research communications
μ-2-{4-[(carboxylatomethyl)carbamoyl]benzamido}acetato-κ2O:O′)bis[bis(1,10-phenanthroline-κ2N,N′)copper(II)] dinitrate N,N′-(1,4-phenylenedicarbonyl)diglycine monosolvate octahydrate
and Hirshfeld surface analysis of (aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Str. 4, D-38678, Clausthal-Zellerfeld, Germany
*Correspondence e-mail: niels-patrick.pook@tu-clausthal.de
The centrosymmetric binuclear complex cation of the title compound, [Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2O, is composed of a CuII atom with a distorted trigonal–bipyramidal coordination environment defined by four N atoms from two bidentate 1,10-phenanthroline ligands and one oxygen atom from one-half of the monodentate N,N′-(1,4-phenylenedicarbonyl)diglycinate anion. The is completed by one-half of the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule, which is located on a centre of inversion, by one nitrate counter-anion and four water molecules. In the crystal, the cationic complexes are linked via intermolecular π–π stacking and through lone-pair⋯π interactions involving the N,N′-(1,4-phenylenedicarbonyl)diglycinate anion and the phenanthroline ligands. The N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule is involved in classical and non-classical hydrogen-bonding interactions, as well as π–π stacking interactions. The centroid-to-centroid distances between aromatic entities are in the range 3.5402 (5)–4.3673 (4) Å. The is stabilized by further C—H⋯O contacts as well as by O—H⋯O and N—H⋯O hydrogen bonds between water molecules, the nitrate anions, the N,N′-(1,4-phenylenedicarbonyl)diglycinate ligands, N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecules and phenanthroline ligands, giving rise to a supramolecular framework. A Hirshfeld surface analysis was carried out to quantify these interactions.
Keywords: crystal structure; copper(II) complex; N,N′-(1,4-phenylenedicarbonyl)diglycine; phenanthroline ligand; supramolecular interactions; Hirshfeld surface analysis..
CCDC reference: 1910262
1. Chemical context
Over the past two decades, the syntheses and structural investigations of coordination polymers with different dimensions as well as metal–organic frameworks (MOFs) have attracted much attention because of their intriguing functional architectures and applications (Batten et al., 2013; Leong & Vittal, 2011; Yamada et al., 2013). Potential applications of these materials are in catalysis, gas storage (Kitagawa et al., 2004), luminescence (Allendorf et al., 2015) or as scintillators (Allendorf et al., 2009; Doty et al., 2009; Perry et al., 2012). Their crystal structures show various non-covalent intermolecular interactions and forces, and therefore are highly connected to their supramolecular chemistry (Schneider, 2009) and self-assembly (Cook et al., 2013). Moreover, these compounds have a high relevance in biological systems interacting with macromolecules such as DNA, RNA or proteins (Salonen et al., 2011), and also in biochemical reactions as protein–ligand recognitions or in drug-delivery systems of biologically active agents (Meyer et al., 2003). In general, for all these supramolecular interactions, weaker and reversible intermolecular forces play the key role, including metal coordination, classical and non-classical hydrogen bonding of the types O—H⋯O, N—H⋯O and C—H⋯O, respectively, different π-interactions involving the aromatic rings such as π–π stacking, C—H⋯π, ion⋯π and lone-pair⋯π interactions. Metal-coordinating and nitrogen-containing heterocycles such as bipyridines and phenanthrolines are electron-deficient aromatic ring systems and thus predestined to be acceptors in π–π stacking, ion⋯π or lone-pair⋯π interactions (Janiak, 2000; Berryman & Johnson, 2009). In addition, π-donor⋯acceptor functions in different parts of an aromatic molecule can lead to remarkable properties (Albrecht et al., 2010). Transition-metal coordination compounds with the pseudo aromatic diamino acid N,N′-(1,4-phenylenedicarbonyl)diglycine, forming zigzag chains and constructing interpenetrating networks, have been described in the literature (see Database survey).
In our synthetic approach, we employ such systems as electron-deficient bidentate aromatic ring systems such as phenanthroline or bipyridine in order to block parts of the metal cation coordination sphere. Thus, the alternative assembly process lies in the use of the offered different π-interaction possibilities, viz. π–π stacking, C—H⋯π, ion⋯π and lone-pair⋯π and not in forming the aforementioned zigzag chains. We have previously reported structural studies of two cobalt complexes with bidentate bipyridine or bidentate phenanthroline ligands and a non-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycine molecule in the crystal (Pook et al., 2014, 2015). In these structures, the N,N′-(1,4-phenylenedicarbonyl)diglycine molecule is deprotonated and thus acts as counter-anion. In the two structures, the embedded N,N′-(1,4-phenylenedicarbonyl)diglycate molecule links the cationic buildings blocks by numerous supramolecular interactions.
In a continuation of this work, we have now synthesized and determined the structure of a novel copper(II) coordination compound where the N,N′-(1,4-phenylenedicarbonyl)diglycine moiety is a bis-monodentate bridging anionic ligand in its deprotonated form, as well as a solvent molecule in its neutral form in one The structural investigation and description of the supramolecular network is confirmed and discussed with the aid of a Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the cationic complex and the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule.
2. Structural commentary
The binuclear and centrosymmetric complex cation of the title compound, [Cu2(C12H8N2)4(C12H10N2O6)](NO3)2·(C12H12N2O6)·8H2O, comprises two bidentate phenanthroline ligands and one bridging monodentate N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand for each CuII atom, defining a distorted trigonal–bipyramidal coordination sphere. A crystallographic centre of inversion is located at the centroid of the bridging N,N′-(1,4-phenylenedicarbonyl)diglycinate anion as well as the neutral and non-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule. The is completed by one non-coordinating nitrate counter-anion and four water molecules (Fig. 1).
The equatorial plane of the CuII coordination environment is occupied by O1, N2 and N4 atoms with bond lengths of 2.235 (5), 2.119 (2) and 2.111 (3) Å, and the axial positions by N1 and N3 with shorter bonds each of 1.974 (3) Å, respectively. The bond angle N1—Cu—N3 is 174.71 (11)°. The sum of the bond angles O1—Cu—N2 [136.69 (11)°], O1—Cu—N4 [103.88 (12)°] and N2—Cu—N4 [118.90 (10)°] in the equatorial plane amounts to 359.47°, indicating only slight distortions. Distances and angles within the distorted trigonal–bipyramidal coordination sphere of the CuII ion are similar to those found in the literature (Santha Lakshmi & Samundeeswari, 2015; Lim et al. 2014). The nearly identical bond lengths of the carboxylate group in the bridging ligand [C30—O1 = 1.249 (5) and C30—O2 = 1.249 (6) Å] indicate a delocalized bonding arrangement, rather than localized single and double bonds as in the case of the carboxylic group of the neutral N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule [C36—O4 = 1.205 (6) and C36—O5 = 1.316 (5) Å]. The O1—C30—O2 angle of 123.1 (4)° in the carboxylate group is slightly smaller than in the carboxylic group [O4—C36—O5 = 124.3 (4)°]. In the coordinating N,N′-(1,4-phenylenedicarbonyl)diglycate ligand, the deviations of atoms defining the central benzamido entity from its least-squares plane are 0.040 (4) Å (C28), −0.084 (3) Å (O3), 0.245 (4) Å (N5) and 0.404 (4) Å (C29), while in the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent they are −0.018 (4) Å (C34) , 0.102 (3) Å (O6), −0.192 (4) Å (N6) and −0.257 (4) Å (C35). The angle between the amide group and the carboxylate group connected through the sp3-hybridized methylene carbon atom (N5—C29—C30) is 113.6 (3)°, and for the neutral solvent molecule it is (N6—C35—C36) 112.1 (3)°. The dihedral angle between the planar carboxylate group (O1/C30/O2) and the aromatic synthon (C25–27/C25′–C27′) of the ligand is 84.1 (3)° and thus smaller than the value found in the free solvent molecule of the aromatic synthon (C31–C33/C31′–C33`) and the planar carboxylate group (O4/C36/O5) at 88.9 (3)°. The dihedral angle between the mean planes of the two bidentate phenanthroline ligands is 61.71 (5)°; the corresponding value between phenanthroline (N1/C1–C12/N2) and the coordinating carboxylate group (O1/C30/O2) is 79.9 (4)° and between phenanthroline (N3/C13–C24/N4) and the carboxylate group is 82.5 (3)°, respectively.
3. Supramolecular features
In the via O—H⋯O, C—H⋯O and partly via N—H⋯O hydrogen bonds with water solvent molecules, the phenanthroline ligands and the metal-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligands (Figs. 1–3; Table 1). π–π interactions between parallel-displaced phenanthroline ligands and between phenanthroline and the free N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule, as well as between phenanthroline ligands and the metal-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand stack these components along the different axes (Figs. 2–4). Centroid-to-centroid distances are: 3.6515 (5) Å between Cg1⋯Cg2, 3.6831 (4) Å between Cg2⋯Cg4, 3.6686 (5) Å between Cg3⋯Cg4, and 3.5402 (5) Å between Cg5⋯Cg5, where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids defined by the ring atoms N1/C1–C4/C12, C4–C7/C11–C12, N2/C7–C11, C31–C33/C31′–C33′ and C16–C19/C23–C24, respectively. These distances are in expected ranges (Barceló-Oliver et al., 2010; Kumar Seth et al., 2010). In addition, another offset face-to-face arrangement between a phenanthroline and the metal-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand leads to a longer Cg6⋯Cg7 separation of 4.3673 (4) Å (Fig. 4), where Cg6 and Cg7 are the centroids defined by the ring atoms N3/C13–C16/C24 and C25–C27/C25′–C27′, respectively. Such weaker π-stacking interactions have been discussed in the past as being relevant (Avasthi et al., 2014; Dance, 2003; Janiak, 2000; Martinez & Iverson, 2012; Piovesan et al., 2016; Salonen et al., 2011). The dihedral angle between the mean planes of the mentioned aromatic rings is 3.50 (12)°. The angle between the lines through C15/Cg7 and the centroids through Cg6/Cg7 is 17.05 (7)° and is slightly increased in comparison with the lines through C26/Cg7 and the centroids Cg6/Cg7 with a value of 16.99 (5)°. Distances shown in Fig. 4 between atoms and centroids of H15/Cg7 and C15/Cg7 are 3.4440 (4) and 3.676 (6) Å and between H26/Cg7 and C26/Cg7 are 3.5049 (4) and 3.713 (5) Å with observed angles of 96.8 (3)° (C15—H15⋯Cg7) and 95.4 (3)° (C16—H26⋯Cg7), respectively. Besides the previously mentioned forces, a lone-pair⋯π interaction between the O3 atom of the carboxylate group of the metal-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand and the Cg5 centroid of a phenanthroline ligand are observed and associated with a distance of 3.739 (4) Å. This value is similar to those found in the literature (Egli & Sarkhel, 2007; Gao et al., 2009; Mooibroek et al., 2008; Wan et al., 2008). Finally, π-interactions between Cg5 and Cg7 and the adjacent lone-pair⋯π interactions stack the cationic complex subunits along the a-axis direction and contribute to the consolidation of the supramolecular framework (Fig. 4).
numerous non-covalent interactions are observed. The nitrate anions are linked4. Hirshfeld surface analysis
Substantiation and visualization of the described supramolecular features in the ; Spackman & Jayatilaka, 2009). Crystal Explorer (Turner et al., 2017, Wolff et al., 2012) offers the possibility to investigate and explore the short atom-to-atom contacts to identify their potential for hydrogen-bonding and π-stacking interactions by generating the Hirshfeld surfaces mapped over dnorm, the electrostatic potential, the shape-index and the curvedness.
and their close contacts between different molecular moieties, molecules, ionic and complex subunits can be achieved by using a Hirshfeld surface (HS) analysis (Hirshfeld, 1977The HS mapped over dnorm of the cationic complex subunit in the range −0.7078 to 1.7629 a.u. and of the non-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule in the range −0.6806 to 1.9484 a.u. are shown in Fig. 5 and Fig. 8, respectively. The corresponding quantitative contribution of intermolecular interactions are displayed in the overall two-dimensional fingerprint plots (FPs) and those split up into their descending order of crystal cohesion contributions in Fig. 7 and Fig. 11, respectively. The white areas of the HS indicate contacts with distances equal to the sum of van der Waals radii and the blue regions indicate longer distances than the van der Waals radii as depicted in Figs. 5 and 8. The bright-red spots as indicators of close contacts with shorter distances than the van der Waals radii represent the donor and acceptor functions of dominant classical and non-classical hydrogen-bonding interactions of the types O—H⋯O, N—H⋯O and C—H⋯O. This is confirmed by the appearance of large sharp asymmetrical spikes in the H⋯O/O⋯H FPs (Figs. 7, 11) in the region of de ∼ 1.19 Å/di ∼ 0.85 Å and di ∼ 0.68 Å/de ∼ 1.02 Å as well as de ∼ 1.05 Å/di ∼ 0.70 Å and di ∼ 1.12 Å/de ∼ 0.78 Å, which comprise 27.9% and 42.2% of the total amount on the HS, respectively.
In order to classify the donor and acceptor groups of the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule involved in hydrogen bonding, the HS mapped over the electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005) with standard settings of the STP-3G basis set at Hartree–Fock theory. The appearance of blue and red surface regions indicates the positive and negative electrostatic potential as shown in Fig. 10, suggesting that the carbonyl oxygen atom of the amide group and the non-protonated oxygen atom of the carboxylate group act as hydrogen-bond acceptors whereas the nitrogen/hydrogen atoms of the amide group and the protonated oxygen atom of the carboxy group as well as the carbon/hydrogen atoms of the aromatic moiety act as hydrogen-bond donors. H⋯H contacts compromise 36.4% to the cationic complex as the largest contribution and 29.8% to the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule as the second largest contribution within the HS. This high relevance for the HS is attributed to the high proportion of hydrogen atoms in the structure of these entities. The H⋯N/N⋯H contacts contribute 3.7% to the cationic complex and 3.4% to the solvent molecule to the total HS, respectively. Short contacts of the solvent molecule with a minor contribution to the lattice of O⋯N/N⋯O (0.4%) and O⋯O (0.1%) are also observed. The contribution of the different π–π interactions used for the stacking of the cationic complex subunits and the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule along the different axes is also significant for both entities. Therefore, the close H⋯C/C⋯H (16.7%), C⋯C (12.0%), O⋯C/C⋯O (2.1%) and N⋯C/C⋯N (1.2%) contacts of the cationic complex are assigned to C—H⋯π interactions, π–π stacking (face-to-face) and lone-pair⋯π interactions of the carbonyl group and stacking between the phenanthroline ligands (Figs. 3, 4 and 7). For the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule, the close C⋯C (11.1%), H⋯C/C⋯H (9.9%), N⋯C/C⋯N (1.8%) and O⋯C/C⋯O (1.2%) contacts are assigned to π–π stacking (face-to-face), C—H⋯π interactions and stackings of the phenanthrolines and lone-pair⋯π interactions of the carbonyl group (Figs. 3, 4 and 11). This corresponds to the appearance of the red triangles of the aromatic moieties of the bidentate phenanthroline ligands, the metal-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand as well as the non-coordinating N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule in the HS mapped over the shape-index, which represent the face-to-face π–π stacking interactions (Figs. 6, 9).
5. Database survey
A search for crystal structures containing the ligand N,N′-(1,4-phenylenedicarbonyl)diglycine using SciFinder (SciFinder, 2019) and the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom et al., 2016) resulted in six entries (Duan et al., 2010; Kostakis et al., 2005, 2011; Zhang et al., 2005, 2006). Some of these structures are composed of interpenetrating networks as mentioned in the Chemical context. Among them are two structures which include bipyridine or phenanthroline ligands besides N,N′-(1,4-phenylenedicarbonyl)diglycine, and their structures show a number of non-classical interactions (Pook et al., 2014, 2015).
6. Synthesis and crystallization
The starting material, N,N′-(1,4-phenylenedicarbonyl) diglycine, was prepared by the method of Cleaver & Pratt (1955). Cesium carbonate (2 mmol), 1,10-phenanthroline (1 mmol) and 2,2′-(benzene-1,4-dicarboxamido)diacetatic acid (1 mmol) were dissolved in a 1:1 (v/v) mixture of water and methanol (50 ml) and refluxed for 30 minutes. The mixture was allowed to cool to room temperature, and a previously prepared aqueous solution of copper acetate (1 mmol) was slowly added under continuous stirring. Pale-blue block-shaped crystals of the title compound were obtained by slow evaporation at room temperature.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) and C—H(aromatic) = 0.94 Å and C—H(methylene) = 0.98 Å using a riding model. The water H atoms were located in a difference-Fourier map and were refined with O—H distances restrained to 0.82–0.87 Å and with Uiso(H) = 1.5Ueq(O), except O11—H11A with a fixed distance of 1.00 Å, which led to a stable and consolidated hydrogen-bonding network.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1910262
https://doi.org/10.1107/S2056989019005164/wm5501sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005164/wm5501Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019005164/wm5501Isup3.cdx
Data collection: X-AREA (Stoe, 2008); cell
X-AREA (Stoe, 2008); data reduction: X-RED (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg 2007); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2O | Z = 1 |
Mr = 1674.50 | F(000) = 866 |
Triclinic, P1 | Dx = 1.504 Mg m−3 |
a = 11.0448 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.0793 (15) Å | Cell parameters from 25382 reflections |
c = 15.419 (2) Å | θ = 4.0–62.1° |
α = 65.322 (10)° | µ = 0.67 mm−1 |
β = 81.013 (11)° | T = 223 K |
γ = 66.007 (8)° | Block, blue |
V = 1848.8 (4) Å3 | 0.25 × 0.23 × 0.21 mm |
Stoe IPDS 2 diffractometer | 6493 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 5435 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.047 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
rotation method scans | h = −13→13 |
Absorption correction: numerical (X-AREA, X-RED32; Stoe, 2008) | k = −15→15 |
Tmin = 0.768, Tmax = 0.791 | l = −18→18 |
22995 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.058P)2 + 2.4056P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
6493 reflections | Δρmax = 1.33 e Å−3 |
542 parameters | Δρmin = −0.70 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.25718 (4) | 0.21545 (4) | 0.74008 (3) | 0.03391 (13) | |
O1 | 0.3776 (3) | 0.3298 (4) | 0.6699 (2) | 0.0753 (10) | |
O2 | 0.4964 (4) | 0.1408 (4) | 0.6874 (2) | 0.0757 (10) | |
O3 | 0.8457 (3) | 0.1118 (2) | 0.69057 (17) | 0.0501 (6) | |
O4 | 0.1969 (3) | 0.7417 (3) | 0.7625 (2) | 0.0674 (9) | |
O5 | 0.1003 (4) | 0.6311 (3) | 0.7449 (3) | 0.0756 (10) | |
H5 | 0.184 (6) | 0.598 (6) | 0.735 (4) | 0.10 (2)* | |
O6 | 0.0556 (3) | 0.7144 (2) | 0.98070 (18) | 0.0470 (6) | |
O7 | 0.5373 (3) | 0.7260 (3) | 0.7046 (2) | 0.0658 (8) | |
O8 | 0.4738 (3) | 0.7032 (3) | 0.5920 (3) | 0.0721 (9) | |
O9 | 0.4346 (3) | 0.8821 (3) | 0.5846 (3) | 0.0763 (10) | |
O10 | 0.6564 (4) | 0.8916 (4) | 0.7169 (3) | 0.0788 (11) | |
H10A | 0.609 (7) | 0.965 (7) | 0.700 (5) | 0.118* | |
H10B | 0.601 (7) | 0.860 (6) | 0.720 (5) | 0.118* | |
O11 | 0.3366 (4) | 0.5419 (4) | 0.6730 (4) | 0.1124 (16) | |
H11A | 0.377732 | 0.589890 | 0.649309 | 0.169* | |
H11B | 0.372532 | 0.460190 | 0.669708 | 0.169* | |
O12 | 0.5209 (4) | 0.5019 (4) | 0.8692 (3) | 0.0860 (12) | |
H12A | 0.509 (8) | 0.552 (7) | 0.817 (6) | 0.129* | |
H12B | 0.456 (8) | 0.509 (7) | 0.901 (6) | 0.129* | |
O13 | 0.3103 (4) | 0.5241 (3) | 1.0022 (3) | 0.0735 (10) | |
H13A | 0.340 (7) | 0.514 (7) | 1.047 (5) | 0.110* | |
H13B | 0.242 (7) | 0.580 (6) | 1.001 (5) | 0.110* | |
N1 | 0.2860 (3) | 0.2114 (2) | 0.86480 (19) | 0.0344 (6) | |
N2 | 0.2949 (2) | 0.0293 (2) | 0.82400 (18) | 0.0316 (6) | |
N3 | 0.2122 (3) | 0.2190 (3) | 0.61963 (19) | 0.0374 (6) | |
N4 | 0.0604 (3) | 0.3436 (3) | 0.7252 (2) | 0.0383 (6) | |
N5 | 0.6970 (3) | 0.2107 (3) | 0.5731 (2) | 0.0442 (7) | |
H5N | 0.676 (4) | 0.222 (4) | 0.522 (3) | 0.053* | |
N6 | −0.0342 (3) | 0.8618 (3) | 0.8420 (2) | 0.0403 (7) | |
H6 | −0.060 (4) | 0.928 (4) | 0.809 (3) | 0.048* | |
N7 | 0.4814 (3) | 0.7715 (3) | 0.6274 (3) | 0.0527 (8) | |
C1 | 0.2822 (4) | 0.3037 (3) | 0.8825 (3) | 0.0443 (8) | |
H1 | 0.267837 | 0.379334 | 0.831627 | 0.053* | |
C2 | 0.2987 (4) | 0.2912 (4) | 0.9743 (3) | 0.0495 (9) | |
H2 | 0.293266 | 0.358439 | 0.985341 | 0.059* | |
C3 | 0.3229 (3) | 0.1814 (4) | 1.0482 (3) | 0.0452 (9) | |
H3 | 0.334490 | 0.172589 | 1.110445 | 0.054* | |
C4 | 0.3306 (3) | 0.0807 (3) | 1.0318 (2) | 0.0356 (7) | |
C5 | 0.3589 (3) | −0.0393 (4) | 1.1040 (2) | 0.0447 (9) | |
H5C | 0.371489 | −0.053382 | 1.167503 | 0.054* | |
C6 | 0.3681 (3) | −0.1326 (4) | 1.0830 (3) | 0.0453 (9) | |
H6C | 0.387433 | −0.210433 | 1.131931 | 0.054* | |
C7 | 0.3489 (3) | −0.1146 (3) | 0.9879 (2) | 0.0362 (7) | |
C8 | 0.3598 (3) | −0.2085 (3) | 0.9613 (3) | 0.0446 (8) | |
H8 | 0.381504 | −0.288631 | 1.007015 | 0.054* | |
C9 | 0.3387 (3) | −0.1819 (3) | 0.8691 (3) | 0.0457 (9) | |
H9 | 0.346209 | −0.243619 | 0.849851 | 0.055* | |
C10 | 0.3055 (3) | −0.0621 (3) | 0.8023 (3) | 0.0384 (7) | |
H10 | 0.289800 | −0.045355 | 0.738683 | 0.046* | |
C11 | 0.3174 (3) | 0.0027 (3) | 0.9160 (2) | 0.0291 (6) | |
C12 | 0.3098 (3) | 0.1013 (3) | 0.9378 (2) | 0.0303 (6) | |
C13 | 0.2907 (4) | 0.1582 (4) | 0.5673 (3) | 0.0443 (8) | |
H13 | 0.378778 | 0.107489 | 0.587836 | 0.053* | |
C14 | 0.2470 (4) | 0.1674 (4) | 0.4843 (3) | 0.0505 (9) | |
H14 | 0.304078 | 0.123004 | 0.449269 | 0.061* | |
C15 | 0.1214 (4) | 0.2409 (4) | 0.4545 (3) | 0.0539 (10) | |
H15 | 0.090157 | 0.247967 | 0.398148 | 0.065* | |
C16 | 0.0357 (4) | 0.3078 (3) | 0.5073 (3) | 0.0460 (9) | |
C17 | −0.0983 (4) | 0.3896 (4) | 0.4813 (3) | 0.0599 (11) | |
H17 | −0.134768 | 0.400995 | 0.425248 | 0.072* | |
C18 | −0.1743 (4) | 0.4512 (4) | 0.5349 (3) | 0.0597 (12) | |
H18 | −0.262002 | 0.504503 | 0.514847 | 0.072* | |
C19 | −0.1264 (3) | 0.4381 (3) | 0.6200 (3) | 0.0489 (9) | |
C20 | −0.2005 (4) | 0.5012 (4) | 0.6777 (4) | 0.0607 (12) | |
H20 | −0.289424 | 0.553980 | 0.661767 | 0.073* | |
C21 | −0.1440 (4) | 0.4859 (4) | 0.7556 (3) | 0.0601 (11) | |
H21 | −0.191930 | 0.528552 | 0.794160 | 0.072* | |
C22 | −0.0130 (4) | 0.4056 (3) | 0.7777 (3) | 0.0486 (9) | |
H22 | 0.025920 | 0.394412 | 0.832696 | 0.058* | |
C23 | 0.0045 (3) | 0.3590 (3) | 0.6474 (2) | 0.0370 (7) | |
C24 | 0.0857 (3) | 0.2931 (3) | 0.5906 (2) | 0.0364 (7) | |
C25 | 0.8721 (3) | 0.0698 (4) | 0.4687 (3) | 0.0458 (9) | |
H25 | 0.784492 | 0.117261 | 0.445384 | 0.055* | |
C26 | 1.0356 (3) | −0.0078 (4) | 0.5836 (2) | 0.0450 (9) | |
H26 | 1.062733 | −0.014694 | 0.641321 | 0.054* | |
C27 | 0.9071 (3) | 0.0624 (3) | 0.5529 (2) | 0.0341 (7) | |
C28 | 0.8138 (3) | 0.1297 (3) | 0.6120 (2) | 0.0369 (7) | |
C29 | 0.6000 (3) | 0.2888 (3) | 0.6167 (3) | 0.0441 (8) | |
H29A | 0.565464 | 0.372051 | 0.568373 | 0.053* | |
H29B | 0.644011 | 0.289430 | 0.666847 | 0.053* | |
C30 | 0.4828 (4) | 0.2492 (5) | 0.6605 (3) | 0.0528 (10) | |
C31 | 0.0363 (3) | 0.8779 (3) | 1.0573 (2) | 0.0357 (7) | |
H31 | 0.061328 | 0.794751 | 1.096732 | 0.043* | |
C32 | −0.0312 (3) | 1.0411 (3) | 0.9051 (2) | 0.0357 (7) | |
H32 | −0.052282 | 1.069462 | 0.840293 | 0.043* | |
C33 | 0.0048 (3) | 0.9183 (3) | 0.9624 (2) | 0.0318 (7) | |
C34 | 0.0115 (3) | 0.8235 (3) | 0.9290 (2) | 0.0353 (7) | |
C35 | −0.0341 (3) | 0.7756 (4) | 0.8067 (3) | 0.0461 (9) | |
H35A | −0.100359 | 0.817367 | 0.755127 | 0.055* | |
H35B | −0.059411 | 0.712505 | 0.858186 | 0.055* | |
C36 | 0.1019 (4) | 0.7156 (4) | 0.7694 (3) | 0.0563 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0328 (2) | 0.0360 (2) | 0.0307 (2) | −0.00752 (16) | −0.00332 (15) | −0.01511 (17) |
O1 | 0.0422 (16) | 0.131 (3) | 0.0574 (18) | −0.0224 (18) | 0.0062 (13) | −0.053 (2) |
O2 | 0.106 (3) | 0.099 (3) | 0.0428 (16) | −0.075 (2) | −0.0118 (16) | −0.0072 (17) |
O3 | 0.0499 (14) | 0.0586 (17) | 0.0344 (13) | −0.0057 (12) | −0.0082 (11) | −0.0230 (12) |
O4 | 0.0387 (15) | 0.101 (3) | 0.0662 (19) | −0.0118 (15) | −0.0036 (13) | −0.0495 (19) |
O5 | 0.069 (2) | 0.071 (2) | 0.093 (3) | −0.0012 (17) | −0.0093 (18) | −0.059 (2) |
O6 | 0.0528 (14) | 0.0393 (15) | 0.0485 (15) | −0.0111 (12) | −0.0088 (12) | −0.0197 (12) |
O7 | 0.0598 (17) | 0.074 (2) | 0.0545 (18) | −0.0071 (15) | −0.0100 (14) | −0.0307 (16) |
O8 | 0.0640 (19) | 0.081 (2) | 0.083 (2) | −0.0173 (17) | −0.0116 (16) | −0.048 (2) |
O9 | 0.0559 (18) | 0.056 (2) | 0.097 (3) | −0.0071 (15) | −0.0173 (17) | −0.0196 (19) |
O10 | 0.072 (2) | 0.114 (3) | 0.066 (2) | −0.031 (2) | −0.0087 (17) | −0.051 (2) |
O11 | 0.102 (3) | 0.073 (3) | 0.145 (4) | −0.017 (2) | 0.042 (3) | −0.056 (3) |
O12 | 0.080 (2) | 0.066 (2) | 0.082 (3) | −0.008 (2) | −0.017 (2) | −0.015 (2) |
O13 | 0.062 (2) | 0.0505 (19) | 0.109 (3) | −0.0093 (15) | −0.0154 (19) | −0.038 (2) |
N1 | 0.0352 (14) | 0.0343 (15) | 0.0353 (14) | −0.0101 (11) | −0.0006 (11) | −0.0177 (12) |
N2 | 0.0283 (12) | 0.0362 (15) | 0.0320 (13) | −0.0099 (11) | −0.0002 (10) | −0.0168 (12) |
N3 | 0.0344 (14) | 0.0431 (17) | 0.0327 (14) | −0.0112 (12) | −0.0031 (11) | −0.0151 (13) |
N4 | 0.0328 (14) | 0.0353 (15) | 0.0381 (15) | −0.0087 (12) | 0.0021 (12) | −0.0112 (12) |
N5 | 0.0367 (15) | 0.0496 (19) | 0.0401 (16) | −0.0054 (13) | −0.0054 (13) | −0.0206 (15) |
N6 | 0.0386 (15) | 0.0457 (18) | 0.0406 (17) | −0.0099 (14) | −0.0050 (12) | −0.0247 (14) |
N7 | 0.0346 (15) | 0.056 (2) | 0.063 (2) | −0.0049 (15) | −0.0018 (15) | −0.0294 (19) |
C1 | 0.051 (2) | 0.039 (2) | 0.049 (2) | −0.0165 (16) | 0.0015 (16) | −0.0242 (17) |
C2 | 0.048 (2) | 0.057 (2) | 0.063 (2) | −0.0208 (18) | 0.0056 (18) | −0.043 (2) |
C3 | 0.0381 (18) | 0.068 (3) | 0.045 (2) | −0.0213 (17) | 0.0056 (15) | −0.038 (2) |
C4 | 0.0261 (14) | 0.054 (2) | 0.0323 (16) | −0.0158 (14) | 0.0006 (12) | −0.0208 (15) |
C5 | 0.0358 (17) | 0.067 (3) | 0.0296 (17) | −0.0229 (17) | −0.0025 (13) | −0.0126 (17) |
C6 | 0.0395 (18) | 0.049 (2) | 0.0352 (18) | −0.0175 (16) | −0.0076 (14) | −0.0023 (16) |
C7 | 0.0288 (15) | 0.0389 (19) | 0.0378 (17) | −0.0143 (14) | −0.0017 (13) | −0.0103 (15) |
C8 | 0.0388 (18) | 0.0356 (19) | 0.054 (2) | −0.0140 (15) | −0.0057 (16) | −0.0108 (17) |
C9 | 0.0405 (18) | 0.041 (2) | 0.065 (2) | −0.0160 (16) | 0.0023 (17) | −0.0298 (19) |
C10 | 0.0352 (17) | 0.044 (2) | 0.0425 (18) | −0.0116 (14) | −0.0011 (14) | −0.0250 (16) |
C11 | 0.0210 (13) | 0.0348 (17) | 0.0315 (15) | −0.0098 (12) | −0.0009 (11) | −0.0133 (13) |
C12 | 0.0239 (14) | 0.0376 (18) | 0.0311 (16) | −0.0119 (13) | 0.0010 (12) | −0.0150 (14) |
C13 | 0.0409 (18) | 0.054 (2) | 0.0412 (19) | −0.0151 (16) | −0.0017 (15) | −0.0237 (17) |
C14 | 0.060 (2) | 0.067 (3) | 0.0381 (19) | −0.031 (2) | 0.0043 (17) | −0.0273 (19) |
C15 | 0.069 (3) | 0.066 (3) | 0.0359 (19) | −0.038 (2) | −0.0098 (18) | −0.0132 (18) |
C16 | 0.050 (2) | 0.047 (2) | 0.0390 (19) | −0.0273 (17) | −0.0134 (16) | −0.0024 (16) |
C17 | 0.058 (2) | 0.059 (3) | 0.054 (2) | −0.028 (2) | −0.025 (2) | 0.000 (2) |
C18 | 0.043 (2) | 0.049 (2) | 0.069 (3) | −0.0169 (18) | −0.023 (2) | 0.001 (2) |
C19 | 0.0328 (17) | 0.035 (2) | 0.060 (2) | −0.0125 (15) | −0.0055 (16) | 0.0001 (17) |
C20 | 0.0341 (19) | 0.044 (2) | 0.082 (3) | −0.0043 (17) | −0.002 (2) | −0.013 (2) |
C21 | 0.046 (2) | 0.046 (2) | 0.072 (3) | −0.0066 (18) | 0.016 (2) | −0.026 (2) |
C22 | 0.046 (2) | 0.043 (2) | 0.048 (2) | −0.0110 (16) | 0.0069 (16) | −0.0168 (17) |
C23 | 0.0332 (16) | 0.0327 (18) | 0.0368 (17) | −0.0137 (14) | −0.0030 (13) | −0.0037 (14) |
C24 | 0.0364 (17) | 0.0355 (18) | 0.0326 (16) | −0.0170 (14) | −0.0055 (13) | −0.0038 (14) |
C25 | 0.0313 (16) | 0.060 (2) | 0.0398 (19) | −0.0064 (16) | −0.0079 (14) | −0.0220 (18) |
C26 | 0.0366 (17) | 0.062 (2) | 0.0346 (18) | −0.0093 (16) | −0.0069 (14) | −0.0236 (17) |
C27 | 0.0332 (16) | 0.0371 (18) | 0.0292 (16) | −0.0132 (14) | −0.0012 (12) | −0.0100 (14) |
C28 | 0.0350 (17) | 0.0406 (19) | 0.0335 (17) | −0.0163 (14) | 0.0012 (13) | −0.0114 (15) |
C29 | 0.0357 (17) | 0.046 (2) | 0.047 (2) | −0.0123 (15) | 0.0040 (15) | −0.0196 (17) |
C30 | 0.045 (2) | 0.085 (3) | 0.0306 (18) | −0.023 (2) | −0.0071 (15) | −0.023 (2) |
C31 | 0.0375 (16) | 0.0348 (18) | 0.0329 (16) | −0.0127 (14) | −0.0050 (13) | −0.0108 (14) |
C32 | 0.0369 (16) | 0.0442 (19) | 0.0272 (15) | −0.0142 (14) | −0.0027 (13) | −0.0152 (14) |
C33 | 0.0240 (14) | 0.0397 (18) | 0.0334 (16) | −0.0095 (13) | 0.0008 (12) | −0.0186 (14) |
C34 | 0.0286 (15) | 0.042 (2) | 0.0384 (18) | −0.0111 (14) | 0.0015 (13) | −0.0214 (16) |
C35 | 0.0428 (19) | 0.056 (2) | 0.052 (2) | −0.0147 (17) | −0.0043 (16) | −0.0344 (19) |
C36 | 0.062 (3) | 0.054 (2) | 0.040 (2) | 0.005 (2) | −0.0153 (18) | −0.0273 (19) |
Cu—N1 | 1.974 (3) | C6—H6C | 0.9400 |
Cu—N3 | 1.974 (3) | C7—C11 | 1.404 (5) |
Cu—N4 | 2.111 (3) | C7—C8 | 1.406 (5) |
Cu—N2 | 2.119 (3) | C8—C9 | 1.350 (5) |
Cu—O1 | 2.235 (4) | C8—H8 | 0.9400 |
O1—C30 | 1.249 (5) | C9—C10 | 1.397 (5) |
O2—C30 | 1.249 (6) | C9—H9 | 0.9400 |
O3—C28 | 1.214 (4) | C10—H10 | 0.9400 |
O4—C36 | 1.205 (6) | C11—C12 | 1.431 (4) |
O5—C36 | 1.316 (5) | C13—C14 | 1.379 (5) |
O5—H5 | 0.87 (6) | C13—H13 | 0.9400 |
O6—C34 | 1.231 (4) | C14—C15 | 1.344 (6) |
O7—N7 | 1.221 (4) | C14—H14 | 0.9400 |
O8—N7 | 1.259 (5) | C15—C16 | 1.415 (6) |
O9—N7 | 1.224 (5) | C15—H15 | 0.9400 |
O10—H10A | 0.83 (7) | C16—C24 | 1.387 (5) |
O10—H10B | 0.85 (7) | C16—C17 | 1.426 (6) |
O11—H11A | 0.8498 | C17—C18 | 1.352 (7) |
O11—H11B | 0.9981 | C17—H17 | 0.9400 |
O12—H12A | 0.79 (8) | C18—C19 | 1.408 (6) |
O12—H12B | 0.80 (8) | C18—H18 | 0.9400 |
O13—H13A | 0.75 (7) | C19—C23 | 1.395 (5) |
O13—H13B | 0.81 (7) | C19—C20 | 1.408 (6) |
N1—C1 | 1.328 (4) | C20—C21 | 1.343 (7) |
N1—C12 | 1.357 (4) | C20—H20 | 0.9400 |
N2—C10 | 1.328 (4) | C21—C22 | 1.390 (6) |
N2—C11 | 1.350 (4) | C21—H21 | 0.9400 |
N3—C13 | 1.338 (5) | C22—H22 | 0.9400 |
N3—C24 | 1.350 (4) | C23—C24 | 1.439 (5) |
N4—C22 | 1.334 (5) | C25—C27 | 1.366 (5) |
N4—C23 | 1.338 (4) | C25—C26i | 1.401 (5) |
N5—C28 | 1.322 (4) | C25—H25 | 0.9400 |
N5—C29 | 1.450 (5) | C26—C27 | 1.368 (5) |
N5—H5N | 0.79 (4) | C26—H26 | 0.9400 |
N6—C34 | 1.324 (4) | C27—C28 | 1.519 (5) |
N6—C35 | 1.440 (5) | C29—C30 | 1.542 (5) |
N6—H6 | 0.75 (4) | C29—H29A | 0.9800 |
C1—C2 | 1.389 (5) | C29—H29B | 0.9800 |
C1—H1 | 0.9400 | C31—C33 | 1.381 (4) |
C2—C3 | 1.360 (6) | C31—C32ii | 1.385 (5) |
C2—H2 | 0.9400 | C31—H31 | 0.9400 |
C3—C4 | 1.410 (5) | C32—C33 | 1.387 (5) |
C3—H3 | 0.9400 | C32—H32 | 0.9400 |
C4—C12 | 1.397 (4) | C33—C34 | 1.500 (5) |
C4—C5 | 1.432 (5) | C35—C36 | 1.533 (5) |
C5—C6 | 1.350 (6) | C35—H35A | 0.9800 |
C5—H5C | 0.9400 | C35—H35B | 0.9800 |
C6—C7 | 1.420 (5) | ||
N1—Cu—N3 | 174.71 (11) | C15—C14—C13 | 118.7 (4) |
N1—Cu—N4 | 93.74 (11) | C15—C14—H14 | 120.6 |
N3—Cu—N4 | 82.45 (11) | C13—C14—H14 | 120.6 |
N1—Cu—N2 | 81.30 (11) | C14—C15—C16 | 120.6 (3) |
N3—Cu—N2 | 97.30 (11) | C14—C15—H15 | 119.7 |
N4—Cu—N2 | 118.90 (10) | C16—C15—H15 | 119.7 |
N1—Cu—O1 | 90.02 (11) | C24—C16—C15 | 117.6 (3) |
N3—Cu—O1 | 94.44 (11) | C24—C16—C17 | 117.3 (4) |
N4—Cu—O1 | 103.88 (12) | C15—C16—C17 | 125.1 (4) |
N2—Cu—O1 | 136.69 (11) | C18—C17—C16 | 121.9 (4) |
C30—O1—Cu | 98.7 (3) | C18—C17—H17 | 119.0 |
C36—O5—H5 | 99 (4) | C16—C17—H17 | 119.0 |
H10A—O10—H10B | 103 (7) | C17—C18—C19 | 122.1 (4) |
H11A—O11—H11B | 121.6 | C17—C18—H18 | 119.0 |
H12A—O12—H12B | 114 (8) | C19—C18—H18 | 119.0 |
H13A—O13—H13B | 99 (7) | C23—C19—C20 | 118.0 (4) |
C1—N1—C12 | 119.3 (3) | C23—C19—C18 | 117.5 (4) |
C1—N1—Cu | 126.8 (2) | C20—C19—C18 | 124.4 (4) |
C12—N1—Cu | 113.9 (2) | C21—C20—C19 | 119.9 (4) |
C10—N2—C11 | 117.0 (3) | C21—C20—H20 | 120.1 |
C10—N2—Cu | 132.6 (2) | C19—C20—H20 | 120.1 |
C11—N2—Cu | 110.3 (2) | C20—C21—C22 | 118.4 (4) |
C13—N3—C24 | 119.5 (3) | C20—C21—H21 | 120.8 |
C13—N3—Cu | 127.8 (2) | C22—C21—H21 | 120.8 |
C24—N3—Cu | 112.7 (2) | N4—C22—C21 | 123.5 (4) |
C22—N4—C23 | 118.1 (3) | N4—C22—H22 | 118.2 |
C22—N4—Cu | 132.7 (3) | C21—C22—H22 | 118.2 |
C23—N4—Cu | 109.1 (2) | N4—C23—C19 | 122.0 (3) |
C28—N5—C29 | 123.9 (3) | N4—C23—C24 | 117.4 (3) |
C28—N5—H5N | 121 (3) | C19—C23—C24 | 120.6 (3) |
C29—N5—H5N | 115 (3) | N3—C24—C16 | 121.2 (3) |
C34—N6—C35 | 120.2 (3) | N3—C24—C23 | 118.3 (3) |
C34—N6—H6 | 122 (3) | C16—C24—C23 | 120.6 (3) |
C35—N6—H6 | 118 (3) | C27—C25—C26i | 121.2 (3) |
O7—N7—O9 | 120.3 (4) | C27—C25—H25 | 119.4 |
O7—N7—O8 | 119.2 (4) | C26i—C25—H25 | 119.4 |
O9—N7—O8 | 120.4 (4) | C27—C26—C25i | 121.7 (3) |
N1—C1—C2 | 121.7 (4) | C27—C26—H26 | 119.2 |
N1—C1—H1 | 119.2 | C25i—C26—H26 | 119.2 |
C2—C1—H1 | 119.2 | C25—C27—C26 | 117.1 (3) |
C3—C2—C1 | 119.7 (3) | C25—C27—C28 | 124.2 (3) |
C3—C2—H2 | 120.1 | C26—C27—C28 | 118.6 (3) |
C1—C2—H2 | 120.1 | O3—C28—N5 | 121.5 (3) |
C2—C3—C4 | 120.1 (3) | O3—C28—C27 | 121.8 (3) |
C2—C3—H3 | 119.9 | N5—C28—C27 | 116.8 (3) |
C4—C3—H3 | 119.9 | N5—C29—C30 | 113.6 (3) |
C12—C4—C3 | 116.7 (3) | N5—C29—H29A | 108.8 |
C12—C4—C5 | 118.8 (3) | C30—C29—H29A | 108.8 |
C3—C4—C5 | 124.5 (3) | N5—C29—H29B | 108.8 |
C6—C5—C4 | 121.6 (3) | C30—C29—H29B | 108.8 |
C6—C5—H5C | 119.2 | H29A—C29—H29B | 107.7 |
C4—C5—H5C | 119.2 | O2—C30—O1 | 123.1 (4) |
C5—C6—C7 | 120.8 (3) | O2—C30—C29 | 120.4 (4) |
C5—C6—H6C | 119.6 | O1—C30—C29 | 116.5 (4) |
C7—C6—H6C | 119.6 | C33—C31—C32ii | 120.4 (3) |
C11—C7—C8 | 117.6 (3) | C33—C31—H31 | 119.8 |
C11—C7—C6 | 118.9 (3) | C32ii—C31—H31 | 119.8 |
C8—C7—C6 | 123.5 (3) | C31ii—C32—C33 | 120.5 (3) |
C9—C8—C7 | 119.0 (3) | C31ii—C32—H32 | 119.7 |
C9—C8—H8 | 120.5 | C33—C32—H32 | 119.7 |
C7—C8—H8 | 120.5 | C31—C33—C32 | 119.0 (3) |
C8—C9—C10 | 119.7 (3) | C31—C33—C34 | 116.3 (3) |
C8—C9—H9 | 120.2 | C32—C33—C34 | 124.6 (3) |
C10—C9—H9 | 120.2 | O6—C34—N6 | 120.8 (3) |
N2—C10—C9 | 123.5 (3) | O6—C34—C33 | 121.7 (3) |
N2—C10—H10 | 118.2 | N6—C34—C33 | 117.4 (3) |
C9—C10—H10 | 118.2 | N6—C35—C36 | 112.1 (3) |
N2—C11—C7 | 123.3 (3) | N6—C35—H35A | 109.2 |
N2—C11—C12 | 116.4 (3) | C36—C35—H35A | 109.2 |
C7—C11—C12 | 120.3 (3) | N6—C35—H35B | 109.2 |
N1—C12—C4 | 122.5 (3) | C36—C35—H35B | 109.2 |
N1—C12—C11 | 118.0 (3) | H35A—C35—H35B | 107.9 |
C4—C12—C11 | 119.5 (3) | O4—C36—O5 | 124.3 (4) |
N3—C13—C14 | 122.4 (3) | O4—C36—C35 | 125.6 (4) |
N3—C13—H13 | 118.8 | O5—C36—C35 | 110.0 (4) |
C14—C13—H13 | 118.8 | ||
C12—N1—C1—C2 | −1.6 (5) | C23—N4—C22—C21 | −0.5 (6) |
Cu—N1—C1—C2 | 177.3 (3) | Cu—N4—C22—C21 | −179.0 (3) |
N1—C1—C2—C3 | 1.7 (6) | C20—C21—C22—N4 | 0.7 (6) |
C1—C2—C3—C4 | −0.2 (5) | C22—N4—C23—C19 | 0.6 (5) |
C2—C3—C4—C12 | −1.2 (5) | Cu—N4—C23—C19 | 179.4 (3) |
C2—C3—C4—C5 | 178.3 (3) | C22—N4—C23—C24 | 178.9 (3) |
C12—C4—C5—C6 | 1.1 (5) | Cu—N4—C23—C24 | −2.2 (4) |
C3—C4—C5—C6 | −178.3 (3) | C20—C19—C23—N4 | −0.9 (5) |
C4—C5—C6—C7 | −0.4 (5) | C18—C19—C23—N4 | 177.7 (3) |
C5—C6—C7—C11 | −1.3 (5) | C20—C19—C23—C24 | −179.2 (3) |
C5—C6—C7—C8 | 178.7 (3) | C18—C19—C23—C24 | −0.6 (5) |
C11—C7—C8—C9 | −0.5 (5) | C13—N3—C24—C16 | −0.2 (5) |
C6—C7—C8—C9 | 179.5 (3) | Cu—N3—C24—C16 | 179.8 (3) |
C7—C8—C9—C10 | −0.5 (5) | C13—N3—C24—C23 | −178.8 (3) |
C11—N2—C10—C9 | −0.2 (5) | Cu—N3—C24—C23 | 1.3 (4) |
Cu—N2—C10—C9 | 176.2 (2) | C15—C16—C24—N3 | 1.0 (5) |
C8—C9—C10—N2 | 1.0 (5) | C17—C16—C24—N3 | −178.9 (3) |
C10—N2—C11—C7 | −0.9 (4) | C15—C16—C24—C23 | 179.5 (3) |
Cu—N2—C11—C7 | −178.1 (2) | C17—C16—C24—C23 | −0.4 (5) |
C10—N2—C11—C12 | 178.1 (3) | N4—C23—C24—N3 | 0.8 (5) |
Cu—N2—C11—C12 | 0.8 (3) | C19—C23—C24—N3 | 179.1 (3) |
C8—C7—C11—N2 | 1.3 (4) | N4—C23—C24—C16 | −177.8 (3) |
C6—C7—C11—N2 | −178.7 (3) | C19—C23—C24—C16 | 0.6 (5) |
C8—C7—C11—C12 | −177.6 (3) | C26i—C25—C27—C26 | 0.0 (6) |
C6—C7—C11—C12 | 2.4 (4) | C26i—C25—C27—C28 | 178.1 (3) |
C1—N1—C12—C4 | 0.0 (4) | C25i—C26—C27—C25 | 0.0 (6) |
Cu—N1—C12—C4 | −178.9 (2) | C25i—C26—C27—C28 | −178.3 (3) |
C1—N1—C12—C11 | −178.1 (3) | C29—N5—C28—O3 | 3.2 (6) |
Cu—N1—C12—C11 | 2.9 (3) | C29—N5—C28—C27 | −175.6 (3) |
C3—C4—C12—N1 | 1.3 (4) | C25—C27—C28—O3 | 173.1 (4) |
C5—C4—C12—N1 | −178.2 (3) | C26—C27—C28—O3 | −8.8 (5) |
C3—C4—C12—C11 | 179.5 (3) | C25—C27—C28—N5 | −8.2 (5) |
C5—C4—C12—C11 | 0.0 (4) | C26—C27—C28—N5 | 170.0 (3) |
N2—C11—C12—N1 | −2.5 (4) | C28—N5—C29—C30 | −104.5 (4) |
C7—C11—C12—N1 | 176.5 (3) | Cu—O1—C30—O2 | 0.1 (4) |
N2—C11—C12—C4 | 179.3 (3) | Cu—O1—C30—C29 | −177.7 (3) |
C7—C11—C12—C4 | −1.7 (4) | N5—C29—C30—O2 | 25.4 (5) |
C24—N3—C13—C14 | −0.6 (6) | N5—C29—C30—O1 | −156.7 (3) |
Cu—N3—C13—C14 | 179.3 (3) | C32ii—C31—C33—C32 | 0.4 (5) |
N3—C13—C14—C15 | 0.6 (6) | C32ii—C31—C33—C34 | −179.2 (3) |
C13—C14—C15—C16 | 0.1 (6) | C31ii—C32—C33—C31 | −0.4 (5) |
C14—C15—C16—C24 | −0.9 (6) | C31ii—C32—C33—C34 | 179.1 (3) |
C14—C15—C16—C17 | 179.0 (4) | C35—N6—C34—O6 | 0.6 (5) |
C24—C16—C17—C18 | 0.3 (6) | C35—N6—C34—C33 | −178.2 (3) |
C15—C16—C17—C18 | −179.6 (4) | C31—C33—C34—O6 | −7.2 (4) |
C16—C17—C18—C19 | −0.3 (7) | C32—C33—C34—O6 | 173.3 (3) |
C17—C18—C19—C23 | 0.5 (6) | C31—C33—C34—N6 | 171.6 (3) |
C17—C18—C19—C20 | 179.0 (4) | C32—C33—C34—N6 | −8.0 (5) |
C23—C19—C20—C21 | 1.2 (6) | C34—N6—C35—C36 | −81.3 (4) |
C18—C19—C20—C21 | −177.3 (4) | N6—C35—C36—O4 | −5.3 (6) |
C19—C20—C21—C22 | −1.1 (6) | N6—C35—C36—O5 | 175.1 (3) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O11 | 0.87 (6) | 1.84 (6) | 2.665 (5) | 159 (6) |
O10—H10A···O2iii | 0.83 (7) | 2.06 (7) | 2.878 (6) | 168 (7) |
O10—H10B···O7 | 0.85 (7) | 2.24 (7) | 3.033 (6) | 155 (7) |
O11—H11A···O8 | 0.85 | 2.00 | 2.848 (6) | 179 |
O11—H11B···O1 | 1.00 | 1.68 | 2.643 (6) | 160 |
O12—H12A···O7 | 0.79 (8) | 2.32 (8) | 3.024 (6) | 149 (8) |
O12—H12B···O13 | 0.80 (8) | 2.07 (8) | 2.856 (6) | 170 (8) |
O13—H13A···O12iv | 0.75 (7) | 2.05 (7) | 2.757 (6) | 157 (8) |
O13—H13B···O6 | 0.81 (7) | 2.05 (7) | 2.851 (4) | 170 (7) |
N5—H5N···O8v | 0.79 (4) | 2.23 (5) | 2.947 (4) | 152 (4) |
N6—H6···O3vi | 0.75 (4) | 2.26 (4) | 2.995 (4) | 167 (4) |
C2—H2···O13 | 0.94 | 2.37 | 3.302 (5) | 172 |
C3—H3···O10iv | 0.94 | 2.44 | 3.358 (7) | 165 |
C9—H9···O4vii | 0.94 | 2.40 | 3.099 (5) | 131 |
C13—H13···O2 | 0.94 | 2.42 | 3.031 (5) | 122 |
C14—H14···O10v | 0.94 | 2.60 | 3.414 (5) | 145 |
C25—H25···O9v | 0.94 | 2.53 | 3.354 (6) | 147 |
C32—H32···O3vi | 0.94 | 2.48 | 3.388 (4) | 163 |
C35—H35A···O10viii | 0.98 | 2.53 | 3.378 (5) | 145 |
Symmetry codes: (iii) x, y+1, z; (iv) −x+1, −y+1, −z+2; (v) −x+1, −y+1, −z+1; (vi) x−1, y+1, z; (vii) x, y−1, z; (viii) x−1, y, z. |
Funding information
We acknowledge support by the Open Access Publishing Fund of Clausthal University of Technology.
References
Albrecht, M., Gjikaj, M. & Schmidt, A. (2010). Tetrahedron, 66, 7149–7154. Web of Science CSD CrossRef CAS Google Scholar
Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352. Web of Science CrossRef PubMed CAS Google Scholar
Allendorf, M. D., Foster, M. E., Léonard, F., Stavila, V., Feng, P. L., Doty, F. P., Leong, K., Ma, E. Y., Johnston, S. R. & Talin, A. A. (2015). J. Phys. Chem. Lett. 6, 1182–1195. Web of Science CrossRef CAS PubMed Google Scholar
Avasthi, K., Shukla, L., Kant, R. & Ravikumar, K. (2014). Acta Cryst. C70, 555–561. CrossRef IUCr Journals Google Scholar
Barceló-Oliver, M., Terrón, A., García-Raso, A., Lah, N. & Turel, I. (2010). Acta Cryst. C66, o313–o316. Web of Science CSD CrossRef IUCr Journals Google Scholar
Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715–1724. Web of Science CrossRef CAS Google Scholar
Berryman, O. B. & Johnson, D. W. (2009). Chem. Commun. pp. 3143–3153. CrossRef Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544–1546. CrossRef CAS Web of Science Google Scholar
Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777. Web of Science CrossRef CAS PubMed Google Scholar
Dance, I. (2003). New J. Chem. 27, 22–27. Web of Science CrossRef CAS Google Scholar
Doty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. (2009). Adv. Mater. 21, 95–101. Web of Science CrossRef CAS Google Scholar
Duan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172–3177. Web of Science CSD CrossRef CAS Google Scholar
Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205. Web of Science CrossRef PubMed CAS Google Scholar
Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. 116, 2388–2430. CrossRef Google Scholar
Kostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060–1071. Web of Science CSD CrossRef CAS Google Scholar
Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859–3861. Web of Science CSD CrossRef Google Scholar
Kumar Seth, S., Dey, B., Kar, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81–88. Web of Science CSD CrossRef CAS Google Scholar
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed Google Scholar
Lim, J., Park, H., Go, H., Lee, J., Ryu, S., Yoshioka, D. & Mikuriya, M. (2014). X-ray Struct. Anal. Online, 30, 13–14. CrossRef CAS Google Scholar
Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201. Web of Science CrossRef CAS Google Scholar
Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250. Web of Science CrossRef CAS Google Scholar
Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515. Web of Science CrossRef CAS Google Scholar
Perry IV, J. J., Feng, P. L., Meek, S. T., Leong, K., Doty, F. P. & Allendorf, M. D. (2012). J. Mater. Chem. 22, 10235–10248. Web of Science CSD CrossRef Google Scholar
Piovesan, D., Minervini, G. & Tosatto, S. E. (2016). Nucleic Acids Res. 44, W367–W374. CrossRef CAS PubMed Google Scholar
Pook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160–m161. CSD CrossRef IUCr Journals Google Scholar
Pook, N.-P., Hentrich, P. & Gjikaj, M. (2015). Acta Cryst. E71, 910–914. CrossRef IUCr Journals Google Scholar
Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842. Web of Science CrossRef CAS Google Scholar
Santha Lakshmi, S. & Samundeeswari, S. (2015). Int. J. Inorg. Chem. pp. 1–5. Google Scholar
Schneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924–3977. Web of Science CrossRef CAS Google Scholar
SciFinder (2019). Chemical Abstracts Service: Columbus, OH, 2010; by chemical structure editor; https://scifinder. cas. org (accessed March 20, 2019). Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Wan, C.-Q., Chen, X.-D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655–6669. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532–3536. Web of Science CSD CrossRef Google Scholar
Zhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163–m1165. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.