research communications
Partial charge transfer in the salt L-ascorbic acid and 4,4′-bipyridine
ofa730 Natural Sciences Complex, Buffalo, 14260-3000, USA, and b771 Natural Sciences Complex, Buffalo, 14260-3000, ., USA
*Correspondence e-mail: jbb6@buffalo.edu
In the title 1:2 10H9N2+·(C6H7.75O6·C6H7.25O6)−, L-ascorbic acid (LAA) and 4,4′-bipyridine (BPy) co-crystallize in the P21 with two molecules of LAA, and one molecule of bpy in the The structure was modeled in two parts due to possible proton transfer from LAA to the corresponding side of the bpy molecule having an occupancy of approximately 0.25 and part 2 with an occupancy of approximately 0.75. In this structure, LAA forms hydrogen bonds with neighboring LAA molecules, forming extended sheets of LAA molecules which are bridged by bpy molecules. A comparison to a related and previously published of LAA and 3-bromo-4-pyridone is presented.
CKeywords: crystal structure; co-crystal; charge transfer; L-ascorbic acid; 4,4′-bipyridine.
CCDC reference: 1910963
1. Chemical context
L-Ascorbic acid (LAA) is an antioxidant and integral vitamin, vitamin C, for many biological systems (Frei et al., 1989; Yogeswaran et al., 2007). Since humans cannot synthesize LAA naturally, vitamin C is often obtained from digesting fruits and vegetables, including citrus fruits, tomatoes and potatoes (Medicine, 2000; Yu et al., 2016). Vitamin C is also produced through the ingestion of dietary supplements composed of LAA or many other ascorbate-containing derivatives including calcium ascorbate, dehydroascorbate, and calcium threonate (Johnston et al., 1994).
Co-crystallization, a process in which two or more molecules form a crystalline single phase material generally in a stoichiometric ratio (Trask, 2007), can tailor pharmaceutically important physical properties including solubility, hygroscopicity, and, active lifetime without altering the active pharmaceutical ingredient (Rodriquez-Honedo et al., 2007; Ross et al., 2016; Shan & Zaworotko, 2008; Thipparaboina et al., 2016). structures are key to identifying important structure-directing interactions in the solid-state (Childs et al., 2007). In this paper, we report the synthesis and single determination of a salt containing LAA and a commonly used co-former, 4,4′-bipyridine (BPy) (Aakeröy et al., 2015, Cherukuvada et al., 2016), which is known to be a secondary building component often used as a pillaring ligand to give three-dimensionality in what would normally be stacking of two-dimensional sheets in crystalline systems (Dinesh et al., 2015; López-Cabrelles et al., 2015).
2. Structural commentary
LAA and BPy co-crystallize in the P21 with two molecules of LAA, and one molecule of BPy in the (Fig. 1). While the lattice is composed of molecules in a variety of charge states (vide infra), the neutral molecule abbreviations (LAA and BPy) provide a convenient method for describing the structure in terms of these fragments.
The overall three-dimensional structure is formed by interlocking sheets of LAA bridged by BPy molecules. Initial attempts to refine the structure as neutral molecules were not satisfactory and suggested the presence of disorder in the positions of the protons involved in intermolecular hydrogen bonding between LAA and Bpy (H4 and H10). Fourier difference maps produced following a ). The positions of the two protons were initially modeled independently (model 1) in two parts to account for the disorder arising from proton transfer from LAA to Bpy. In this model, the occupancy of H10 and its disorder partner atom H2 refined to 0.22736 and 0.70972, respectively. The occupancy of H4 and its disorder partner atom H1 refined to 0.70972 and 0.23932, respectively. The similarity of the occupancies for the two pairs indicated that the disorder was likely correlated.
using all atoms except the suspected disorders protons (H4, H10) revealed the presence of two peaks of electron density between the two pairs of heavy atoms involved in the hydrogen bonding (N1 and O4; N2 and O10, Fig. 2An additional R1 values for both model 1 and model 2 were found to be 3.94%. Given the same values for R1 for both models, the model with the fewer parameters, model 2, will be reported. There has been an active debate in the community whether an organic salt due to proton transfer is considered a (Aakeröy et al., 2007; Cruz-Cabeza, 2012; Wang et al., 2018). However, as we cannot rule out the presence of a non-ionized species within the lattice, we will refer to the obtained product as a salt (Cherukuvada et al., 2016).
was performed in which the occupancies were constrained to be identical for the pairs of atoms (single part command for both pairs, model 2). The occupancies for model 2 were determined to be 0.73718 and 0.26282 for the pairs, similar to what was observed in model 1. The3. Supramolecular features
In the structure, LAA forms hydrogen bonds with neighboring LAA molecules, giving rise to extended sheets of LAA molecules which are bridged by BPy molecules (Table 1, Fig. 3). The LAA–LAA interactions consist of O—H⋯O—H hydrogen bonds where each LAA forms a total of three hydrogen bonds with three different LAA molecules, O—H⋯O=hydrogen bond where each LAA forms a hydrogen bond with one different LAA, and O—H⋯Oether where each LAA forms a hydrogen bond with one different LAA. The LAA–BPy interaction consists of O—H⋯Npyridyl hydrogen bonds such that each BPy forms a hydrogen bond with two neighboring LAA molecules (Fig. 4). C—H⋯O interactions also occur.
4. Database survey
Recently the et al., 2016). While the LAA molecules in each structure contain similar interactions, LAA–BPy and LAA–BrPyd demonstrate important differences with regard to the three-dimensional structure because of the different binding synthons of BrPyd compared to BPy (Fig. 5). In the structure of LAA–BrPyd, the carbonyl on the BrPyd hydrogen bonds with both hydroxyl groups located on the five-membered ring of LAA, whereas the carbonyl located on the five-membered ring of LAA hydrogen bonds with the pyridinium group of BrPyd. The corresponding hydrogen-bond network results in two-dimensional sheets. The three-dimensional aspect of LAA–BrPyd arises from stacking of the sheets, which are held together by hydrogen bonding of the terminal hydroxyl group of the aliphatic carbon chain with the hydroxyl group on the five-membered ring on the LAA in the adjacent sheet.
structure of LAA and 3-bromo-4-pyridone (BrPyd) was reported (Wang5. Synthesis and crystallization
All chemicals were obtained commercially and used as received. Solid L-ascorbic acid (0.0450 g, 0.256 mmol) and 4,4′-bipyridine (0.0200 g, 0.128 mmol) were added to a 25 ml scintillation vial. To this were added approximately 12 ml of 200 proof ethanol followed by gentle heating. The loosely capped vial was then placed into a dark cabinet. Plate crystals of the title compound suitable for single crystal X-ray diffraction measurements were obtained.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map and freely refined. As the is 0.4, the of LAA cannot be determined by the however, the was synthesized using an enantiomerically pure starting material.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1910963
https://doi.org/10.1107/S2056989019005334/eb2018sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005334/eb2018Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H9N2+·C6H7.75O60.25−·C6H7.25O60.75−− | F(000) = 532.3832 |
Mr = 508.44 | Dx = 1.583 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.7724 (6) Å | Cell parameters from 8756 reflections |
b = 14.4069 (17) Å | θ = 2.6–36.2° |
c = 15.6857 (19) Å | µ = 0.13 mm−1 |
β = 98.393 (2)° | T = 90 K |
V = 1066.9 (2) Å3 | Plate, yellow |
Z = 2 | 0.2 × 0.1 × 0.02 mm |
Bruker SMART APEXII area detector diffractometer | 9452 independent reflections |
Radiation source: microfocus rotating anode, Incoatec Iµs | 8448 reflections with I ≥ 2u(I) |
Mirror optics monochromator | Rint = 0.039 |
Detector resolution: 7.9 pixels mm-1 | θmax = 35.1°, θmin = 1.9° |
ω and φ scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −23→23 |
Tmin = 0.683, Tmax = 0.747 | l = −25→25 |
31611 measured reflections |
Refinement on F2 | 37 constraints |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0945P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.47 e Å−3 |
9452 reflections | Δρmin = −0.29 e Å−3 |
357 parameters | Absolute structure: Flack (1983) |
1 restraint | Absolute structure parameter: 0.4 (6) |
Refinement. X-ray diffraction data was collected on a Bruker SMART APEX2 CCD diffractometer installed at a rotating anode source (MoKα radiation, λ=0.71073 Å), and equipped with an Oxford Cryosystems (Cryostream700) nitrogen gas-flow apparatus. The data were collected by the rotation method with a 0.5° frame-width (ω scan) and a 15 second exposure per frame. Three sets of data (360 frames in each set) were collected, nominally covering complete reciprocal space. The structure was solved in the Olex2 (Dolomanov, O. V. B. et al., 2009) crystallography program using the XS structure solution program (Sheldrick,G. M, 2008) using the Charge Flipping method and refined using the olex2.refine refinement package(Bourhis, L. J., et al., 2015) using least-squares minimization. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.49355 (18) | 0.45455 (6) | 0.44984 (6) | 0.01210 (15) | |
O2 | 0.4742 (2) | 0.55289 (7) | 0.55860 (6) | 0.01868 (18) | |
O3 | 0.8313 (2) | 0.67789 (6) | 0.46065 (6) | 0.01575 (17) | |
H3 | 0.921 (4) | 0.6856 (13) | 0.5086 (12) | 0.014 (4)* | |
O4 | 0.9691 (2) | 0.55149 (6) | 0.31883 (6) | 0.01423 (16) | |
H4 | 1.069 (6) | 0.607 (2) | 0.3253 (17) | 0.0213 (2)* | 0.75 (2) |
O5 | 0.98812 (19) | 0.35794 (6) | 0.47231 (5) | 0.01216 (15) | |
H5 | 1.142 (5) | 0.3877 (16) | 0.4705 (14) | 0.031 (6)* | |
O6 | 0.8176 (2) | 0.19330 (6) | 0.38768 (6) | 0.01444 (16) | |
H6 | 0.716 (5) | 0.1509 (15) | 0.4013 (13) | 0.026 (5)* | |
C1 | 0.5661 (2) | 0.53643 (8) | 0.49141 (8) | 0.01170 (19) | |
C2 | 0.7521 (2) | 0.58827 (7) | 0.44491 (7) | 0.01084 (18) | |
C3 | 0.8080 (2) | 0.53592 (7) | 0.37784 (7) | 0.00969 (18) | |
C4 | 0.6454 (2) | 0.44679 (7) | 0.37658 (7) | 0.00959 (17) | |
H4a | 0.5081 (2) | 0.44220 (7) | 0.32212 (7) | 0.0115 (2)* | |
C5 | 0.8294 (2) | 0.35942 (8) | 0.38832 (7) | 0.00976 (17) | |
H5a | 0.9613 (2) | 0.35849 (8) | 0.34430 (7) | 0.0117 (2)* | |
C6 | 0.6423 (2) | 0.27408 (8) | 0.37799 (8) | 0.01268 (19) | |
H6a | 0.5258 (2) | 0.27417 (8) | 0.32035 (8) | 0.0152 (2)* | |
H6b | 0.5135 (2) | 0.27418 (8) | 0.42206 (8) | 0.0152 (2)* | |
O7 | 0.86622 (18) | 0.29619 (5) | 0.00750 (5) | 0.00983 (14) | |
O8 | 1.02947 (19) | 0.17939 (6) | −0.06529 (6) | 0.01324 (16) | |
O9 | 0.6792 (2) | 0.05632 (6) | 0.03244 (6) | 0.01390 (16) | |
H9 | 0.558 (5) | 0.0416 (17) | −0.0046 (16) | 0.032 (6)* | |
O10 | 0.39236 (18) | 0.19546 (6) | 0.13751 (6) | 0.01330 (15) | |
H10 | 0.353 (13) | 0.1386 (9) | 0.137 (4) | 0.0199 (2)* | 0.25 (2) |
O11 | 1.0111 (2) | 0.30023 (6) | 0.20099 (5) | 0.01293 (15) | |
H11 | 1.115 (4) | 0.2763 (15) | 0.1732 (13) | 0.026 (5)* | |
O12 | 0.7556 (2) | 0.51222 (7) | 0.09005 (7) | 0.01958 (19) | |
H12 | 0.845 (5) | 0.5638 (16) | 0.0855 (14) | 0.033 (6)* | |
C7 | 0.8780 (2) | 0.20343 (7) | −0.01219 (7) | 0.00978 (18) | |
C8 | 0.6981 (2) | 0.15146 (7) | 0.03486 (7) | 0.00985 (18) | |
C9 | 0.5682 (2) | 0.21089 (7) | 0.08490 (7) | 0.00962 (18) | |
C10 | 0.6682 (2) | 0.30805 (7) | 0.06851 (7) | 0.00877 (17) | |
H10a | 0.5036 (2) | 0.34608 (7) | 0.04143 (7) | 0.0105 (2)* | |
C11 | 0.8137 (2) | 0.35734 (8) | 0.14937 (7) | 0.00942 (17) | |
H11a | 0.6630 (2) | 0.37406 (8) | 0.18475 (7) | 0.0113 (2)* | |
C12 | 0.9591 (2) | 0.44733 (8) | 0.12926 (8) | 0.01143 (18) | |
H12a | 1.0989 (2) | 0.43428 (8) | 0.08998 (8) | 0.0137 (2)* | |
H12b | 1.0615 (2) | 0.47396 (8) | 0.18315 (8) | 0.0137 (2)* | |
N1 | 0.7273 (2) | 0.19521 (7) | 0.69016 (6) | 0.01118 (16) | |
H1 | 0.8437 (2) | 0.15248 (7) | 0.67582 (6) | 0.0134 (2)* | 0.25 (2) |
N2 | −0.1522 (2) | 0.54416 (7) | 0.82171 (6) | 0.01059 (16) | |
H2 | −0.249 (5) | 0.5896 (18) | 0.8370 (15) | 0.01271 (19)* | 0.75 (2) |
C13 | 0.5899 (2) | 0.18296 (8) | 0.75790 (8) | 0.01196 (19) | |
H13 | 0.6182 (2) | 0.12658 (8) | 0.78939 (8) | 0.0144 (2)* | |
C14 | 0.4091 (2) | 0.24834 (8) | 0.78414 (8) | 0.01189 (19) | |
H14 | 0.3166 (2) | 0.23705 (8) | 0.83281 (8) | 0.0143 (2)* | |
C15 | 0.3638 (2) | 0.33182 (7) | 0.73790 (7) | 0.00892 (17) | |
C16 | 0.5031 (2) | 0.34329 (8) | 0.66607 (7) | 0.01098 (19) | |
H16 | 0.4744 (2) | 0.39804 (8) | 0.63217 (7) | 0.0132 (2)* | |
C17 | 0.6837 (2) | 0.27425 (8) | 0.64452 (7) | 0.01128 (18) | |
H17 | 0.7792 (2) | 0.28315 (8) | 0.59609 (7) | 0.0135 (2)* | |
C18 | −0.1299 (2) | 0.46219 (8) | 0.86276 (7) | 0.01123 (19) | |
H18 | −0.2282 (2) | 0.45253 (8) | 0.91050 (7) | 0.0135 (2)* | |
C19 | 0.0339 (3) | 0.39174 (8) | 0.83650 (7) | 0.01045 (18) | |
H19 | 0.0474 (3) | 0.33395 (8) | 0.86598 (7) | 0.0125 (2)* | |
C20 | 0.1802 (2) | 0.40554 (7) | 0.76632 (7) | 0.00874 (17) | |
C21 | 0.1521 (3) | 0.49220 (8) | 0.72563 (8) | 0.0149 (2) | |
H21 | 0.2475 (3) | 0.50417 (8) | 0.67768 (8) | 0.0179 (3)* | |
C22 | −0.0134 (3) | 0.56029 (8) | 0.75481 (8) | 0.0146 (2) | |
H22 | −0.0293 (3) | 0.61916 (8) | 0.72725 (8) | 0.0176 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0126 (4) | 0.0088 (3) | 0.0165 (4) | −0.0019 (3) | 0.0075 (3) | 0.0001 (3) |
O2 | 0.0275 (5) | 0.0128 (4) | 0.0190 (4) | 0.0043 (3) | 0.0144 (4) | 0.0019 (3) |
O3 | 0.0253 (4) | 0.0062 (3) | 0.0153 (4) | −0.0035 (3) | 0.0013 (3) | −0.0006 (3) |
O4 | 0.0203 (4) | 0.0101 (4) | 0.0142 (4) | −0.0039 (3) | 0.0089 (3) | 0.0005 (3) |
O5 | 0.0126 (3) | 0.0114 (3) | 0.0122 (3) | −0.0020 (3) | 0.0007 (3) | 0.0016 (3) |
O6 | 0.0203 (4) | 0.0068 (3) | 0.0170 (4) | −0.0012 (3) | 0.0053 (3) | 0.0003 (3) |
C1 | 0.0138 (5) | 0.0078 (4) | 0.0143 (5) | 0.0021 (4) | 0.0050 (4) | 0.0008 (4) |
C2 | 0.0145 (5) | 0.0064 (4) | 0.0121 (5) | −0.0009 (3) | 0.0036 (4) | 0.0011 (3) |
C3 | 0.0114 (4) | 0.0073 (4) | 0.0106 (4) | −0.0012 (3) | 0.0022 (3) | 0.0015 (3) |
C4 | 0.0103 (4) | 0.0079 (4) | 0.0109 (4) | −0.0006 (3) | 0.0028 (3) | 0.0006 (3) |
C5 | 0.0125 (4) | 0.0073 (4) | 0.0098 (4) | −0.0011 (3) | 0.0027 (3) | −0.0002 (3) |
C6 | 0.0152 (5) | 0.0073 (4) | 0.0155 (5) | −0.0021 (4) | 0.0021 (4) | 0.0004 (4) |
O7 | 0.0139 (3) | 0.0068 (3) | 0.0100 (3) | 0.0000 (3) | 0.0060 (3) | −0.0005 (3) |
O8 | 0.0184 (4) | 0.0109 (4) | 0.0118 (4) | 0.0030 (3) | 0.0067 (3) | −0.0004 (3) |
O9 | 0.0167 (4) | 0.0056 (3) | 0.0182 (4) | −0.0009 (3) | −0.0016 (3) | −0.0008 (3) |
O10 | 0.0126 (3) | 0.0093 (3) | 0.0198 (4) | −0.0007 (3) | 0.0086 (3) | 0.0026 (3) |
O11 | 0.0173 (4) | 0.0122 (3) | 0.0095 (3) | 0.0056 (3) | 0.0029 (3) | 0.0017 (3) |
O12 | 0.0169 (4) | 0.0100 (4) | 0.0295 (5) | −0.0025 (3) | −0.0044 (4) | 0.0079 (4) |
C7 | 0.0125 (4) | 0.0077 (4) | 0.0089 (4) | 0.0009 (3) | 0.0006 (3) | 0.0000 (3) |
C8 | 0.0115 (4) | 0.0061 (4) | 0.0120 (5) | −0.0003 (3) | 0.0019 (4) | −0.0001 (3) |
C9 | 0.0088 (4) | 0.0078 (4) | 0.0122 (4) | −0.0004 (3) | 0.0015 (3) | 0.0015 (3) |
C10 | 0.0106 (4) | 0.0063 (4) | 0.0103 (4) | 0.0008 (3) | 0.0047 (3) | 0.0010 (3) |
C11 | 0.0123 (4) | 0.0073 (4) | 0.0093 (4) | 0.0015 (3) | 0.0037 (3) | 0.0007 (3) |
C12 | 0.0134 (5) | 0.0081 (4) | 0.0127 (4) | −0.0013 (4) | 0.0016 (4) | 0.0000 (4) |
N1 | 0.0116 (4) | 0.0101 (4) | 0.0121 (4) | 0.0017 (3) | 0.0027 (3) | −0.0020 (3) |
N2 | 0.0117 (4) | 0.0083 (4) | 0.0125 (4) | 0.0025 (3) | 0.0039 (3) | −0.0013 (3) |
C13 | 0.0147 (5) | 0.0086 (4) | 0.0132 (5) | 0.0026 (4) | 0.0039 (4) | 0.0005 (4) |
C14 | 0.0144 (5) | 0.0094 (4) | 0.0130 (5) | 0.0022 (4) | 0.0059 (4) | 0.0013 (4) |
C15 | 0.0095 (4) | 0.0073 (4) | 0.0104 (4) | 0.0006 (3) | 0.0027 (3) | −0.0012 (3) |
C16 | 0.0135 (5) | 0.0097 (4) | 0.0104 (4) | 0.0014 (3) | 0.0038 (4) | −0.0006 (3) |
C17 | 0.0135 (4) | 0.0106 (4) | 0.0104 (4) | 0.0015 (4) | 0.0040 (3) | −0.0014 (4) |
C18 | 0.0135 (5) | 0.0102 (4) | 0.0110 (5) | 0.0003 (3) | 0.0052 (4) | −0.0009 (3) |
C19 | 0.0144 (5) | 0.0083 (4) | 0.0096 (4) | 0.0008 (3) | 0.0046 (4) | 0.0000 (3) |
C20 | 0.0100 (4) | 0.0069 (4) | 0.0098 (4) | 0.0006 (3) | 0.0034 (3) | −0.0014 (3) |
C21 | 0.0204 (5) | 0.0099 (5) | 0.0171 (5) | 0.0055 (4) | 0.0118 (4) | 0.0041 (4) |
C22 | 0.0204 (5) | 0.0093 (5) | 0.0162 (5) | 0.0051 (4) | 0.0092 (4) | 0.0038 (4) |
O1—C1 | 1.3677 (14) | C8—C9 | 1.3694 (16) |
O1—C4 | 1.4494 (13) | C9—C10 | 1.5130 (15) |
O2—C1 | 1.2223 (15) | C10—H10a | 1.0000 |
O3—H3 | 0.816 (19) | C10—C11 | 1.5290 (16) |
O3—C2 | 1.3579 (14) | C11—H11a | 1.0000 |
O4—H4 | 0.93 (3) | C11—C12 | 1.5251 (16) |
O4—C3 | 1.3062 (14) | C12—H12a | 0.9900 |
O5—H5 | 0.86 (2) | C12—H12b | 0.9900 |
O5—C5 | 1.4207 (14) | N1—H1 | 0.8800 |
O6—H6 | 0.83 (2) | N1—C13 | 1.3394 (15) |
O6—C6 | 1.4283 (15) | N1—C17 | 1.3449 (15) |
C1—C2 | 1.4376 (16) | N2—H2 | 0.85 (3) |
C2—C3 | 1.3523 (16) | N2—C18 | 1.3419 (15) |
C3—C4 | 1.4991 (15) | N2—C22 | 1.3403 (15) |
C4—H4a | 1.0000 | C13—H13 | 0.9500 |
C4—C5 | 1.5306 (16) | C13—C14 | 1.3802 (16) |
C5—H5a | 1.0000 | C14—H14 | 0.9500 |
C5—C6 | 1.5142 (16) | C14—C15 | 1.4049 (16) |
C6—H6a | 0.9900 | C15—C16 | 1.3992 (15) |
C6—H6b | 0.9900 | C15—C20 | 1.4858 (14) |
O7—C7 | 1.3746 (13) | C16—H16 | 0.9500 |
O7—C10 | 1.4499 (13) | C16—C17 | 1.3897 (15) |
O8—C7 | 1.2296 (14) | C17—H17 | 0.9500 |
O9—H9 | 0.79 (3) | C18—H18 | 0.9500 |
O9—C8 | 1.3739 (13) | C18—C19 | 1.3803 (16) |
O10—H10 | 0.8400 | C19—H19 | 0.9500 |
O10—C9 | 1.2794 (14) | C19—C20 | 1.4012 (15) |
O11—H11 | 0.79 (2) | C20—C21 | 1.3998 (15) |
O11—C11 | 1.4134 (14) | C21—H21 | 0.9500 |
O12—H12 | 0.86 (2) | C21—C22 | 1.3789 (16) |
O12—C12 | 1.4217 (15) | C22—H22 | 0.9500 |
C7—C8 | 1.4240 (16) | ||
C4—O1—C1 | 108.88 (8) | C11—C10—O7 | 109.96 (9) |
C2—O3—H3 | 113.0 (13) | C11—C10—C9 | 113.89 (9) |
C5—O5—H5 | 107.8 (15) | C11—C10—H10a | 109.35 (6) |
C6—O6—H6 | 105.8 (15) | C10—C11—O11 | 112.89 (9) |
O2—C1—O1 | 118.74 (10) | H11a—C11—O11 | 107.21 (5) |
C2—C1—O1 | 109.77 (10) | H11a—C11—C10 | 107.21 (6) |
C2—C1—O2 | 131.48 (11) | C12—C11—O11 | 109.14 (9) |
C1—C2—O3 | 125.30 (11) | C12—C11—C10 | 112.86 (9) |
C3—C2—O3 | 126.19 (10) | C12—C11—H11a | 107.21 (6) |
C3—C2—C1 | 108.15 (10) | C11—C12—O12 | 110.23 (9) |
C2—C3—O4 | 131.22 (10) | H12a—C12—O12 | 109.61 (7) |
C4—C3—O4 | 119.67 (10) | H12a—C12—C11 | 109.61 (6) |
C4—C3—C2 | 109.11 (10) | H12b—C12—O12 | 109.61 (6) |
C3—C4—O1 | 103.96 (9) | H12b—C12—C11 | 109.61 (6) |
H4a—C4—O1 | 109.96 (6) | H12b—C12—H12a | 108.1 |
H4a—C4—C3 | 109.96 (6) | C17—N1—C13 | 118.57 (10) |
C5—C4—O1 | 108.21 (9) | C22—N2—C18 | 120.98 (10) |
C5—C4—C3 | 114.57 (9) | H13—C13—N1 | 118.44 (6) |
C5—C4—H4a | 109.96 (6) | C14—C13—N1 | 123.12 (11) |
C4—C5—O5 | 110.05 (9) | C14—C13—H13 | 118.44 (7) |
H5a—C5—O5 | 109.63 (6) | H14—C14—C13 | 120.45 (7) |
H5a—C5—C4 | 109.63 (6) | C15—C14—C13 | 119.10 (10) |
C6—C5—O5 | 108.26 (9) | C15—C14—H14 | 120.45 (6) |
C6—C5—C4 | 109.62 (9) | C16—C15—C14 | 117.47 (10) |
C6—C5—H5a | 109.63 (6) | C20—C15—C14 | 120.67 (9) |
C5—C6—O6 | 108.86 (9) | C20—C15—C16 | 121.84 (9) |
H6a—C6—O6 | 109.91 (6) | H16—C16—C15 | 120.14 (6) |
H6a—C6—C5 | 109.91 (6) | C17—C16—C15 | 119.73 (10) |
H6b—C6—O6 | 109.91 (6) | C17—C16—H16 | 120.14 (7) |
H6b—C6—C5 | 109.91 (6) | C16—C17—N1 | 122.00 (10) |
H6b—C6—H6a | 108.3 | H17—C17—N1 | 119.00 (6) |
C10—O7—C7 | 108.36 (8) | H17—C17—C16 | 119.00 (7) |
C8—O9—H9 | 109.1 (18) | H18—C18—N2 | 119.58 (6) |
C11—O11—H11 | 111.1 (15) | C19—C18—N2 | 120.83 (10) |
C12—O12—H12 | 106.7 (15) | C19—C18—H18 | 119.58 (7) |
O8—C7—O7 | 118.26 (10) | H19—C19—C18 | 120.03 (7) |
C8—C7—O7 | 110.31 (9) | C20—C19—C18 | 119.94 (10) |
C8—C7—O8 | 131.42 (10) | C20—C19—H19 | 120.03 (6) |
C7—C8—O9 | 123.53 (10) | C19—C20—C15 | 121.17 (9) |
C9—C8—O9 | 127.32 (10) | C21—C20—C15 | 121.48 (9) |
C9—C8—C7 | 109.03 (10) | C21—C20—C19 | 117.33 (10) |
C8—C9—O10 | 130.96 (10) | H21—C21—C20 | 119.85 (6) |
C10—C9—O10 | 121.55 (10) | C22—C21—C20 | 120.30 (11) |
C10—C9—C8 | 107.50 (9) | C22—C21—H21 | 119.85 (7) |
C9—C10—O7 | 104.79 (8) | C21—C22—N2 | 120.61 (11) |
H10a—C10—O7 | 109.35 (5) | H22—C22—N2 | 119.70 (6) |
H10a—C10—C9 | 109.35 (6) | H22—C22—C21 | 119.70 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O10i | 0.86 (3) | 1.74 (3) | 2.5862 (14) | 169 (2) |
O3—H3···O5ii | 0.817 (19) | 2.531 (19) | 2.8832 (13) | 107.5 (15) |
O3—H3···O6ii | 0.817 (19) | 1.903 (19) | 2.7117 (14) | 170.0 (19) |
O4—H4···N1ii | 0.93 (3) | 1.64 (3) | 2.5428 (14) | 163 (3) |
O5—H5···O1iii | 0.85 (2) | 2.00 (2) | 2.8510 (13) | 173 (2) |
O6—H6···O2iv | 0.83 (2) | 1.84 (2) | 2.6616 (14) | 173 (2) |
O9—H9···O12v | 0.79 (2) | 1.91 (2) | 2.6902 (14) | 175 (2) |
O11—H11···O10iii | 0.79 (2) | 1.91 (2) | 2.6663 (13) | 162 (2) |
O12—H12···O8vi | 0.87 (2) | 1.81 (2) | 2.6683 (14) | 169 (2) |
C5—H5A···O11 | 1.00 (1) | 2.44 (1) | 3.2950 (14) | 143 (1) |
C12—H12B···O4 | 0.99 (1) | 2.50 (1) | 3.3249 (16) | 141 (1) |
C14—H14···O8vii | 0.95 (1) | 2.40 (1) | 3.3311 (15) | 166 (1) |
C16—H16···O2 | 0.95 (1) | 2.51 (1) | 3.4513 (16) | 170 (1) |
C17—H17···O5 | 0.95 (1) | 2.55 (1) | 3.4651 (14) | 163 (1) |
C19—H19···O7vii | 0.95 (1) | 2.56 (1) | 3.2181 (14) | 127 (1) |
C19—H19···O8vii | 0.95 (1) | 2.48 (1) | 3.4267 (15) | 174 (1) |
C21—H21···O2 | 0.95 (1) | 2.40 (1) | 3.3418 (17) | 173 (1) |
C22—H22···O6viii | 0.95 (1) | 2.44 (1) | 3.1860 (16) | 136 (1) |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+2, y+1/2, −z+1; (iii) x+1, y, z; (iv) −x+1, y−1/2, −z+1; (v) −x+1, y−1/2, −z; (vi) −x+2, y+1/2, −z; (vii) x−1, y, z+1; (viii) −x+1, y+1/2, −z+1. |
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-1455039).
References
Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322. Web of Science PubMed Google Scholar
Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). IUCrJ, 2, 498–510. Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEngComm, 18, 8528–8555. Web of Science CrossRef CAS Google Scholar
Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365. CAS Google Scholar
Dinesh, D., Subhadip, N. & Carolina, S. E. K. B. P. (2015). Chem. Eur. J. 21, 17422–17429. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frei, B., England, L. & Ames, B. N. (1989). Proc. Natl Acad. Sci. USA, 86, 6377–6381. CrossRef CAS PubMed Web of Science Google Scholar
Johnston, C. S. & Luo, B. (1994). J. Am. Diet. Assoc. 94, 779–781. CrossRef CAS PubMed Web of Science Google Scholar
López-Cabrelles, J., Giménez-Marqués, M., Mínguez Espallargas, G. & Coronado, E. (2015). Inorg. Chem. 54, 10490–10496. Web of Science PubMed Google Scholar
Medicine, I. O. (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, p 529. Washington, DC: The National Academies Press. Google Scholar
Rodriquez-Honedo, N., Nehm, S. J. & Jayasanker, A. (2007). Pharmaceutical Technology, 3rd ed., pp 615–635. London: Taylor & Francis. Google Scholar
Ross, S. A., Lamprou, D. A. & Douroumis, D. (2016). Chem. Commun. 52, 8772–8786. Web of Science CrossRef CAS Google Scholar
Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thipparaboina, R., Kumar, D., Chavan, R. B. & Shastri, N. R. (2016). Drug Discovery Today, 21, 481–490. Web of Science CrossRef CAS PubMed Google Scholar
Trask, A. V. (2007). MolPharma 301–309. Google Scholar
Wang, J.-R., Fan, X., Ding, Q. & Mei, X. (2016). J. Mol. Struct. 1119, 269–275. Web of Science CSD CrossRef CAS Google Scholar
Wang, T., Stevens, J. S., Vetter, T., Whitehead, G. F. S., Vitorica-Yrezabal, I. J., Hao, H. & Cruz-Cabeza, A. J. (2018). Cryst. Growth Des. 18, 6973–6983. Web of Science CSD CrossRef CAS Google Scholar
Yogeswaran, U., Thiagarajan, S. & Chen, S. M. (2007). Anal. Biochem. 365, 122–131. Web of Science CrossRef PubMed CAS Google Scholar
Yu, A., Tang, L. & Czech, J. (2016). Food Sci. 34, 503–510. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.