110.68 (10)
C3—C2—C1111.54 (9)C3—N31—C36110.31 (9)
C3—C2—H2A109.3C32—N31—H31106.4 (9)
C1—C2—H2A109.3C3—N31—H31107.9 (9)
C3—C2—H2B109.3C36—N31—H31108.8 (9)
C1—C2—H2B109.3N31—C32—C33110.53 (10)
H2A—C2—H2B108.0N31—C32—H32A109.5
N31—C3—C2112.50 (9)C33—C32—H32A109.5
N31—C3—H3A109.1N31—C32—H32B109.5
C2—C3—H3A109.1C33—C32—H32B109.5
N31—C3—H3B109.1H32A—C32—H32B108.1
C2—C3—H3B109.1C32—C33—C34111.08 (13)
H3A—C3—H3B107.8C32—C33—H33A109.4
C16—C11—C12118.22 (11)C34—C33—H33A109.4
C16—C11—C1121.30 (10)C32—C33—H33B109.4
C12—C11—C1120.27 (11)C34—C33—H33B109.4
C13—C12—C11120.64 (12)H33A—C33—H33B108.0
C13—C12—H12119.7C35—C34—C33109.98 (11)
C11—C12—H12119.7C35—C34—H34A109.7
C14—C13—C12120.50 (12)C33—C34—H34A109.7
C14—C13—H13119.8C35—C34—H34B109.7
C12—C13—H13119.8C33—C34—H34B109.7
C13—C14—C15119.46 (12)H34A—C34—H34B108.2
C13—C14—H14120.3C36—C35—C34110.94 (11)
C15—C14—H14120.3C36—C35—H35A109.5
C14—C15—C16120.36 (13)C34—C35—H35A109.5
C14—C15—H15119.8C36—C35—H35B109.5
C16—C15—H15119.8C34—C35—H35B109.5
C11—C16—C15120.79 (12)H35A—C35—H35B108.0
C11—C16—H16119.6N31—C36—C35111.39 (11)
C15—C16—H16119.6N31—C36—H36A109.3
C22—C21—C26109.28 (10)C35—C36—H36A109.3
C22—C21—C1112.90 (10)N31—C36—H36B109.3
C26—C21—C1111.07 (10)C35—C36—H36B109.3
C22—C21—H21107.8H36A—C36—H36B108.0
C26—C21—H21107.8C42—C41—C46119.83 (11)
C1—C21—H21107.8C42—C41—C411118.64 (11)
C21—C22—C23112.23 (11)C46—C41—C411121.53 (11)
C21—C22—H22A109.2C43—C42—C41119.35 (11)
C23—C22—H22A109.2C43—C42—H42120.3
C21—C22—H22B109.2C41—C42—H42120.3
C23—C22—H22B109.2C44—C43—C42122.62 (12)
H22A—C22—H22B107.9C44—C43—N43118.58 (11)
C24—C23—C22112.00 (12)C42—C43—N43118.80 (12)
C24—C23—H23A109.2C45—C44—C43116.45 (11)
C22—C23—H23A109.2C45—C44—H44121.8
C24—C23—H23B109.2C43—C44—H44121.8
C22—C23—H23B109.2C44—C45—C46123.31 (12)
H23A—C23—H23B107.9C44—C45—N45117.53 (11)
C25—C24—C23110.25 (12)C46—C45—N45119.15 (11)
C25—C24—H24A109.6C45—C46—C41118.33 (11)
C23—C24—H24A109.6C45—C46—H46120.8
C25—C24—H24B109.6C41—C46—H46120.8
C23—C24—H24B109.6O412—C411—O411127.63 (12)
H24A—C24—H24B108.1O412—C411—C41115.60 (12)
C24—C25—C26111.10 (12)O411—C411—C41116.77 (11)
C24—C25—H25A109.4O431—N43—O432123.94 (13)
C26—C25—H25A109.4O431—N43—C43118.29 (12)
C24—C25—H25B109.4O432—N43—C43117.76 (12)
C26—C25—H25B109.4O451—N45—O452123.51 (13)
H25A—C25—H25B108.0O451—N45—C45118.05 (12)
C25—C26—C21111.98 (11)O452—N45—C45118.43 (11)
O1—C1—C2—C359.48 (12)C2—C3—N31—C36168.65 (10)
C11—C1—C2—C358.55 (12)C3—N31—C32—C33178.36 (11)
C21—C1—C2—C3178.93 (9)C36—N31—C32—C3357.61 (14)
C1—C2—C3—N31151.06 (9)N31—C32—C33—C3457.20 (16)
O1—C1—C11—C1613.05 (15)C32—C33—C34—C3555.72 (17)
C2—C1—C11—C16132.11 (11)C33—C34—C35—C3655.20 (17)
C21—C1—C11—C16106.24 (12)C32—N31—C36—C3557.67 (14)
O1—C1—C11—C12172.21 (10)C3—N31—C36—C35176.97 (10)
C2—C1—C11—C1253.16 (14)C34—C35—C36—N3156.62 (16)
C21—C1—C11—C1268.49 (13)C46—C41—C42—C432.93 (18)
C16—C11—C12—C130.57 (19)C411—C41—C42—C43176.29 (11)
C1—C11—C12—C13175.46 (12)C41—C42—C43—C442.27 (19)
C11—C12—C13—C142.0 (2)C41—C42—C43—N43177.95 (11)
C12—C13—C14—C151.9 (2)C42—C43—C44—C450.52 (19)
C13—C14—C15—C160.5 (2)N43—C43—C44—C45179.25 (12)
C12—C11—C16—C150.85 (18)C43—C44—C45—C462.75 (19)
C1—C11—C16—C15173.99 (11)C43—C44—C45—N45177.01 (11)
C14—C15—C16—C110.9 (2)C44—C45—C46—C412.10 (19)
O1—C1—C21—C2266.93 (13)N45—C45—C46—C41177.65 (11)
C11—C1—C21—C22175.76 (10)C42—C41—C46—C450.84 (18)
C2—C1—C21—C2253.80 (12)C411—C41—C46—C45178.36 (11)
O1—C1—C21—C2656.22 (12)C42—C41—C411—O41219.47 (18)
C11—C1—C21—C2661.08 (12)C46—C41—C411—O412161.32 (13)
C2—C1—C21—C26176.96 (9)C42—C41—C411—O411159.59 (12)
C26—C21—C22—C2354.22 (15)C46—C41—C411—O41119.62 (18)
C1—C21—C22—C23178.36 (10)C44—C43—N43—O431177.62 (14)
C21—C22—C23—C2455.07 (16)C42—C43—N43—O4312.2 (2)
C22—C23—C24—C2554.99 (17)C44—C43—N43—O4323.4 (2)
C23—C24—C25—C2656.14 (17)C42—C43—N43—O432176.77 (14)
C24—C25—C26—C2157.78 (15)C44—C45—N45—O45120.5 (2)
C22—C21—C26—C2555.75 (14)C46—C45—N45—O451159.71 (14)
C1—C21—C26—C25179.04 (10)C44—C45—N45—O452158.66 (13)
C2—C3—N31—C3267.11 (12)C46—C45—N45—O45221.11 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4120.84 (2)1.91 (2)2.724 (2)165.9 (16)
N31—H31···O4110.942 (18)1.762 (18)2.7026 (18)175.7 (14)
C33—H33A···O452i0.992.493.4202 (17)157
C36—H36A···O1ii0.992.563.4025 (16)144
C36—H36A···O412ii0.992.513.3949 (19)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
(Z)-3-(2-Chloro-9H-thioxanthen-9-yl)-N,N-dimethylpropan-1-aminium hydrogen bis(3,5-dinitrobenzoate) (II) top
Crystal data top
C18H19ClNS+·C7H3N2O6·C7H4N2O6F(000) = 1528
Mr = 740.09Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3454 (8) ÅCell parameters from 7139 reflections
b = 24.3857 (16) Åθ = 1.8–27.4°
c = 11.6098 (8) ŵ = 0.26 mm1
β = 93.691 (1)°T = 173 K
V = 3205.4 (4) Å3Block, colourless
Z = 40.57 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
7139 independent reflections
Radiation source: fine focus sealed tube6365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0.3333 pixels mm-1θmax = 27.4°, θmin = 1.8°
φ and ω scansh = 1410
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 3129
Tmin = 0.866, Tmax = 0.927l = 1414
17539 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.3713P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7139 reflectionsΔρmax = 0.53 e Å3
469 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.46269 (10)0.12939 (5)0.57731 (10)0.0223 (2)
H10.4447 (15)0.1572 (7)0.6191 (15)0.027*
C10.38593 (12)0.13344 (6)0.46761 (12)0.0246 (3)
H1A0.39640.09990.42140.029*
H1B0.41260.16500.42230.029*
C20.25502 (12)0.14048 (6)0.48634 (12)0.0261 (3)
H2A0.22300.10630.51820.031*
H2B0.24390.17060.54180.031*
C30.19115 (12)0.15364 (6)0.37157 (12)0.0245 (3)
H40.22970.17860.32370.029*
C110.01624 (12)0.11072 (5)0.50768 (12)0.0239 (3)
H110.01950.14160.54570.029*
C120.09218 (12)0.07758 (6)0.56502 (12)0.0262 (3)
Cl120.12220 (4)0.09270 (2)0.70590 (3)0.03840 (11)
C130.14546 (13)0.03194 (6)0.51215 (14)0.0295 (3)
H130.19560.00890.55330.035*
C140.12428 (13)0.02074 (6)0.39893 (13)0.0291 (3)
H140.16100.01000.36150.035*
C14A0.04963 (12)0.05410 (5)0.33893 (12)0.0242 (3)
C14B0.01152 (12)0.10620 (6)0.13901 (12)0.0244 (3)
C150.04959 (12)0.11668 (7)0.02414 (12)0.0290 (3)
H150.08480.08830.02230.035*
C160.03588 (13)0.16844 (7)0.02156 (13)0.0319 (3)
H160.06120.17560.09970.038*
C170.01496 (13)0.21007 (7)0.04673 (13)0.0319 (3)
H170.02330.24580.01550.038*
C180.05355 (12)0.19964 (6)0.16036 (12)0.0275 (3)
H180.08800.22840.20630.033*
C18A0.04245 (11)0.14727 (6)0.20842 (11)0.0228 (3)
C18B0.00798 (11)0.09882 (5)0.39387 (12)0.0218 (3)
C190.08673 (12)0.13438 (5)0.32901 (11)0.0224 (3)
S100.02859 (4)0.03901 (2)0.19275 (3)0.03131 (10)
C1110.58939 (13)0.13566 (7)0.55300 (14)0.0342 (3)
H11A0.63820.13520.62580.051*
H11B0.60050.17050.51320.051*
H11C0.61280.10530.50400.051*
C1120.44364 (15)0.07721 (6)0.63983 (13)0.0339 (3)
H11D0.45970.04610.58970.051*
H11E0.36170.07540.66150.051*
H11F0.49710.07570.70950.051*
C210.34839 (11)0.33156 (5)0.58695 (11)0.0213 (3)
C220.29675 (12)0.32558 (6)0.47617 (12)0.0235 (3)
H220.29620.29100.43830.028*
C230.24587 (12)0.37130 (6)0.42191 (12)0.0246 (3)
C240.24301 (12)0.42245 (6)0.47285 (12)0.0258 (3)
H240.20800.45320.43370.031*
C250.29399 (12)0.42643 (6)0.58389 (12)0.0239 (3)
C260.34720 (11)0.38231 (6)0.64140 (12)0.0226 (3)
H260.38250.38670.71730.027*
C2110.40906 (11)0.28301 (5)0.64702 (11)0.0222 (3)
O2110.45673 (10)0.29421 (4)0.74604 (9)0.0345 (3)
O2120.40959 (10)0.23880 (4)0.59644 (9)0.0335 (2)
N230.19402 (11)0.36503 (6)0.30332 (11)0.0324 (3)
O2310.18250 (13)0.31902 (5)0.26351 (10)0.0515 (3)
O2320.16581 (13)0.40671 (5)0.24991 (11)0.0484 (3)
N250.29378 (11)0.48001 (5)0.64322 (12)0.0314 (3)
O2510.25334 (12)0.51946 (5)0.58850 (11)0.0446 (3)
O2520.33426 (12)0.48210 (5)0.74342 (11)0.0454 (3)
C310.63540 (11)0.17006 (6)1.00227 (12)0.0231 (3)
C320.70062 (12)0.20569 (5)1.07526 (12)0.0235 (3)
H320.71880.24171.05040.028*
C330.73852 (12)0.18786 (6)1.18466 (12)0.0251 (3)
C340.71344 (12)0.13625 (6)1.22519 (13)0.0277 (3)
H340.73810.12501.30130.033*
C350.65054 (12)0.10178 (6)1.14944 (13)0.0274 (3)
C360.61247 (12)0.11696 (6)1.03830 (13)0.0255 (3)
H360.57160.09170.98780.031*
C3110.57941 (12)0.18953 (6)0.88847 (12)0.0248 (3)
O3110.52336 (11)0.15826 (5)0.82386 (9)0.0390 (3)
O3120.59247 (10)0.24171 (4)0.87186 (9)0.0317 (2)
H3120.533 (3)0.2576 (13)0.808 (3)0.099 (10)*
N330.80516 (11)0.22598 (5)1.26284 (11)0.0321 (3)
O3310.82007 (12)0.27274 (5)1.22899 (11)0.0449 (3)
O3320.84145 (11)0.20876 (5)1.35770 (10)0.0441 (3)
N350.61594 (12)0.04780 (5)1.19234 (13)0.0363 (3)
O3510.62170 (13)0.04108 (6)1.29795 (12)0.0563 (4)
O3520.57984 (13)0.01343 (5)1.12204 (13)0.0514 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0241 (6)0.0184 (5)0.0237 (6)0.0004 (4)0.0040 (4)0.0005 (4)
C10.0263 (7)0.0260 (7)0.0207 (6)0.0005 (5)0.0043 (5)0.0021 (5)
C20.0249 (7)0.0294 (7)0.0233 (7)0.0052 (5)0.0043 (5)0.0028 (5)
C30.0239 (6)0.0254 (7)0.0239 (7)0.0021 (5)0.0022 (5)0.0027 (5)
C110.0239 (7)0.0202 (6)0.0269 (7)0.0015 (5)0.0040 (5)0.0014 (5)
C120.0251 (7)0.0259 (7)0.0273 (7)0.0052 (5)0.0003 (5)0.0042 (5)
Cl120.0427 (2)0.0438 (2)0.02942 (19)0.00309 (17)0.00775 (15)0.00411 (15)
C130.0239 (7)0.0250 (7)0.0393 (8)0.0008 (5)0.0004 (6)0.0081 (6)
C140.0267 (7)0.0198 (7)0.0397 (8)0.0019 (5)0.0071 (6)0.0015 (6)
C14A0.0239 (7)0.0198 (6)0.0279 (7)0.0036 (5)0.0063 (5)0.0000 (5)
C14B0.0202 (6)0.0270 (7)0.0259 (7)0.0046 (5)0.0005 (5)0.0018 (5)
C150.0236 (7)0.0390 (8)0.0240 (7)0.0046 (6)0.0023 (5)0.0047 (6)
C160.0266 (7)0.0461 (9)0.0226 (7)0.0071 (6)0.0014 (5)0.0033 (6)
C170.0279 (7)0.0369 (8)0.0308 (8)0.0029 (6)0.0015 (6)0.0100 (6)
C180.0230 (7)0.0296 (7)0.0297 (7)0.0009 (5)0.0010 (5)0.0023 (6)
C18A0.0175 (6)0.0275 (7)0.0233 (6)0.0022 (5)0.0009 (5)0.0003 (5)
C18B0.0199 (6)0.0184 (6)0.0263 (7)0.0019 (5)0.0045 (5)0.0017 (5)
C190.0225 (6)0.0206 (6)0.0235 (6)0.0017 (5)0.0023 (5)0.0006 (5)
S100.0409 (2)0.02266 (18)0.02939 (19)0.00226 (14)0.00557 (15)0.00520 (13)
C1110.0230 (7)0.0406 (9)0.0384 (8)0.0024 (6)0.0031 (6)0.0023 (7)
C1120.0449 (9)0.0243 (7)0.0311 (8)0.0040 (6)0.0090 (6)0.0084 (6)
C210.0179 (6)0.0223 (6)0.0240 (6)0.0001 (5)0.0026 (5)0.0033 (5)
C220.0222 (6)0.0236 (7)0.0246 (6)0.0027 (5)0.0014 (5)0.0018 (5)
C230.0209 (6)0.0296 (7)0.0230 (7)0.0028 (5)0.0005 (5)0.0051 (5)
C240.0213 (6)0.0258 (7)0.0304 (7)0.0023 (5)0.0030 (5)0.0089 (5)
C250.0206 (6)0.0212 (6)0.0304 (7)0.0012 (5)0.0051 (5)0.0015 (5)
C260.0196 (6)0.0251 (7)0.0231 (6)0.0007 (5)0.0017 (5)0.0022 (5)
C2110.0207 (6)0.0224 (6)0.0236 (6)0.0015 (5)0.0013 (5)0.0025 (5)
O2110.0464 (6)0.0297 (5)0.0260 (5)0.0143 (5)0.0089 (4)0.0024 (4)
O2120.0435 (6)0.0210 (5)0.0344 (6)0.0046 (4)0.0092 (5)0.0014 (4)
N230.0331 (7)0.0376 (7)0.0257 (6)0.0022 (5)0.0035 (5)0.0070 (5)
O2310.0792 (10)0.0407 (7)0.0320 (6)0.0072 (6)0.0157 (6)0.0005 (5)
O2320.0626 (8)0.0452 (7)0.0350 (6)0.0073 (6)0.0147 (6)0.0137 (5)
N250.0315 (6)0.0240 (6)0.0391 (7)0.0038 (5)0.0071 (5)0.0005 (5)
O2510.0621 (8)0.0255 (6)0.0474 (7)0.0155 (5)0.0130 (6)0.0065 (5)
O2520.0563 (8)0.0337 (6)0.0447 (7)0.0083 (5)0.0094 (6)0.0113 (5)
C310.0211 (6)0.0228 (6)0.0260 (7)0.0041 (5)0.0055 (5)0.0020 (5)
C320.0223 (6)0.0195 (6)0.0291 (7)0.0040 (5)0.0036 (5)0.0026 (5)
C330.0214 (6)0.0249 (7)0.0289 (7)0.0055 (5)0.0016 (5)0.0004 (5)
C340.0234 (7)0.0297 (7)0.0300 (7)0.0076 (5)0.0024 (5)0.0070 (6)
C350.0221 (7)0.0213 (7)0.0393 (8)0.0048 (5)0.0061 (6)0.0090 (6)
C360.0217 (6)0.0229 (7)0.0323 (7)0.0022 (5)0.0050 (5)0.0005 (5)
C3110.0226 (6)0.0269 (7)0.0255 (7)0.0015 (5)0.0049 (5)0.0011 (5)
O3110.0533 (7)0.0325 (6)0.0300 (6)0.0053 (5)0.0068 (5)0.0006 (4)
O3120.0335 (6)0.0264 (5)0.0340 (6)0.0007 (4)0.0064 (4)0.0083 (4)
N330.0312 (7)0.0320 (7)0.0327 (7)0.0075 (5)0.0026 (5)0.0048 (5)
O3310.0566 (8)0.0308 (6)0.0460 (7)0.0070 (5)0.0067 (6)0.0034 (5)
O3320.0502 (7)0.0450 (7)0.0351 (6)0.0144 (6)0.0146 (5)0.0037 (5)
N350.0291 (7)0.0271 (7)0.0525 (9)0.0005 (5)0.0003 (6)0.0147 (6)
O3510.0582 (8)0.0542 (8)0.0540 (8)0.0174 (6)0.0167 (6)0.0333 (7)
O3520.0638 (9)0.0254 (6)0.0670 (9)0.0057 (6)0.0196 (7)0.0031 (6)
Geometric parameters (Å, º) top
N1—C1121.4874 (18)C112—H11E0.9800
N1—C1111.4905 (19)C112—H11F0.9800
N1—C11.4993 (16)C21—C221.3862 (19)
N1—H10.867 (18)C21—C261.3902 (19)
C1—C21.5245 (19)C21—C2111.5167 (18)
C1—H1A0.9900C22—C231.3879 (19)
C1—H1B0.9900C22—H220.9500
C2—C31.5096 (18)C23—C241.382 (2)
C2—H2A0.9900C23—N231.4699 (18)
C2—H2B0.9900C24—C251.382 (2)
C3—C191.3390 (19)C24—H240.9500
C3—H40.9500C25—C261.3842 (19)
C11—C121.383 (2)C25—N251.4771 (18)
C11—C18B1.3973 (19)C26—H260.9500
C11—H110.9500C211—O2121.2278 (17)
C12—C131.390 (2)C211—O2111.2684 (17)
C12—Cl121.7317 (15)N23—O2311.2173 (19)
C13—C141.379 (2)N23—O2321.2226 (17)
C13—H130.9500N25—O2521.2239 (18)
C14—C14A1.393 (2)N25—O2511.2254 (17)
C14—H140.9500C31—C361.3905 (19)
C14A—C18B1.4034 (18)C31—C321.3928 (19)
C14A—S101.7677 (14)C31—C3111.5054 (19)
C14B—C151.3986 (19)C32—C331.3846 (19)
C14B—C18A1.4013 (19)C32—H320.9500
C14B—S101.7685 (15)C33—C341.380 (2)
C15—C161.382 (2)C33—N331.4735 (19)
C15—H150.9500C34—C351.381 (2)
C16—C171.390 (2)C34—H340.9500
C16—H160.9500C35—C361.384 (2)
C17—C181.387 (2)C35—N351.4697 (18)
C17—H170.9500C36—H360.9500
C18—C18A1.403 (2)C311—O3111.2195 (18)
C18—H180.9500C311—O3121.2968 (18)
C18A—C191.4901 (18)O312—H3121.04 (3)
C18B—C191.4847 (19)N33—O3311.2215 (18)
C111—H11A0.9800N33—O3321.2249 (17)
C111—H11B0.9800N35—O3521.222 (2)
C111—H11C0.9800N35—O3511.2346 (19)
C112—H11D0.9800
C112—N1—C111110.63 (12)H11A—C111—H11C109.5
C112—N1—C1112.10 (11)H11B—C111—H11C109.5
C111—N1—C1110.30 (11)N1—C112—H11D109.5
C112—N1—H1110.5 (11)N1—C112—H11E109.5
C111—N1—H1106.9 (11)H11D—C112—H11E109.5
C1—N1—H1106.2 (11)N1—C112—H11F109.5
N1—C1—C2113.84 (11)H11D—C112—H11F109.5
N1—C1—H1A108.8H11E—C112—H11F109.5
C2—C1—H1A108.8C22—C21—C26119.97 (12)
N1—C1—H1B108.8C22—C21—C211119.78 (12)
C2—C1—H1B108.8C26—C21—C211120.22 (12)
H1A—C1—H1B107.7C21—C22—C23118.38 (13)
C3—C2—C1108.34 (11)C21—C22—H22120.8
C3—C2—H2A110.0C23—C22—H22120.8
C1—C2—H2A110.0C24—C23—C22123.46 (13)
C3—C2—H2B110.0C24—C23—N23118.42 (12)
C1—C2—H2B110.0C22—C23—N23118.12 (13)
H2A—C2—H2B108.4C23—C24—C25116.29 (12)
C19—C3—C2127.90 (13)C23—C24—H24121.9
C19—C3—H4116.1C25—C24—H24121.9
C2—C3—H4116.1C24—C25—C26122.59 (13)
C12—C11—C18B120.02 (13)C24—C25—N25118.95 (12)
C12—C11—H11120.0C26—C25—N25118.45 (12)
C18B—C11—H11120.0C25—C26—C21119.30 (12)
C11—C12—C13121.47 (13)C25—C26—H26120.3
C11—C12—Cl12119.77 (11)C21—C26—H26120.3
C13—C12—Cl12118.76 (11)O212—C211—O211127.43 (13)
C14—C13—C12118.81 (13)O212—C211—C21118.79 (12)
C14—C13—H13120.6O211—C211—C21113.76 (12)
C12—C13—H13120.6C211—O211—H312122.5 (12)
C13—C14—C14A120.66 (13)O231—N23—O232123.75 (13)
C13—C14—H14119.7O231—N23—C23118.57 (12)
C14A—C14—H14119.7O232—N23—C23117.68 (13)
C14—C14A—C18B120.45 (13)O252—N25—O251124.41 (13)
C14—C14A—S10118.85 (11)O252—N25—C25117.92 (12)
C18B—C14A—S10120.70 (11)O251—N25—C25117.67 (13)
C15—C14B—C18A120.96 (13)C36—C31—C32120.02 (13)
C15—C14B—S10118.13 (11)C36—C31—C311118.77 (13)
C18A—C14B—S10120.87 (10)C32—C31—C311120.98 (12)
C16—C15—C14B119.83 (14)C33—C32—C31118.92 (13)
C16—C15—H15120.1C33—C32—H32120.5
C14B—C15—H15120.1C31—C32—H32120.5
C15—C16—C17120.05 (13)C34—C33—C32122.73 (13)
C15—C16—H16120.0C34—C33—N33118.31 (13)
C17—C16—H16120.0C32—C33—N33118.93 (13)
C18—C17—C16120.18 (14)C33—C34—C35116.57 (13)
C18—C17—H17119.9C33—C34—H34121.7
C16—C17—H17119.9C35—C34—H34121.7
C17—C18—C18A120.97 (14)C34—C35—C36123.23 (13)
C17—C18—H18119.5C34—C35—N35117.87 (13)
C18A—C18—H18119.5C36—C35—N35118.76 (14)
C14B—C18A—C18117.97 (12)C35—C36—C31118.44 (13)
C14B—C18A—C19119.87 (12)C35—C36—H36120.8
C18—C18A—C19122.16 (12)C31—C36—H36120.8
C11—C18B—C14A118.49 (13)O311—C311—O312125.60 (13)
C11—C18B—C19121.32 (12)O311—C311—C31121.09 (13)
C14A—C18B—C19120.08 (12)O312—C311—C31113.22 (12)
C3—C19—C18B124.38 (12)C311—O312—H312113.3 (17)
C3—C19—C18A120.64 (12)O331—N33—O332124.32 (14)
C18B—C19—C18A114.98 (11)O331—N33—C33117.84 (12)
C14A—S10—C14B99.81 (6)O332—N33—C33117.84 (13)
N1—C111—H11A109.5O352—N35—O351124.48 (14)
N1—C111—H11B109.5O352—N35—C35118.25 (14)
H11A—C111—H11B109.5O351—N35—C35117.21 (14)
N1—C111—H11C109.5
C112—N1—C1—C269.34 (16)C21—C22—C23—N23178.42 (12)
C111—N1—C1—C2166.89 (12)C22—C23—C24—C250.3 (2)
N1—C1—C2—C3170.47 (11)N23—C23—C24—C25179.31 (12)
C1—C2—C3—C19138.56 (15)C23—C24—C25—C261.1 (2)
C18B—C11—C12—C130.3 (2)C23—C24—C25—N25179.97 (12)
C18B—C11—C12—Cl12179.78 (10)C24—C25—C26—C211.0 (2)
C11—C12—C13—C141.9 (2)N25—C25—C26—C21179.94 (12)
Cl12—C12—C13—C14178.18 (11)C22—C21—C26—C250.08 (19)
C12—C13—C14—C14A0.8 (2)C211—C21—C26—C25178.35 (12)
C13—C14—C14A—C18B1.8 (2)C22—C21—C211—O2121.10 (19)
C13—C14—C14A—S10178.31 (11)C26—C21—C211—O212179.38 (13)
C18A—C14B—C15—C161.1 (2)C22—C21—C211—O211177.41 (12)
S10—C14B—C15—C16178.89 (11)C26—C21—C211—O2110.87 (18)
C14B—C15—C16—C170.4 (2)C24—C23—N23—O231170.63 (14)
C15—C16—C17—C180.9 (2)C22—C23—N23—O23110.3 (2)
C16—C17—C18—C18A0.1 (2)C24—C23—N23—O23210.0 (2)
C15—C14B—C18A—C182.1 (2)C22—C23—N23—O232169.06 (14)
S10—C14B—C18A—C18179.79 (10)C24—C25—N25—O252176.56 (13)
C15—C14B—C18A—C19177.44 (12)C26—C25—N25—O2524.5 (2)
S10—C14B—C18A—C190.28 (18)C24—C25—N25—O2513.67 (19)
C17—C18—C18A—C14B1.6 (2)C26—C25—N25—O251175.28 (13)
C17—C18—C18A—C19177.92 (13)C36—C31—C32—C332.00 (19)
C12—C11—C18B—C14A2.32 (19)C311—C31—C32—C33172.38 (12)
C12—C11—C18B—C19178.45 (12)C31—C32—C33—C340.7 (2)
C14—C14A—C18B—C113.39 (19)C31—C32—C33—N33178.60 (12)
S10—C14A—C18B—C11176.76 (10)C32—C33—C34—C351.9 (2)
C14—C14A—C18B—C19179.57 (12)N33—C33—C34—C35179.82 (12)
S10—C14A—C18B—C190.58 (17)C33—C34—C35—C360.5 (2)
C2—C3—C19—C18B5.4 (2)C33—C34—C35—N35176.22 (12)
C2—C3—C19—C18A173.53 (13)C34—C35—C36—C312.1 (2)
C11—C18B—C19—C345.7 (2)N35—C35—C36—C31173.65 (12)
C14A—C18B—C19—C3138.19 (14)C32—C31—C36—C353.3 (2)
C11—C18B—C19—C18A135.27 (13)C311—C31—C36—C35171.21 (12)
C14A—C18B—C19—C18A40.80 (17)C36—C31—C311—O3116.4 (2)
C14B—C18A—C19—C3137.78 (14)C32—C31—C311—O311179.19 (13)
C18—C18A—C19—C341.7 (2)C36—C31—C311—O312170.31 (12)
C14B—C18A—C19—C18B41.26 (17)C32—C31—C311—O3124.14 (18)
C18—C18A—C19—C18B139.25 (13)C34—C33—N33—O331175.17 (14)
C14—C14A—S10—C14B146.45 (11)C32—C33—N33—O3312.87 (19)
C18B—C14A—S10—C14B33.69 (12)C34—C33—N33—O3324.49 (19)
C15—C14B—S10—C14A148.97 (11)C32—C33—N33—O332177.47 (13)
C18A—C14B—S10—C14A33.25 (12)C34—C35—N35—O352166.90 (14)
C26—C21—C22—C230.70 (19)C36—C35—N35—O35217.1 (2)
C211—C21—C22—C23177.59 (12)C34—C35—N35—O35115.6 (2)
C21—C22—C23—C240.6 (2)C36—C35—N35—O351160.41 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2120.866 (17)2.046 (17)2.7476 (16)137.9 (15)
N1—H1···O3110.866 (17)2.485 (17)2.9848 (16)117.5 (14)
O312—H312···O2111.04 (3)1.41 (3)2.4197 (15)161 (3)
C1—H1B···O211i0.992.363.2621 (18)151
C14—H14···O232ii0.952.413.2917 (19)155
C18—H18···O2310.952.533.4386 (19)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

MAES is grateful to the University of Mysore for research facilities.

Funding information

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAbu-Dari, K., Raymond, K. N. & Freyberg, D. P. (1979). J. Am. Chem. Soc. 101, 3688–3689.  CAS Google Scholar
First citationBarrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15–18.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, N. & Camerman, A. (1971). Mol. Pharmacol. 7, 406–412.  CAS Google Scholar
First citationCamerman, N. & Camerman, A. (1972). J. Am. Chem. Soc. 94, 8553–8556.  CrossRef CAS Google Scholar
First citationChantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Cryst. C58, o589–o590.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCourtney, B. H. & Fronczec, F. R. (2005). Private communication (Refcode KHACET02). CCDC, Cambridge, England.  Google Scholar
First citationDoshay, L. J., Constable, K. & Zier, A. (1954). J. Am. Med. Assoc. 154, 1334–1336.  CrossRef CAS Google Scholar
First citationEmsley, J. (1980). Chem. Soc. Rev. 9, 91–124.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, J., Kapitan, A., Rosair, G., Roberts, K. J. & White, G. (2001). Acta Cryst. C57, 250–251.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. (1997). Chem. & Biol. 4, 259–267.  CrossRef CAS Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823–o1825.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMaccaroni, E., Malpezzi, L. & Masciocchi, N. (2010). Acta Cryst. E66, o2511.  CrossRef IUCr Journals Google Scholar
First citationMuir, K. W., Low, Y., MacDonald, A. & Murray, A. (2001). Private communication (Refcode KBTCAC02). CCDC, Cambridge, England.  Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1974). Acta Cryst. B30, 1644–1646.  CrossRef IUCr Journals Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRoth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J., Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharmacol. Exp. Ther. 268, 1403–1410.  CAS Google Scholar
First citationSeeman, T. & Tallerico, T. (1998). Mol. Psychiatry, 3, 123–134.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011). Acta Cryst. E67, o2017–o2018.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestre, J. S. & Prous, J. (2005). Methods Find. Exp. Clin. Pharmacol. 27, 289–304.  CrossRef CAS Google Scholar
First citationSpeakman, J. C. (1972). Struct. Bond. 12, 141–199.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSylte, I. & Dahl, S. G. (1991). J. Pharm. Sci. 80, 735–740.  CrossRef CAS Google Scholar
First citationYamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o206–o207.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds