research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal engineering with short-chained amphiphiles: deca­sodium octa-n-butane­sulfonate di-μ-chlorido-bis­­[di­chlorido­palladate(II)] tetra­hydrate, a layered inorganic–organic hybrid material

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 February 2019; accepted 28 March 2019; online 2 April 2019)

In the course of crystal-engineering experiments, crystals of the hydrated title salt, Na10[Pd2Cl6](C4H9SO3)8·4H2O, were obtained from a water/2-propanol solution of sodium n-butane­sulfonate and sodium tetra­chlorido­palladate(II). In the crystal, sodium n-butane­sulfonate anions and water mol­ecules are arranged in an amphiphilic inverse bilayered cationic array represented by the formula {[Na10(C4H9SO3)8(H2O)4]2+}n. Within this lamellar array: (i) a hydro­philic layer region parallel to the bc plane is established by the Na+ cations, the H2O mol­ecules (as aqua ligands in κNa,κNa′-bridging coordination mode) and the O3S– groups of the sulfonate ions, and (ii) hydro­phobic regions are present containing all the n-butyl groups in an almost parallel orientation, with the chain direction approximately perpendicular to the aforementioned hydro­philic layer. Unexpectedly, the flat centrosymmetric [Pd2Cl6]2− anion in the structure is placed between the butyl groups, within the hydro­phobic regions, but due to its appropriate length primarily bonded to the hydro­philic `inorganic' layer regions above and below the hydro­phobic area via Pd—Clt⋯Na- and Pd—Clt⋯H—O(H)—Na-type (Clt is terminal chloride) inter­actions. In addition to these hydrogen-bonding inter­actions, both aqua ligands are engaged in charge-supported S—O⋯H—O hydrogen bonds of a motif characterized by the D43(9) graph-set descriptor within the hydro­philic region. The crystal structure of the title compound is the first reported for a metal n-butane­sulfonate.

1. Chemical context

Sodium alkane­sulfonates are artificial soaps (anionic tensides) with a widespread use (Schramm et al., 2003[Schramm, L. L., Stasiuk, E. N. & Marangoni, D. G. (2003). Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 99, 3-48.]). They are known to have a bilayered structure like `natural' soaps, with an extreme tendency for disorder in the crystalline state (Buerger, 1942[Buerger, M. J. (1942). Proc. Natl Acad. Sci. 28, 529-535.]; Buerger et al., 1942[Buerger, M. J., Smith, L. B., de Bretteville, A. & Ryer, F. V. (1942). Proc. Natl Acad. Sci. 28, 526-529.]). Compounds containing alkane­sulfonate ions of the general formula CnH2n+1SO3 with n = 1–4 may be defined as short-chained alkane­sulfonates (SCAS). In contrast to methane­sulfonates (n = 1) and ethane­sulfonates (n = 2), there is only rare structure information for the next higher homologues (n = 3, 4) (Frank & Jablonka, 2008[Frank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037.]; Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952.]). Solid sodium methane­sulfonate is described as an inorganic–organic three-dimensional network (Wei & Hingerty, 1981[Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.]). However, closer inspection shows the compound to have a bilayered soap-like structure with only one of five CH3SO3 anions connecting in the third dimension. In crystal-engineering experiments, we successfully exchanged this connecting anion by selected other ionic moieties and were able to retain the lamellar structure (Thoelen & Frank, 2017[Thoelen, F. & Frank, W. (2017). Z. Kristallogr. Suppl. 37, 118.], 2018[Thoelen, F. & Frank, W. (2018). Z. Kristallogr. Suppl. 38, 90.]; Verheyen & Frank, 2009[Verheyen, V. & Frank, W. (2009). Z. Kristallogr. Suppl. 29, 41.]). An aim of subsequent attempts was to include chlorido­palladate(II) anions PdnCl2n+22− that are known to be catalytically active (Bouquillion et al., 1999[Bouquillon, S., du Moulinet d'Hardemare, A., Averbuch-Pouchot, M., Hénin, F. & Muzart, J. (1999). Polyhedron, 18, 3511-3516.]; Jimeno et al., 2012[Jimeno, C., Christmann, U., Escudero-Adán, E. C., Vilar, R. & Pericàs, M. A. (2012). Chem. Eur. J. 18, 16510-16516.]; Lassahn et al., 2003[Lassahn, P. G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927-935.]; Mu et al., 2012[Mu, B., Li, J., Han, Z. & Wu, Y. (2012). J. Organomet. Chem. 700, 117-124.]), by using [PdCl4]2− in the form of its sodium salt as a typical precursor in aqueous palladium(II) chemistry.

[Scheme 1]

In the investigation described herein, the incorporation of hexa­chlorido­dipalladate(II) anions into the sodium n-butane­sulfonate layered system was realized, resulting in the title compound (1) having the typical brown colour of palladium complexes with a square-planar coordination environment. According to the results of elemental analysis and vibrational spectroscopic investigations, hydrated sodium cations, n-butane­sulfonate and hexa­chlorido­dipalladate(II) anions are present in the solid. The crystal structure determination of this compound is the first of a metal n-butane­sulfonate and eventually confirmed the composition Na10(C4H9SO3)8[Pd2Cl6]·4H2O and a lamellar amphiphilic structure.

2. Structural commentary

Fig. 1[link] shows the asymmetric unit of the crystal structure that contains (all in general positions) five sodium cations, two water mol­ecules, four n-butane­sulfonate anions and, close to a center of inversion, one half of a hexa­chlorido­dipalladate anion. The five Na+ cations are in quite different coordination environments (Fig. 2[link]), defined by five sulfonato ligands (Na4, Na5), four sulfonato ligands and one aqua ligand (Na3), four sulfonato ligands and two aqua ligands (Na2) and four sulfon­ato ligands, one aqua ligand and one terminal chlorido ligand of the [Pd2Cl6]2− anion (Na1). Bond lengths and angles of the n-butanesulfonate anions are as expected (see supplementary Tables). All these anions are found with an entirely anti-periplanar conformation of the alkyl groups, without any disorder. Altogether, n-butane­sulfonate anions, Na+ cations and water mol­ecules form a tenside-like inverse bilayered cationic array, which can be described by the formula {[Na10(H2O)4(C4H9SO3)8]2+}n. In this arrangement, the layer-like regions are oriented parallel to the bc plane of the unit cell. As visualized by the blue and the red sections of the transparent background of Fig. 3[link], hydro­philic and hydro­phobic regions are given, reminiscent of sections of the structures of `pure' short-chained sodium alkane­sulfonates (Frank & Jablonka, 2008[Frank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037.]; Wei & Hingerty, 1981[Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.]). The hydro­philic areas contain the Na+ cations, the H2O mol­ecules serving as aqua ligands in μ(κNa,κNa′) bridging mode coordination, and the O3S– groups of the sulfonate ions. With all the C4-chains in an approximately parallel orientation, the butyl groups are arranged on both sides of the hydro­philic region to complete the amphiphilic double layer with an inverse bilayer thickness according to unit-cell parameter a. The centrosymmetric [Pd2Cl6]2− anions in the structure of 1 are placed between the n-butyl groups within the hydro­phobic regions. In a first view, this position seems to be unexpected; however, the length of the dipalladate(II) anion is appropriate to allow for pronounced bonding to the hydro­philic `inorganic' layered regions above and below the hydro­phobic area (Fig. 3[link]). To inter­act with the inorganic areas above and below the hydro­phobic region, a building block is needed that fits to the thickness of the hydro­phobic double layer. In the concrete case of 1, the thickness is determined by the lengths of two `end-facing' n-butyl groups.

[Figure 1]
Figure 1
The asymmetric unit of 1, chosen to give a compact segment with all n-butyl groups of the hydro­phobic layer region oriented in one direction. In addition, the symmetry-related second half of the hexa­chlorido­dipallate(II) anion is shown in transparent mode [symmetry code: (i) −x, 1 − y, 1 − z.]. The direction of coordinative bonding to atoms of neighbouring moieties is given by sharpened sticks, and hydrogen bonds are shown as segmented solid bonds. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are drawn with an arbitrary radius. Note the coordination of the hexa­chlorido­dipalladate(II) ion to hydro­philic moieties by hydrogen bonding and `local' ionic inter­actions.
[Figure 2]
Figure 2
Coordination environments of sodium cations. For clarity, n-butyl­groups of the n-butane­sulfonate anions are not shown. [Symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, 1 + y, z; (iv) x, −1 + y, z; (v) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vi) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z]. The Na—O distances [Na1—O = 2.284 (3)–2.540 (3) Å; Na2—O = 2.283 (3)–2.700 (3) Å; Na3—O = 2.212 (2)–2.649 (3) Å; Na4—O = 2.308 (5)–2.479 (3) Å; Na5—O = 2.391 (3)–3.000 (4) Å] are within the reported range for short-chained sodium alkane­sulfonates (Wei & Hingerty, 1981[Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.]).
[Figure 3]
Figure 3
Diagram displaying hydro­philic (blue) and hydro­phobic sections (red) of the bilayered amphiphile packing of 1; layers are parallel to the bc plane of the unit cell. Note the inverse bilayer thickness corresponding to the unit-cell dimension along [100]. The hexa­chlorido­dipalladate(II) anions are placed within the hydro­phobic region but are primarily bonded to the hydro­philic.

As expected, the Pd—Cl bonds to the terminal chlorido ligands [2.2776 (12) and 2.2800 (10) Å] are slightly shorter than the Pd—μ-Cl bonds [2.3159 (11) and 2.3212 (12) Å]. These geometric parameters, as well as the Cl—Pd—Cl bond angles of 86.20 (4) to 92.45 (4)° and the Pd—μ-Cl—Pd angle of 93.80 (4)°, are in good agreement with those found in Cs2[Pd2Cl6] (Schüpp & Keller, 1999[Schüpp, B. & Keller, H.-L. (1999). Z. Anorg. Allg. Chem. 625, 1944-1950.]) or in several hexa­chlorido­dipalladates with large organic cations (e.g. Chitanda et al., 2008[Chitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, m907-m908.]; Gerisch et al., 1997[Gerisch, M., Heinemann, F., Markgraf, U. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 1651-1656.]; Makitova et al., 2007[Makitova, D. D., Tkachev, V. V. & Atovmyan, L. O. (2007). Russ. J. Coord. Chem. 33, 665-667.]). Alternatively to the formula given above, compound 1 might be formulated as a hydrated double salt of sodium n-butane­sulfonate and sodium hexa­chlorido­dipalladate(II): Na8(C4H9SO3)8·Na2Pd2Cl6·4H2O. This choice takes into account that the Na—Cl distance from the terminal chlorido ligand Cl2 of the hexa­chlorido­dipalladate(II) anion to the sodium cation Na1 [2.8560 (18) Å] is close to the distances of 2.809 (3) to 2.821 (2) Å in Na2PdCl4 (Schröder & Keller, 1989[Schröder, L. & Keller, J. (1989). J. Less-Common Met. 153, 35-41.]). However, this is a singular similarity, and because all the sodium cations of 1 clearly are components of the layer-like hydro­philic region, there is a much closer structural relationship of 1 to sodium methane­sulfonate (Wei & Hingerty, 1981[Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.]) and sodium 1-propane­sulfonate monohydrate (Frank & Jablonka, 2008[Frank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037.]). As in the structures of these compounds, the asymmetric unit in 1 contains five Na+ cations, establishing a closely related Na—O coordination network, and the separation of hydro­philic layers and hydro­phobic areas is similar to the most prominent structural feature of crystallized amphiphiles where the neighbouring hydro­phobic areas in the layer-like structures are connected by van der Waals forces only.

3. Supra­molecular features

As emphasized in Fig.1, in addition to the coordinative bonding to two Na+ cations [O1—Na1 = 2.326 (3) Å, O1—Na2 = 2.407 (4) Å; O2—Na3 = 2.311 (4) Å, O2—Na2′ = 2.488 (4) Å], the two crystallographically independent water mol­ecules O1 and O2 in 1 are engaged in non-covalent bonding within the hydro­philic region (Table 1[link]). The water mol­ecule containing O1 serves as donor for both a charge-supported O—H⋯Cl-type hydrogen bond of medium strength to one of the terminal chlorido ligands of the [Pd2Cl6]2− anion [DA distance = 3.127 (3) Å] and a charge-supported weak O—H⋯O type hydrogen bond to an O atom of a sulfonate anion containing S4 [DA = 2.879 (4) Å]. In contrast, the water mol­ecule containing O2 is engaged in two O—H⋯O type hydrogen bonds to sulfonate ions, one of moderate strength to an O atom of the sulfonate ion containing S4 [DA = 2.723 (4) Å] and a weak one to an O atom of the sulfonate ion containing S3 [DA = 2.884 (4) Å]. Pd—Clterm⋯H—O(Na2)—H⋯O14(S4)⋯H—O(Na2)—H⋯O—S is the entire path of hydrogen bonding described by the D34(9) graph-set descriptor (Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952.]; Grell et al., 1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]), with the sulfonate oxygen atom O14 as the central double acceptor.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O14i 0.80 (3) 2.10 (4) 2.879 (4) 164 (5)
O1—H2⋯Cl1 0.82 (3) 2.32 (4) 3.127 (3) 172 (6)
O2—H3⋯O10ii 0.81 (3) 1.95 (4) 2.723 (4) 159 (5)
O2—H4⋯O14ii 0.80 (3) 2.10 (4) 2.884 (4) 164 (6)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

A search in the Cambridge Structural Database (Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for short-chained sodium alkane­sulfonates Na(CnH2n+1SO3) with n = 1–4 gave three hits, viz. the structures of sodium methane­sulfonate (BAKLAA; Wei & Hingerty, 1981[Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.]), sodium 1-propane­sulfonate monohydrate (GOKHIY; Frank & Jablonka, 2008[Frank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037.]) and α-cyclo­dextrin sodium 1-propane­sulfonate nona­hydrate (ACDPRS; Harata, 1977[Harata, K. (1977). Bull. Chem. Soc. Jpn, 50, 1259-1266.]). For crystal structures with n-butane­sulfonate anions, only one entry was found (WETNUE; Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952.]), describing the lamellar structure of guanidinium n-butane­sulfonate. Searching for the hexa­chlorido­dipalladate(II) anion results in 46 entries. However, from a structural point of view, the role of the [Pd2Cl6]2− ion in 1 is completely different from the role of this species in all the other compounds. In addition to the reports on these compounds having organic components, there is one report on an inorganic ternary chloride containing the [Pd2Cl6]2− ion (CsPdCl3; Schüpp & Keller, 1999[Schüpp, B. & Keller, H.-L. (1999). Z. Anorg. Allg. Chem. 625, 1944-1950.]).

5. Synthesis and Crystallization

Thin brown platelets of 1 were obtained by slow isothermal evaporation of the solvent from a solution of 5 ml of distilled water and 5 ml of iso­propanol containing 3.203 g (20 mmol) of sodium n-butane­sulfonate and 1.177 g (4 mmol) of sodium tetra­chlorido­palladate(II). The evaporation temperature of the solution was adjusted to 288 K with a thermostat. After three days, crystals suitable for X-ray crystal structure determination could be harvested (5.985 g; 81.6% based on PdCl42–). A single crystal was selected directly from the mother liquor. Raman spectroscopy was done with a Bruker MultiRAM spectrometer, equipped with a Nd:YAG laser (1064 nm) and an InGaAs detector (4000–70 cm−1): ν(C—H): 2969 (m), 2920 (s), 2872 (m); δs(C—H): 1445 (w), 1412 (w); δas(C—H): 1306 (w); νas(S—O): 1071 (s); νs(C—S): 800 (m); δ(S—O): 551 (m), 536 (m); ν(Pd—Clterm): 343 (m), ν(Pd—μ-Cl): 305 (s); ν(Pd—μ-Cl): 273 (m). Band assignments were made according to Fujimori (1959[Fujimori, K. (1959). Bull. Chem. Soc. Jpn, 32, 850-852.]) and Gerisch et al. (1997[Gerisch, M., Heinemann, F., Markgraf, U. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 1651-1656.]). An IR spectrum was recorded by using a Spektrum Two FT–IR spectrometer (Perkin Elmer company) with an LiTaO3 detector (4000–350 cm−1) and an universal ATR equipment: ν(O—H): 3503 (s), 3462 (sh), 3436 (s), 3367 (s); ν(C—H): 2967 (s), 2936 (s), 2872 (m); δ(O—H): 1662 (m), 1602 (m); δs(C—H) 1465 (m), 1412 (w), 1378 (w), δas(C—H): 1314 (w), 1286 (w); νas(C—H): 1241 (w); νs(S—O): 1190 (s), 1166 (s); νas(S—O): 1057 (s), 1044 (s); νs(C—S): 794 (m); δ(S—O): 555 (m), 534 (m); band assignment according to Fujimori (1959[Fujimori, K. (1959). Bull. Chem. Soc. Jpn, 32, 850-852.]). A CHS analysis was performed with a vario micro cube (Elementar Analysensysteme GmbH). Analysis calculated for C32H80Cl6Na10O28Pd2S8 (1824.84 g mol−1): C 21.06, H 4.42, S 14.06; found: C 20.78, H 4.49, S 12.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of all hydrogen atoms were identified in difference-Fourier syntheses. In the course of the converging refinement, a riding model was applied using idealized C—H bond lengths (0.97–0.98 Å) as well as H—C—H and C—C—H angles. In addition, H atoms of CH3 groups were allowed to rotate around the neighboring C—C bonds. The Uiso(H) values were set to 1.5Ueq(Cmeth­yl) and 1.2Ueq(Cmethyl­ene), respectively. H—O distances of the water mol­ecules were restrained to 0.83 (3) Å.

Table 2
Experimental details

Crystal data
Chemical formula Na10[Pd2Cl6](C4H9O3S)8·4H2O
Mr 1824.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 213
a, b, c (Å) 15.9049 (4), 9.9047 (2), 22.6734 (7)
β (°) 94.315 (2)
V3) 3561.69 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.43 × 0.13 × 0.06
 
Data collection
Diffractometer Stoe IPDS_2T
Absorption correction Multi-scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.650, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 48866, 8183, 7116
Rint 0.072
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.099, 1.54
No. of reflections 8183
No. of parameters 408
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.43
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). IPDS. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

Decasodium octa-n-butanesulfonate di-µ-chlorido-bis[dichloridopalladate(II)] tetrahydrate top
Crystal data top
Na10[Pd2Cl6](C4H9O3S)8·4H2OF(000) = 1856
Mr = 1824.84Dx = 1.702 Mg m3
Dm = 1.712 Mg m3
Dm measured by flotation in chloroform/bromoform
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.9049 (4) ÅCell parameters from 49957 reflections
b = 9.9047 (2) Åθ = 4.1–59.3°
c = 22.6734 (7) ŵ = 1.10 mm1
β = 94.315 (2)°T = 213 K
V = 3561.69 (16) Å3Thin platelets, brown
Z = 20.43 × 0.13 × 0.06 mm
Data collection top
Stoe IPDS_2T
diffractometer
7116 reflections with I > 2σ(I)
ω scanRint = 0.072
Absorption correction: multi-scan
(PLATON; Spek, 2009)
θmax = 27.5°, θmin = 2.1°
Tmin = 0.650, Tmax = 0.937h = 2020
48866 measured reflectionsk = 1112
8183 independent reflectionsl = 2929
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0215P)2 + 3.8152P]
where P = (Fo2 + 2Fc2)/3
S = 1.54(Δ/σ)max < 0.001
8183 reflectionsΔρmax = 0.73 e Å3
408 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.10273 (2)0.51478 (3)0.52464 (2)0.02493 (8)
Cl10.18814 (7)0.69241 (11)0.55153 (7)0.0452 (3)
Cl20.20910 (6)0.36261 (11)0.54280 (6)0.0361 (3)
Cl30.01032 (7)0.34122 (11)0.49624 (7)0.0465 (3)
S10.37572 (5)0.04330 (8)0.48827 (4)0.01605 (17)
S20.40803 (5)0.51616 (8)0.41684 (4)0.01565 (17)
S30.37879 (6)0.32626 (9)0.19446 (4)0.01684 (17)
S40.35920 (5)0.87006 (9)0.26546 (4)0.01710 (17)
Na10.38885 (9)0.35553 (15)0.55924 (7)0.0216 (3)
Na20.46690 (10)0.73138 (16)0.54410 (7)0.0283 (4)
Na30.38987 (10)0.20007 (16)0.34308 (7)0.0274 (3)
Na40.48859 (9)0.56786 (15)0.28553 (7)0.0230 (3)
Na50.46642 (10)0.86689 (15)0.39298 (7)0.0245 (3)
O10.36894 (19)0.5796 (3)0.58556 (14)0.0283 (6)
H10.367 (3)0.583 (5)0.6209 (15)0.037 (15)*
H20.322 (2)0.604 (6)0.574 (3)0.054 (18)*
O20.5354 (2)0.1883 (3)0.35206 (15)0.0329 (7)
H30.556 (3)0.116 (4)0.344 (2)0.040 (15)*
H40.552 (4)0.240 (5)0.328 (2)0.053 (18)*
O30.40321 (17)0.1195 (3)0.54127 (12)0.0241 (6)
O40.40499 (17)0.0958 (3)0.49020 (14)0.0291 (6)
O50.40033 (19)0.1094 (3)0.43503 (13)0.0334 (7)
O60.41514 (16)0.4210 (3)0.46581 (12)0.0250 (6)
O70.43673 (17)0.4534 (3)0.36366 (12)0.0248 (6)
O80.45103 (16)0.6439 (3)0.43105 (12)0.0232 (6)
O90.3628 (2)0.2671 (3)0.25054 (13)0.0351 (7)
O100.42717 (18)0.4508 (3)0.20055 (14)0.0317 (7)
O110.41987 (17)0.2306 (3)0.15672 (12)0.0268 (6)
O120.38437 (18)0.7351 (3)0.28429 (14)0.0318 (7)
O130.37292 (17)0.9671 (3)0.31322 (12)0.0282 (6)
O140.39915 (16)0.9112 (3)0.21230 (11)0.0227 (6)
C10.2645 (2)0.0366 (4)0.48516 (18)0.0263 (8)
H1A0.2475240.0060220.5214260.032*
H1B0.2424900.1291150.4841600.032*
C20.2242 (3)0.0399 (5)0.4324 (2)0.0322 (9)
H2A0.2377660.0056700.3959320.039*
H2B0.2478910.1311700.4319780.039*
C30.1293 (3)0.0491 (5)0.4338 (2)0.0397 (11)
H3A0.1157810.0888040.4715400.048*
H3B0.1053270.0420000.4314440.048*
C40.0894 (4)0.1334 (8)0.3836 (3)0.0677 (19)
H4A0.1016750.0935530.3461750.102*
H4B0.0288700.1365520.3863130.102*
H4C0.1121140.2243310.3862680.102*
C50.2997 (2)0.5537 (4)0.40159 (18)0.0218 (8)
H5A0.2767880.5887220.4374820.026*
H5B0.2936820.6242500.3712480.026*
C60.2495 (2)0.4298 (4)0.3802 (2)0.0280 (9)
H6A0.2729630.3943510.3446120.034*
H6B0.2553020.3596660.4107490.034*
C70.1563 (3)0.4605 (5)0.3663 (2)0.0372 (10)
H7A0.1499600.5269810.3343040.045*
H7B0.1330870.4997020.4013160.045*
C80.1075 (3)0.3334 (6)0.3481 (3)0.0614 (17)
H8A0.0489690.3563740.3376540.092*
H8B0.1107420.2697930.3807030.092*
H8C0.1316000.2929310.3142340.092*
C90.2808 (2)0.3675 (4)0.15778 (17)0.0248 (8)
H9A0.2906210.4130880.1205550.030*
H9B0.2500070.2838050.1479170.030*
C100.2260 (3)0.4574 (5)0.1931 (2)0.0374 (11)
H10A0.2102580.4082650.2281620.045*
H10B0.2583740.5372040.2066080.045*
C110.1472 (3)0.5017 (6)0.1572 (3)0.0472 (13)
H11A0.1195990.4219430.1389750.057*
H11B0.1632210.5608690.1253020.057*
C120.0847 (3)0.5754 (6)0.1927 (4)0.070 (2)
H12A0.0400220.6128260.1661420.105*
H12B0.1131990.6478030.2150280.105*
H12C0.0607120.5128440.2198030.105*
C130.2498 (2)0.8633 (4)0.2452 (2)0.0265 (8)
H13A0.2397720.7971740.2132760.032*
H13B0.2208410.8310480.2791470.032*
C140.2112 (2)0.9972 (4)0.2249 (2)0.0315 (9)
H14A0.2420411.0328980.1924210.038*
H14B0.2170531.0620140.2575750.038*
C150.1180 (3)0.9829 (5)0.2040 (2)0.0379 (10)
H15A0.1127260.9204070.1703970.045*
H15B0.0879680.9432490.2359820.045*
C160.0765 (3)1.1155 (5)0.1856 (2)0.0432 (12)
H16A0.1060691.1557560.1541360.065*
H16B0.0786771.1762860.2192720.065*
H16C0.0181771.0994560.1717690.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01842 (13)0.02374 (15)0.03245 (17)0.00385 (12)0.00072 (11)0.00322 (13)
Cl10.0311 (5)0.0272 (5)0.0747 (9)0.0030 (4)0.0117 (5)0.0018 (6)
Cl20.0231 (5)0.0286 (5)0.0551 (7)0.0068 (4)0.0055 (5)0.0019 (5)
Cl30.0225 (5)0.0257 (5)0.0895 (10)0.0045 (4)0.0078 (6)0.0017 (6)
S10.0189 (4)0.0142 (4)0.0150 (4)0.0004 (3)0.0011 (3)0.0014 (3)
S20.0176 (4)0.0146 (4)0.0147 (4)0.0009 (3)0.0008 (3)0.0012 (3)
S30.0225 (4)0.0154 (4)0.0123 (4)0.0003 (3)0.0002 (3)0.0009 (3)
S40.0165 (4)0.0174 (4)0.0174 (4)0.0015 (3)0.0016 (3)0.0020 (3)
Na10.0265 (8)0.0197 (7)0.0185 (7)0.0001 (6)0.0012 (6)0.0020 (6)
Na20.0318 (8)0.0238 (8)0.0295 (9)0.0042 (7)0.0027 (7)0.0019 (7)
Na30.0344 (9)0.0290 (8)0.0187 (8)0.0055 (7)0.0024 (6)0.0036 (7)
Na40.0250 (7)0.0195 (7)0.0245 (8)0.0035 (6)0.0015 (6)0.0007 (6)
Na50.0280 (8)0.0232 (7)0.0219 (8)0.0031 (6)0.0008 (6)0.0017 (6)
O10.0271 (15)0.0317 (16)0.0252 (16)0.0021 (13)0.0040 (13)0.0052 (13)
O20.0381 (17)0.0225 (15)0.0397 (19)0.0021 (13)0.0135 (14)0.0004 (14)
O30.0264 (14)0.0263 (14)0.0193 (13)0.0004 (11)0.0005 (11)0.0071 (11)
O40.0261 (14)0.0174 (13)0.0431 (18)0.0043 (11)0.0029 (13)0.0030 (12)
O50.0380 (16)0.0452 (18)0.0170 (14)0.0123 (14)0.0007 (12)0.0077 (13)
O60.0236 (13)0.0268 (14)0.0242 (15)0.0010 (11)0.0007 (11)0.0086 (12)
O70.0265 (14)0.0274 (14)0.0209 (14)0.0038 (11)0.0048 (11)0.0024 (11)
O80.0241 (13)0.0175 (12)0.0273 (15)0.0027 (10)0.0028 (11)0.0005 (11)
O90.0493 (19)0.0403 (17)0.0161 (14)0.0015 (15)0.0045 (13)0.0069 (13)
O100.0278 (15)0.0198 (13)0.0465 (19)0.0052 (12)0.0046 (13)0.0022 (13)
O110.0306 (15)0.0288 (14)0.0205 (14)0.0124 (12)0.0017 (11)0.0062 (12)
O120.0288 (15)0.0237 (14)0.0432 (19)0.0058 (12)0.0055 (13)0.0122 (13)
O130.0287 (14)0.0345 (16)0.0207 (14)0.0046 (12)0.0021 (11)0.0062 (12)
O140.0222 (13)0.0282 (14)0.0177 (13)0.0032 (11)0.0024 (10)0.0017 (11)
C10.0175 (17)0.031 (2)0.030 (2)0.0028 (15)0.0008 (15)0.0085 (17)
C20.030 (2)0.035 (2)0.032 (2)0.0031 (18)0.0025 (17)0.0074 (19)
C30.023 (2)0.044 (3)0.050 (3)0.0036 (19)0.0059 (19)0.005 (2)
C40.040 (3)0.091 (5)0.069 (4)0.017 (3)0.016 (3)0.008 (4)
C50.0198 (17)0.0196 (17)0.026 (2)0.0039 (14)0.0010 (15)0.0023 (15)
C60.025 (2)0.0258 (19)0.032 (2)0.0028 (16)0.0032 (16)0.0009 (17)
C70.0211 (19)0.044 (3)0.046 (3)0.0001 (19)0.0029 (18)0.004 (2)
C80.031 (3)0.065 (4)0.086 (5)0.014 (3)0.012 (3)0.004 (3)
C90.0201 (18)0.034 (2)0.0195 (19)0.0016 (16)0.0022 (14)0.0025 (17)
C100.027 (2)0.036 (2)0.050 (3)0.0024 (18)0.0039 (19)0.010 (2)
C110.033 (2)0.046 (3)0.062 (3)0.013 (2)0.007 (2)0.010 (3)
C120.032 (3)0.058 (4)0.120 (6)0.013 (3)0.005 (3)0.020 (4)
C130.0148 (17)0.029 (2)0.036 (2)0.0021 (15)0.0011 (15)0.0046 (18)
C140.0227 (19)0.028 (2)0.043 (3)0.0036 (16)0.0029 (17)0.0034 (19)
C150.023 (2)0.045 (3)0.045 (3)0.0004 (19)0.0025 (18)0.007 (2)
C160.027 (2)0.051 (3)0.051 (3)0.010 (2)0.003 (2)0.009 (2)
Geometric parameters (Å, º) top
Pd1—Cl12.2776 (12)O1—H20.82 (3)
Pd1—Cl22.2800 (10)O2—H30.81 (3)
Pd1—Cl3i2.3159 (11)O2—H40.80 (3)
Pd1—Cl32.3212 (12)C1—C21.517 (6)
Cl2—Na12.8560 (18)C1—H1A0.9800
S1—O51.453 (3)C1—H1B0.9800
S1—O41.453 (3)C2—C31.514 (6)
S1—O31.458 (3)C2—H2A0.9800
S1—C11.767 (4)C2—H2B0.9800
S2—O61.454 (3)C3—C41.512 (8)
S2—O71.460 (3)C3—H3A0.9800
S2—O81.462 (3)C3—H3B0.9800
S2—C51.771 (4)C4—H4A0.9700
S3—O91.440 (3)C4—H4B0.9700
S3—O101.455 (3)C4—H4C0.9700
S3—O111.463 (3)C5—C61.524 (5)
S3—C91.759 (4)C5—H5A0.9800
S4—O121.451 (3)C5—H5B0.9800
S4—O131.452 (3)C6—C71.522 (6)
S4—O141.462 (3)C6—H6A0.9800
S4—C131.767 (4)C6—H6B0.9800
Na1—O62.284 (3)C7—C81.520 (7)
Na1—O12.326 (3)C7—H7A0.9800
Na1—O11ii2.386 (3)C7—H7B0.9800
Na1—O32.387 (3)C8—H8A0.9700
Na1—O8iii2.540 (3)C8—H8B0.9700
Na2—O4iv2.283 (3)C8—H8C0.9700
Na2—O12.407 (4)C9—C101.516 (6)
Na2—O6iii2.431 (3)C9—H9A0.9800
Na2—O2iii2.488 (4)C9—H9B0.9800
Na2—O5iii2.649 (3)C10—C111.507 (7)
Na2—O82.700 (3)C10—H10A0.9800
Na3—O92.212 (3)C10—H10B0.9800
Na3—O52.264 (3)C11—C121.514 (7)
Na3—O22.311 (4)C11—H11A0.9800
Na3—O13v2.414 (3)C11—H11B0.9800
Na3—O72.649 (3)C12—H12A0.9700
Na4—O72.308 (3)C12—H12B0.9700
Na4—O122.342 (3)C12—H12C0.9700
Na4—O14vi2.363 (3)C13—C141.519 (6)
Na4—O102.393 (3)C13—H13A0.9800
Na4—O11vii2.479 (3)C13—H13B0.9800
Na5—O82.391 (3)C14—C151.529 (6)
Na5—O132.462 (3)C14—H14A0.9800
Na5—O3iii2.465 (3)C14—H14B0.9800
Na5—O4iv2.505 (3)C15—C161.515 (6)
Na5—O11vii2.582 (3)C15—H15A0.9800
Na5—O5iv2.817 (4)C15—H15B0.9800
Na5—O10vii2.931 (4)C16—H16A0.9700
Na5—O123.000 (4)C16—H16B0.9700
O1—H10.80 (3)C16—H16C0.9700
Cl1—Pd1—Cl292.45 (4)O5iv—Na5—O12119.93 (10)
Cl1—Pd1—Cl3i90.99 (4)O10vii—Na5—O1276.60 (9)
Cl2—Pd1—Cl3i176.53 (4)Na1—O1—H1108 (4)
Cl1—Pd1—Cl3177.19 (4)Na2—O1—H1116 (4)
Cl2—Pd1—Cl390.36 (4)Na1—O1—H2109 (4)
Cl3i—Pd1—Cl386.20 (4)Na2—O1—H2107 (4)
Pd1—Cl2—Na1139.61 (5)H1—O1—H2102 (5)
Pd1i—Cl3—Pd193.80 (4)Na3—O2—Na2iii88.93 (12)
O5—S1—O4110.28 (19)Na3—O2—H3116 (4)
O5—S1—O3111.62 (17)Na2iii—O2—H3122 (4)
O4—S1—O3112.98 (17)Na3—O2—H4107 (4)
O5—S1—C1108.38 (19)Na2iii—O2—H4117 (4)
O4—S1—C1106.46 (18)H3—O2—H4104 (5)
O3—S1—C1106.83 (17)C2—C1—S1114.3 (3)
O5—S1—Na5v61.48 (14)C2—C1—H1A108.7
O6—S2—O7110.06 (17)S1—C1—H1A108.7
O6—S2—O8112.61 (17)C2—C1—H1B108.7
O7—S2—O8112.35 (16)S1—C1—H1B108.7
O6—S2—C5107.70 (17)H1A—C1—H1B107.6
O7—S2—C5106.74 (17)C3—C2—C1112.1 (4)
O8—S2—C5107.05 (17)C3—C2—H2A109.2
O9—S3—O10112.86 (19)C1—C2—H2A109.2
O9—S3—O11111.67 (18)C3—C2—H2B109.2
O10—S3—O11110.37 (18)C1—C2—H2B109.2
O9—S3—C9107.65 (19)H2A—C2—H2B107.9
O10—S3—C9106.94 (19)C4—C3—C2112.3 (4)
O11—S3—C9107.02 (18)C4—C3—H3A109.1
O12—S4—O13111.59 (18)C2—C3—H3A109.1
O12—S4—O14111.84 (17)C4—C3—H3B109.1
O13—S4—O14112.33 (17)C2—C3—H3B109.1
O12—S4—C13106.62 (18)H3A—C3—H3B107.9
O13—S4—C13107.99 (19)C3—C4—H4A109.5
O14—S4—C13106.06 (18)C3—C4—H4B109.5
O6—Na1—O190.30 (12)H4A—C4—H4B109.5
O6—Na1—O11ii157.10 (12)C3—C4—H4C109.5
O1—Na1—O11ii97.25 (12)H4A—C4—H4C109.5
O6—Na1—O395.34 (11)H4B—C4—H4C109.5
O1—Na1—O3174.22 (12)C6—C5—S2111.9 (3)
O11ii—Na1—O378.00 (10)C6—C5—H5A109.2
O6—Na1—O8iii80.06 (10)S2—C5—H5A109.2
O1—Na1—O8iii97.50 (11)C6—C5—H5B109.2
O11ii—Na1—O8iii77.54 (10)S2—C5—H5B109.2
O3—Na1—O8iii84.77 (10)H5A—C5—H5B107.9
O6—Na1—Cl297.08 (9)C7—C6—C5112.6 (3)
O1—Na1—Cl281.71 (9)C7—C6—H6A109.1
O11ii—Na1—Cl2105.37 (9)C5—C6—H6A109.1
O3—Na1—Cl296.29 (8)C7—C6—H6B109.1
O8iii—Na1—Cl2177.04 (9)C5—C6—H6B109.1
O4iv—Na2—O1114.31 (12)H6A—C6—H6B107.8
O4iv—Na2—O6iii136.11 (12)C6—C7—C8111.1 (4)
O1—Na2—O6iii100.08 (11)C6—C7—H7A109.4
O4iv—Na2—O2iii103.31 (12)C8—C7—H7A109.4
O1—Na2—O2iii76.94 (11)C6—C7—H7B109.4
O6iii—Na2—O2iii110.63 (12)C8—C7—H7B109.4
O4iv—Na2—O5iii87.44 (11)H7A—C7—H7B108.0
O1—Na2—O5iii146.38 (12)C7—C8—H8A109.5
O6iii—Na2—O5iii77.03 (11)C7—C8—H8B109.5
O2iii—Na2—O5iii73.07 (11)H8A—C8—H8B109.5
O4iv—Na2—O874.15 (10)C7—C8—H8C109.5
O1—Na2—O898.82 (11)H8A—C8—H8C109.5
O6iii—Na2—O874.38 (10)H8B—C8—H8C109.5
O2iii—Na2—O8173.81 (12)C10—C9—S3114.2 (3)
O5iii—Na2—O8112.15 (10)C10—C9—H9A108.7
O9—Na3—O5171.09 (14)S3—C9—H9A108.7
O9—Na3—O2102.75 (13)C10—C9—H9B108.7
O5—Na3—O283.98 (13)S3—C9—H9B108.7
O9—Na3—O13v90.64 (12)H9A—C9—H9B107.6
O5—Na3—O13v83.01 (12)C11—C10—C9111.9 (4)
O2—Na3—O13v93.81 (12)C11—C10—H10A109.2
O9—Na3—O785.12 (11)C9—C10—H10A109.2
O5—Na3—O7102.30 (12)C11—C10—H10B109.2
O2—Na3—O776.45 (11)C9—C10—H10B109.2
O13v—Na3—O7168.18 (11)H10A—C10—H10B107.9
O7—Na4—O1293.62 (11)C10—C11—C12114.0 (5)
O7—Na4—O14vi88.54 (10)C10—C11—H11A108.8
O12—Na4—O14vi176.01 (12)C12—C11—H11A108.8
O7—Na4—O10103.43 (11)C10—C11—H11B108.8
O12—Na4—O1095.00 (12)C12—C11—H11B108.8
O14vi—Na4—O1087.75 (11)H11A—C11—H11B107.7
O7—Na4—O11vii98.26 (11)C11—C12—H12A109.5
O12—Na4—O11vii86.19 (12)C11—C12—H12B109.5
O14vi—Na4—O11vii90.18 (11)H12A—C12—H12B109.5
O10—Na4—O11vii158.15 (12)C11—C12—H12C109.5
O8—Na5—O13124.40 (12)H12A—C12—H12C109.5
O8—Na5—O3iii86.35 (10)H12B—C12—H12C109.5
O13—Na5—O3iii148.92 (12)C14—C13—S4114.4 (3)
O8—Na5—O4iv76.20 (10)C14—C13—H13A108.7
O13—Na5—O4iv109.44 (11)S4—C13—H13A108.7
O3iii—Na5—O4iv79.97 (10)C14—C13—H13B108.7
O8—Na5—O11vii76.62 (10)S4—C13—H13B108.7
O13—Na5—O11vii107.11 (10)H13A—C13—H13B107.6
O3iii—Na5—O11vii72.99 (9)C13—C14—C15111.9 (4)
O4iv—Na5—O11vii142.52 (11)C13—C14—H14A109.2
O8—Na5—O5iv127.94 (10)C15—C14—H14A109.2
O13—Na5—O5iv71.62 (10)C13—C14—H14B109.2
O3iii—Na5—O5iv93.85 (10)C15—C14—H14B109.2
O4iv—Na5—O5iv52.85 (9)H14A—C14—H14B107.9
O11vii—Na5—O5iv152.22 (10)C16—C15—C14113.4 (4)
O8—Na5—O10vii127.13 (10)C16—C15—H15A108.9
O13—Na5—O10vii72.78 (9)C14—C15—H15A108.9
O3iii—Na5—O10vii85.23 (10)C16—C15—H15B108.9
O4iv—Na5—O10vii151.57 (11)C14—C15—H15B108.9
O11vii—Na5—O10vii51.04 (8)H15A—C15—H15B107.7
O5iv—Na5—O10vii104.68 (9)C15—C16—H16A109.5
O8—Na5—O1281.05 (10)C15—C16—H16B109.5
O13—Na5—O1251.00 (9)H16A—C16—H16B109.5
O3iii—Na5—O12144.57 (10)C15—C16—H16C109.5
O4iv—Na5—O12127.80 (10)H16A—C16—H16C109.5
O11vii—Na5—O1271.92 (9)H16B—C16—H16C109.5
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y1, z; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O14viii0.80 (3)2.10 (4)2.879 (4)164 (5)
O1—H2···Cl10.82 (3)2.32 (4)3.127 (3)172 (6)
O2—H3···O10vi0.81 (3)1.95 (4)2.723 (4)159 (5)
O2—H4···O14vi0.80 (3)2.10 (4)2.884 (4)164 (6)
Symmetry codes: (vi) x+1, y1/2, z+1/2; (viii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support and Dr G. Reiss for discussions.

References

First citationBouquillon, S., du Moulinet d'Hardemare, A., Averbuch-Pouchot, M., Hénin, F. & Muzart, J. (1999). Polyhedron, 18, 3511–3516.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuerger, M. J. (1942). Proc. Natl Acad. Sci. 28, 529–535.  CrossRef PubMed CAS Google Scholar
First citationBuerger, M. J., Smith, L. B., de Bretteville, A. & Ryer, F. V. (1942). Proc. Natl Acad. Sci. 28, 526–529.  CrossRef PubMed CAS Google Scholar
First citationChitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, m907–m908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037.  Google Scholar
First citationFujimori, K. (1959). Bull. Chem. Soc. Jpn, 32, 850–852.  CrossRef CAS Web of Science Google Scholar
First citationGerisch, M., Heinemann, F., Markgraf, U. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 1651–1656.  CSD CrossRef CAS Web of Science Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarata, K. (1977). Bull. Chem. Soc. Jpn, 50, 1259–1266.  CSD CrossRef CAS Web of Science Google Scholar
First citationJimeno, C., Christmann, U., Escudero-Adán, E. C., Vilar, R. & Pericàs, M. A. (2012). Chem. Eur. J. 18, 16510–16516.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLassahn, P. G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927–935.  Web of Science CSD CrossRef Google Scholar
First citationMakitova, D. D., Tkachev, V. V. & Atovmyan, L. O. (2007). Russ. J. Coord. Chem. 33, 665–667.  Google Scholar
First citationMu, B., Li, J., Han, Z. & Wu, Y. (2012). J. Organomet. Chem. 700, 117–124.  Web of Science CrossRef CAS Google Scholar
First citationRussell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchramm, L. L., Stasiuk, E. N. & Marangoni, D. G. (2003). Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 99, 3–48.  CrossRef CAS Google Scholar
First citationSchröder, L. & Keller, J. (1989). J. Less-Common Met. 153, 35–41.  Google Scholar
First citationSchüpp, B. & Keller, H.-L. (1999). Z. Anorg. Allg. Chem. 625, 1944–1950.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). IPDS. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationThoelen, F. & Frank, W. (2017). Z. Kristallogr. Suppl. 37, 118.  Google Scholar
First citationThoelen, F. & Frank, W. (2018). Z. Kristallogr. Suppl. 38, 90.  Google Scholar
First citationVerheyen, V. & Frank, W. (2009). Z. Kristallogr. Suppl. 29, 41.  Google Scholar
First citationWei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992–1997.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds