research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, spectroscopic features and Hirshfeld surfaces of 2-methyl-3-[(2-methyl­phen­yl)carbamo­yl]phenyl acetate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, bVocational School of Health Services, Environmental Health Programme, Sinop, University TR-57000, Sinop, Turkey, cPamukkale University, Department of Chemistry and Chemical Processing Technologies, 20070 Kınıklı-Denizli, Turkey, dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine, and eOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 26 October 2018; accepted 2 January 2019; online 5 March 2019)

The title compound, C17H17NO3, was synthesized, characterized by IR spectroscopy and its crystal structure was determined from single-crystal diffraction data. The asymmetric unit contains two mol­ecules, which adopt different conformations. In one mol­ecule, the acet­oxy and the terminal 2-methyl­phenyl groups are positioned on opposite sides of the plane formed by the central benzene ring, whereas in the other mol­ecule they lie on the same side of this plane. In the crystal, the mol­ecules are linked through strong N—H⋯O hydrogen bonds into chains along [010]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the solid state.

1. Chemical context

Amides and their derivatives are extremely important biologically active compounds. Amide groups are present in a number of natural products, polymers and pharmaceuticals (Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]; Xiang et al., 2012[Xiang, Y.-F., Qian, C.-W., Xing, G.-W., Hao, J., Xia, M. & Wang, Y.-F. (2012). Bioorg. Med. Chem. Lett. 22, 4703-4706.]). Amide derivatives have been found to exhibit biological and pharmacological activities such as anti­tumor, anti­microbial, anti­bacterial, anti­fungal, anti-HSV, analgesic, anti-inflammatory and anti­cancer (Carbonnelle et al., 2005[Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546-556.]). Moreover, amide-based compounds represent an important group of efficient chelating ligands (Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Sliva et al., 1997[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273-276.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]). Recently, we synthesized and studied some new substituted secondary benzamide derivatives obtained as a result of the inter­action of aniline-based compounds with acyl chlorides (Çakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]; Kırca et al., 2018[Kırca, B. K., Çakmak, Ş., Kütük, H., Odabaşoğlu, M. & Büyükgüngör, O. (2018). J. Mol. Struct. 1151, 191-197.]; Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]; Kansız, Çakmak et al., 2018[Kansız, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-Ray Struct. Anal. Online, 34, 17-18.]). Among them, 3-acet­oxy-2-methyl-N-(4-meth­oxy­phen­yl) benzamide was found to exhibit good anti­oxidant activity (Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]). As a continuation of this work, we prepared the title compound and studied its spectroscopic and structural features.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains two mol­ecules, A and B, which adopt different conformations that can be characterized by the mutual arrangement of the acet­oxy and terminal 2-methyl­phenyl groups with respect to the plane of the central benzene ring: in mol­ecule A they lie on different sides of this plane, whereas in mol­ecule B they are positioned on the same side. The torsion angles characterizing the conformation details are summarized in Table 1[link]. The dihedral angles subtended by the aromatic rings are 54.33 (12) and 66.68 (11)° in mol­ecules A and B, respectively. The mol­ecular conformations are stabilized by weak intra­molecular C—H⋯O contacts (Table 2[link]). All bond lengths and angles are typical of similar compounds, bearing in mind the effect of inter­molecular hydrogen bonds on the geometry of the amido groups.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.222 (3) O3—C9 1.186 (4)
O4—C18 1.224 (3) O6—C26 1.188 (4)
N1—C1 1.348 (3) N2—C18 1.344 (4)
       
O1—C1—N1 123.5 (3) C1—N1—C11 123.4 (2)
O4—C18—N2 123.6 (3) C18—N2—C28 124.2 (2)
       
C9—O2—C6—C7 −100.0 (3) C26—O5—C23—C24 −83.7 (3)
N1—C1—C2—C7 129.1 (3) C24—C19—C18—N2 −113.6 (3)
C2—C1—N1—C11 −172.4 (2) C28—N2—C18—C19 166.2 (2)
C1—N1—C11—C16 −66.4 (4) C18—N2—C28—C33 66.0 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C28–C33 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O6i 0.93 2.49 3.402 (4) 167
N2—H2⋯O1ii 0.88 (3) 1.96 (3) 2.813 (3) 164 (2)
N1—H1⋯O4 0.91 (3) 1.91 (3) 2.804 (3) 166 (2)
C25—H25B⋯O4 0.96 2.76 3.117 (4) 103
C34—H34A⋯O4 0.96 2.59 3.100 (4) 114
C8—H8B⋯O1 0.96 2.75 2.986 (4) 95
C3—H3⋯Cg1 0.93 2.81 3.666 (3) 153
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The packing diagram of the title compounds is presented in Fig. 2[link]. In the crystal, the mol­ecules are linked through strong N—H⋯O hydrogen bonds (Table 2[link]) into chains along [010]. They are further linked by C—H⋯O and C—H⋯π contacts (Table 2[link]).

[Figure 2]
Figure 2
Packing diagram of the title compound showing the short inter­molecular contacts. Cg1 is the centroid of the C28–C33 benzene ring.

4. Database survey

A search in the Cambridge Structural Database (CSD version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-acet­oxy-N-phenyl­benzamide derivatives gave three hits: 3-acet­oxy-2-methyl-N-(4-methyl­phen­yl)benzamide (HEJBIK; Kırca et al., 2018[Kırca, B. K., Çakmak, Ş., Kütük, H., Odabaşoğlu, M. & Büyükgüngör, O. (2018). J. Mol. Struct. 1151, 191-197.]), 3-acet­oxy-2-methyl-N-phenyl­benzamide and 3-acet­oxy-2-methyl-N-(4-meth­oxy­phen­yl)benzamide (HEJBOQ and JUMCEB, respectively; both Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]). The structure of HEJBIK is especially close to that of the title compound: it also contains two mol­ecules in an asymmetric unit and is isostructural to the title compound with the exception of one methyl group (2-Me in the title compound and 4-Me in HEJBIK). The two independent mol­ecules in HEJBIK have different conformations in the same manner, as in the title structure. In the two structures HEJBOQ and JUMCEB, the acet­oxy groups and the terminal benzene rings are positioned on opposite sides of the planes formed by the central benzene rings. In all these structures, the mol­ecules are linked into chains by N—H⋯O hydrogen bonds.

5. Hirshfeld surface analysis

The mol­ecular Hirshfeld surfaces (dnorm) for mol­ecules A and B of the title compound generated using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]) and are presented in Fig. 3[link]. The dnorm values are mapped on the Hirshfeld surfaces using a red–blue–white colour scheme (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) as follows: the dark-red spots indicate the closest contacts related to the N—H⋯O hydrogen bonds, the other short inter­molecular contacts appear as light-red spots, blue regions depict positive dnorm values, and in the white regions the lengths of the contacts are exactly equal to the sum of van der Waals radii (dnorm = 0). Analogous dark-red spots related to the N—H⋯O inter­actions were observed on the Hirshfeld surfaces of similar mol­ecules (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]; Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]). Figs. 4[link] and 5[link] show the two-dimensional fingerprint plots for mol­ecules A and B, respectively. For both mol­ecules, the contributions from the H⋯H/ H⋯H contacts are the largest (55.3 and 53.9% for A and B, respectively). The contributions of the other inter­molecular contacts are as follows: C⋯H/H⋯C (22.5%) and O⋯H/H⋯O (20.7%) for A and C⋯H/H⋯C (23.8%) and O⋯H/H⋯O (21.7%) for B. The Hirshfeld surface mapped over the electrostatic potential n (±0.25 a.u.) is shown in Fig. 6[link] where blue regions correspond to positive electrostatic potential and red spots related to the oxygen atoms represent the areas of negative electrostatic potential; the distribution is analogous to that in a similar compound (Yaman et al., 2018[Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41-44.]).

[Figure 3]
Figure 3
Hirsfeld surfaces of 3-acet­oxy-2-methyl-N-(3-methyl­phen­yl) benzamide (three-dimensional dnorm surface): (a) mol­ecule A and (b) mol­ecule B.
[Figure 4]
Figure 4
The fingerprint plots for mol­ecule A: (a) all atomsinside⋯all atomsoutside (100%), (b) Hinside⋯Houtside/Houtside⋯Hinside (55.3%), (c) Cinside⋯Houtside/Houtside⋯Cinside (22.5%) and (d) Oinside⋯Houtside/Houtside⋯Oinside (20.7%).
[Figure 5]
Figure 5
The fingerprint plots for mol­ecule B: (a) all atomsinside⋯all atomsoutside (100%), (b) Hinside⋯Houtside/Houtside⋯Hinside (53.9%), (c) Cinside⋯Houtside/Houtside⋯Cinside (23.8%) and (d) Oinside⋯Houtside/Houtside⋯Oinside (21.7%).
[Figure 6]
Figure 6
Electrostatic potential mapped on the Hirshfeld surface (± 0.25 a.u.).

6. Vibrational spectrum

The IR spectrum of the title compound (KBr, cm−1) shown in Fig. 7[link] exhibits the following characteristic bands: 3210 (N—H), 1761 (acet­oxy C=O), 1651 (amide C=O). Because of the inter­action of the aromatic group with the acet­oxy carbonyl moiety, the frequency of the acet­oxy C=O stretching vibration is larger compared to the normal frequency of the stretching vibrations in esters (1740 cm−1).

[Figure 7]
Figure 7
IR spectrum of the title compound.

7. Synthesis and crystallization

The synthesis was performed according to the reaction scheme presented in Fig. 8[link] and applied earlier for the synthesis of analogous compounds (Cakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]; Kırca et al., 2018[Kırca, B. K., Çakmak, Ş., Kütük, H., Odabaşoğlu, M. & Büyükgüngör, O. (2018). J. Mol. Struct. 1151, 191-197.], Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]). A solution of 3-acet­oxy-2-methyl­benzoyl chloride (11 mmol) in THF (10 mL) was added dropwise to a solution of 2-methyl­aniline (10 mmol) and tri­ethyl­amine (10 mmol) in THF (10 mL) at room temperature. After the reaction mixture had been stirred at room temperature for 15 h, the resulting white precipitate was filtered off and then 100 ml of water was added dropwise to the filtrate. The precipitate was filtered off and washed several times with water to remove the unreacted reagents and tri­ethyl­amine hydro­chloride. The crude product was recrystallized from aceto­nitrile (1.82 g, 58%; m.p. 435-438 K). Single crystals were obtained from an aceto­nitrile solution after incubation in the fridge for 20 days.

[Figure 8]
Figure 8
Reaction scheme.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atoms were freely refined. C-bound hydrogen atoms were positioned geom­etrically and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C atoms and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. Each methyl group was allowed to rotate about its parent C—C bond.

Table 3
Experimental details

Crystal data
Chemical formula C17H17NO3
Mr 283.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.7842 (5), 8.8802 (5), 22.2112 (15)
α, β, γ (°) 94.791 (5), 97.620 (5), 90.043 (5)
V3) 1516.37 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.37 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.958, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 21781, 5950, 3029
Rint 0.086
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 0.90
No. of reflections 5950
No. of parameters 393
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-Methyl-3-[(2-methylphenyl)carbamoyl]phenyl acetate top
Crystal data top
C17H17NO3Z = 4
Mr = 283.31F(000) = 600
Triclinic, P1Dx = 1.241 Mg m3
a = 7.7842 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8802 (5) ÅCell parameters from 19688 reflections
c = 22.2112 (15) Åθ = 1.9–27.5°
α = 94.791 (5)°µ = 0.09 mm1
β = 97.620 (5)°T = 296 K
γ = 90.043 (5)°Prism, colorless
V = 1516.37 (17) Å30.42 × 0.37 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
5950 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3029 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.086
rotation method scansθmax = 26.0°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.958, Tmax = 0.993k = 1010
21781 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
5950 reflectionsΔρmax = 0.17 e Å3
393 parametersΔρmin = 0.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5356 (3)0.3278 (2)0.28533 (9)0.0605 (6)
N20.6781 (3)1.0533 (3)0.32141 (11)0.0482 (6)
O20.2232 (3)0.5083 (3)0.07897 (10)0.0717 (6)
C10.5516 (3)0.4634 (3)0.28130 (12)0.0448 (7)
N10.6771 (3)0.5500 (3)0.31509 (11)0.0486 (6)
O50.7722 (3)1.0738 (3)0.07181 (9)0.0662 (6)
C280.5682 (4)0.9934 (3)0.36083 (12)0.0468 (7)
O40.7921 (3)0.8326 (2)0.28774 (10)0.0608 (6)
C190.8414 (3)1.0503 (3)0.23666 (12)0.0438 (6)
C180.7690 (3)0.9681 (3)0.28425 (13)0.0464 (7)
C110.8180 (3)0.4903 (3)0.35334 (12)0.0463 (7)
C160.7951 (4)0.4184 (3)0.40468 (13)0.0537 (7)
C20.4280 (3)0.5450 (3)0.23801 (13)0.0452 (7)
C30.3430 (4)0.6702 (3)0.26034 (15)0.0567 (8)
H30.3688580.7065580.3010430.068*
C120.9848 (4)0.5130 (3)0.33845 (14)0.0572 (8)
H120.9998960.5656090.3049980.069*
C70.3944 (4)0.4892 (3)0.17655 (14)0.0516 (7)
C170.6204 (4)0.4057 (4)0.42552 (15)0.0705 (9)
H17A0.5586500.3199890.4036500.106*
H17B0.5559990.4958280.4178410.106*
H17C0.6346560.3931020.4683980.106*
C200.9676 (4)1.1600 (3)0.25396 (14)0.0560 (8)
H201.0065411.1841710.2950570.067*
C60.2705 (4)0.5654 (4)0.14029 (14)0.0585 (8)
C240.7774 (4)1.0137 (3)0.17529 (14)0.0532 (7)
C340.8224 (4)0.8962 (4)0.42816 (16)0.0729 (9)
H34A0.8640420.8131550.4038280.109*
H34B0.8429870.8769680.4703810.109*
H34C0.8822660.9873000.4222490.109*
C230.8470 (4)1.0938 (3)0.13335 (13)0.0545 (8)
O60.9365 (4)0.8729 (3)0.05401 (12)0.0885 (8)
C330.6320 (4)0.9139 (3)0.40945 (14)0.0550 (7)
C131.1258 (4)0.4580 (4)0.37307 (17)0.0728 (10)
H131.2364280.4727830.3629820.087*
C220.9755 (4)1.2010 (4)0.14968 (15)0.0639 (9)
H221.0209091.2506480.1199770.077*
C260.8233 (5)0.9545 (4)0.03635 (15)0.0646 (9)
C40.2194 (4)0.7415 (4)0.22218 (18)0.0727 (10)
H40.1611750.8248270.2372540.087*
C320.5113 (5)0.8545 (4)0.44225 (15)0.0713 (9)
H320.5503190.7975170.4745270.086*
C290.3907 (4)1.0207 (3)0.34776 (15)0.0608 (8)
H290.3500541.0785840.3159390.073*
C50.1834 (4)0.6884 (4)0.16207 (18)0.0736 (10)
H50.1004160.7354760.1361560.088*
C150.9407 (4)0.3628 (4)0.43830 (15)0.0678 (9)
H150.9280270.3117970.4723810.081*
C211.0363 (4)1.2343 (4)0.21012 (16)0.0680 (9)
H211.1235161.3066240.2216250.082*
C90.2956 (5)0.5755 (5)0.03514 (16)0.0724 (10)
C310.3375 (5)0.8771 (4)0.42858 (17)0.0758 (10)
H310.2603170.8345510.4510790.091*
C141.1044 (5)0.3818 (4)0.42210 (17)0.0739 (10)
H141.2000930.3421900.4448740.089*
C250.6354 (5)0.8978 (4)0.15608 (16)0.0806 (11)
H25A0.5680730.9236100.1190420.121*
H25B0.5620530.8956670.1874990.121*
H25C0.6855930.8000580.1494290.121*
O30.4029 (4)0.6720 (3)0.04766 (13)0.1018 (9)
C300.2768 (4)0.9620 (4)0.38199 (17)0.0752 (10)
H300.1586930.9798730.3735130.090*
C80.4864 (5)0.3554 (4)0.15108 (15)0.0709 (9)
H8A0.4329860.2642010.1604200.106*
H8B0.6058210.3589000.1688150.106*
H8C0.4792380.3571830.1076630.106*
C100.2217 (5)0.5106 (5)0.02652 (16)0.0945 (13)
H10A0.1184830.5639940.0401540.142*
H10B0.1938020.4057890.0250630.142*
H10C0.3049140.5201110.0542840.142*
C270.7180 (5)0.9428 (5)0.02461 (16)0.0866 (11)
H27A0.7780410.8827940.0529700.130*
H27B0.6995501.0420400.0382070.130*
H27C0.6082310.8960270.0221190.130*
H20.653 (3)1.146 (3)0.3128 (11)0.043 (7)*
H10.696 (3)0.644 (3)0.3039 (12)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0662 (13)0.0394 (12)0.0731 (14)0.0031 (10)0.0063 (10)0.0143 (10)
N20.0520 (14)0.0373 (13)0.0590 (15)0.0039 (11)0.0162 (12)0.0120 (12)
O20.0670 (14)0.0830 (16)0.0625 (15)0.0198 (12)0.0088 (11)0.0188 (12)
C10.0410 (15)0.0385 (16)0.0560 (17)0.0008 (12)0.0073 (13)0.0098 (13)
N10.0473 (14)0.0361 (13)0.0616 (15)0.0058 (11)0.0006 (11)0.0121 (12)
O50.0718 (14)0.0768 (15)0.0500 (13)0.0150 (12)0.0071 (11)0.0076 (11)
C280.0541 (17)0.0373 (15)0.0503 (17)0.0026 (13)0.0124 (13)0.0025 (13)
O40.0714 (14)0.0373 (11)0.0799 (15)0.0040 (10)0.0271 (11)0.0141 (10)
C190.0424 (15)0.0389 (15)0.0523 (18)0.0006 (12)0.0119 (13)0.0075 (13)
C180.0422 (15)0.0405 (17)0.0565 (18)0.0036 (13)0.0057 (13)0.0064 (14)
C110.0478 (16)0.0380 (15)0.0510 (17)0.0028 (13)0.0001 (13)0.0021 (13)
C160.0569 (18)0.0495 (17)0.0538 (18)0.0046 (14)0.0028 (14)0.0064 (14)
C20.0387 (15)0.0391 (15)0.0582 (19)0.0023 (12)0.0039 (13)0.0111 (14)
C30.0539 (18)0.0506 (18)0.065 (2)0.0044 (15)0.0038 (15)0.0091 (15)
C120.0500 (18)0.0579 (19)0.0633 (19)0.0053 (15)0.0046 (15)0.0080 (15)
C70.0455 (16)0.0484 (17)0.0611 (19)0.0051 (13)0.0033 (14)0.0117 (15)
C170.068 (2)0.080 (2)0.067 (2)0.0040 (18)0.0158 (17)0.0151 (18)
C200.0559 (18)0.0562 (18)0.0562 (18)0.0131 (15)0.0101 (14)0.0026 (15)
C60.0532 (18)0.062 (2)0.058 (2)0.0064 (16)0.0075 (15)0.0158 (16)
C240.0503 (17)0.0479 (17)0.062 (2)0.0002 (14)0.0069 (15)0.0078 (15)
C340.065 (2)0.085 (2)0.068 (2)0.0039 (19)0.0013 (17)0.0160 (19)
C230.0582 (18)0.0571 (18)0.0504 (18)0.0051 (15)0.0124 (15)0.0093 (15)
O60.0905 (18)0.0892 (18)0.0804 (17)0.0270 (16)0.0028 (14)0.0017 (14)
C330.0586 (18)0.0497 (17)0.0571 (19)0.0006 (14)0.0090 (15)0.0047 (15)
C130.0478 (19)0.084 (2)0.085 (3)0.0015 (17)0.0010 (17)0.009 (2)
C220.069 (2)0.061 (2)0.068 (2)0.0093 (17)0.0290 (17)0.0134 (17)
C260.060 (2)0.075 (2)0.059 (2)0.0054 (18)0.0066 (17)0.0032 (19)
C40.060 (2)0.067 (2)0.090 (3)0.0220 (17)0.0032 (19)0.009 (2)
C320.085 (3)0.071 (2)0.063 (2)0.0019 (19)0.0214 (18)0.0162 (18)
C290.0547 (19)0.0576 (19)0.073 (2)0.0033 (15)0.0166 (16)0.0071 (16)
C50.056 (2)0.071 (2)0.091 (3)0.0117 (18)0.0102 (18)0.024 (2)
C150.069 (2)0.071 (2)0.062 (2)0.0009 (18)0.0044 (17)0.0197 (17)
C210.070 (2)0.066 (2)0.070 (2)0.0283 (17)0.0181 (17)0.0029 (18)
C90.059 (2)0.084 (3)0.074 (2)0.0010 (19)0.0024 (18)0.022 (2)
C310.071 (2)0.085 (3)0.079 (2)0.004 (2)0.034 (2)0.014 (2)
C140.061 (2)0.079 (2)0.079 (2)0.0102 (18)0.0053 (18)0.013 (2)
C250.074 (2)0.091 (3)0.073 (2)0.036 (2)0.0032 (18)0.013 (2)
O30.097 (2)0.108 (2)0.101 (2)0.0409 (18)0.0092 (16)0.0158 (17)
C300.054 (2)0.083 (2)0.093 (3)0.0012 (18)0.0241 (19)0.009 (2)
C80.080 (2)0.068 (2)0.063 (2)0.0065 (18)0.0068 (17)0.0001 (17)
C100.082 (3)0.135 (4)0.064 (2)0.010 (3)0.0021 (19)0.020 (2)
C270.075 (2)0.119 (3)0.063 (2)0.005 (2)0.0047 (18)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.222 (3)C24—C251.504 (4)
O4—C181.224 (3)C34—C331.497 (4)
N1—C11.348 (3)C34—H34A0.9600
O3—C91.186 (4)C34—H34B0.9600
O6—C261.188 (4)C34—H34C0.9600
N2—C181.344 (4)C23—C221.372 (4)
N2—C281.434 (3)C33—C321.391 (4)
N2—H20.88 (3)C13—C141.357 (5)
O2—C91.365 (4)C13—H130.9300
O2—C61.414 (4)C22—C211.371 (4)
C1—C21.499 (4)C22—H220.9300
N1—C111.427 (3)C26—C271.483 (5)
N1—H10.91 (3)C4—C51.371 (5)
O5—C261.359 (4)C4—H40.9300
O5—C231.409 (4)C32—C311.365 (5)
C28—C331.378 (4)C32—H320.9300
C28—C291.400 (4)C29—C301.372 (4)
C19—C201.378 (4)C29—H290.9300
C19—C241.399 (4)C5—H50.9300
C19—C181.502 (4)C15—C141.383 (5)
C11—C161.384 (4)C15—H150.9300
C11—C121.400 (4)C21—H210.9300
C16—C151.387 (4)C9—C101.482 (5)
C16—C171.501 (4)C31—C301.365 (5)
C2—C31.384 (4)C31—H310.9300
C2—C71.404 (4)C14—H140.9300
C3—C41.385 (4)C25—H25A0.9600
C3—H30.9300C25—H25B0.9600
C12—C131.369 (4)C25—H25C0.9600
C12—H120.9300C30—H300.9300
C7—C61.387 (4)C8—H8A0.9600
C7—C81.497 (4)C8—H8B0.9600
C17—H17A0.9600C8—H8C0.9600
C17—H17B0.9600C10—H10A0.9600
C17—H17C0.9600C10—H10B0.9600
C20—C211.383 (4)C10—H10C0.9600
C20—H200.9300C27—H27A0.9600
C6—C51.374 (5)C27—H27B0.9600
C24—C231.382 (4)C27—H27C0.9600
O1—C1—N1123.5 (3)C32—C33—C34120.9 (3)
O4—C18—N2123.6 (3)C14—C13—C12120.1 (3)
C1—N1—C11123.4 (2)C14—C13—H13120.0
C18—N2—C28124.2 (2)C12—C13—H13120.0
C18—N2—H2118.5 (17)C21—C22—C23119.4 (3)
C28—N2—H2113.7 (17)C21—C22—H22120.3
C9—O2—C6117.7 (2)C23—C22—H22120.3
O1—C1—C2121.1 (2)O6—C26—O5122.6 (3)
N1—C1—C2115.4 (2)O6—C26—C27126.8 (4)
C1—N1—H1118.2 (17)O5—C26—C27110.6 (3)
C11—N1—H1114.9 (17)C5—C4—C3119.6 (3)
C26—O5—C23118.4 (2)C5—C4—H4120.2
C33—C28—C29121.0 (3)C3—C4—H4120.2
C33—C28—N2122.5 (3)C31—C32—C33122.1 (3)
C29—C28—N2116.5 (2)C31—C32—H32118.9
C20—C19—C24121.4 (2)C33—C32—H32118.9
C20—C19—C18119.9 (3)C30—C29—C28119.8 (3)
C24—C19—C18118.7 (2)C30—C29—H29120.1
O4—C18—C19121.1 (3)C28—C29—H29120.1
N2—C18—C19115.3 (2)C4—C5—C6119.6 (3)
C16—C11—C12120.3 (3)C4—C5—H5120.2
C16—C11—N1122.5 (2)C6—C5—H5120.2
C12—C11—N1117.1 (2)C14—C15—C16121.3 (3)
C11—C16—C15117.9 (3)C14—C15—H15119.4
C11—C16—C17121.8 (3)C16—C15—H15119.4
C15—C16—C17120.3 (3)C22—C21—C20119.8 (3)
C3—C2—C7121.3 (3)C22—C21—H21120.1
C3—C2—C1119.0 (3)C20—C21—H21120.1
C7—C2—C1119.6 (2)O3—C9—O2121.8 (3)
C4—C3—C2120.1 (3)O3—C9—C10127.5 (4)
C4—C3—H3119.9O2—C9—C10110.7 (3)
C2—C3—H3119.9C30—C31—C32120.2 (3)
C13—C12—C11120.1 (3)C30—C31—H31119.9
C13—C12—H12119.9C32—C31—H31119.9
C11—C12—H12119.9C13—C14—C15120.2 (3)
C6—C7—C2116.1 (3)C13—C14—H14119.9
C6—C7—C8121.5 (3)C15—C14—H14119.9
C2—C7—C8122.4 (3)C24—C25—H25A109.5
C16—C17—H17A109.5C24—C25—H25B109.5
C16—C17—H17B109.5H25A—C25—H25B109.5
H17A—C17—H17B109.5C24—C25—H25C109.5
C16—C17—H17C109.5H25A—C25—H25C109.5
H17A—C17—H17C109.5H25B—C25—H25C109.5
H17B—C17—H17C109.5C31—C30—C29119.7 (3)
C19—C20—C21119.9 (3)C31—C30—H30120.2
C19—C20—H20120.0C29—C30—H30120.2
C21—C20—H20120.0C7—C8—H8A109.5
C5—C6—C7123.1 (3)C7—C8—H8B109.5
C5—C6—O2118.2 (3)H8A—C8—H8B109.5
C7—C6—O2118.6 (3)C7—C8—H8C109.5
C23—C24—C19116.4 (3)H8A—C8—H8C109.5
C23—C24—C25121.7 (3)H8B—C8—H8C109.5
C19—C24—C25121.8 (3)C9—C10—H10A109.5
C33—C34—H34A109.5C9—C10—H10B109.5
C33—C34—H34B109.5H10A—C10—H10B109.5
H34A—C34—H34B109.5C9—C10—H10C109.5
C33—C34—H34C109.5H10A—C10—H10C109.5
H34A—C34—H34C109.5H10B—C10—H10C109.5
H34B—C34—H34C109.5C26—C27—H27A109.5
C22—C23—C24122.9 (3)C26—C27—H27B109.5
C22—C23—O5118.5 (3)H27A—C27—H27B109.5
C24—C23—O5118.4 (3)C26—C27—H27C109.5
C28—C33—C32117.0 (3)H27A—C27—H27C109.5
C28—C33—C34122.1 (3)H27B—C27—H27C109.5
C9—O2—C6—C7100.0 (3)C20—C19—C24—C230.3 (4)
N1—C1—C2—C7129.1 (3)C18—C19—C24—C23179.3 (3)
C2—C1—N1—C11172.4 (2)C20—C19—C24—C25177.9 (3)
C1—N1—C11—C1666.4 (4)C18—C19—C24—C251.7 (4)
C26—O5—C23—C2483.7 (3)C19—C24—C23—C221.8 (4)
C24—C19—C18—N2113.6 (3)C25—C24—C23—C22179.4 (3)
C28—N2—C18—C19166.2 (2)C19—C24—C23—O5172.5 (2)
C18—N2—C28—C3366.0 (4)C25—C24—C23—O55.1 (4)
N1—C1—C2—C353.9 (3)C26—O5—C23—C22101.7 (3)
O1—C1—N1—C118.5 (4)C29—C28—C33—C323.9 (4)
C18—N2—C28—C29114.4 (3)N2—C28—C33—C32176.5 (3)
C28—N2—C18—O413.4 (4)C29—C28—C33—C34173.8 (3)
C20—C19—C18—O4114.4 (3)N2—C28—C33—C345.8 (4)
C24—C19—C18—O466.0 (4)C11—C12—C13—C140.3 (5)
C20—C19—C18—N266.0 (3)C24—C23—C22—C211.6 (5)
C1—N1—C11—C12116.4 (3)O5—C23—C22—C21172.7 (3)
C12—C11—C16—C153.6 (4)C23—O5—C26—O65.3 (5)
N1—C11—C16—C15179.2 (3)C23—O5—C26—C27174.0 (3)
C12—C11—C16—C17173.8 (3)C2—C3—C4—C50.8 (5)
N1—C11—C16—C173.3 (4)C28—C33—C32—C312.0 (5)
O1—C1—C2—C3125.3 (3)C34—C33—C32—C31175.7 (3)
O1—C1—C2—C751.7 (4)C33—C28—C29—C303.0 (5)
C7—C2—C3—C41.3 (4)N2—C28—C29—C30177.4 (3)
C1—C2—C3—C4175.6 (3)C3—C4—C5—C60.1 (5)
C16—C11—C12—C133.0 (4)C7—C6—C5—C40.6 (5)
N1—C11—C12—C13179.7 (3)O2—C6—C5—C4176.4 (3)
C3—C2—C7—C60.8 (4)C11—C16—C15—C141.6 (5)
C1—C2—C7—C6176.1 (2)C17—C16—C15—C14175.9 (3)
C3—C2—C7—C8179.1 (3)C23—C22—C21—C200.1 (5)
C1—C2—C7—C84.0 (4)C19—C20—C21—C221.6 (5)
C24—C19—C20—C211.4 (4)C6—O2—C9—O34.8 (5)
C18—C19—C20—C21179.0 (3)C6—O2—C9—C10175.4 (3)
C2—C7—C6—C50.1 (4)C33—C32—C31—C300.9 (6)
C8—C7—C6—C5179.9 (3)C12—C13—C14—C151.7 (5)
C2—C7—C6—O2175.9 (2)C16—C15—C14—C131.0 (5)
C8—C7—C6—O24.1 (4)C32—C31—C30—C292.0 (6)
C9—O2—C6—C584.0 (4)C28—C29—C30—C310.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C28–C33 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.932.493.402 (4)167
N2—H2···O1ii0.88 (3)1.96 (3)2.813 (3)164 (2)
N1—H1···O40.91 (3)1.91 (3)2.804 (3)166 (2)
C25—H25B···O40.962.763.117 (4)103
C34—H34A···O40.962.593.100 (4)114
C8—H8B···O10.962.752.986 (4)95
C3—H3···Cg10.932.813.666 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationCakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181–194.  CrossRef CAS Google Scholar
First citationCarbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582–591.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CrossRef CAS Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationKansız, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-Ray Struct. Anal. Online, 34, 17–18.  Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKırca, B. K., Çakmak, Ş., Kütük, H., Odabaşoğlu, M. & Büyükgüngör, O. (2018). J. Mol. Struct. 1151, 191–197.  Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CrossRef Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.  CrossRef Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CrossRef CAS Google Scholar
First citationValeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar
First citationXiang, Y.-F., Qian, C.-W., Xing, G.-W., Hao, J., Xia, M. & Wang, Y.-F. (2012). Bioorg. Med. Chem. Lett. 22, 4703–4706.  CrossRef CAS Google Scholar
First citationYaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds