research communications
μ-chlorido-tetrachloridobis(μ3-4,4′-bi-1,2,4-triazole-κ3N1:N2:N1′)(μ-4,4′-bi-1,2,4-triazole-κ3N1:N1′)tetracopper(II)]
of poly[tetra-aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine
*Correspondence e-mail: ab_lysenko@univ.kiev.ua
The title Cu2+–chloride coordination polymer with the 4,4′-bi-1,2,4-triazole ligand (btr), [Cu4Cl8(C4H6N6)3]n, crystallizes in the non-centrosymmetric orthorhombic Fdd2. The two independent Cu2+ cations adopt distorted square-pyramidal geometries with {Cl2N2+Cl} coordination polyhedra. The metal atoms are bridged by μ-Cl anions forming left- and right-handed helical chains of sequence [–(μ-Cl)CuCl–]n along the c-axis direction. In the perpendicular directions, the btr ligands act in μ- and μ3– coordination modes in a 2:3 ratio. The μ-btr bridges connect neighboring helices of the same handedness, whereas the μ3-btr ligands link the helices of opposite handedness, leading to a racemic three-dimensional framework. The structure is consolidated by weak C—H⋯Cl and C—H⋯N interactions.
Keywords: crystal structure; 4,4′-bi-1,2,4-triazole; metal–organic frameworks; copper(II) complexes.
CCDC reference: 1911618
1. Chemical context
4,4′-Bi-1,2,4-triazole, C4H4N6, btr, represents a unique example of a bitopic ligand used for the design of coordination solids. Four nitrogen donor sites in the btr molecule provide the possibility of different bridging modes [e.g. bi-N1,N1′ (Liu et al., 2007), bi-N1,N2 (Zhang et al., 2008) tri-N1,N2,N1′ (Huang, Zhao et al., 2008) and tetradentate N1,N2,N1′,N2′ (Lysenko et al., 2006)], generating extended coordination networks. In this context, small nucleophilic anions play a very important role in the formation of the [M–X–M]n coordination units (X = OH,− Cl− and Br−) that often function as secondary building blocks. In this case, the tri- and tetradentate behavior of btr can be preferably realized (Lysenko et al., 2006, 2007). Indeed, the CuCl2–btr system is very sensitive to the reaction conditions. For example, a one-dimensional coordination polymer of [Cu3(μ2-Cl)2Cl2(btr)4]Cl2 was isolated from an aqueous solution (Lysenko et al., 2006). Another one-dimensional coordination polymer of [Cu(μ2-Cl)2(btr)]·H2O was isolated in the presence of aqueous HCl (Zhang et al., 2008). In this paper, we report the of the title three-dimensional coordination polymer, (I), which was also prepared from aqueous solution by mixing CuCl2, btr and NH4Cl.
2. Structural commentary
The title compound crystallizes from aqueous solution in the orthorhombic system, non-centrosymmetric dd2. The consists of two copper(II) atoms, four chloride anions and one and a half crystallographically independent btr molecules. One btr ligand occupies a general position, while a half of btr sits on a special position (2-twofold axis running along the c axis, perpendicular to the N—N single bond).
FThe first copper ion, Cu1, adopts a distorted square-pyramidal {Cl2N2+Cl} coordination with two triazole N atoms and two chloride anions in the plane [Cu1—N1 = 1.985 (3) Å, Cu1—N4i = 1.957 (3) Å, N4i—Cu1—N1 = 168.82 (15)° symmetry code: (i) x − , −y + , z + , and Cu1—Cl2 = 2.2780 (12) Å, Cu1—Cl1 = 2.5146 (11) Å] and one chloride co-ligand at the apical position [Cu1—Cl3 = 2.4155 (10) Å, Fig. 1, Table 1]. Addison et al. (1984) introduced the geometric parameter τ to distinguish whether the geometry of five-coordinate systems is square-pyramidal or trigonal–bipyramidal. According to this scheme, trigonal–bipyramidal geometries are associated with a τ value close to 1.00, whereas for square-pyramidal geometries this value is around 0. Here, the value of τ for Cu1 is 0.35, suggesting the coordination is closer to square-pyramidal. The second independent copper cation, Cu2, has a similar square-pyramidal coordination geometry {Cl2N2+Cl} with τ = 0.32. Two triazole nitrogen atoms (N2, N7) and two chloride anions (Cl1, Cl4) comprise the basal plane whereas the fifth chloride donor [Cl3ii, symmetry code: (ii) x, y, z − 1] occupies an apical site. The copper polyhedra are linked together through the μ2-bridging Cl1 and Cl3 anions to form left- and right-handed [Cu1–Cl1–Cu2–Cl3]n helices running along the c-axis direction (Fig. 2). The helices have a straight line helical axis (21 axis), with the pitch being equal to the lattice parameter c. The btr ligands adopt μ- and μ3- coordination modes in a 2:3 ratio. It is interesting to note that the μ-bridge btr molecules connect two neighboring helices of the same handedness (ΔΔ or ΛΛ). Then, each helix is connected to the other two of opposite handedness through μ3-bridging btr molecules, thus forming a three-dimensional framework structure (Fig. 3). The btr ligand conformation is characterized by a torsion angle between its triazole planes. The μ- and μ3-btr ligands are twisted around the N—N single bond adopting a non-coplanar orientation of the triazolyl groups. The dihedral angles between two triazolyl rings are 74.4 (2) and 78.1 (2)° for μ-and μ3-btr, respectively.
3. Supramolecular features
In the crystal, compound (I) exhibits non-classical C—H⋯Cl and C—H⋯N hydrogen bonds (Fig. 4, Table 2). The C5 carbon atom of the triazole ring, as a weak hydrogen-bond donor (Desiraju & Steiner, 1999), is involved in a hydrogen bond with the acceptor N5v atom of the neighboring triazole fragment. There is a bifurcated contact between one C1—H1 fragment and Cl2 (major component) and Cl1iii (minor component). Two other hydrogen-bonding interactions are found between the C4—H4 and C6—H6 fragments and atoms Cl3iv and Cl2vi, respectively.
In conclusion, the study demonstrates that a combination of a neutral btr molecule and a chloride anion, as complementary donor units, has promising potential in the development and design of metal–organic frameworks.
4. Database survey
According to our CSD search (version 5.39, update May 2018; Groom et al., 2016), the ligand geometries in (I) are in agreement with a general tendency for the coordinating btr ligand to adopt a twisted conformation. The only exception was observed for the MnII–oxalate complex [Mn2(btr)(C2O4)2(H2O)2]·2H2O (Huang & Cheng, 2008), in which the torsion angle is close to 0°. In the pure ligand, the dihedral angle is equal to ca 88° (Domiano, 1977).
5. Synthesis and crystallization
4,4′-Bi-1,2,4-triazole (btr) was prepared in a yield of 60% by the literature transamination reaction between 4-amino-1,2,4-triazole and N,N-dimethylformamide azine (Bartlett & Humphrey, 1967).
A solution of CuCl2·2H2O (34.0 mg, 0.20 mmol) and NH4Cl (10.6 mg, 0.20 mmol) in 2 ml of water was added to a solution of btr (27.2 mg, 0.20 mmol) in water (0.5 ml). A drop of 0.10 M HCl aqueous solution was then added. The resulting green solution was left standing for several days to form green prismatic crystals. The product was filtered, washed with water and dried in air (yield 47%). Analysis calculated for C12H12Cl8Cu4N18 (I): C, 15.23; H, 1.28; N, 26.65%. Found: C, 15.20; H, 1.32; N, 26.55. IR (KBr disks, selected bands, cm−1): 608s, 668w, 856m, 896w, 950w, 1022s, 1044s, 1076m, 1102m, 1212w, 1308m, 1338w, 1354w, 1400w, 1498m, 1536m, 3088s, 3112s, 3120s.
The thermal stability of (I) was investigated by measurements of temperature-dependent PXRD (Fig. 5). In the temperature-dependent X-ray diffractograms, the initial positions of the main diffraction peaks remain unchanged upon heating to 523 K. Above this temperature, the compound undergoes irreversible thermal decomposition, resulting in an amorphous solid.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions [C—H = 0.94 Å (aromatic)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1911618
https://doi.org/10.1107/S2056989019005516/hb7819sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005516/hb7819Isup2.hkl
Data collection: IPDS Software (Stoe & Cie, 2000); cell
IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Cu4Cl8(C4H4N6)3] | Dx = 2.190 Mg m−3 |
Mr = 946.16 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 8000 reflections |
a = 28.869 (2) Å | θ = 1.9–28.0° |
b = 31.584 (2) Å | µ = 3.71 mm−1 |
c = 6.2953 (4) Å | T = 213 K |
V = 5740.1 (7) Å3 | Prism, green |
Z = 8 | 0.18 × 0.15 × 0.14 mm |
F(000) = 3696 |
Stoe Image plate diffraction system diffractometer | 3116 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
φ oscillation scans | θmax = 28.0°, θmin = 1.9° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −38→35 |
Tmin = 0.548, Tmax = 0.608 | k = −41→41 |
10421 measured reflections | l = −7→7 |
3323 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0381P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3323 reflections | Δρmax = 0.88 e Å−3 |
190 parameters | Δρmin = −0.50 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1309 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.010 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.19850 (2) | 0.11917 (2) | 0.94479 (8) | 0.01706 (11) | |
Cu2 | 0.15568 (2) | 0.05097 (2) | 0.52000 (9) | 0.01686 (11) | |
Cl1 | 0.14339 (3) | 0.11976 (3) | 0.63547 (17) | 0.0209 (2) | |
Cl2 | 0.26125 (4) | 0.14870 (5) | 1.1066 (3) | 0.0475 (4) | |
Cl3 | 0.17082 (4) | 0.05490 (3) | 1.10950 (19) | 0.0239 (2) | |
Cl4 | 0.16908 (3) | −0.01996 (3) | 0.54022 (18) | 0.0218 (2) | |
N1 | 0.23912 (10) | 0.08783 (9) | 0.7448 (6) | 0.0167 (7) | |
N2 | 0.22374 (10) | 0.06244 (9) | 0.5786 (6) | 0.0179 (7) | |
N3 | 0.29808 (10) | 0.06871 (9) | 0.5595 (6) | 0.0170 (7) | |
N4 | 0.40573 (10) | 0.09304 (9) | 0.3439 (6) | 0.0177 (7) | |
N5 | 0.41628 (11) | 0.05456 (10) | 0.4425 (7) | 0.0226 (8) | |
N6 | 0.34333 (10) | 0.06931 (9) | 0.4869 (6) | 0.0155 (7) | |
N7 | 0.08703 (10) | 0.04075 (10) | 0.4717 (6) | 0.0204 (7) | |
N8 | 0.06179 (12) | 0.06766 (11) | 0.3404 (7) | 0.0279 (8) | |
N9 | 0.01831 (10) | 0.01434 (9) | 0.4350 (6) | 0.0200 (7) | |
C1 | 0.28398 (12) | 0.09087 (11) | 0.7326 (7) | 0.0158 (8) | |
H1 | 0.303232 | 0.105780 | 0.826934 | 0.019* | |
C2 | 0.25984 (13) | 0.05162 (11) | 0.4654 (8) | 0.0207 (8) | |
H2 | 0.259496 | 0.035051 | 0.341342 | 0.025* | |
C3 | 0.36206 (12) | 0.10152 (11) | 0.3721 (7) | 0.0171 (7) | |
H3 | 0.346291 | 0.125570 | 0.322048 | 0.021* | |
C4 | 0.37822 (13) | 0.04129 (11) | 0.5283 (8) | 0.0219 (8) | |
H4 | 0.375067 | 0.016178 | 0.607163 | 0.026* | |
C5 | 0.06065 (13) | 0.00912 (12) | 0.5272 (8) | 0.0226 (8) | |
H5 | 0.069354 | −0.013471 | 0.615824 | 0.027* | |
C6 | 0.02098 (15) | 0.05083 (13) | 0.3162 (9) | 0.0289 (10) | |
H6 | −0.002904 | 0.061861 | 0.231151 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0133 (2) | 0.01689 (19) | 0.0210 (3) | 0.00071 (16) | 0.00427 (17) | −0.00465 (18) |
Cu2 | 0.01083 (18) | 0.01540 (19) | 0.0244 (3) | −0.00198 (15) | −0.00067 (18) | −0.00141 (17) |
Cl1 | 0.0206 (4) | 0.0200 (4) | 0.0222 (6) | 0.0052 (3) | −0.0041 (3) | −0.0035 (3) |
Cl2 | 0.0170 (5) | 0.0704 (8) | 0.0550 (9) | 0.0052 (5) | −0.0044 (5) | −0.0457 (7) |
Cl3 | 0.0316 (5) | 0.0194 (4) | 0.0206 (6) | −0.0048 (3) | 0.0037 (4) | 0.0015 (3) |
Cl4 | 0.0232 (4) | 0.0163 (4) | 0.0258 (6) | −0.0001 (3) | −0.0024 (4) | 0.0027 (4) |
N1 | 0.0151 (14) | 0.0192 (13) | 0.016 (2) | −0.0012 (11) | 0.0024 (12) | −0.0045 (12) |
N2 | 0.0117 (13) | 0.0181 (14) | 0.024 (2) | −0.0031 (11) | 0.0009 (12) | −0.0045 (12) |
N3 | 0.0120 (14) | 0.0175 (14) | 0.021 (2) | −0.0010 (10) | 0.0038 (12) | −0.0031 (12) |
N4 | 0.0160 (15) | 0.0163 (13) | 0.021 (2) | −0.0008 (11) | 0.0028 (13) | 0.0034 (12) |
N5 | 0.0180 (15) | 0.0172 (14) | 0.033 (2) | 0.0018 (11) | 0.0052 (14) | 0.0047 (14) |
N6 | 0.0107 (12) | 0.0178 (13) | 0.018 (2) | −0.0019 (10) | 0.0038 (11) | −0.0024 (12) |
N7 | 0.0153 (14) | 0.0188 (14) | 0.027 (2) | −0.0019 (11) | −0.0017 (13) | 0.0014 (13) |
N8 | 0.0225 (17) | 0.0229 (16) | 0.038 (3) | −0.0033 (13) | −0.0041 (15) | 0.0103 (15) |
N9 | 0.0127 (14) | 0.0174 (14) | 0.030 (2) | −0.0037 (11) | −0.0007 (13) | 0.0017 (13) |
C1 | 0.0134 (15) | 0.0155 (14) | 0.018 (2) | −0.0008 (12) | 0.0018 (14) | −0.0032 (13) |
C2 | 0.0158 (16) | 0.0222 (17) | 0.024 (3) | −0.0045 (13) | 0.0026 (15) | −0.0087 (16) |
C3 | 0.0139 (16) | 0.0178 (15) | 0.020 (2) | −0.0007 (12) | 0.0026 (14) | −0.0009 (14) |
C4 | 0.0186 (17) | 0.0174 (16) | 0.030 (2) | 0.0007 (13) | 0.0035 (16) | 0.0010 (16) |
C5 | 0.0184 (17) | 0.0202 (16) | 0.029 (3) | −0.0025 (13) | −0.0035 (17) | 0.0044 (16) |
C6 | 0.022 (2) | 0.0262 (19) | 0.039 (3) | −0.0040 (15) | −0.0051 (18) | 0.0107 (18) |
Cu1—N4i | 1.957 (3) | N4—N5 | 1.398 (4) |
Cu1—N1 | 1.985 (3) | N5—C4 | 1.294 (5) |
Cu1—Cl2 | 2.2780 (12) | N6—C3 | 1.360 (5) |
Cu1—Cl3 | 2.4155 (10) | N6—C4 | 1.366 (5) |
Cu1—Cl1 | 2.5146 (11) | N7—C5 | 1.304 (5) |
Cu2—N7 | 2.031 (3) | N7—N8 | 1.392 (5) |
Cu2—N2 | 2.032 (3) | N8—C6 | 1.302 (5) |
Cu2—Cl4 | 2.2769 (9) | N9—C5 | 1.363 (5) |
Cu2—Cl1 | 2.3185 (10) | N9—C6 | 1.376 (5) |
Cu2—Cl3ii | 2.6238 (13) | N9—N9iii | 1.392 (6) |
N1—C1 | 1.301 (5) | C1—H1 | 0.9400 |
N1—N2 | 1.391 (5) | C2—H2 | 0.9400 |
N2—C2 | 1.308 (5) | C3—H3 | 0.9400 |
N3—C1 | 1.357 (5) | C4—H4 | 0.9400 |
N3—C2 | 1.364 (5) | C5—H5 | 0.9400 |
N3—N6 | 1.384 (4) | C6—H6 | 0.9400 |
N4—C3 | 1.301 (5) | ||
N4i—Cu1—N1 | 168.82 (15) | C3—N4—Cu1v | 123.5 (3) |
N4i—Cu1—Cl2 | 92.14 (10) | N5—N4—Cu1v | 127.3 (2) |
N1—Cu1—Cl2 | 91.04 (9) | C4—N5—N4 | 106.4 (3) |
N4i—Cu1—Cl3 | 95.62 (10) | C3—N6—C4 | 107.0 (3) |
N1—Cu1—Cl3 | 92.79 (10) | C3—N6—N3 | 124.1 (3) |
Cl2—Cu1—Cl3 | 114.53 (6) | C4—N6—N3 | 128.6 (3) |
N4i—Cu1—Cl1 | 88.14 (11) | C5—N7—N8 | 108.7 (3) |
N1—Cu1—Cl1 | 83.47 (10) | C5—N7—Cu2 | 130.7 (3) |
Cl2—Cu1—Cl1 | 147.82 (6) | N8—N7—Cu2 | 120.2 (2) |
Cl3—Cu1—Cl1 | 97.43 (4) | C6—N8—N7 | 107.1 (3) |
N7—Cu2—N2 | 177.81 (15) | C5—N9—C6 | 106.4 (3) |
N7—Cu2—Cl4 | 91.02 (9) | C5—N9—N9iii | 127.0 (3) |
N2—Cu2—Cl4 | 90.06 (9) | C6—N9—N9iii | 126.0 (3) |
N7—Cu2—Cl1 | 92.67 (10) | N1—C1—N3 | 107.9 (3) |
N2—Cu2—Cl1 | 85.63 (9) | N1—C1—H1 | 126.0 |
Cl4—Cu2—Cl1 | 158.52 (5) | N3—C1—H1 | 126.0 |
N7—Cu2—Cl3ii | 91.29 (12) | N2—C2—N3 | 107.7 (4) |
N2—Cu2—Cl3ii | 90.54 (11) | N2—C2—H2 | 126.1 |
Cl4—Cu2—Cl3ii | 94.20 (4) | N3—C2—H2 | 126.1 |
Cl1—Cu2—Cl3ii | 106.86 (4) | N4—C3—N6 | 107.7 (3) |
Cu2—Cl1—Cu1 | 97.99 (4) | N4—C3—H3 | 126.2 |
Cu1—Cl3—Cu2iv | 121.17 (4) | N6—C3—H3 | 126.2 |
C1—N1—N2 | 108.4 (3) | N5—C4—N6 | 109.7 (3) |
C1—N1—Cu1 | 126.1 (3) | N5—C4—H4 | 125.2 |
N2—N1—Cu1 | 125.2 (2) | N6—C4—H4 | 125.2 |
C2—N2—N1 | 107.8 (3) | N7—C5—N9 | 108.5 (4) |
C2—N2—Cu2 | 128.7 (3) | N7—C5—H5 | 125.8 |
N1—N2—Cu2 | 123.2 (2) | N9—C5—H5 | 125.8 |
C1—N3—C2 | 108.1 (3) | N8—C6—N9 | 109.2 (4) |
C1—N3—N6 | 122.8 (3) | N8—C6—H6 | 125.4 |
C2—N3—N6 | 128.7 (3) | N9—C6—H6 | 125.4 |
C3—N4—N5 | 109.2 (3) | ||
C1—N1—N2—C2 | −1.8 (4) | Cu2—N2—C2—N3 | 175.9 (3) |
Cu1—N1—N2—C2 | 171.8 (3) | C1—N3—C2—N2 | −0.9 (5) |
C1—N1—N2—Cu2 | −176.4 (3) | N6—N3—C2—N2 | −173.2 (3) |
Cu1—N1—N2—Cu2 | −2.8 (4) | N5—N4—C3—N6 | −0.2 (5) |
C3—N4—N5—C4 | −0.4 (5) | Cu1v—N4—C3—N6 | −178.0 (3) |
Cu1v—N4—N5—C4 | 177.3 (3) | C4—N6—C3—N4 | 0.7 (5) |
C1—N3—N6—C3 | −78.1 (5) | N3—N6—C3—N4 | 175.6 (4) |
C2—N3—N6—C3 | 93.2 (5) | N4—N5—C4—N6 | 0.8 (5) |
C1—N3—N6—C4 | 95.6 (5) | C3—N6—C4—N5 | −1.0 (5) |
C2—N3—N6—C4 | −93.1 (6) | N3—N6—C4—N5 | −175.5 (4) |
C5—N7—N8—C6 | −1.5 (5) | N8—N7—C5—N9 | 0.2 (5) |
Cu2—N7—N8—C6 | 172.0 (3) | Cu2—N7—C5—N9 | −172.4 (3) |
N2—N1—C1—N3 | 1.2 (4) | C6—N9—C5—N7 | 1.2 (5) |
Cu1—N1—C1—N3 | −172.3 (3) | N9iii—N9—C5—N7 | 172.8 (3) |
C2—N3—C1—N1 | −0.2 (4) | N7—N8—C6—N9 | 2.2 (6) |
N6—N3—C1—N1 | 172.6 (3) | C5—N9—C6—N8 | −2.1 (6) |
N1—N2—C2—N3 | 1.6 (4) | N9iii—N9—C6—N8 | −173.9 (4) |
Symmetry codes: (i) x−1/4, −y+1/4, z+3/4; (ii) x, y, z−1; (iii) −x, −y, z; (iv) x, y, z+1; (v) x+1/4, −y+1/4, z−3/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1vi | 0.94 | 2.74 | 3.528 (4) | 142 |
C1—H1···Cl2 | 0.94 | 2.53 | 3.052 (4) | 115 |
C2—H2···Cl4vii | 0.94 | 2.84 | 3.518 (4) | 130 |
C3—H3···Cl2ii | 0.94 | 2.90 | 3.672 (4) | 140 |
C3—H3···N8vi | 0.94 | 2.66 | 3.242 (5) | 121 |
C4—H4···Cl3vii | 0.94 | 2.61 | 3.390 (4) | 141 |
C5—H5···N5viii | 0.94 | 2.47 | 3.365 (6) | 160 |
C6—H6···Cl2ix | 0.94 | 2.70 | 3.315 (5) | 124 |
Symmetry codes: (ii) x, y, z−1; (vi) x+1/4, −y+1/4, z+1/4; (vii) −x+1/2, −y, z−1/2; (viii) −x+1/2, −y, z+1/2; (ix) x−1/4, −y+1/4, z−5/4. |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037-05).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664–1666. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Desiraju, R. G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Domiano, P. (1977). Cryst. Struct. Commun. 6, 503–506. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, Y.-Q. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 66–68. Web of Science CSD CrossRef CAS Google Scholar
Huang, Y.-Q., Zhao, X.-Q., Shi, W., Liu, W.-Y., Chen, Z.-L., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2008). Cryst. Growth Des. 8, 3652–3660. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483–1489. Web of Science CSD CrossRef CAS Google Scholar
Lysenko, A. B., Govor, E. V. & Domasevitch, K. V. (2007). Inorg. Chim. Acta, 360, 55–60. Web of Science CSD CrossRef CAS Google Scholar
Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772–3776. Web of Science CSD CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Zhang, X.-C., Chen, Y.-H. & Liu, B. (2008). Inorg. Chem. Commun. 11, 446–449. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.