research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (μ-2-{4-[(carboxyl­atometh­yl)carbamo­yl]benz­amido}­acetato-κ2O:O′)bis­­[bis­­(1,10-phenanthroline-κ2N,N′)copper(II)] dinitrate N,N′-(1,4-phenyl­enedicarbon­yl)diglycine monosolvate octa­hydrate

CROSSMARK_Color_square_no_text.svg

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Str. 4, D-38678, Clausthal-Zellerfeld, Germany
*Correspondence e-mail: niels-patrick.pook@tu-clausthal.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 April 2019; accepted 15 April 2019; online 25 April 2019)

The centrosymmetric binuclear complex cation of the title compound, [Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2O, is composed of a CuII atom with a distorted trigonal–bipyramidal coordination environment defined by four N atoms from two bidentate 1,10-phenanthroline ligands and one oxygen atom from one-half of the monodentate N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate anion. The asymmetric unit is completed by one-half of the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule, which is located on a centre of inversion, by one nitrate counter-anion and four water mol­ecules. In the crystal, the cationic complexes are linked via inter­molecular ππ stacking and through lone-pair⋯π inter­actions involving the N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate anion and the phenanthroline ligands. The N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule is involved in classical and non-classical hydrogen-bonding inter­actions, as well as ππ stacking inter­actions. The centroid-to-centroid distances between aromatic entities are in the range 3.5402 (5)–4.3673 (4) Å. The crystal structure is stabilized by further C—H⋯O contacts as well as by O—H⋯O and N—H⋯O hydrogen bonds between water mol­ecules, the nitrate anions, the N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligands, N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecules and phenanthroline ligands, giving rise to a supra­molecular framework. A Hirshfeld surface analysis was carried out to qu­antify these inter­actions.

1. Chemical context

Over the past two decades, the syntheses and structural investigations of coordination polymers with different dimensions as well as metal–organic frameworks (MOFs) have attracted much attention because of their intriguing functional architectures and applications (Batten et al., 2013[Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715-1724.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Yamada et al., 2013[Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655-6669.]). Potential applications of these materials are in catalysis, gas storage (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. 116, 2388-2430.]), luminescence (Allendorf et al., 2015[Allendorf, M. D., Foster, M. E., Léonard, F., Stavila, V., Feng, P. L., Doty, F. P., Leong, K., Ma, E. Y., Johnston, S. R. & Talin, A. A. (2015). J. Phys. Chem. Lett. 6, 1182-1195.]) or as scintillators (Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]; Doty et al., 2009[Doty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. (2009). Adv. Mater. 21, 95-101.]; Perry et al., 2012[Perry IV, J. J., Feng, P. L., Meek, S. T., Leong, K., Doty, F. P. & Allendorf, M. D. (2012). J. Mater. Chem. 22, 10235-10248.]). Their crystal structures show various non-covalent inter­molecular inter­actions and forces, and therefore are highly connected to their supra­molecular chemistry (Schneider, 2009[Schneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924-3977.]) and self-assembly (Cook et al., 2013[Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734-777.]). Moreover, these compounds have a high relevance in biological systems inter­acting with macromolecules such as DNA, RNA or proteins (Salonen et al., 2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]), and also in biochemical reactions as protein–ligand recognitions or in drug-delivery systems of biologically active agents (Meyer et al., 2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]). In general, for all these supra­molecular inter­actions, weaker and reversible inter­molecular forces play the key role, including metal coordination, classical and non-classical hydrogen bonding of the types O—H⋯O, N—H⋯O and C—H⋯O, respectively, different π-inter­actions involving the aromatic rings such as ππ stacking, C—H⋯π, ion⋯π and lone-pair⋯π inter­actions. Metal-coordinating and nitro­gen-containing heterocycles such as bi­pyridines and phenanthrolines are electron-deficient aromatic ring systems and thus predestined to be acceptors in ππ stacking, ion⋯π or lone-pair⋯π inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Berryman & Johnson, 2009[Berryman, O. B. & Johnson, D. W. (2009). Chem. Commun. pp. 3143-3153.]). In addition, π-donor⋯acceptor functions in different parts of an aromatic mol­ecule can lead to remarkable properties (Albrecht et al., 2010[Albrecht, M., Gjikaj, M. & Schmidt, A. (2010). Tetrahedron, 66, 7149-7154.]). Transition-metal coordination compounds with the pseudo aromatic di­amino acid N,N′-(1,4-phenyl­enedicarbon­yl)diglycine, forming zigzag chains and constructing inter­penetrating networks, have been described in the literature (see Database survey).

[Scheme 1]

In our synthetic approach, we employ such systems as electron-deficient bidentate aromatic ring systems such as phenanthroline or bi­pyridine in order to block parts of the metal cation coordination sphere. Thus, the alternative assembly process lies in the use of the offered different π-inter­action possibilities, viz. ππ stacking, C—H⋯π, ion⋯π and lone-pair⋯π and not in forming the aforementioned zigzag chains. We have previously reported structural studies of two cobalt complexes with bidentate bi­pyridine or bidentate phenanthroline ligands and a non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine mol­ecule in the crystal (Pook et al., 2014[Pook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160-m161.], 2015[Pook, N.-P., Hentrich, P. & Gjikaj, M. (2015). Acta Cryst. E71, 910-914.]). In these structures, the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine mol­ecule is deprotonated and thus acts as counter-anion. In the two structures, the embedded N,N′-(1,4-phenyl­enedicarbon­yl)diglycate mol­ecule links the cationic buildings blocks by numerous supra­molecular inter­actions.

In a continuation of this work, we have now synthesized and determined the structure of a novel copper(II) coordination compound where the N,N′-(1,4-phenyl­enedicarbon­yl)di­glycine moiety is a bis-monodentate bridging anionic ligand in its deprotonated form, as well as a solvent mol­ecule in its neutral form in one crystal structure. The structural investigation and description of the supra­molecular network is confirmed and discussed with the aid of a Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the cationic complex and the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule.

2. Structural commentary

The binuclear and centrosymmetric complex cation of the title compound, [Cu2(C12H8N2)4(C12H10N2O6)](NO3)2·(C12H12N2O6)·8H2O, comprises two bidentate phenanthroline ligands and one bridging monodentate N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand for each CuII atom, defining a distorted trigonal–bipyramidal coordination sphere. A crystallographic centre of inversion is located at the centroid of the bridging N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate anion as well as the neutral and non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule. The asymmetric unit is completed by one non-coordinating nitrate counter-anion and four water mol­ecules (Fig. 1[link]).

[Figure 1]
Figure 1
The structures of mol­ecular entities in the title compound with atom labels and displacement ellipsoids of non-H atoms at the 40% probability level. Dashed lines indicate O—H⋯O hydrogen bonds (see Table 1[link] for details). Unlabelled atoms are related to labelled ones by the symmetry operationx, −y, −z + 1 for the cationic complex and −x, −y + 2, −z + 2 for the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule.

The equatorial plane of the CuII coordination environment is occupied by O1, N2 and N4 atoms with bond lengths of 2.235 (5), 2.119 (2) and 2.111 (3) Å, and the axial positions by N1 and N3 with shorter bonds each of 1.974 (3) Å, respectively. The bond angle N1—Cu—N3 is 174.71 (11)°. The sum of the bond angles O1—Cu—N2 [136.69 (11)°], O1—Cu—N4 [103.88 (12)°] and N2—Cu—N4 [118.90 (10)°] in the equatorial plane amounts to 359.47°, indicating only slight distortions. Distances and angles within the distorted trigonal–bipyramidal coordination sphere of the CuII ion are similar to those found in the literature (Santha Lakshmi & Samundeeswari, 2015[Santha Lakshmi, S. & Samundeeswari, S. (2015). Int. J. Inorg. Chem. pp. 1-5.]; Lim et al. 2014[Lim, J., Park, H., Go, H., Lee, J., Ryu, S., Yoshioka, D. & Mikuriya, M. (2014). X-ray Struct. Anal. Online, 30, 13-14.]). The nearly identical bond lengths of the carboxyl­ate group in the bridging ligand [C30—O1 = 1.249 (5) and C30—O2 = 1.249 (6) Å] indicate a delocalized bonding arrangement, rather than localized single and double bonds as in the case of the carb­oxy­lic group of the neutral N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule [C36—O4 = 1.205 (6) and C36—O5 = 1.316 (5) Å]. The O1—C30—O2 angle of 123.1 (4)° in the carboxyl­ate group is slightly smaller than in the carb­oxy­lic group [O4—C36—O5 = 124.3 (4)°]. In the coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycate ligand, the deviations of atoms defining the central benzamido entity from its least-squares plane are 0.040 (4) Å (C28), −0.084 (3) Å (O3), 0.245 (4) Å (N5) and 0.404 (4) Å (C29), while in the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent they are −0.018 (4) Å (C34) , 0.102 (3) Å (O6), −0.192 (4) Å (N6) and −0.257 (4) Å (C35). The angle between the amide group and the carboxyl­ate group connected through the sp3-hybridized methyl­ene carbon atom (N5—C29—C30) is 113.6 (3)°, and for the neutral solvent mol­ecule it is (N6—C35—C36) 112.1 (3)°. The dihedral angle between the planar carboxyl­ate group (O1/C30/O2) and the aromatic synthon (C25–27/C25′–C27′) of the ligand is 84.1 (3)° and thus smaller than the value found in the free solvent mol­ecule of the aromatic synthon (C31–C33/C31′–C33`) and the planar carboxyl­ate group (O4/C36/O5) at 88.9 (3)°. The dihedral angle between the mean planes of the two bidentate phenanthroline ligands is 61.71 (5)°; the corresponding value between phenanthroline (N1/C1–C12/N2) and the coordin­ating carboxyl­ate group (O1/C30/O2) is 79.9 (4)° and between phenanthroline (N3/C13–C24/N4) and the carboxyl­ate group is 82.5 (3)°, respectively.

3. Supra­molecular features

In the crystal structure, numerous non-covalent inter­actions are observed. The nitrate anions are linked via O—H⋯O, C—H⋯O and partly via N—H⋯O hydrogen bonds with water solvent mol­ecules, the phenanthroline ligands and the metal-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)di­glycin­ate ligands (Figs. 1[link]–3[link][link]; Table 1[link]). ππ inter­actions between parallel-displaced phenanthroline ligands and between phenanthroline and the free N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule, as well as between phenanthroline ligands and the metal-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand stack these components along the different axes (Figs. 2[link]–4[link][link]). Centroid-to-centroid distances are: 3.6515 (5) Å between Cg1⋯Cg2, 3.6831 (4) Å between Cg2⋯Cg4, 3.6686 (5) Å between Cg3⋯Cg4, and 3.5402 (5) Å between Cg5Cg5, where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids defined by the ring atoms N1/C1–C4/C12, C4–C7/C11–C12, N2/C7–C11, C31–C33/C31′–C33′ and C16–C19/C23–C24, respectively. These distances are in expected ranges (Barceló-Oliver et al., 2010[Barceló-Oliver, M., Terrón, A., García-Raso, A., Lah, N. & Turel, I. (2010). Acta Cryst. C66, o313-o316.]; Kumar Seth et al., 2010[Kumar Seth, S., Dey, B., Kar, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81-88.]). In addition, another offset face-to-face arrangement between a phenanthroline and the metal-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand leads to a longer Cg6⋯Cg7 separation of 4.3673 (4) Å (Fig. 4[link]), where Cg6 and Cg7 are the centroids defined by the ring atoms N3/C13–C16/C24 and C25–C27/C25′–C27′, respectively. Such weaker π-stacking inter­actions have been discussed in the past as being relevant (Avasthi et al., 2014[Avasthi, K., Shukla, L., Kant, R. & Ravikumar, K. (2014). Acta Cryst. C70, 555-561.]; Dance, 2003[Dance, I. (2003). New J. Chem. 27, 22-27.]; Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]; Piovesan et al., 2016[Piovesan, D., Minervini, G. & Tosatto, S. E. (2016). Nucleic Acids Res. 44, W367-W374.]; Salonen et al., 2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]). The dihedral angle between the mean planes of the mentioned aromatic rings is 3.50 (12)°. The angle between the lines through C15/Cg7 and the centroids through Cg6/Cg7 is 17.05 (7)° and is slightly increased in comparison with the lines through C26/Cg7 and the centroids Cg6/Cg7 with a value of 16.99 (5)°. Distances shown in Fig. 4[link] between atoms and centroids of H15/Cg7 and C15/Cg7 are 3.4440 (4) and 3.676 (6) Å and between H26/Cg7 and C26/Cg7 are 3.5049 (4) and 3.713 (5) Å with observed angles of 96.8 (3)° (C15—H15⋯Cg7) and 95.4 (3)° (C16—H26⋯Cg7), respectively. Besides the previously mentioned forces, a lone-pair⋯π inter­action between the O3 atom of the carboxyl­ate group of the metal-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand and the Cg5 centroid of a phenanthroline ligand are observed and associated with a distance of 3.739 (4) Å. This value is similar to those found in the literature (Egli & Sarkhel, 2007[Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]; Gao et al., 2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.]; Mooibroek et al., 2008[Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501-1515.]; Wan et al., 2008[Wan, C.-Q., Chen, X.-D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.]). Finally, π-inter­actions between Cg5 and Cg7 and the adjacent lone-pair⋯π inter­actions stack the cationic complex subunits along the a-axis direction and contribute to the consolidation of the supra­molecular framework (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O11 0.87 (6) 1.84 (6) 2.665 (5) 159 (6)
O10—H10A⋯O2i 0.83 (7) 2.06 (7) 2.878 (6) 168 (7)
O10—H10B⋯O7 0.85 (7) 2.24 (7) 3.033 (6) 155 (7)
O11—H11A⋯O8 0.85 2.00 2.848 (6) 179
O11—H11B⋯O1 1.00 1.68 2.643 (6) 160
O12—H12A⋯O7 0.79 (8) 2.32 (8) 3.024 (6) 149 (8)
O12—H12B⋯O13 0.80 (8) 2.07 (8) 2.856 (6) 170 (8)
O13—H13A⋯O12ii 0.75 (7) 2.05 (7) 2.757 (6) 157 (8)
O13—H13B⋯O6 0.81 (7) 2.05 (7) 2.851 (4) 170 (7)
N5—H5N⋯O8iii 0.79 (4) 2.23 (5) 2.947 (4) 152 (4)
N6—H6⋯O3iv 0.75 (4) 2.26 (4) 2.995 (4) 167 (4)
C2—H2⋯O13 0.94 2.37 3.302 (5) 172
C3—H3⋯O10ii 0.94 2.44 3.358 (7) 165
C9—H9⋯O4v 0.94 2.40 3.099 (5) 131
C13—H13⋯O2 0.94 2.42 3.031 (5) 122
C14—H14⋯O10iii 0.94 2.60 3.414 (5) 145
C25—H25⋯O9iii 0.94 2.53 3.354 (6) 147
C32—H32⋯O3iv 0.94 2.48 3.388 (4) 163
C35—H35A⋯O10vi 0.98 2.53 3.378 (5) 145
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x-1, y+1, z; (v) x, y-1, z; (vi) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title structure in a view along the b axis. Selected ππ stacking inter­actions between phenanthroline ligands and N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent and phenanthroline ligands are shown as orange dashed lines as well as classical hydrogen bonding indicated by black dashed lines. The hydrogen atoms of aromatic moieties and methyl­ene groups have been omitted for clarity.
[Figure 3]
Figure 3
In the crystal packing, different non-covalent inter­actions such as C—H⋯O and N—H⋯O contacts and ππ stacking inter­actions between the aromatic moieties are present. C—H⋯O and N—H⋯O inter­actions are indicated by red–white dashed lines and ππ stacking by dark-yellow dashed lines. The hydrogen atoms not involved in inter­actions have been omitted for clarity. Distances are given in Å. [Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (vii) −x + 1, −y, −z + 2; (viii) x + 1, y − 1, z; (ix) x + 1, y, z; (x) x + 2, y − 1, z; (xi) −x + 2, −y, −z + 1.]
[Figure 4]
Figure 4
View of the lone-pair⋯π inter­action and ππ stacking between the complex cation subunits. Non-covalent inter­actions are indicated by dark-yellow dashed lines. The hydrogen atoms not involved in inter­actions have been omitted for clarity. Distances are given in Å. [Symmetry codes: (xii) −x + 1, −y, −z + 1; (xiii) x + 1, y, z.]

4. Hirshfeld surface analysis

Substanti­ation and visualization of the described supra­molecular features in the crystal structure and their close contacts between different mol­ecular moieties, mol­ecules, ionic and complex subunits can be achieved by using a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.], Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) offers the possibility to investigate and explore the short atom-to-atom contacts to identify their potential for hydrogen-bonding and π-stacking inter­actions by generating the Hirshfeld surfaces mapped over dnorm, the electrostatic potential, the shape-index and the curvedness.

The HS mapped over dnorm of the cationic complex subunit in the range −0.7078 to 1.7629 a.u. and of the non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule in the range −0.6806 to 1.9484 a.u. are shown in Fig. 5[link] and Fig. 8[link], respectively. The corresponding qu­anti­tative contribution of inter­molecular inter­actions are displayed in the overall two-dimensional fingerprint plots (FPs) and those split up into their descending order of crystal cohesion contributions in Fig. 7[link] and Fig. 11[link], respectively. The white areas of the HS indicate contacts with distances equal to the sum of van der Waals radii and the blue regions indicate longer distances than the van der Waals radii as depicted in Figs. 5[link] and 8[link]. The bright-red spots as indicators of close contacts with shorter distances than the van der Waals radii represent the donor and acceptor functions of dominant classical and non-classical hydrogen-bonding inter­actions of the types O—H⋯O, N—H⋯O and C—H⋯O. This is confirmed by the appearance of large sharp asymmetrical spikes in the H⋯O/O⋯H FPs (Figs. 7[link], 11[link]) in the region of de ∼ 1.19 Å/di ∼ 0.85 Å and di ∼ 0.68 Å/de ∼ 1.02 Å as well as de ∼ 1.05 Å/di ∼ 0.70 Å and di ∼ 1.12 Å/de ∼ 0.78 Å, which comprise 27.9% and 42.2% of the total amount on the HS, respectively.

[Figure 5]
Figure 5
Graphical representation of the three-dimensional Hirshfeld surface (dnorm) for the cationic complex plotted in the range −0.7078 to 1.7629 a.u.. The surface is drawn with transparency and the surface regions with strongest inter­molecular inter­actions are drawn in red.
[Figure 8]
Figure 8
Hirshfeld surface for the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule with dnorm over the range −0.6806 to 1.9484 a.u.. The surface is drawn with transparency; red spots indicate the strongest inter­molecular inter­actions.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the cationic-complex subunit, showing all inter­actions and split up into contributions from different contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 11]
Figure 11
The full two-dimensional fingerprint plots for the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule, showing all inter­actions, and delineated into the contributions from different contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

In order to classify the donor and acceptor groups of the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule involved in hydrogen bonding, the HS mapped over the electrostatic potentials were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) with standard settings of the STP-3G basis set at Hartree–Fock theory. The appearance of blue and red surface regions indicates the positive and negative electrostatic potential as shown in Fig. 10[link], suggesting that the carbonyl oxygen atom of the amide group and the non-protonated oxygen atom of the carboxyl­ate group act as hydrogen-bond acceptors whereas the nitro­gen/hydrogen atoms of the amide group and the protonated oxygen atom of the carb­oxy group as well as the carbon/hydrogen atoms of the aromatic moiety act as hydrogen-bond donors. H⋯H contacts compromise 36.4% to the cationic complex as the largest contribution and 29.8% to the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule as the second largest contribution within the HS. This high relevance for the HS is attributed to the high proportion of hydrogen atoms in the structure of these entities. The H⋯N/N⋯H contacts contribute 3.7% to the cationic complex and 3.4% to the solvent mol­ecule to the total HS, respectively. Short contacts of the solvent mol­ecule with a minor contribution to the lattice of O⋯N/N⋯O (0.4%) and O⋯O (0.1%) are also observed. The contribution of the different ππ inter­actions used for the stacking of the cationic complex subunits and the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule along the different axes is also significant for both entities. Therefore, the close H⋯C/C⋯H (16.7%), C⋯C (12.0%), O⋯C/C⋯O (2.1%) and N⋯C/C⋯N (1.2%) contacts of the cationic complex are assigned to C—H⋯π inter­actions, ππ stacking (face-to-face) and lone-pair⋯π inter­actions of the carbonyl group and stacking between the phenanthroline ligands (Figs. 3[link], 4[link] and 7[link]). For the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule, the close C⋯C (11.1%), H⋯C/C⋯H (9.9%), N⋯C/C⋯N (1.8%) and O⋯C/C⋯O (1.2%) contacts are assigned to ππ stacking (face-to-face), C—H⋯π inter­actions and stackings of the phenanthrolines and lone-pair⋯π inter­actions of the carbonyl group (Figs. 3[link], 4[link] and 11[link]). This corresponds to the appearance of the red triangles of the aromatic moieties of the bidentate phenanthroline ligands, the metal-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand as well as the non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)di­glycine solvent mol­ecule in the HS mapped over the shape-index, which represent the face-to-face ππ stacking inter­actions (Figs. 6[link], 9[link]).

[Figure 10]
Figure 10
View of the transparent three-dimensional Hirshfeld surface of the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule plotted over electrostatic potential energy in the range −0.0828 to 0.1815 a.u. using the STO-3G basis set at the Hartree–Fock level. The O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bond donor and acceptor atoms are displayed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface drawn with transparency and mapped over the shape-index for the cationic complex. Red and blue triangles at the phenanthroline ligands and the N,N′-(1,4-phenyl­enedicarbon­yl)diglycinate ligand indicate the regions involved in ππ stacking inter­actions.
[Figure 9]
Figure 9
Hirshfeld surfaces drawn with transparency and mapped over the shape-index for the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule. Red and blue triangles indicate the region involved in ππ stacking inter­actions.

5. Database survey

A search for crystal structures containing the ligand N,N′-(1,4-phenyl­enedicarbon­yl)diglycine using SciFinder (SciFinder, 2019[SciFinder (2019). Chemical Abstracts Service: Columbus, OH, 2010; by chemical structure editor; https://scifinder. cas. org (accessed March 20, 2019).]) and the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in six entries (Duan et al., 2010[Duan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172-3177.]; Kostakis et al., 2005[Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859-3861.], 2011[Kostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060-1071.]; Zhang et al., 2005[Zhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163-m1165.], 2006[Zhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532-3536.]). Some of these structures are composed of inter­penetrating networks as mentioned in the Chemical context. Among them are two structures which include bi­pyridine or phenanthroline ligands besides N,N′-(1,4-phenyl­enedicarbon­yl)diglycine, and their structures show a number of non-classical inter­actions (Pook et al., 2014[Pook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160-m161.], 2015[Pook, N.-P., Hentrich, P. & Gjikaj, M. (2015). Acta Cryst. E71, 910-914.]).

6. Synthesis and crystallization

The starting material, N,N′-(1,4-phenyl­enedicarbon­yl) diglycine, was prepared by the method of Cleaver & Pratt (1955[Cleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544-1546.]). Cesium carbonate (2 mmol), 1,10-phenanthroline (1 mmol) and 2,2′-(benzene-1,4-dicarboxamido)­diacetatic acid (1 mmol) were dissolved in a 1:1 (v/v) mixture of water and methanol (50 ml) and refluxed for 30 minutes. The mixture was allowed to cool to room temperature, and a previously prepared aqueous solution of copper acetate (1 mmol) was slowly added under continuous stirring. Pale-blue block-shaped crystals of the title compound were obtained by slow evaporation at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) and C—H(aromatic) = 0.94 Å and C—H(methyl­ene) = 0.98 Å using a riding model. The water H atoms were located in a difference-Fourier map and were refined with O—H distances restrained to 0.82–0.87 Å and with Uiso(H) = 1.5Ueq(O), except O11—H11A with a fixed distance of 1.00 Å, which led to a stable and consolidated hydrogen-bonding network.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2O
Mr 1674.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 11.0448 (12), 13.0793 (15), 15.419 (2)
α, β, γ (°) 65.322 (10), 81.013 (11), 66.007 (8)
V3) 1848.8 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.25 × 0.23 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Numerical (X-AREA, X-RED32; Stoe, 2008[Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.768, 0.791
No. of measured, independent and observed [I > 2σ(I)] reflections 22995, 6493, 5435
Rint 0.047
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.129, 1.04
No. of reflections 6493
No. of parameters 542
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.33, −0.70
Computer programs: X-AREA and X-RED (Stoe, 2008[Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-RED (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg 2007); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(µ-2-{4-[(Carboxylatomethyl)carbamoyl]benzamido}acetato-κ2O:O')bis[bis(1,10-phenanthroline-κ2N,N')copper(II)] dinitrate N,N'-(1,4-phenylenedicarbonyl)diglycine monosolvate octahydrate top
Crystal data top
[Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2OZ = 1
Mr = 1674.50F(000) = 866
Triclinic, P1Dx = 1.504 Mg m3
a = 11.0448 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0793 (15) ÅCell parameters from 25382 reflections
c = 15.419 (2) Åθ = 4.0–62.1°
α = 65.322 (10)°µ = 0.67 mm1
β = 81.013 (11)°T = 223 K
γ = 66.007 (8)°Block, blue
V = 1848.8 (4) Å30.25 × 0.23 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
6493 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5435 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.047
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.0°
rotation method scansh = 1313
Absorption correction: numerical
(X-AREA, X-RED32; Stoe, 2008)
k = 1515
Tmin = 0.768, Tmax = 0.791l = 1818
22995 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.058P)2 + 2.4056P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6493 reflectionsΔρmax = 1.33 e Å3
542 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.25718 (4)0.21545 (4)0.74008 (3)0.03391 (13)
O10.3776 (3)0.3298 (4)0.6699 (2)0.0753 (10)
O20.4964 (4)0.1408 (4)0.6874 (2)0.0757 (10)
O30.8457 (3)0.1118 (2)0.69057 (17)0.0501 (6)
O40.1969 (3)0.7417 (3)0.7625 (2)0.0674 (9)
O50.1003 (4)0.6311 (3)0.7449 (3)0.0756 (10)
H50.184 (6)0.598 (6)0.735 (4)0.10 (2)*
O60.0556 (3)0.7144 (2)0.98070 (18)0.0470 (6)
O70.5373 (3)0.7260 (3)0.7046 (2)0.0658 (8)
O80.4738 (3)0.7032 (3)0.5920 (3)0.0721 (9)
O90.4346 (3)0.8821 (3)0.5846 (3)0.0763 (10)
O100.6564 (4)0.8916 (4)0.7169 (3)0.0788 (11)
H10A0.609 (7)0.965 (7)0.700 (5)0.118*
H10B0.601 (7)0.860 (6)0.720 (5)0.118*
O110.3366 (4)0.5419 (4)0.6730 (4)0.1124 (16)
H11A0.3777320.5898900.6493090.169*
H11B0.3725320.4601900.6697080.169*
O120.5209 (4)0.5019 (4)0.8692 (3)0.0860 (12)
H12A0.509 (8)0.552 (7)0.817 (6)0.129*
H12B0.456 (8)0.509 (7)0.901 (6)0.129*
O130.3103 (4)0.5241 (3)1.0022 (3)0.0735 (10)
H13A0.340 (7)0.514 (7)1.047 (5)0.110*
H13B0.242 (7)0.580 (6)1.001 (5)0.110*
N10.2860 (3)0.2114 (2)0.86480 (19)0.0344 (6)
N20.2949 (2)0.0293 (2)0.82400 (18)0.0316 (6)
N30.2122 (3)0.2190 (3)0.61963 (19)0.0374 (6)
N40.0604 (3)0.3436 (3)0.7252 (2)0.0383 (6)
N50.6970 (3)0.2107 (3)0.5731 (2)0.0442 (7)
H5N0.676 (4)0.222 (4)0.522 (3)0.053*
N60.0342 (3)0.8618 (3)0.8420 (2)0.0403 (7)
H60.060 (4)0.928 (4)0.809 (3)0.048*
N70.4814 (3)0.7715 (3)0.6274 (3)0.0527 (8)
C10.2822 (4)0.3037 (3)0.8825 (3)0.0443 (8)
H10.2678370.3793340.8316270.053*
C20.2987 (4)0.2912 (4)0.9743 (3)0.0495 (9)
H20.2932660.3584390.9853410.059*
C30.3229 (3)0.1814 (4)1.0482 (3)0.0452 (9)
H30.3344900.1725891.1104450.054*
C40.3306 (3)0.0807 (3)1.0318 (2)0.0356 (7)
C50.3589 (3)0.0393 (4)1.1040 (2)0.0447 (9)
H5C0.3714890.0533821.1675030.054*
C60.3681 (3)0.1326 (4)1.0830 (3)0.0453 (9)
H6C0.3874330.2104331.1319310.054*
C70.3489 (3)0.1146 (3)0.9879 (2)0.0362 (7)
C80.3598 (3)0.2085 (3)0.9613 (3)0.0446 (8)
H80.3815040.2886311.0070150.054*
C90.3387 (3)0.1819 (3)0.8691 (3)0.0457 (9)
H90.3462090.2436190.8498510.055*
C100.3055 (3)0.0621 (3)0.8023 (3)0.0384 (7)
H100.2898000.0453550.7386830.046*
C110.3174 (3)0.0027 (3)0.9160 (2)0.0291 (6)
C120.3098 (3)0.1013 (3)0.9378 (2)0.0303 (6)
C130.2907 (4)0.1582 (4)0.5673 (3)0.0443 (8)
H130.3787780.1074890.5878360.053*
C140.2470 (4)0.1674 (4)0.4843 (3)0.0505 (9)
H140.3040780.1230040.4492690.061*
C150.1214 (4)0.2409 (4)0.4545 (3)0.0539 (10)
H150.0901570.2479670.3981480.065*
C160.0357 (4)0.3078 (3)0.5073 (3)0.0460 (9)
C170.0983 (4)0.3896 (4)0.4813 (3)0.0599 (11)
H170.1347680.4009950.4252480.072*
C180.1743 (4)0.4512 (4)0.5349 (3)0.0597 (12)
H180.2620020.5045030.5148470.072*
C190.1264 (3)0.4381 (3)0.6200 (3)0.0489 (9)
C200.2005 (4)0.5012 (4)0.6777 (4)0.0607 (12)
H200.2894240.5539800.6617670.073*
C210.1440 (4)0.4859 (4)0.7556 (3)0.0601 (11)
H210.1919300.5285520.7941600.072*
C220.0130 (4)0.4056 (3)0.7777 (3)0.0486 (9)
H220.0259200.3944120.8326960.058*
C230.0045 (3)0.3590 (3)0.6474 (2)0.0370 (7)
C240.0857 (3)0.2931 (3)0.5906 (2)0.0364 (7)
C250.8721 (3)0.0698 (4)0.4687 (3)0.0458 (9)
H250.7844920.1172610.4453840.055*
C261.0356 (3)0.0078 (4)0.5836 (2)0.0450 (9)
H261.0627330.0146940.6413210.054*
C270.9071 (3)0.0624 (3)0.5529 (2)0.0341 (7)
C280.8138 (3)0.1297 (3)0.6120 (2)0.0369 (7)
C290.6000 (3)0.2888 (3)0.6167 (3)0.0441 (8)
H29A0.5654640.3720510.5683730.053*
H29B0.6440110.2894300.6668470.053*
C300.4828 (4)0.2492 (5)0.6605 (3)0.0528 (10)
C310.0363 (3)0.8779 (3)1.0573 (2)0.0357 (7)
H310.0613280.7947511.0967320.043*
C320.0312 (3)1.0411 (3)0.9051 (2)0.0357 (7)
H320.0522821.0694620.8402930.043*
C330.0048 (3)0.9183 (3)0.9624 (2)0.0318 (7)
C340.0115 (3)0.8235 (3)0.9290 (2)0.0353 (7)
C350.0341 (3)0.7756 (4)0.8067 (3)0.0461 (9)
H35A0.1003590.8173670.7551270.055*
H35B0.0594110.7125050.8581860.055*
C360.1019 (4)0.7156 (4)0.7694 (3)0.0563 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0328 (2)0.0360 (2)0.0307 (2)0.00752 (16)0.00332 (15)0.01511 (17)
O10.0422 (16)0.131 (3)0.0574 (18)0.0224 (18)0.0062 (13)0.053 (2)
O20.106 (3)0.099 (3)0.0428 (16)0.075 (2)0.0118 (16)0.0072 (17)
O30.0499 (14)0.0586 (17)0.0344 (13)0.0057 (12)0.0082 (11)0.0230 (12)
O40.0387 (15)0.101 (3)0.0662 (19)0.0118 (15)0.0036 (13)0.0495 (19)
O50.069 (2)0.071 (2)0.093 (3)0.0012 (17)0.0093 (18)0.059 (2)
O60.0528 (14)0.0393 (15)0.0485 (15)0.0111 (12)0.0088 (12)0.0197 (12)
O70.0598 (17)0.074 (2)0.0545 (18)0.0071 (15)0.0100 (14)0.0307 (16)
O80.0640 (19)0.081 (2)0.083 (2)0.0173 (17)0.0116 (16)0.048 (2)
O90.0559 (18)0.056 (2)0.097 (3)0.0071 (15)0.0173 (17)0.0196 (19)
O100.072 (2)0.114 (3)0.066 (2)0.031 (2)0.0087 (17)0.051 (2)
O110.102 (3)0.073 (3)0.145 (4)0.017 (2)0.042 (3)0.056 (3)
O120.080 (2)0.066 (2)0.082 (3)0.008 (2)0.017 (2)0.015 (2)
O130.062 (2)0.0505 (19)0.109 (3)0.0093 (15)0.0154 (19)0.038 (2)
N10.0352 (14)0.0343 (15)0.0353 (14)0.0101 (11)0.0006 (11)0.0177 (12)
N20.0283 (12)0.0362 (15)0.0320 (13)0.0099 (11)0.0002 (10)0.0168 (12)
N30.0344 (14)0.0431 (17)0.0327 (14)0.0112 (12)0.0031 (11)0.0151 (13)
N40.0328 (14)0.0353 (15)0.0381 (15)0.0087 (12)0.0021 (12)0.0112 (12)
N50.0367 (15)0.0496 (19)0.0401 (16)0.0054 (13)0.0054 (13)0.0206 (15)
N60.0386 (15)0.0457 (18)0.0406 (17)0.0099 (14)0.0050 (12)0.0247 (14)
N70.0346 (15)0.056 (2)0.063 (2)0.0049 (15)0.0018 (15)0.0294 (19)
C10.051 (2)0.039 (2)0.049 (2)0.0165 (16)0.0015 (16)0.0242 (17)
C20.048 (2)0.057 (2)0.063 (2)0.0208 (18)0.0056 (18)0.043 (2)
C30.0381 (18)0.068 (3)0.045 (2)0.0213 (17)0.0056 (15)0.038 (2)
C40.0261 (14)0.054 (2)0.0323 (16)0.0158 (14)0.0006 (12)0.0208 (15)
C50.0358 (17)0.067 (3)0.0296 (17)0.0229 (17)0.0025 (13)0.0126 (17)
C60.0395 (18)0.049 (2)0.0352 (18)0.0175 (16)0.0076 (14)0.0023 (16)
C70.0288 (15)0.0389 (19)0.0378 (17)0.0143 (14)0.0017 (13)0.0103 (15)
C80.0388 (18)0.0356 (19)0.054 (2)0.0140 (15)0.0057 (16)0.0108 (17)
C90.0405 (18)0.041 (2)0.065 (2)0.0160 (16)0.0023 (17)0.0298 (19)
C100.0352 (17)0.044 (2)0.0425 (18)0.0116 (14)0.0011 (14)0.0250 (16)
C110.0210 (13)0.0348 (17)0.0315 (15)0.0098 (12)0.0009 (11)0.0133 (13)
C120.0239 (14)0.0376 (18)0.0311 (16)0.0119 (13)0.0010 (12)0.0150 (14)
C130.0409 (18)0.054 (2)0.0412 (19)0.0151 (16)0.0017 (15)0.0237 (17)
C140.060 (2)0.067 (3)0.0381 (19)0.031 (2)0.0043 (17)0.0273 (19)
C150.069 (3)0.066 (3)0.0359 (19)0.038 (2)0.0098 (18)0.0132 (18)
C160.050 (2)0.047 (2)0.0390 (19)0.0273 (17)0.0134 (16)0.0024 (16)
C170.058 (2)0.059 (3)0.054 (2)0.028 (2)0.025 (2)0.000 (2)
C180.043 (2)0.049 (2)0.069 (3)0.0169 (18)0.023 (2)0.001 (2)
C190.0328 (17)0.035 (2)0.060 (2)0.0125 (15)0.0055 (16)0.0001 (17)
C200.0341 (19)0.044 (2)0.082 (3)0.0043 (17)0.002 (2)0.013 (2)
C210.046 (2)0.046 (2)0.072 (3)0.0066 (18)0.016 (2)0.026 (2)
C220.046 (2)0.043 (2)0.048 (2)0.0110 (16)0.0069 (16)0.0168 (17)
C230.0332 (16)0.0327 (18)0.0368 (17)0.0137 (14)0.0030 (13)0.0037 (14)
C240.0364 (17)0.0355 (18)0.0326 (16)0.0170 (14)0.0055 (13)0.0038 (14)
C250.0313 (16)0.060 (2)0.0398 (19)0.0064 (16)0.0079 (14)0.0220 (18)
C260.0366 (17)0.062 (2)0.0346 (18)0.0093 (16)0.0069 (14)0.0236 (17)
C270.0332 (16)0.0371 (18)0.0292 (16)0.0132 (14)0.0012 (12)0.0100 (14)
C280.0350 (17)0.0406 (19)0.0335 (17)0.0163 (14)0.0012 (13)0.0114 (15)
C290.0357 (17)0.046 (2)0.047 (2)0.0123 (15)0.0040 (15)0.0196 (17)
C300.045 (2)0.085 (3)0.0306 (18)0.023 (2)0.0071 (15)0.023 (2)
C310.0375 (16)0.0348 (18)0.0329 (16)0.0127 (14)0.0050 (13)0.0108 (14)
C320.0369 (16)0.0442 (19)0.0272 (15)0.0142 (14)0.0027 (13)0.0152 (14)
C330.0240 (14)0.0397 (18)0.0334 (16)0.0095 (13)0.0008 (12)0.0186 (14)
C340.0286 (15)0.042 (2)0.0384 (18)0.0111 (14)0.0015 (13)0.0214 (16)
C350.0428 (19)0.056 (2)0.052 (2)0.0147 (17)0.0043 (16)0.0344 (19)
C360.062 (3)0.054 (2)0.040 (2)0.005 (2)0.0153 (18)0.0273 (19)
Geometric parameters (Å, º) top
Cu—N11.974 (3)C6—H6C0.9400
Cu—N31.974 (3)C7—C111.404 (5)
Cu—N42.111 (3)C7—C81.406 (5)
Cu—N22.119 (3)C8—C91.350 (5)
Cu—O12.235 (4)C8—H80.9400
O1—C301.249 (5)C9—C101.397 (5)
O2—C301.249 (6)C9—H90.9400
O3—C281.214 (4)C10—H100.9400
O4—C361.205 (6)C11—C121.431 (4)
O5—C361.316 (5)C13—C141.379 (5)
O5—H50.87 (6)C13—H130.9400
O6—C341.231 (4)C14—C151.344 (6)
O7—N71.221 (4)C14—H140.9400
O8—N71.259 (5)C15—C161.415 (6)
O9—N71.224 (5)C15—H150.9400
O10—H10A0.83 (7)C16—C241.387 (5)
O10—H10B0.85 (7)C16—C171.426 (6)
O11—H11A0.8498C17—C181.352 (7)
O11—H11B0.9981C17—H170.9400
O12—H12A0.79 (8)C18—C191.408 (6)
O12—H12B0.80 (8)C18—H180.9400
O13—H13A0.75 (7)C19—C231.395 (5)
O13—H13B0.81 (7)C19—C201.408 (6)
N1—C11.328 (4)C20—C211.343 (7)
N1—C121.357 (4)C20—H200.9400
N2—C101.328 (4)C21—C221.390 (6)
N2—C111.350 (4)C21—H210.9400
N3—C131.338 (5)C22—H220.9400
N3—C241.350 (4)C23—C241.439 (5)
N4—C221.334 (5)C25—C271.366 (5)
N4—C231.338 (4)C25—C26i1.401 (5)
N5—C281.322 (4)C25—H250.9400
N5—C291.450 (5)C26—C271.368 (5)
N5—H5N0.79 (4)C26—H260.9400
N6—C341.324 (4)C27—C281.519 (5)
N6—C351.440 (5)C29—C301.542 (5)
N6—H60.75 (4)C29—H29A0.9800
C1—C21.389 (5)C29—H29B0.9800
C1—H10.9400C31—C331.381 (4)
C2—C31.360 (6)C31—C32ii1.385 (5)
C2—H20.9400C31—H310.9400
C3—C41.410 (5)C32—C331.387 (5)
C3—H30.9400C32—H320.9400
C4—C121.397 (4)C33—C341.500 (5)
C4—C51.432 (5)C35—C361.533 (5)
C5—C61.350 (6)C35—H35A0.9800
C5—H5C0.9400C35—H35B0.9800
C6—C71.420 (5)
N1—Cu—N3174.71 (11)C15—C14—C13118.7 (4)
N1—Cu—N493.74 (11)C15—C14—H14120.6
N3—Cu—N482.45 (11)C13—C14—H14120.6
N1—Cu—N281.30 (11)C14—C15—C16120.6 (3)
N3—Cu—N297.30 (11)C14—C15—H15119.7
N4—Cu—N2118.90 (10)C16—C15—H15119.7
N1—Cu—O190.02 (11)C24—C16—C15117.6 (3)
N3—Cu—O194.44 (11)C24—C16—C17117.3 (4)
N4—Cu—O1103.88 (12)C15—C16—C17125.1 (4)
N2—Cu—O1136.69 (11)C18—C17—C16121.9 (4)
C30—O1—Cu98.7 (3)C18—C17—H17119.0
C36—O5—H599 (4)C16—C17—H17119.0
H10A—O10—H10B103 (7)C17—C18—C19122.1 (4)
H11A—O11—H11B121.6C17—C18—H18119.0
H12A—O12—H12B114 (8)C19—C18—H18119.0
H13A—O13—H13B99 (7)C23—C19—C20118.0 (4)
C1—N1—C12119.3 (3)C23—C19—C18117.5 (4)
C1—N1—Cu126.8 (2)C20—C19—C18124.4 (4)
C12—N1—Cu113.9 (2)C21—C20—C19119.9 (4)
C10—N2—C11117.0 (3)C21—C20—H20120.1
C10—N2—Cu132.6 (2)C19—C20—H20120.1
C11—N2—Cu110.3 (2)C20—C21—C22118.4 (4)
C13—N3—C24119.5 (3)C20—C21—H21120.8
C13—N3—Cu127.8 (2)C22—C21—H21120.8
C24—N3—Cu112.7 (2)N4—C22—C21123.5 (4)
C22—N4—C23118.1 (3)N4—C22—H22118.2
C22—N4—Cu132.7 (3)C21—C22—H22118.2
C23—N4—Cu109.1 (2)N4—C23—C19122.0 (3)
C28—N5—C29123.9 (3)N4—C23—C24117.4 (3)
C28—N5—H5N121 (3)C19—C23—C24120.6 (3)
C29—N5—H5N115 (3)N3—C24—C16121.2 (3)
C34—N6—C35120.2 (3)N3—C24—C23118.3 (3)
C34—N6—H6122 (3)C16—C24—C23120.6 (3)
C35—N6—H6118 (3)C27—C25—C26i121.2 (3)
O7—N7—O9120.3 (4)C27—C25—H25119.4
O7—N7—O8119.2 (4)C26i—C25—H25119.4
O9—N7—O8120.4 (4)C27—C26—C25i121.7 (3)
N1—C1—C2121.7 (4)C27—C26—H26119.2
N1—C1—H1119.2C25i—C26—H26119.2
C2—C1—H1119.2C25—C27—C26117.1 (3)
C3—C2—C1119.7 (3)C25—C27—C28124.2 (3)
C3—C2—H2120.1C26—C27—C28118.6 (3)
C1—C2—H2120.1O3—C28—N5121.5 (3)
C2—C3—C4120.1 (3)O3—C28—C27121.8 (3)
C2—C3—H3119.9N5—C28—C27116.8 (3)
C4—C3—H3119.9N5—C29—C30113.6 (3)
C12—C4—C3116.7 (3)N5—C29—H29A108.8
C12—C4—C5118.8 (3)C30—C29—H29A108.8
C3—C4—C5124.5 (3)N5—C29—H29B108.8
C6—C5—C4121.6 (3)C30—C29—H29B108.8
C6—C5—H5C119.2H29A—C29—H29B107.7
C4—C5—H5C119.2O2—C30—O1123.1 (4)
C5—C6—C7120.8 (3)O2—C30—C29120.4 (4)
C5—C6—H6C119.6O1—C30—C29116.5 (4)
C7—C6—H6C119.6C33—C31—C32ii120.4 (3)
C11—C7—C8117.6 (3)C33—C31—H31119.8
C11—C7—C6118.9 (3)C32ii—C31—H31119.8
C8—C7—C6123.5 (3)C31ii—C32—C33120.5 (3)
C9—C8—C7119.0 (3)C31ii—C32—H32119.7
C9—C8—H8120.5C33—C32—H32119.7
C7—C8—H8120.5C31—C33—C32119.0 (3)
C8—C9—C10119.7 (3)C31—C33—C34116.3 (3)
C8—C9—H9120.2C32—C33—C34124.6 (3)
C10—C9—H9120.2O6—C34—N6120.8 (3)
N2—C10—C9123.5 (3)O6—C34—C33121.7 (3)
N2—C10—H10118.2N6—C34—C33117.4 (3)
C9—C10—H10118.2N6—C35—C36112.1 (3)
N2—C11—C7123.3 (3)N6—C35—H35A109.2
N2—C11—C12116.4 (3)C36—C35—H35A109.2
C7—C11—C12120.3 (3)N6—C35—H35B109.2
N1—C12—C4122.5 (3)C36—C35—H35B109.2
N1—C12—C11118.0 (3)H35A—C35—H35B107.9
C4—C12—C11119.5 (3)O4—C36—O5124.3 (4)
N3—C13—C14122.4 (3)O4—C36—C35125.6 (4)
N3—C13—H13118.8O5—C36—C35110.0 (4)
C14—C13—H13118.8
C12—N1—C1—C21.6 (5)C23—N4—C22—C210.5 (6)
Cu—N1—C1—C2177.3 (3)Cu—N4—C22—C21179.0 (3)
N1—C1—C2—C31.7 (6)C20—C21—C22—N40.7 (6)
C1—C2—C3—C40.2 (5)C22—N4—C23—C190.6 (5)
C2—C3—C4—C121.2 (5)Cu—N4—C23—C19179.4 (3)
C2—C3—C4—C5178.3 (3)C22—N4—C23—C24178.9 (3)
C12—C4—C5—C61.1 (5)Cu—N4—C23—C242.2 (4)
C3—C4—C5—C6178.3 (3)C20—C19—C23—N40.9 (5)
C4—C5—C6—C70.4 (5)C18—C19—C23—N4177.7 (3)
C5—C6—C7—C111.3 (5)C20—C19—C23—C24179.2 (3)
C5—C6—C7—C8178.7 (3)C18—C19—C23—C240.6 (5)
C11—C7—C8—C90.5 (5)C13—N3—C24—C160.2 (5)
C6—C7—C8—C9179.5 (3)Cu—N3—C24—C16179.8 (3)
C7—C8—C9—C100.5 (5)C13—N3—C24—C23178.8 (3)
C11—N2—C10—C90.2 (5)Cu—N3—C24—C231.3 (4)
Cu—N2—C10—C9176.2 (2)C15—C16—C24—N31.0 (5)
C8—C9—C10—N21.0 (5)C17—C16—C24—N3178.9 (3)
C10—N2—C11—C70.9 (4)C15—C16—C24—C23179.5 (3)
Cu—N2—C11—C7178.1 (2)C17—C16—C24—C230.4 (5)
C10—N2—C11—C12178.1 (3)N4—C23—C24—N30.8 (5)
Cu—N2—C11—C120.8 (3)C19—C23—C24—N3179.1 (3)
C8—C7—C11—N21.3 (4)N4—C23—C24—C16177.8 (3)
C6—C7—C11—N2178.7 (3)C19—C23—C24—C160.6 (5)
C8—C7—C11—C12177.6 (3)C26i—C25—C27—C260.0 (6)
C6—C7—C11—C122.4 (4)C26i—C25—C27—C28178.1 (3)
C1—N1—C12—C40.0 (4)C25i—C26—C27—C250.0 (6)
Cu—N1—C12—C4178.9 (2)C25i—C26—C27—C28178.3 (3)
C1—N1—C12—C11178.1 (3)C29—N5—C28—O33.2 (6)
Cu—N1—C12—C112.9 (3)C29—N5—C28—C27175.6 (3)
C3—C4—C12—N11.3 (4)C25—C27—C28—O3173.1 (4)
C5—C4—C12—N1178.2 (3)C26—C27—C28—O38.8 (5)
C3—C4—C12—C11179.5 (3)C25—C27—C28—N58.2 (5)
C5—C4—C12—C110.0 (4)C26—C27—C28—N5170.0 (3)
N2—C11—C12—N12.5 (4)C28—N5—C29—C30104.5 (4)
C7—C11—C12—N1176.5 (3)Cu—O1—C30—O20.1 (4)
N2—C11—C12—C4179.3 (3)Cu—O1—C30—C29177.7 (3)
C7—C11—C12—C41.7 (4)N5—C29—C30—O225.4 (5)
C24—N3—C13—C140.6 (6)N5—C29—C30—O1156.7 (3)
Cu—N3—C13—C14179.3 (3)C32ii—C31—C33—C320.4 (5)
N3—C13—C14—C150.6 (6)C32ii—C31—C33—C34179.2 (3)
C13—C14—C15—C160.1 (6)C31ii—C32—C33—C310.4 (5)
C14—C15—C16—C240.9 (6)C31ii—C32—C33—C34179.1 (3)
C14—C15—C16—C17179.0 (4)C35—N6—C34—O60.6 (5)
C24—C16—C17—C180.3 (6)C35—N6—C34—C33178.2 (3)
C15—C16—C17—C18179.6 (4)C31—C33—C34—O67.2 (4)
C16—C17—C18—C190.3 (7)C32—C33—C34—O6173.3 (3)
C17—C18—C19—C230.5 (6)C31—C33—C34—N6171.6 (3)
C17—C18—C19—C20179.0 (4)C32—C33—C34—N68.0 (5)
C23—C19—C20—C211.2 (6)C34—N6—C35—C3681.3 (4)
C18—C19—C20—C21177.3 (4)N6—C35—C36—O45.3 (6)
C19—C20—C21—C221.1 (6)N6—C35—C36—O5175.1 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O110.87 (6)1.84 (6)2.665 (5)159 (6)
O10—H10A···O2iii0.83 (7)2.06 (7)2.878 (6)168 (7)
O10—H10B···O70.85 (7)2.24 (7)3.033 (6)155 (7)
O11—H11A···O80.852.002.848 (6)179
O11—H11B···O11.001.682.643 (6)160
O12—H12A···O70.79 (8)2.32 (8)3.024 (6)149 (8)
O12—H12B···O130.80 (8)2.07 (8)2.856 (6)170 (8)
O13—H13A···O12iv0.75 (7)2.05 (7)2.757 (6)157 (8)
O13—H13B···O60.81 (7)2.05 (7)2.851 (4)170 (7)
N5—H5N···O8v0.79 (4)2.23 (5)2.947 (4)152 (4)
N6—H6···O3vi0.75 (4)2.26 (4)2.995 (4)167 (4)
C2—H2···O130.942.373.302 (5)172
C3—H3···O10iv0.942.443.358 (7)165
C9—H9···O4vii0.942.403.099 (5)131
C13—H13···O20.942.423.031 (5)122
C14—H14···O10v0.942.603.414 (5)145
C25—H25···O9v0.942.533.354 (6)147
C32—H32···O3vi0.942.483.388 (4)163
C35—H35A···O10viii0.982.533.378 (5)145
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1; (vi) x1, y+1, z; (vii) x, y1, z; (viii) x1, y, z.
 

Funding information

We acknowledge support by the Open Access Publishing Fund of Clausthal University of Technology.

References

First citationAlbrecht, M., Gjikaj, M. & Schmidt, A. (2010). Tetrahedron, 66, 7149–7154.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllendorf, M. D., Foster, M. E., Léonard, F., Stavila, V., Feng, P. L., Doty, F. P., Leong, K., Ma, E. Y., Johnston, S. R. & Talin, A. A. (2015). J. Phys. Chem. Lett. 6, 1182–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAvasthi, K., Shukla, L., Kant, R. & Ravikumar, K. (2014). Acta Cryst. C70, 555–561.  CrossRef IUCr Journals Google Scholar
First citationBarceló-Oliver, M., Terrón, A., García-Raso, A., Lah, N. & Turel, I. (2010). Acta Cryst. C66, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715–1724.  Web of Science CrossRef CAS Google Scholar
First citationBerryman, O. B. & Johnson, D. W. (2009). Chem. Commun. pp. 3143–3153.  CrossRef Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544–1546.  CrossRef CAS Web of Science Google Scholar
First citationCook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDance, I. (2003). New J. Chem. 27, 22–27.  Web of Science CrossRef CAS Google Scholar
First citationDoty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. (2009). Adv. Mater. 21, 95–101.  Web of Science CrossRef CAS Google Scholar
First citationDuan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172–3177.  Web of Science CSD CrossRef CAS Google Scholar
First citationEgli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. 116, 2388–2430.  CrossRef Google Scholar
First citationKostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859–3861.  Web of Science CSD CrossRef Google Scholar
First citationKumar Seth, S., Dey, B., Kar, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLim, J., Park, H., Go, H., Lee, J., Ryu, S., Yoshioka, D. & Mikuriya, M. (2014). X-ray Struct. Anal. Online, 30, 13–14.  CrossRef CAS Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationMooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515.  Web of Science CrossRef CAS Google Scholar
First citationPerry IV, J. J., Feng, P. L., Meek, S. T., Leong, K., Doty, F. P. & Allendorf, M. D. (2012). J. Mater. Chem. 22, 10235–10248.  Web of Science CSD CrossRef Google Scholar
First citationPiovesan, D., Minervini, G. & Tosatto, S. E. (2016). Nucleic Acids Res. 44, W367–W374.  CrossRef CAS PubMed Google Scholar
First citationPook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160–m161.  CSD CrossRef IUCr Journals Google Scholar
First citationPook, N.-P., Hentrich, P. & Gjikaj, M. (2015). Acta Cryst. E71, 910–914.  CrossRef IUCr Journals Google Scholar
First citationSalonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842.  Web of Science CrossRef CAS Google Scholar
First citationSantha Lakshmi, S. & Samundeeswari, S. (2015). Int. J. Inorg. Chem. pp. 1–5.  Google Scholar
First citationSchneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924–3977.  Web of Science CrossRef CAS Google Scholar
First citationSciFinder (2019). Chemical Abstracts Service: Columbus, OH, 2010; by chemical structure editor; https://scifinder. cas. org (accessed March 20, 2019).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWan, C.-Q., Chen, X.-D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655–6669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532–3536.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163–m1165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds