research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[tetra-μ-chlorido-tetra­chlorido­bis­­(μ3-4,4′-bi-1,2,4-triazole-κ3N1:N2:N1′)(μ-4,4′-bi-1,2,4-triazole-κ3N1:N1′)tetra­copper(II)]

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine
*Correspondence e-mail: ab_lysenko@univ.kiev.ua

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 April 2019; accepted 23 April 2019; online 14 May 2019)

The title Cu2+–chloride coordination polymer with the 4,4′-bi-1,2,4-triazole ligand (btr), [Cu4Cl8(C4H6N6)3]n, crystallizes in the non-centrosymmetric ortho­rhom­bic space group Fdd2. The two independent Cu2+ cations adopt distorted square-pyramidal geometries with {Cl2N2+Cl} coordination polyhedra. The metal atoms are bridged by μ-Cl anions forming left- and right-handed helical chains of sequence [–(μ-Cl)CuCl–]n along the c-axis direction. In the perpendicular directions, the btr ligands act in μ- and μ3– coordination modes in a 2:3 ratio. The μ-btr bridges connect neighboring helices of the same handedness, whereas the μ3-btr ligands link the helices of opposite handedness, leading to a racemic three-dimensional framework. The structure is consolidated by weak C—H⋯Cl and C—H⋯N inter­actions.

1. Chemical context

4,4′-Bi-1,2,4-triazole, C4H4N6, btr, represents a unique example of a bitopic ligand used for the design of coordination solids. Four nitro­gen donor sites in the btr mol­ecule provide the possibility of different bridging modes [e.g. bi-N1,N1′ (Liu et al., 2007[Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483-1489.]), bi-N1,N2 (Zhang et al., 2008[Zhang, X.-C., Chen, Y.-H. & Liu, B. (2008). Inorg. Chem. Commun. 11, 446-449.]) tri-N1,N2,N1′ (Huang, Zhao et al., 2008[Huang, Y.-Q., Zhao, X.-Q., Shi, W., Liu, W.-Y., Chen, Z.-L., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2008). Cryst. Growth Des. 8, 3652-3660.]) and tetra­dentate N1,N2,N1′,N2′ (Lysenko et al., 2006[Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772-3776.])], generating extended coordination networks. In this context, small nucleophilic anions play a very important role in the formation of the [MXM]n coordination units (X = OH, Cl and Br) that often function as secondary building blocks. In this case, the tri- and tetra­dentate behavior of btr can be preferably realized (Lysenko et al., 2006[Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772-3776.], 2007[Lysenko, A. B., Govor, E. V. & Domasevitch, K. V. (2007). Inorg. Chim. Acta, 360, 55-60.]). Indeed, the CuCl2–btr system is very sensitive to the reaction conditions. For example, a one-dimensional coordination polymer of [Cu3(μ2-Cl)2Cl2(btr)4]Cl2 was isolated from an aqueous solution (Lysenko et al., 2006[Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772-3776.]). Another one-dimensional coordination polymer of [Cu(μ2-Cl)2(btr)]·H2O was isolated in the presence of aqueous HCl (Zhang et al., 2008[Zhang, X.-C., Chen, Y.-H. & Liu, B. (2008). Inorg. Chem. Commun. 11, 446-449.]). In this paper, we report the crystal structure of the title three-dimensional coordination polymer, (I)[link], which was also prepared from aqueous solution by mixing CuCl2, btr and NH4Cl.

2. Structural commentary

The title compound crystallizes from aqueous solution in the ortho­rhom­bic system, non-centrosymmetric space group Fdd2. The asymmetric unit consists of two copper(II) atoms, four chloride anions and one and a half crystallographically independent btr mol­ecules. One btr ligand occupies a general position, while a half of btr sits on a special position (2-twofold axis running along the c axis, perpendicular to the N—N single bond).

[Scheme 1]

The first copper ion, Cu1, adopts a distorted square-pyramidal {Cl2N2+Cl} coordination with two triazole N atoms and two chloride anions in the plane [Cu1—N1 = 1.985 (3) Å, Cu1—N4i = 1.957 (3) Å, N4i—Cu1—N1 = 168.82 (15)° symmetry code: (i) x − [{1\over 4}], −y + [{1\over 4}], z + [{3\over 4}], and Cu1—Cl2 = 2.2780 (12) Å, Cu1—Cl1 = 2.5146 (11) Å] and one chloride co-ligand at the apical position [Cu1—Cl3 = 2.4155 (10) Å, Fig. 1[link], Table 1[link]]. Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) introduced the geometric parameter τ to distinguish whether the geometry of five-coordinate systems is square-pyramidal or trigonal–bipyramidal. According to this scheme, trigonal–bipyramidal geometries are associated with a τ value close to 1.00, whereas for square-pyramidal geometries this value is around 0. Here, the value of τ for Cu1 is 0.35, suggesting the coordination is closer to square-pyramidal. The second independent copper cation, Cu2, has a similar square-pyramidal coordination geometry {Cl2N2+Cl} with τ = 0.32. Two triazole nitro­gen atoms (N2, N7) and two chloride anions (Cl1, Cl4) comprise the basal plane whereas the fifth chloride donor [Cl3ii, symmetry code: (ii) x, y, z − 1] occupies an apical site. The copper polyhedra are linked together through the μ2-bridging Cl1 and Cl3 anions to form left- and right-handed [Cu1–Cl1–Cu2–Cl3]n helices running along the c-axis direction (Fig. 2[link]). The helices have a straight line helical axis (21 axis), with the pitch being equal to the lattice parameter c. The btr ligands adopt μ- and μ3- coordination modes in a 2:3 ratio. It is inter­esting to note that the μ-bridge btr mol­ecules connect two neighboring helices of the same handedness (ΔΔ or ΛΛ). Then, each helix is connected to the other two of opposite handedness through μ3-bridging btr mol­ecules, thus forming a three-dimensional framework structure (Fig. 3[link]). The btr ligand conformation is characterized by a torsion angle between its triazole planes. The μ- and μ3-btr ligands are twisted around the N—N single bond adopting a non-coplanar orientation of the triazolyl groups. The dihedral angles between two triazolyl rings are 74.4 (2) and 78.1 (2)° for μ-and μ3-btr, respectively.

Table 1
Selected bond lengths (Å)

Cu1—N4i 1.957 (3) Cu2—N7 2.031 (3)
Cu1—N1 1.985 (3) Cu2—N2 2.032 (3)
Cu1—Cl2 2.2780 (12) Cu2—Cl4 2.2769 (9)
Cu1—Cl3 2.4155 (10) Cu2—Cl1 2.3185 (10)
Cu1—Cl1 2.5146 (11) Cu2—Cl3ii 2.6238 (13)
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (ii) x, y, z-1.
[Figure 1]
Figure 1
A portion of the structure of (I)[link], showing the atom-labeling scheme and the copper coordination environments. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x − [{1\over 4}], −y + [{1\over 4}], z + [{3\over 4}]; (ii) x, y, z − 1].
[Figure 2]
Figure 2
A portion of the helical structure of (I)[link] (view in the ac plane). The μ-btr mol­ecules link two neighboring helices of the same handedness, whereas the μ3-btr mol­ecules link two neighboring helices of the opposite handedness. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional helical framework structure of (I)[link] (top view).

3. Supra­molecular features

In the crystal, compound (I)[link] exhibits non-classical C—H⋯Cl and C—H⋯N hydrogen bonds (Fig. 4[link], Table 2[link]). The C5 carbon atom of the triazole ring, as a weak hydrogen-bond donor (Desiraju & Steiner, 1999[Desiraju, R. G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]), is involved in a hydrogen bond with the acceptor N5v atom of the neighboring triazole fragment. There is a bifurcated contact between one C1—H1 fragment and Cl2 (major component) and Cl1iii (minor component). Two other hydrogen-bonding inter­actions are found between the C4—H4 and C6—H6 fragments and atoms Cl3iv and Cl2vi, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1iii 0.94 2.74 3.528 (4) 142
C1—H1⋯Cl2 0.94 2.53 3.052 (4) 115
C4—H4⋯Cl3iv 0.94 2.61 3.390 (4) 141
C5—H5⋯N5v 0.94 2.47 3.365 (6) 160
C6—H6⋯Cl2vi 0.94 2.70 3.315 (5) 124
Symmetry codes: (iii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{5\over 4}}].
[Figure 4]
Figure 4
The packing of (I)[link] (view along the [[\overline{1}]51] direction), showing the non-classical C—H⋯Cl and C—H⋯N hydrogen-bonded inter­actions that support the three-dimensional coordination framework. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (iii) [{1\over 4}] + x, [{1\over 4}] − y, [{1\over 4}] + z, (iv) [{1\over 2}] − x, −y, −[{1\over 2}] + z, (v), [{1\over 2}] − x, −y, [{1\over 2}] + z, (vi) −[{1\over 4}] + x, [{1\over 4}] − y, −[{5\over 4}] + z].

In conclusion, the study demonstrates that a combination of a neutral btr mol­ecule and a chloride anion, as complementary donor units, has promising potential in the development and design of metal–organic frameworks.

4. Database survey

According to our CSD search (version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the ligand geometries in (I)[link] are in agreement with a general tendency for the coordinating btr ligand to adopt a twisted conformation. The only exception was observed for the MnII–oxalate complex [Mn2(btr)(C2O4)2(H2O)2]·2H2O (Huang & Cheng, 2008[Huang, Y.-Q. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 66-68.]), in which the torsion angle is close to 0°. In the pure ligand, the dihedral angle is equal to ca 88° (Domiano, 1977[Domiano, P. (1977). Cryst. Struct. Commun. 6, 503-506.]).

5. Synthesis and crystallization

4,4′-Bi-1,2,4-triazole (btr) was prepared in a yield of 60% by the literature transamination reaction between 4-amino-1,2,4-triazole and N,N-di­methyl­formamide azine (Bartlett & Humphrey, 1967[Bartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664-1666.]).

A solution of CuCl2·2H2O (34.0 mg, 0.20 mmol) and NH4Cl (10.6 mg, 0.20 mmol) in 2 ml of water was added to a solution of btr (27.2 mg, 0.20 mmol) in water (0.5 ml). A drop of 0.10 M HCl aqueous solution was then added. The resulting green solution was left standing for several days to form green prismatic crystals. The product was filtered, washed with water and dried in air (yield 47%). Analysis calculated for C12H12Cl8Cu4N18 (I)[link]: C, 15.23; H, 1.28; N, 26.65%. Found: C, 15.20; H, 1.32; N, 26.55. IR (KBr disks, selected bands, cm−1): 608s, 668w, 856m, 896w, 950w, 1022s, 1044s, 1076m, 1102m, 1212w, 1308m, 1338w, 1354w, 1400w, 1498m, 1536m, 3088s, 3112s, 3120s.

The thermal stability of (I)[link] was investigated by measurements of temperature-dependent PXRD (Fig. 5[link]). In the temperature-dependent X-ray diffractograms, the initial positions of the main diffraction peaks remain unchanged upon heating to 523 K. Above this temperature, the compound undergoes irreversible thermal decomposition, resulting in an amorphous solid.

[Figure 5]
Figure 5
(a) PXRD data [calculated (red line) and experimental (dark line)] and (b) two-dimensional thermo-PXRD patterns for (I)[link] (Cu Kα1 radiation).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions [C—H = 0.94 Å (aromatic)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH).

Table 3
Experimental details

Crystal data
Chemical formula [Cu4Cl8(C4H4N6)3]
Mr 946.16
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 213
a, b, c (Å) 28.869 (2), 31.584 (2), 6.2953 (4)
V3) 5740.1 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.71
Crystal size (mm) 0.18 × 0.15 × 0.14
 
Data collection
Diffractometer Stoe Image plate diffraction system
Absorption correction Numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])]
Tmin, Tmax 0.548, 0.608
No. of measured, independent and observed [I > 2σ(I)] reflections 10421, 3323, 3116
Rint 0.027
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.02
No. of reflections 3323
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.50
Absolute structure Flack x determined using 1309 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (9)
Computer programs: IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Poly[tetra-µ-chlorido-tetrachloridobis(µ3-4,4'-bi-1,2,4-triazole-\ κ3N1:N2:N1')(µ-4,4'-bi-1,2,4-triazole-\ κ3N1:N1')tetracopper(II)] top
Crystal data top
[Cu4Cl8(C4H4N6)3]Dx = 2.190 Mg m3
Mr = 946.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 8000 reflections
a = 28.869 (2) Åθ = 1.9–28.0°
b = 31.584 (2) ŵ = 3.71 mm1
c = 6.2953 (4) ÅT = 213 K
V = 5740.1 (7) Å3Prism, green
Z = 80.18 × 0.15 × 0.14 mm
F(000) = 3696
Data collection top
Stoe Image plate diffraction system
diffractometer
3116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ oscillation scansθmax = 28.0°, θmin = 1.9°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 3835
Tmin = 0.548, Tmax = 0.608k = 4141
10421 measured reflectionsl = 77
3323 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3323 reflectionsΔρmax = 0.88 e Å3
190 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack x determined using 1309 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19850 (2)0.11917 (2)0.94479 (8)0.01706 (11)
Cu20.15568 (2)0.05097 (2)0.52000 (9)0.01686 (11)
Cl10.14339 (3)0.11976 (3)0.63547 (17)0.0209 (2)
Cl20.26125 (4)0.14870 (5)1.1066 (3)0.0475 (4)
Cl30.17082 (4)0.05490 (3)1.10950 (19)0.0239 (2)
Cl40.16908 (3)0.01996 (3)0.54022 (18)0.0218 (2)
N10.23912 (10)0.08783 (9)0.7448 (6)0.0167 (7)
N20.22374 (10)0.06244 (9)0.5786 (6)0.0179 (7)
N30.29808 (10)0.06871 (9)0.5595 (6)0.0170 (7)
N40.40573 (10)0.09304 (9)0.3439 (6)0.0177 (7)
N50.41628 (11)0.05456 (10)0.4425 (7)0.0226 (8)
N60.34333 (10)0.06931 (9)0.4869 (6)0.0155 (7)
N70.08703 (10)0.04075 (10)0.4717 (6)0.0204 (7)
N80.06179 (12)0.06766 (11)0.3404 (7)0.0279 (8)
N90.01831 (10)0.01434 (9)0.4350 (6)0.0200 (7)
C10.28398 (12)0.09087 (11)0.7326 (7)0.0158 (8)
H10.3032320.1057800.8269340.019*
C20.25984 (13)0.05162 (11)0.4654 (8)0.0207 (8)
H20.2594960.0350510.3413420.025*
C30.36206 (12)0.10152 (11)0.3721 (7)0.0171 (7)
H30.3462910.1255700.3220480.021*
C40.37822 (13)0.04129 (11)0.5283 (8)0.0219 (8)
H40.3750670.0161780.6071630.026*
C50.06065 (13)0.00912 (12)0.5272 (8)0.0226 (8)
H50.0693540.0134710.6158240.027*
C60.02098 (15)0.05083 (13)0.3162 (9)0.0289 (10)
H60.0029040.0618610.2311510.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0133 (2)0.01689 (19)0.0210 (3)0.00071 (16)0.00427 (17)0.00465 (18)
Cu20.01083 (18)0.01540 (19)0.0244 (3)0.00198 (15)0.00067 (18)0.00141 (17)
Cl10.0206 (4)0.0200 (4)0.0222 (6)0.0052 (3)0.0041 (3)0.0035 (3)
Cl20.0170 (5)0.0704 (8)0.0550 (9)0.0052 (5)0.0044 (5)0.0457 (7)
Cl30.0316 (5)0.0194 (4)0.0206 (6)0.0048 (3)0.0037 (4)0.0015 (3)
Cl40.0232 (4)0.0163 (4)0.0258 (6)0.0001 (3)0.0024 (4)0.0027 (4)
N10.0151 (14)0.0192 (13)0.016 (2)0.0012 (11)0.0024 (12)0.0045 (12)
N20.0117 (13)0.0181 (14)0.024 (2)0.0031 (11)0.0009 (12)0.0045 (12)
N30.0120 (14)0.0175 (14)0.021 (2)0.0010 (10)0.0038 (12)0.0031 (12)
N40.0160 (15)0.0163 (13)0.021 (2)0.0008 (11)0.0028 (13)0.0034 (12)
N50.0180 (15)0.0172 (14)0.033 (2)0.0018 (11)0.0052 (14)0.0047 (14)
N60.0107 (12)0.0178 (13)0.018 (2)0.0019 (10)0.0038 (11)0.0024 (12)
N70.0153 (14)0.0188 (14)0.027 (2)0.0019 (11)0.0017 (13)0.0014 (13)
N80.0225 (17)0.0229 (16)0.038 (3)0.0033 (13)0.0041 (15)0.0103 (15)
N90.0127 (14)0.0174 (14)0.030 (2)0.0037 (11)0.0007 (13)0.0017 (13)
C10.0134 (15)0.0155 (14)0.018 (2)0.0008 (12)0.0018 (14)0.0032 (13)
C20.0158 (16)0.0222 (17)0.024 (3)0.0045 (13)0.0026 (15)0.0087 (16)
C30.0139 (16)0.0178 (15)0.020 (2)0.0007 (12)0.0026 (14)0.0009 (14)
C40.0186 (17)0.0174 (16)0.030 (2)0.0007 (13)0.0035 (16)0.0010 (16)
C50.0184 (17)0.0202 (16)0.029 (3)0.0025 (13)0.0035 (17)0.0044 (16)
C60.022 (2)0.0262 (19)0.039 (3)0.0040 (15)0.0051 (18)0.0107 (18)
Geometric parameters (Å, º) top
Cu1—N4i1.957 (3)N4—N51.398 (4)
Cu1—N11.985 (3)N5—C41.294 (5)
Cu1—Cl22.2780 (12)N6—C31.360 (5)
Cu1—Cl32.4155 (10)N6—C41.366 (5)
Cu1—Cl12.5146 (11)N7—C51.304 (5)
Cu2—N72.031 (3)N7—N81.392 (5)
Cu2—N22.032 (3)N8—C61.302 (5)
Cu2—Cl42.2769 (9)N9—C51.363 (5)
Cu2—Cl12.3185 (10)N9—C61.376 (5)
Cu2—Cl3ii2.6238 (13)N9—N9iii1.392 (6)
N1—C11.301 (5)C1—H10.9400
N1—N21.391 (5)C2—H20.9400
N2—C21.308 (5)C3—H30.9400
N3—C11.357 (5)C4—H40.9400
N3—C21.364 (5)C5—H50.9400
N3—N61.384 (4)C6—H60.9400
N4—C31.301 (5)
N4i—Cu1—N1168.82 (15)C3—N4—Cu1v123.5 (3)
N4i—Cu1—Cl292.14 (10)N5—N4—Cu1v127.3 (2)
N1—Cu1—Cl291.04 (9)C4—N5—N4106.4 (3)
N4i—Cu1—Cl395.62 (10)C3—N6—C4107.0 (3)
N1—Cu1—Cl392.79 (10)C3—N6—N3124.1 (3)
Cl2—Cu1—Cl3114.53 (6)C4—N6—N3128.6 (3)
N4i—Cu1—Cl188.14 (11)C5—N7—N8108.7 (3)
N1—Cu1—Cl183.47 (10)C5—N7—Cu2130.7 (3)
Cl2—Cu1—Cl1147.82 (6)N8—N7—Cu2120.2 (2)
Cl3—Cu1—Cl197.43 (4)C6—N8—N7107.1 (3)
N7—Cu2—N2177.81 (15)C5—N9—C6106.4 (3)
N7—Cu2—Cl491.02 (9)C5—N9—N9iii127.0 (3)
N2—Cu2—Cl490.06 (9)C6—N9—N9iii126.0 (3)
N7—Cu2—Cl192.67 (10)N1—C1—N3107.9 (3)
N2—Cu2—Cl185.63 (9)N1—C1—H1126.0
Cl4—Cu2—Cl1158.52 (5)N3—C1—H1126.0
N7—Cu2—Cl3ii91.29 (12)N2—C2—N3107.7 (4)
N2—Cu2—Cl3ii90.54 (11)N2—C2—H2126.1
Cl4—Cu2—Cl3ii94.20 (4)N3—C2—H2126.1
Cl1—Cu2—Cl3ii106.86 (4)N4—C3—N6107.7 (3)
Cu2—Cl1—Cu197.99 (4)N4—C3—H3126.2
Cu1—Cl3—Cu2iv121.17 (4)N6—C3—H3126.2
C1—N1—N2108.4 (3)N5—C4—N6109.7 (3)
C1—N1—Cu1126.1 (3)N5—C4—H4125.2
N2—N1—Cu1125.2 (2)N6—C4—H4125.2
C2—N2—N1107.8 (3)N7—C5—N9108.5 (4)
C2—N2—Cu2128.7 (3)N7—C5—H5125.8
N1—N2—Cu2123.2 (2)N9—C5—H5125.8
C1—N3—C2108.1 (3)N8—C6—N9109.2 (4)
C1—N3—N6122.8 (3)N8—C6—H6125.4
C2—N3—N6128.7 (3)N9—C6—H6125.4
C3—N4—N5109.2 (3)
C1—N1—N2—C21.8 (4)Cu2—N2—C2—N3175.9 (3)
Cu1—N1—N2—C2171.8 (3)C1—N3—C2—N20.9 (5)
C1—N1—N2—Cu2176.4 (3)N6—N3—C2—N2173.2 (3)
Cu1—N1—N2—Cu22.8 (4)N5—N4—C3—N60.2 (5)
C3—N4—N5—C40.4 (5)Cu1v—N4—C3—N6178.0 (3)
Cu1v—N4—N5—C4177.3 (3)C4—N6—C3—N40.7 (5)
C1—N3—N6—C378.1 (5)N3—N6—C3—N4175.6 (4)
C2—N3—N6—C393.2 (5)N4—N5—C4—N60.8 (5)
C1—N3—N6—C495.6 (5)C3—N6—C4—N51.0 (5)
C2—N3—N6—C493.1 (6)N3—N6—C4—N5175.5 (4)
C5—N7—N8—C61.5 (5)N8—N7—C5—N90.2 (5)
Cu2—N7—N8—C6172.0 (3)Cu2—N7—C5—N9172.4 (3)
N2—N1—C1—N31.2 (4)C6—N9—C5—N71.2 (5)
Cu1—N1—C1—N3172.3 (3)N9iii—N9—C5—N7172.8 (3)
C2—N3—C1—N10.2 (4)N7—N8—C6—N92.2 (6)
N6—N3—C1—N1172.6 (3)C5—N9—C6—N82.1 (6)
N1—N2—C2—N31.6 (4)N9iii—N9—C6—N8173.9 (4)
Symmetry codes: (i) x1/4, y+1/4, z+3/4; (ii) x, y, z1; (iii) x, y, z; (iv) x, y, z+1; (v) x+1/4, y+1/4, z3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1vi0.942.743.528 (4)142
C1—H1···Cl20.942.533.052 (4)115
C2—H2···Cl4vii0.942.843.518 (4)130
C3—H3···Cl2ii0.942.903.672 (4)140
C3—H3···N8vi0.942.663.242 (5)121
C4—H4···Cl3vii0.942.613.390 (4)141
C5—H5···N5viii0.942.473.365 (6)160
C6—H6···Cl2ix0.942.703.315 (5)124
Symmetry codes: (ii) x, y, z1; (vi) x+1/4, y+1/4, z+1/4; (vii) x+1/2, y, z1/2; (viii) x+1/2, y, z+1/2; (ix) x1/4, y+1/4, z5/4.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037-05).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664–1666.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, R. G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDomiano, P. (1977). Cryst. Struct. Commun. 6, 503–506.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Y.-Q. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 66–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y.-Q., Zhao, X.-Q., Shi, W., Liu, W.-Y., Chen, Z.-L., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2008). Cryst. Growth Des. 8, 3652–3660.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483–1489.  Web of Science CSD CrossRef CAS Google Scholar
First citationLysenko, A. B., Govor, E. V. & Domasevitch, K. V. (2007). Inorg. Chim. Acta, 360, 55–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationLysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772–3776.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhang, X.-C., Chen, Y.-H. & Liu, B. (2008). Inorg. Chem. Commun. 11, 446–449.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds