research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of a series of 6-aryl-1,3-di­phenyl­fulvenes

aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: gary.balaich@usafa.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 May 2019; accepted 14 May 2019; online 21 May 2019)

The synthesis and crystal structures of a series of 6-aryl­fuvlenes (fulvene is 5-methyl­idene­cyclo­penta-1,3-diene) with varying methyl­ation patterns on the 6-phenyl substituent are reported, namely 6-(3-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-(4-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-mesityl-3-di­phenyl­fulvene (C27H24) and 6-(2,3,4,5,6-penta­methyl­phen­yl)-1,3-di­phenyl­fulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring inter­actions consolidates the packing in each structure.

1. Chemical context

Penta­fulvenes have garnered inter­ested because of their unique cross-conjugated electronic system. Fulvenes have been explored for applications as chromophores (Jayamurugan et al., 2013[Jayamurugan, G., Dumele, O., Gisselbrecht, J. P., Boudon, C., Schweizer, W. B., Bernet, B. & Diederich, F. (2013). J. Am. Chem. Soc. 135, 3599-3606.]), frustrated Lewis pair scaffolds (Mömming et al., 2011[Mömming, C. M., Kehr, G., Fröhlich, R. & Erker, G. (2011). Chem. Commun. 47, 2006-2007.]), and ligands for metal–fulvene complexes (Erker, 2011[Erker, G. (2011). Organometallics, 30, 358-368.]). To facilitate the inclusion in transition-metal complexes, reduction to a cyclo­penta­diene ligand (Gómez-Ruiz et al., 2005[Gómez-Ruiz, S., Höcher, T., Prashar, S. & Hey-Hawkins, E. (2005). Organometallics, 24, 2061-2064.]) or reductive coupling to ansa bis-cyclo­penta­diene ligand (Adas & Balaich, 2018[Adas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200-206.]) are the most common reactions. As part of our work in this area, we now report the syntheses and crystal structures of a series of 1,3-di­phenyl­fulvenes bearing 6-phenyl substituent with diverse methyl­ation patterns, viz. 1,3-diphenyl-6-(3-methyl­phen­yl)fulvene (C25H20) I, 1,3-diphenyl-6-(4-methyl­phen­yl)fulvene (C25H20) II, 3-diphenyl-6-mesitylfulvene (C27H24) III and 1,3-diphenyl-6-(2,3,4,5,6-penta­methyl­phen­yl)fulvene (C29H28) IV (Figs. 1[link]–4[link][link][link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of I. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of II. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of III. Displacement ellipsoids are shown at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of IV. Displacement ellipsoids are shown at the 50% probability level.

2. Structural commentary

Compounds I and IV crystallize in the monoclinic space group C2/c (Fig. 1[link]), compound II in the monoclinic space group P21/c, and compound III the ortho­rhom­bic space group Pca21. With the exception of III, in which the asymmetric unit contains two complete fulvene mol­ecules, each compound crystallizes with one mol­ecule per asymmetric unit. In each compound, the expected alternating long–short intra-ring bond lengths are observed. The phenyl substituents are rotated from 19.50 (6) to 64.15 (7)° from the cyclo­penta­diene core of the fulvene (Table 1[link]). The rotation is larger for each substituent in IV, likely because of the additional steric inter­actions provided by the penta­methyl substituent.

Table 1
Fulvene-phenyl torsion angles (°)

  I II III IV
Fulvenea-(1-phen­ylb) 32.08 (7) 31.83 (5) 21.33 (13) 41.65 (7)
Fulvenea-(3-phen­ylb) 19.50 (6) 20.92 (5) 38.02 (13) 25.17 (7)
Fulvenea-(6-phen­ylb) 31.99 (6) 35.13 (5) 57.22 (14) 64.15 (7)
Notes: (a) plane defined by atoms C1–C5; (a) plane defined by the atoms of the specific phenyl ring substituent.

For fulvene I, the phenyl substituents are rotated 32.08 (7), 19.50 (6) and 31.99 (6)° from the cyclo­penta­diene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively. In compound II, the phenyl substituents are rotated 31.83 (5), 20.92 (5) and 35.13 (5)° from the cyclo­penta­diene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively. For compound III, the phenyl substituents are rotated an average of 21.33 (13), 38.02 (13) and 57.22 (14)° from the cyclo­penta­diene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively. In fulvene IV, each phenyl ring is rotated further from the core of the fulvene mol­ecule, likely because of the additional steric inter­actions provided by the penta­methyl­phenyl substituent. The phenyl substituents are rotated by 41.65 (7), 25.17 (7) and 64.15 (7)° from the cyclo­penta­diene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively.

3. Supra­molecular features

The packing for each compound IIV is consolidated through a series of C—H⋯π ring inter­actions. In I, each mol­ecule participates in C—H⋯π ring inter­actions with six other fulvene mol­ecules. Each mol­ecule acts as a C—H donor through the hydrogen atoms in the para position of each phenyl substituent, H10 and H16, as well as a meta hydrogen atom, H23, from the 6-(3-methyl­phen­yl) substituent. Additionally, the π ring of the 3-phenyl and 6-(3-methyl­phen­yl) substituents accept C—H inter­actions, with the latter accepting donations from both sides of the ring (Table 2[link] and Fig. 5[link]). In the crystal structure of II, each mol­ecule inter­acts with five other fulvene mol­ecules. Phenyl hydrogen atoms H12 and H17 as well as methyl hydrogen atom H25A act as donors. The 3-phenyl and 6-(4-methyl­phen­yl) substituents act as C—H acceptors, with the former accepting donations from both sides of the ring (Table 3[link] and Fig. 6[link]). The inter­actions differ between the two mol­ecules within the asymmetric unit of III. One of the mol­ecules contributes four C—H donor sites, H37, H39, H53A, and H54C, with the π ring of each phenyl substituent as well as the fulvene core acting as acceptors. In the other mol­ecule, H10 and H25C act as C—H donors with the π system of the 1-phenyl and 3-phenyl substituents accepting, the latter accepting C—H inter­actions from both sides of the ring (Table 4[link] and Fig. 7[link]). Fulvene IV inter­acts with four other mol­ecules via C—H⋯π ring inter­actions. The para hydrogen atom of the 1-phenyl substituent and one of the hydrogen atoms of the para methyl group of the 6-(2,3,4,5,6-penta­metyhlphen­yl) substituent, H27C, serve as C—H donors for two separate fulvene mol­ecules. The 6-(2,3,4,5,6-penta­metyhlphen­yl) π ring accepts C—H donation from two additional mol­ecules (Table 5[link] and Fig. 8[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C13–C18 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.93 2.83 3.539 (2) 134
C16—H16⋯Cg2ii 0.93 2.86 3.589 (2) 136
C23—H23⋯Cg2iii 0.93 2.90 3.547 (2) 128
Symmetry codes: (i) [-x, y-1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 and Cg4 are the centroids of the C7–C12 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg3i 0.95 2.95 3.6560 (4) 132
C17—H17⋯Cg3ii 0.95 2.83 3.4837 (4) 127
C25—H25ACg4iii 0.98 2.98 3.8277 (4) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{3\over 2}}, z-{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg5, Cg6, Cg7, Cg8, and Cg9 are the centroids of the C40–C45, C7–C12, C13–C18, C28–C32, and C34–C39 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg5i 0.93 2.81 3.5059 (7) 132
C25—H25CCg6ii 0.96 2.81 3.7115 (8) 158
C37—H37⋯Cg7iii 0.93 2.71 3.5129 (8) 145
C39—H39⋯Cg8ii 0.93 2.97 3.5817 (8) 125
C53—H53ACg7iv 0.96 2.94 3.6503 (8) 132
C54—H54CCg9v 0.96 2.88 3.7983 (8) 160
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, -y+2, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y, z]; (v) x, y-1, z.

Table 5
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg10 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg10i 0.95 2.70 3.4521 (9) 136
Symmetry code: (i) [-x, y+1, -z+{\script{1\over 2}}].
[Figure 5]
Figure 5
The crystal packing of I. Displacement ellipsoids are shown at the 50% probability level. C—H⋯π ring inter­actions (Table 2[link]) are shown as dashed lines.
[Figure 6]
Figure 6
The crystal packing of II. Displacement ellipsoids are shown at the 50% probability level. C—H⋯π ring inter­actions (Table 3[link]) are shown as dashed lines.
[Figure 7]
Figure 7
The crystal packing of III. Displacement ellipsoids are shown at the 50% probability level. C—H⋯π ring inter­actions (Table 4[link]) are shown as dashed lines.
[Figure 8]
Figure 8
The crystal packing of IV, viewed along the b axis. Displacement ellipsoids are shown at the 50% probability level. C—H⋯π ring inter­actions (Table 5[link]) are shown as dashed lines.

4. Database survey

A survey of the November 2019 release of the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through February 2019, was made using the program Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). A search for 1,3-diphenyl fulvenes and 6-aryl-1,3-diphenyl fulvenes yielded 78 and 35 results, respectively. In both cases, the phen­yl–fulvene torsion angles produce a bimodal distribution with broad peaks at 50 and 130°. The torsion angles in IIV are therefore not unusual.

5. Synthesis and crystallization

Each compound was prepared by a modified literature procedure (Peloquin et al., 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]).

1,3-diphenyl-6-(3-methyl­phen­yl)fulvene (I)[link]. To a vigorously stirred solution of 1,3-di­phenyl­cyclo­penta­diene (0.230 g, 1.05 mmol) in absolute EtOH (25 ml), 3-methyl­benzaldehyde (0.189 g, 1.58 mmol) and pyrrolidine (0.12 g, 1.68 mmol) were added. The reaction mixture was allowed to stir at room temperature for 22 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH (3 × 30 ml), and vacuum dried to give I as a dark-red solid (0.211 g, 63%). Red prisms suitable for single-crystal X-ray diffraction were obtained from diethyl ether solution by slow evaporation.

1,3-diphenyl-6-(4-methyl­phen­yl)fulvene (II)[link]. To a vigorously stirred solution of 1,3-di­phenyl­cyclo­penta­diene (0.336 g, 1.42 mmol) in absolute EtOH (8 ml), 4-methyl­benzaldehyde (0.25 ml, 2.13 mmol) and pyrrolidine (0.14 ml, 1.70 mmol) were added. The reaction mixture was allowed to stir at room temperature for 24 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH (3 × 30 ml), and vacuum dried to give II as a dark-red solid (0.251 g, 75%). Red prisms suitable for single-crystal X-ray diffraction were obtained from diethyl ether solution by slow evaporation.

3-diphenyl-6-mesitylfulvene (III)[link]. To a vigorously stirred solution of 1,3-di­phenyl­cyclo­penta­diene (1.434 g, 6.57 mmol) in absolute EtOH (50 ml), mesityl­aldehyde (1.173 g, 7.91 mmol) and pyrrolidine (0.789 g, 11.09 mmol) were added. The reaction mixture was allowed to stir at reflux for 24 h. The reaction mixture was cooled to 278 K and the resulting precipitate was vacuum filtered, washed with cold absolute EtOH (3 × 30 ml), and vacuum dried to give III as a red–orange solid (1.85 g, 81%). Irregular red crystals suitable for single-crystal X-ray diffraction were obtained from pentane solution by slow evaporation.

1,3-diphenyl-6-(2,3,4,5,6-penta­methyl­phen­yl)fulvene (IV)[link]. To a vigorously stirred solution of 1,3-di­phenyl­cyclo­penta­diene (2.1 g, 9.62 mmol) in absolute EtOH (50 ml), 2,3,4,5,6-penta­methyl­benzaldehyde (2.04 g, 11.55 mmol) and pyrrolidine (1.09 g, 15.40 mmol) were added. The reaction mixture was allowed to stir at room temperature for 24 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH (3 × 30 ml), and vacuum dried to give IV as an orange solid (2.93 g, 82%). Orange needles suitable for single-crystal X-ray diffraction were obtained from ethyl acetate solution by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. H atoms were positioned geometrically and refined as riding with C—H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C). The absolute structure of III was indeterminate in the present refinement. Compound III was refined as an inversion twin.

Table 6
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C25H20 C25H20 C27H24 C29H28
Mr 320.41 320.41 348.46 376.51
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c Orthorhombic, Pca21 Monoclinic, C2/c
Temperature (K) 100 100 100 100
a, b, c (Å) 29.230 (17), 5.800 (3), 22.071 (12) 19.208 (2), 5.8774 (7), 16.1884 (18) 30.031 (6), 5.6147 (12), 23.494 (5) 30.987 (7), 5.8273 (14), 23.557 (6)
α, β, γ (°) 90, 107.248 (17), 90 90, 107.710 (1), 90 90, 90, 90 90, 96.192 (3), 90
V3) 3573 (3) 1740.9 (3) 3961.4 (14) 4228.9 (17)
Z 8 4 8 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 0.07 0.07 0.07
Crystal size (mm) 0.25 × 0.21 × 0.18 0.43 × 0.27 × 0.06 0.26 × 0.11 × 0.10 0.44 × 0.11 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan SADABS Multi-scan SADABS Multi-scan SADABS Multi-scan SADABS
Tmin, Tmax 0.832, 0.901 0.691, 0.745 0.678, 0.745 0.587, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 31841, 3817, 3013 30237, 3473, 2972 38475, 6776, 5709 37965, 4394, 3213
Rint 0.052 0.038 0.070 0.082
(sin θ/λ)max−1) 0.635 0.620 0.590 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.05 0.040, 0.100, 1.04 0.043, 0.108, 1.04 0.050, 0.137, 1.03
No. of reflections 3817 3473 6776 4394
No. of parameters 227 227 494 267
No. of restraints 0 0 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.20 0.22, −0.19 0.17, −0.17 0.24, −0.22
Absolute structure Refined as an inversion twin.
Absolute structure parameter −6 (10)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae, et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

{3-[(3-Methylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (I) top
Crystal data top
C25H20F(000) = 1360
Mr = 320.41Dx = 1.191 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.230 (17) ÅCell parameters from 4339 reflections
b = 5.800 (3) Åθ = 2.9–24.4°
c = 22.071 (12) ŵ = 0.07 mm1
β = 107.248 (17)°T = 100 K
V = 3573 (3) Å3Prism, red
Z = 80.25 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3013 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
SADABS
θmax = 26.8°, θmin = 1.9°
Tmin = 0.832, Tmax = 0.901h = 3636
31841 measured reflectionsk = 77
3817 independent reflectionsl = 2827
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0482P)2 + 3.8961P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3817 reflectionsΔρmax = 0.33 e Å3
227 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57871 (5)0.4490 (3)0.23560 (7)0.0219 (3)
C20.57462 (5)0.4576 (3)0.29513 (7)0.0229 (3)
H20.5544630.3647730.3102520.027*
C30.60677 (5)0.6356 (3)0.33229 (7)0.0222 (3)
C40.62991 (5)0.7360 (3)0.29436 (7)0.0235 (3)
H40.6517020.8567060.3059930.028*
C50.61519 (5)0.6246 (3)0.23236 (7)0.0221 (3)
C60.63418 (5)0.6503 (3)0.18410 (7)0.0238 (3)
H60.6231840.5482060.1504150.029*
C70.55041 (5)0.2988 (3)0.18388 (7)0.0218 (3)
C80.53551 (5)0.3688 (3)0.12045 (7)0.0255 (3)
H80.5445910.5126250.1093490.031*
C90.50730 (6)0.2255 (3)0.07390 (8)0.0303 (4)
H90.4984110.2726950.0317410.036*
C100.49212 (6)0.0122 (3)0.08943 (8)0.0306 (4)
H100.4727250.0817580.0580660.037*
C110.50628 (6)0.0585 (3)0.15223 (8)0.0275 (4)
H110.4960340.1999440.1632310.033*
C120.53569 (5)0.0812 (3)0.19877 (7)0.0235 (3)
H120.5458150.0296780.2405370.028*
C130.61345 (5)0.6870 (3)0.39949 (7)0.0235 (3)
C140.59996 (6)0.5279 (3)0.43855 (7)0.0269 (4)
H140.5861240.3886920.4216680.032*
C150.60698 (6)0.5755 (3)0.50228 (8)0.0320 (4)
H150.5977030.4684030.5277170.038*
C160.62776 (6)0.7819 (3)0.52829 (8)0.0331 (4)
H160.6326140.8131340.5710650.040*
C170.64122 (6)0.9410 (3)0.49002 (8)0.0334 (4)
H170.6552801.0793530.5072400.040*
C180.63390 (6)0.8956 (3)0.42650 (8)0.0293 (4)
H180.6426741.0049890.4012100.035*
C190.67002 (5)0.8189 (3)0.17789 (7)0.0233 (3)
C200.69945 (5)0.7614 (3)0.14047 (7)0.0255 (3)
H200.6949170.6205670.1193850.031*
C210.73507 (6)0.9072 (3)0.13377 (7)0.0279 (4)
C220.74101 (6)1.1205 (3)0.16461 (8)0.0302 (4)
H220.7647841.2208410.1607030.036*
C230.71154 (6)1.1835 (3)0.20115 (7)0.0272 (4)
H230.7157321.3257110.2215090.033*
C240.67616 (6)1.0360 (3)0.20731 (7)0.0248 (3)
H240.6562241.0807140.2311340.030*
C250.76705 (7)0.8402 (4)0.09398 (10)0.0443 (5)
H25A0.7591650.6870970.0777360.066*
H25B0.7999170.8448140.1196360.066*
H25C0.7623960.9462960.0592750.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (7)0.0214 (8)0.0268 (8)0.0013 (6)0.0074 (6)0.0003 (6)
C20.0207 (7)0.0242 (8)0.0245 (8)0.0022 (6)0.0080 (6)0.0003 (6)
C30.0182 (7)0.0229 (8)0.0250 (8)0.0014 (6)0.0055 (6)0.0006 (6)
C40.0201 (7)0.0236 (8)0.0252 (8)0.0000 (6)0.0045 (6)0.0001 (6)
C50.0197 (7)0.0213 (8)0.0255 (8)0.0025 (6)0.0072 (6)0.0026 (6)
C60.0235 (8)0.0237 (8)0.0233 (7)0.0017 (6)0.0055 (6)0.0023 (6)
C70.0185 (7)0.0231 (8)0.0255 (8)0.0025 (6)0.0092 (6)0.0032 (6)
C80.0252 (8)0.0258 (8)0.0275 (8)0.0001 (7)0.0108 (7)0.0005 (6)
C90.0294 (9)0.0375 (10)0.0241 (8)0.0027 (7)0.0083 (7)0.0033 (7)
C100.0263 (8)0.0326 (9)0.0322 (9)0.0029 (7)0.0074 (7)0.0127 (7)
C110.0256 (8)0.0225 (8)0.0362 (9)0.0012 (7)0.0120 (7)0.0056 (7)
C120.0215 (7)0.0244 (8)0.0261 (8)0.0025 (6)0.0093 (6)0.0013 (6)
C130.0199 (7)0.0267 (8)0.0227 (7)0.0013 (6)0.0046 (6)0.0009 (6)
C140.0304 (8)0.0246 (8)0.0251 (8)0.0017 (7)0.0074 (7)0.0015 (6)
C150.0404 (10)0.0328 (9)0.0231 (8)0.0005 (8)0.0102 (7)0.0035 (7)
C160.0404 (10)0.0361 (10)0.0200 (8)0.0021 (8)0.0045 (7)0.0016 (7)
C170.0369 (9)0.0322 (9)0.0271 (8)0.0048 (8)0.0035 (7)0.0067 (7)
C180.0315 (9)0.0278 (9)0.0278 (8)0.0035 (7)0.0076 (7)0.0012 (7)
C190.0246 (8)0.0245 (8)0.0194 (7)0.0008 (6)0.0045 (6)0.0022 (6)
C200.0264 (8)0.0255 (8)0.0242 (8)0.0020 (7)0.0068 (6)0.0004 (6)
C210.0254 (8)0.0344 (9)0.0246 (8)0.0021 (7)0.0087 (6)0.0037 (7)
C220.0242 (8)0.0316 (9)0.0324 (9)0.0064 (7)0.0047 (7)0.0068 (7)
C230.0274 (8)0.0239 (8)0.0271 (8)0.0006 (7)0.0029 (6)0.0000 (6)
C240.0279 (8)0.0267 (8)0.0210 (7)0.0012 (7)0.0090 (6)0.0016 (6)
C250.0418 (11)0.0486 (12)0.0519 (12)0.0053 (9)0.0283 (9)0.0048 (10)
Geometric parameters (Å, º) top
C1—C21.355 (2)C13—C181.402 (2)
C1—C51.492 (2)C14—H140.9300
C1—C71.478 (2)C14—C151.388 (2)
C2—H20.9300C15—H150.9300
C2—C31.471 (2)C15—C161.387 (3)
C3—C41.354 (2)C16—H160.9300
C3—C131.468 (2)C16—C171.384 (3)
C4—H40.9300C17—H170.9300
C4—C51.458 (2)C17—C181.379 (2)
C5—C61.347 (2)C18—H180.9300
C6—H60.9300C19—C201.398 (2)
C6—C191.469 (2)C19—C241.403 (2)
C7—C81.397 (2)C20—H200.9300
C7—C121.404 (2)C20—C211.383 (2)
C8—H80.9300C21—C221.398 (2)
C8—C91.387 (2)C21—C251.511 (2)
C9—H90.9300C22—H220.9300
C9—C101.391 (3)C22—C231.392 (2)
C10—H100.9300C23—H230.9300
C10—C111.386 (2)C23—C241.380 (2)
C11—H110.9300C24—H240.9300
C11—C121.388 (2)C25—H25A0.9600
C12—H120.9300C25—H25B0.9600
C13—C141.397 (2)C25—H25C0.9600
C2—C1—C5106.92 (13)C13—C14—H14119.7
C2—C1—C7125.48 (14)C15—C14—C13120.67 (16)
C7—C1—C5127.55 (13)C15—C14—H14119.7
C1—C2—H2125.0C14—C15—H15119.8
C1—C2—C3109.94 (14)C16—C15—C14120.40 (16)
C3—C2—H2125.0C16—C15—H15119.8
C4—C3—C2108.10 (14)C15—C16—H16120.3
C4—C3—C13126.58 (14)C17—C16—C15119.43 (16)
C13—C3—C2125.28 (14)C17—C16—H16120.3
C3—C4—H4125.4C16—C17—H17119.8
C3—C4—C5109.10 (14)C18—C17—C16120.43 (16)
C5—C4—H4125.4C18—C17—H17119.8
C4—C5—C1105.89 (13)C13—C18—H18119.5
C6—C5—C1125.53 (14)C17—C18—C13121.01 (16)
C6—C5—C4128.10 (15)C17—C18—H18119.5
C5—C6—H6115.9C20—C19—C6118.51 (14)
C5—C6—C19128.29 (15)C20—C19—C24118.07 (14)
C19—C6—H6115.9C24—C19—C6123.42 (14)
C8—C7—C1122.65 (14)C19—C20—H20118.9
C8—C7—C12118.00 (14)C21—C20—C19122.15 (15)
C12—C7—C1119.28 (14)C21—C20—H20118.9
C7—C8—H8119.7C20—C21—C22118.53 (15)
C9—C8—C7120.56 (15)C20—C21—C25121.35 (16)
C9—C8—H8119.7C22—C21—C25120.11 (16)
C8—C9—H9119.6C21—C22—H22119.8
C8—C9—C10120.89 (16)C23—C22—C21120.38 (15)
C10—C9—H9119.6C23—C22—H22119.8
C9—C10—H10120.4C22—C23—H23119.8
C11—C10—C9119.15 (15)C24—C23—C22120.34 (16)
C11—C10—H10120.4C24—C23—H23119.8
C10—C11—H11119.9C19—C24—H24119.8
C10—C11—C12120.22 (16)C23—C24—C19120.48 (15)
C12—C11—H11119.9C23—C24—H24119.8
C7—C12—H12119.4C21—C25—H25A109.5
C11—C12—C7121.14 (15)C21—C25—H25B109.5
C11—C12—H12119.4C21—C25—H25C109.5
C14—C13—C3120.79 (14)H25A—C25—H25B109.5
C14—C13—C18118.05 (15)H25A—C25—H25C109.5
C18—C13—C3121.16 (14)H25B—C25—H25C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.833.539 (2)134
C16—H16···Cg2ii0.932.863.589 (2)136
C23—H23···Cg2iii0.932.903.547 (2)128
Symmetry codes: (i) x, y1, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y, z1/2.
{3-[(4-Methylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (II) top
Crystal data top
C25H20F(000) = 680
Mr = 320.41Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.208 (2) ÅCell parameters from 6861 reflections
b = 5.8774 (7) Åθ = 2.2–26.1°
c = 16.1884 (18) ŵ = 0.07 mm1
β = 107.710 (1)°T = 100 K
V = 1740.9 (3) Å3Rect. Prism, red
Z = 40.43 × 0.27 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2972 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.038
φ and ω scansθmax = 26.2°, θmin = 2.2°
Absorption correction: multi-scan
SADABS
h = 2323
Tmin = 0.691, Tmax = 0.745k = 77
30237 measured reflectionsl = 2020
3473 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.8955P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3473 reflectionsΔρmax = 0.22 e Å3
227 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21805 (7)0.4854 (2)0.67244 (8)0.0199 (3)
C190.39564 (7)0.1392 (2)0.78528 (8)0.0196 (3)
C30.16408 (7)0.3062 (2)0.76451 (8)0.0199 (3)
C130.23043 (6)0.6328 (2)0.60483 (8)0.0199 (3)
C240.46911 (7)0.2083 (2)0.81558 (8)0.0205 (3)
H240.4828740.3512460.7979880.025*
C60.34162 (7)0.2980 (2)0.73220 (8)0.0199 (3)
H60.3588820.4005020.6974600.024*
C210.43165 (7)0.2155 (2)0.86275 (8)0.0217 (3)
H210.4185840.3618990.8780040.026*
C220.50403 (7)0.1435 (2)0.89566 (8)0.0209 (3)
C230.52175 (7)0.0712 (2)0.87068 (8)0.0212 (3)
H230.5707280.1239260.8918730.025*
C40.23106 (7)0.2078 (2)0.78063 (8)0.0205 (3)
H40.2494830.0876590.8205750.025*
C140.27283 (7)0.5647 (2)0.55254 (8)0.0218 (3)
H140.2948240.4182980.5605100.026*
C70.11136 (7)0.2699 (2)0.81300 (8)0.0205 (3)
C50.26996 (7)0.3166 (2)0.72660 (8)0.0195 (3)
C200.37819 (7)0.0787 (2)0.80827 (8)0.0206 (3)
H200.3294400.1330810.7864140.025*
C20.15635 (7)0.4766 (2)0.69629 (8)0.0217 (3)
H20.1141710.5676330.6722470.026*
C180.19736 (7)0.8485 (2)0.58962 (8)0.0229 (3)
H180.1686100.8992570.6245010.027*
C80.11440 (7)0.0724 (2)0.86246 (8)0.0240 (3)
H80.1469800.0467820.8595550.029*
C120.06039 (7)0.4379 (2)0.81513 (8)0.0235 (3)
H120.0559860.5695460.7798830.028*
C170.20606 (7)0.9880 (2)0.52453 (9)0.0277 (3)
H170.1819751.1311320.5138450.033*
C150.28318 (7)0.7086 (2)0.48909 (8)0.0256 (3)
H150.3133250.6615800.4553340.031*
C90.07027 (7)0.0496 (3)0.91556 (9)0.0284 (3)
H90.0731640.0844110.9492700.034*
C110.01606 (7)0.4138 (3)0.86843 (9)0.0272 (3)
H110.0182080.5293170.8696780.033*
C160.24982 (7)0.9197 (2)0.47484 (9)0.0285 (3)
H160.2568321.0173430.4312910.034*
C100.02185 (7)0.2213 (3)0.91982 (9)0.0289 (3)
H100.0071970.2070940.9577000.035*
C250.56192 (7)0.2930 (2)0.95447 (9)0.0277 (3)
H25A0.5829600.2164951.0103120.042*
H25B0.6004430.3220800.9276690.042*
H25C0.5399950.4376320.9636850.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (6)0.0202 (6)0.0184 (6)0.0004 (5)0.0035 (5)0.0010 (5)
C190.0201 (6)0.0221 (6)0.0176 (6)0.0027 (5)0.0074 (5)0.0014 (5)
C30.0196 (6)0.0205 (6)0.0185 (6)0.0006 (5)0.0043 (5)0.0015 (5)
C130.0158 (6)0.0224 (6)0.0188 (6)0.0023 (5)0.0013 (5)0.0012 (5)
C240.0224 (6)0.0192 (6)0.0219 (6)0.0011 (5)0.0096 (5)0.0003 (5)
C60.0219 (6)0.0201 (6)0.0182 (6)0.0004 (5)0.0067 (5)0.0004 (5)
C210.0240 (6)0.0196 (6)0.0241 (6)0.0017 (5)0.0113 (5)0.0014 (5)
C220.0220 (6)0.0231 (6)0.0190 (6)0.0053 (5)0.0084 (5)0.0009 (5)
C230.0177 (6)0.0242 (7)0.0221 (6)0.0007 (5)0.0065 (5)0.0024 (5)
C40.0223 (6)0.0200 (6)0.0191 (6)0.0009 (5)0.0060 (5)0.0006 (5)
C140.0190 (6)0.0238 (7)0.0207 (6)0.0010 (5)0.0033 (5)0.0011 (5)
C70.0174 (6)0.0245 (7)0.0180 (6)0.0034 (5)0.0030 (5)0.0011 (5)
C50.0211 (6)0.0193 (6)0.0176 (6)0.0006 (5)0.0051 (5)0.0011 (5)
C200.0185 (6)0.0215 (6)0.0225 (6)0.0005 (5)0.0073 (5)0.0015 (5)
C20.0191 (6)0.0228 (7)0.0220 (6)0.0023 (5)0.0046 (5)0.0022 (5)
C180.0195 (6)0.0230 (7)0.0242 (6)0.0005 (5)0.0038 (5)0.0008 (5)
C80.0194 (6)0.0262 (7)0.0240 (6)0.0027 (5)0.0028 (5)0.0017 (5)
C120.0210 (6)0.0252 (7)0.0238 (6)0.0014 (5)0.0058 (5)0.0008 (5)
C170.0253 (7)0.0224 (7)0.0294 (7)0.0016 (6)0.0007 (6)0.0049 (6)
C150.0214 (6)0.0348 (8)0.0196 (6)0.0048 (6)0.0046 (5)0.0012 (6)
C90.0243 (7)0.0337 (8)0.0253 (7)0.0066 (6)0.0049 (5)0.0066 (6)
C110.0201 (6)0.0338 (8)0.0281 (7)0.0009 (6)0.0080 (5)0.0042 (6)
C160.0278 (7)0.0305 (8)0.0232 (7)0.0074 (6)0.0021 (5)0.0088 (6)
C100.0211 (7)0.0419 (8)0.0249 (7)0.0083 (6)0.0091 (5)0.0000 (6)
C250.0228 (7)0.0290 (7)0.0305 (7)0.0040 (6)0.0067 (6)0.0063 (6)
Geometric parameters (Å, º) top
C1—C131.4707 (17)C14—C151.3906 (18)
C1—C51.4883 (17)C7—C81.4012 (18)
C1—C21.3547 (18)C7—C121.3981 (19)
C19—C241.4057 (17)C20—H200.9500
C19—C61.4642 (17)C2—H20.9500
C19—C201.4023 (18)C18—H180.9500
C3—C41.3616 (17)C18—C171.3850 (19)
C3—C71.4733 (17)C8—H80.9500
C3—C21.4641 (17)C8—C91.3850 (19)
C13—C141.3997 (18)C12—H120.9500
C13—C181.4056 (18)C12—C111.3916 (18)
C24—H240.9500C17—H170.9500
C24—C231.3852 (18)C17—C161.388 (2)
C6—H60.9500C15—H150.9500
C6—C51.3561 (17)C15—C161.383 (2)
C21—H210.9500C9—H90.9500
C21—C221.3946 (18)C9—C101.388 (2)
C21—C201.3883 (18)C11—H110.9500
C22—C231.3983 (19)C11—C101.389 (2)
C22—C251.5068 (17)C16—H160.9500
C23—H230.9500C10—H100.9500
C4—H40.9500C25—H25A0.9800
C4—C51.4596 (17)C25—H25B0.9800
C14—H140.9500C25—H25C0.9800
C13—C1—C5126.87 (11)C19—C20—H20119.8
C2—C1—C13126.04 (12)C21—C20—C19120.46 (12)
C2—C1—C5107.08 (11)C21—C20—H20119.8
C24—C19—C6118.52 (12)C1—C2—C3110.16 (11)
C20—C19—C24117.84 (11)C1—C2—H2124.9
C20—C19—C6123.64 (11)C3—C2—H2124.9
C4—C3—C7126.77 (12)C13—C18—H18119.5
C4—C3—C2107.96 (11)C17—C18—C13120.97 (13)
C2—C3—C7124.93 (11)C17—C18—H18119.5
C14—C13—C1122.49 (12)C7—C8—H8119.7
C14—C13—C18117.84 (12)C9—C8—C7120.53 (13)
C18—C13—C1119.65 (12)C9—C8—H8119.7
C19—C24—H24119.5C7—C12—H12119.7
C23—C24—C19121.01 (12)C11—C12—C7120.58 (13)
C23—C24—H24119.5C11—C12—H12119.7
C19—C6—H6116.0C18—C17—H17119.9
C5—C6—C19127.90 (12)C18—C17—C16120.26 (13)
C5—C6—H6116.0C16—C17—H17119.9
C22—C21—H21119.1C14—C15—H15119.8
C20—C21—H21119.1C16—C15—C14120.36 (13)
C20—C21—C22121.73 (12)C16—C15—H15119.8
C21—C22—C23117.72 (12)C8—C9—H9119.8
C21—C22—C25121.52 (12)C8—C9—C10120.40 (13)
C23—C22—C25120.74 (12)C10—C9—H9119.8
C24—C23—C22121.14 (12)C12—C11—H11120.0
C24—C23—H23119.4C10—C11—C12120.09 (13)
C22—C23—H23119.4C10—C11—H11120.0
C3—C4—H4125.5C17—C16—H16120.2
C3—C4—C5108.96 (11)C15—C16—C17119.64 (13)
C5—C4—H4125.5C15—C16—H16120.2
C13—C14—H14119.6C9—C10—C11119.70 (13)
C15—C14—C13120.87 (13)C9—C10—H10120.2
C15—C14—H14119.6C11—C10—H10120.2
C8—C7—C3120.58 (12)C22—C25—H25A109.5
C12—C7—C3120.70 (12)C22—C25—H25B109.5
C12—C7—C8118.59 (12)C22—C25—H25C109.5
C6—C5—C1125.28 (12)H25A—C25—H25B109.5
C6—C5—C4128.23 (12)H25A—C25—H25C109.5
C4—C5—C1105.78 (10)H25B—C25—H25C109.5
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C7–C12 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg3i0.952.953.6560 (4)132
C17—H17···Cg3ii0.952.833.4837 (4)127
C25—H25A···Cg4iii0.982.983.8277 (4)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y3/2, z3/2; (iii) x+1, y+1, z+1.
{3-[(2,4,6-Trimethylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (III) top
Crystal data top
C27H24Dx = 1.169 Mg m3
Mr = 348.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 3728 reflections
a = 30.031 (6) Åθ = 2.2–22.3°
b = 5.6147 (12) ŵ = 0.07 mm1
c = 23.494 (5) ÅT = 100 K
V = 3961.4 (14) Å3Irregular, red
Z = 80.26 × 0.11 × 0.10 mm
F(000) = 1488
Data collection top
Bruker APEXII CCD
diffractometer
5709 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
SADABS
θmax = 24.8°, θmin = 2.2°
Tmin = 0.678, Tmax = 0.745h = 3535
38475 measured reflectionsk = 66
6776 independent reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.054P)2 + 0.3457P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.17 e Å3
6776 reflectionsΔρmin = 0.17 e Å3
494 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 6 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35712 (11)0.1134 (6)0.54077 (15)0.0224 (8)
C20.36382 (11)0.1309 (6)0.48394 (15)0.0238 (8)
H20.3849040.0451020.4634280.029*
C30.33274 (11)0.3060 (6)0.45947 (15)0.0219 (8)
C40.30771 (12)0.3951 (6)0.50228 (15)0.0230 (8)
H40.2862860.5137610.4987020.028*
C50.31988 (11)0.2742 (6)0.55511 (15)0.0227 (8)
C60.29829 (11)0.2883 (6)0.60543 (15)0.0239 (8)
H60.3087960.1939410.6350650.029*
C70.38365 (11)0.0333 (6)0.58024 (14)0.0225 (8)
C80.39541 (11)0.0453 (6)0.63499 (15)0.0245 (8)
H80.3851320.1917080.6480200.029*
C90.42211 (12)0.0930 (6)0.66963 (16)0.0274 (8)
H90.4290900.0406160.7061100.033*
C100.43847 (12)0.3077 (7)0.65055 (17)0.0283 (9)
H100.4569000.3984710.6738060.034*
C110.42743 (12)0.3879 (6)0.59677 (16)0.0265 (9)
H110.4386620.5323340.5837680.032*
C120.39980 (11)0.2547 (6)0.56223 (15)0.0227 (8)
H120.3918270.3126750.5265870.027*
C130.33002 (11)0.3610 (6)0.39856 (15)0.0216 (8)
C140.34639 (11)0.1972 (6)0.35861 (14)0.0243 (8)
H140.3596490.0570760.3711740.029*
C150.34310 (12)0.2409 (6)0.30085 (16)0.0284 (8)
H150.3542760.1302800.2750780.034*
C160.32342 (12)0.4469 (7)0.28105 (16)0.0282 (8)
H160.3211160.4751270.2421540.034*
C170.30710 (12)0.6115 (7)0.31990 (16)0.0291 (9)
H170.2936840.7504700.3068780.035*
C180.31060 (11)0.5705 (6)0.37800 (15)0.0249 (8)
H180.2999350.6835110.4035220.030*
C190.25933 (11)0.4412 (6)0.61723 (14)0.0226 (8)
C200.26414 (11)0.6213 (6)0.65876 (14)0.0240 (8)
C210.22874 (12)0.7743 (6)0.66946 (15)0.0252 (8)
H210.2323430.8971020.6956110.030*
C220.18814 (12)0.7477 (6)0.64199 (15)0.0249 (8)
C230.18351 (11)0.5641 (6)0.60303 (15)0.0248 (8)
H230.1561180.5423750.5853130.030*
C240.21846 (12)0.4107 (6)0.58945 (14)0.0232 (8)
C250.30762 (12)0.6478 (7)0.69049 (16)0.0324 (9)
H25A0.3120220.5121480.7147130.049*
H25B0.3067710.7898700.7132100.049*
H25C0.3316890.6583030.6637190.049*
C260.14909 (12)0.9077 (7)0.65542 (17)0.0334 (9)
H26A0.1327920.8433210.6870250.050*
H26B0.1299120.9175650.6228060.050*
H26C0.1597361.0639050.6649500.050*
C270.21031 (12)0.2158 (7)0.54676 (16)0.0297 (9)
H27A0.2172070.2729390.5092730.044*
H27B0.1796100.1684740.5482560.044*
H27C0.2288970.0816330.5555210.044*
C280.51786 (11)0.0968 (6)0.46548 (15)0.0224 (8)
C290.51122 (12)0.1276 (6)0.52183 (15)0.0239 (8)
H290.4900340.0472630.5434010.029*
C300.54251 (11)0.3073 (6)0.54415 (15)0.0218 (8)
C310.56796 (12)0.3832 (6)0.50028 (16)0.0225 (7)
H310.5898660.4998840.5025820.027*
C320.55572 (11)0.2536 (6)0.44875 (15)0.0229 (8)
C330.57550 (11)0.2587 (6)0.39746 (15)0.0243 (8)
H330.5645270.1550880.3699570.029*
C340.49026 (11)0.0516 (6)0.42789 (15)0.0223 (8)
C350.47587 (11)0.0308 (6)0.37476 (15)0.0246 (8)
H350.4862900.1755370.3608340.030*
C360.44609 (12)0.1027 (6)0.34279 (16)0.0278 (9)
H360.4369170.0472880.3073830.033*
C370.42992 (12)0.3171 (7)0.36296 (16)0.0297 (9)
H370.4094950.4038870.3416330.036*
C380.44434 (12)0.4018 (7)0.41514 (17)0.0286 (9)
H380.4338150.5467230.4287660.034*
C390.47439 (11)0.2711 (6)0.44707 (16)0.0245 (8)
H390.4841650.3304630.4818520.029*
C400.54362 (11)0.3803 (6)0.60410 (15)0.0217 (8)
C410.56288 (11)0.5974 (7)0.62138 (15)0.0248 (8)
H410.5743880.7007350.5941730.030*
C420.56484 (12)0.6580 (7)0.67802 (16)0.0267 (9)
H420.5780450.8009940.6887340.032*
C430.54749 (12)0.5096 (6)0.71904 (16)0.0278 (9)
H430.5489670.5519850.7572640.033*
C440.52781 (11)0.2968 (6)0.70301 (15)0.0253 (8)
H440.5160580.1959810.7305860.030*
C450.52556 (11)0.2335 (6)0.64608 (15)0.0234 (8)
H450.5118500.0914460.6357300.028*
C460.61314 (11)0.4139 (6)0.38060 (14)0.0223 (8)
C470.65574 (11)0.3931 (6)0.40497 (14)0.0241 (8)
C480.68915 (12)0.5477 (6)0.38677 (16)0.0278 (9)
H480.7173370.5349820.4028910.033*
C490.68188 (12)0.7189 (7)0.34564 (16)0.0280 (9)
C500.63963 (12)0.7337 (7)0.32137 (16)0.0293 (9)
H500.6342530.8473710.2934210.035*
C510.60570 (12)0.5842 (7)0.33773 (15)0.0269 (8)
C520.66681 (12)0.2043 (7)0.44841 (16)0.0309 (9)
H52A0.6570210.2555050.4853350.046*
H52B0.6984130.1787630.4490490.046*
H52C0.6520350.0584690.4384900.046*
C530.71847 (13)0.8856 (7)0.32675 (19)0.0387 (10)
H53A0.7437580.8676040.3513720.058*
H53B0.7079711.0469600.3285110.058*
H53C0.7269340.8483050.2883750.058*
C540.56037 (13)0.6030 (8)0.31041 (18)0.0379 (11)
H54A0.5536430.4571510.2908980.057*
H54B0.5602830.7324580.2837200.057*
H54C0.5383410.6313570.3392360.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (18)0.0218 (18)0.024 (2)0.0005 (15)0.0000 (15)0.0015 (15)
C20.0235 (19)0.0217 (19)0.026 (2)0.0025 (15)0.0021 (16)0.0005 (15)
C30.0194 (18)0.0227 (18)0.024 (2)0.0005 (15)0.0014 (15)0.0014 (15)
C40.0218 (18)0.0215 (17)0.026 (2)0.0006 (15)0.0007 (15)0.0027 (15)
C50.0232 (18)0.0238 (18)0.021 (2)0.0012 (15)0.0015 (15)0.0014 (15)
C60.025 (2)0.0218 (18)0.024 (2)0.0012 (15)0.0000 (15)0.0042 (15)
C70.0178 (18)0.0255 (18)0.024 (2)0.0006 (14)0.0032 (15)0.0024 (16)
C80.0217 (19)0.0255 (19)0.026 (2)0.0013 (16)0.0035 (15)0.0010 (15)
C90.0249 (19)0.033 (2)0.024 (2)0.0015 (17)0.0045 (16)0.0000 (16)
C100.023 (2)0.028 (2)0.034 (2)0.0005 (16)0.0048 (16)0.0067 (18)
C110.0246 (19)0.0224 (19)0.033 (2)0.0018 (15)0.0059 (17)0.0008 (16)
C120.0218 (18)0.0229 (18)0.0233 (19)0.0002 (15)0.0012 (15)0.0013 (14)
C130.0159 (18)0.0250 (18)0.024 (2)0.0023 (14)0.0020 (14)0.0008 (14)
C140.022 (2)0.0250 (18)0.026 (2)0.0012 (16)0.0016 (15)0.0008 (15)
C150.0273 (19)0.030 (2)0.028 (2)0.0013 (16)0.0027 (16)0.0023 (16)
C160.030 (2)0.033 (2)0.022 (2)0.0028 (17)0.0019 (16)0.0058 (16)
C170.027 (2)0.031 (2)0.029 (2)0.0029 (17)0.0010 (16)0.0074 (17)
C180.0204 (18)0.0273 (19)0.027 (2)0.0004 (16)0.0011 (15)0.0026 (16)
C190.0205 (18)0.0255 (19)0.0218 (19)0.0006 (15)0.0038 (14)0.0049 (15)
C200.0234 (19)0.0287 (19)0.020 (2)0.0038 (15)0.0025 (15)0.0024 (15)
C210.029 (2)0.0262 (19)0.0208 (19)0.0031 (16)0.0045 (16)0.0011 (15)
C220.0245 (19)0.0249 (19)0.025 (2)0.0004 (16)0.0049 (16)0.0018 (15)
C230.0200 (18)0.0301 (19)0.024 (2)0.0034 (15)0.0018 (15)0.0033 (16)
C240.0276 (19)0.0245 (18)0.0176 (19)0.0023 (15)0.0012 (15)0.0029 (15)
C250.028 (2)0.038 (2)0.031 (2)0.0038 (18)0.0002 (17)0.0023 (18)
C260.028 (2)0.034 (2)0.038 (2)0.0049 (18)0.0055 (18)0.0015 (18)
C270.027 (2)0.035 (2)0.027 (2)0.0030 (17)0.0005 (17)0.0029 (17)
C280.0218 (18)0.0222 (18)0.023 (2)0.0003 (15)0.0001 (15)0.0016 (15)
C290.0216 (19)0.0259 (19)0.024 (2)0.0019 (15)0.0032 (15)0.0028 (15)
C300.0209 (19)0.0213 (18)0.023 (2)0.0001 (15)0.0021 (15)0.0006 (15)
C310.0212 (18)0.0220 (16)0.0242 (19)0.0022 (16)0.0033 (14)0.0014 (17)
C320.0203 (18)0.0241 (19)0.024 (2)0.0014 (15)0.0003 (15)0.0011 (14)
C330.0201 (19)0.031 (2)0.022 (2)0.0037 (16)0.0020 (15)0.0030 (16)
C340.0201 (18)0.0234 (18)0.0235 (19)0.0018 (15)0.0029 (15)0.0035 (15)
C350.0213 (19)0.0252 (18)0.027 (2)0.0003 (15)0.0023 (15)0.0038 (16)
C360.0229 (19)0.035 (2)0.025 (2)0.0047 (17)0.0005 (16)0.0074 (16)
C370.0205 (19)0.035 (2)0.034 (2)0.0042 (17)0.0019 (16)0.0136 (18)
C380.0235 (19)0.025 (2)0.038 (2)0.0033 (16)0.0050 (17)0.0067 (17)
C390.0211 (18)0.028 (2)0.024 (2)0.0001 (15)0.0024 (15)0.0016 (15)
C400.0195 (18)0.0255 (19)0.0200 (19)0.0028 (15)0.0020 (15)0.0003 (15)
C410.0234 (19)0.0266 (19)0.024 (2)0.0042 (15)0.0003 (15)0.0033 (15)
C420.025 (2)0.027 (2)0.028 (2)0.0017 (16)0.0009 (16)0.0023 (16)
C430.025 (2)0.037 (2)0.022 (2)0.0038 (17)0.0031 (15)0.0020 (17)
C440.0213 (18)0.034 (2)0.020 (2)0.0024 (16)0.0010 (15)0.0040 (16)
C450.0186 (19)0.0277 (19)0.024 (2)0.0007 (15)0.0008 (15)0.0010 (16)
C460.0243 (19)0.0253 (19)0.0172 (19)0.0003 (15)0.0020 (15)0.0018 (15)
C470.0215 (19)0.028 (2)0.023 (2)0.0029 (16)0.0035 (15)0.0007 (15)
C480.0195 (19)0.031 (2)0.033 (2)0.0033 (16)0.0000 (16)0.0014 (17)
C490.023 (2)0.028 (2)0.032 (2)0.0012 (16)0.0062 (16)0.0000 (17)
C500.028 (2)0.031 (2)0.028 (2)0.0054 (17)0.0064 (16)0.0085 (16)
C510.0230 (19)0.034 (2)0.024 (2)0.0043 (16)0.0009 (15)0.0014 (16)
C520.025 (2)0.035 (2)0.032 (2)0.0035 (17)0.0031 (17)0.0060 (17)
C530.033 (2)0.035 (2)0.047 (3)0.0041 (18)0.0066 (19)0.009 (2)
C540.028 (2)0.049 (3)0.037 (3)0.0001 (19)0.0065 (18)0.014 (2)
Geometric parameters (Å, º) top
C1—C21.354 (5)C28—C291.350 (5)
C1—C51.476 (5)C28—C321.491 (5)
C1—C71.474 (5)C28—C341.470 (5)
C2—H20.9300C29—H290.9300
C2—C31.473 (5)C29—C301.475 (5)
C3—C41.352 (5)C30—C311.352 (5)
C3—C131.466 (5)C30—C401.467 (5)
C4—H40.9300C31—H310.9300
C4—C51.461 (5)C31—C321.460 (5)
C5—C61.351 (5)C32—C331.344 (5)
C6—H60.9300C33—H330.9300
C6—C191.478 (5)C33—C461.481 (5)
C7—C81.405 (5)C34—C351.400 (5)
C7—C121.400 (5)C34—C391.396 (5)
C8—H80.9300C35—H350.9300
C8—C91.381 (5)C35—C361.388 (5)
C9—H90.9300C36—H360.9300
C9—C101.377 (5)C36—C371.382 (5)
C10—H100.9300C37—H370.9300
C10—C111.382 (6)C37—C381.384 (5)
C11—H110.9300C38—H380.9300
C11—C121.381 (5)C38—C391.384 (5)
C12—H120.9300C39—H390.9300
C13—C141.403 (5)C40—C411.409 (5)
C13—C181.399 (5)C40—C451.395 (5)
C14—H140.9300C41—H410.9300
C14—C151.382 (5)C41—C421.375 (5)
C15—H150.9300C42—H420.9300
C15—C161.380 (5)C42—C431.376 (5)
C16—H160.9300C43—H430.9300
C16—C171.388 (5)C43—C441.385 (5)
C17—H170.9300C44—H440.9300
C17—C181.388 (5)C44—C451.386 (5)
C18—H180.9300C45—H450.9300
C19—C201.412 (5)C46—C471.407 (5)
C19—C241.401 (5)C46—C511.407 (5)
C20—C211.390 (5)C47—C481.394 (5)
C20—C251.511 (5)C47—C521.509 (5)
C21—H210.9300C48—H480.9300
C21—C221.388 (5)C48—C491.381 (5)
C22—C231.386 (5)C49—C501.393 (5)
C22—C261.510 (5)C49—C531.510 (5)
C23—H230.9300C50—H500.9300
C23—C241.395 (5)C50—C511.375 (5)
C24—C271.505 (5)C51—C541.509 (5)
C25—H25A0.9600C52—H52A0.9600
C25—H25B0.9600C52—H52B0.9600
C25—H25C0.9600C52—H52C0.9600
C26—H26A0.9600C53—H53A0.9600
C26—H26B0.9600C53—H53B0.9600
C26—H26C0.9600C53—H53C0.9600
C27—H27A0.9600C54—H54A0.9600
C27—H27B0.9600C54—H54B0.9600
C27—H27C0.9600C54—H54C0.9600
C2—C1—C5107.1 (3)C29—C28—C32107.2 (3)
C2—C1—C7125.5 (3)C29—C28—C34125.3 (3)
C7—C1—C5127.4 (3)C34—C28—C32127.3 (3)
C1—C2—H2125.1C28—C29—H29125.0
C1—C2—C3109.8 (3)C28—C29—C30110.0 (3)
C3—C2—H2125.1C30—C29—H29125.0
C4—C3—C2108.0 (3)C31—C30—C29107.7 (3)
C4—C3—C13128.1 (3)C31—C30—C40129.1 (3)
C13—C3—C2123.9 (3)C40—C30—C29123.1 (3)
C3—C4—H4125.6C30—C31—H31125.3
C3—C4—C5108.7 (3)C30—C31—C32109.4 (3)
C5—C4—H4125.6C32—C31—H31125.3
C4—C5—C1106.2 (3)C31—C32—C28105.5 (3)
C6—C5—C1126.8 (3)C33—C32—C28125.9 (3)
C6—C5—C4126.6 (3)C33—C32—C31128.4 (3)
C5—C6—H6117.3C32—C33—H33116.9
C5—C6—C19125.3 (3)C32—C33—C46126.2 (3)
C19—C6—H6117.3C46—C33—H33116.9
C8—C7—C1122.4 (3)C35—C34—C28121.5 (3)
C12—C7—C1119.6 (3)C39—C34—C28119.9 (3)
C12—C7—C8117.9 (3)C39—C34—C35118.3 (3)
C7—C8—H8119.7C34—C35—H35119.9
C9—C8—C7120.6 (3)C36—C35—C34120.2 (3)
C9—C8—H8119.7C36—C35—H35119.9
C8—C9—H9119.8C35—C36—H36119.6
C10—C9—C8120.5 (4)C37—C36—C35120.8 (4)
C10—C9—H9119.8C37—C36—H36119.6
C9—C10—H10120.1C36—C37—H37120.2
C9—C10—C11119.8 (4)C36—C37—C38119.5 (3)
C11—C10—H10120.1C38—C37—H37120.2
C10—C11—H11119.8C37—C38—H38119.9
C12—C11—C10120.3 (3)C39—C38—C37120.1 (4)
C12—C11—H11119.8C39—C38—H38119.9
C7—C12—H12119.6C34—C39—H39119.5
C11—C12—C7120.8 (3)C38—C39—C34121.0 (3)
C11—C12—H12119.6C38—C39—H39119.5
C14—C13—C3119.7 (3)C41—C40—C30121.8 (3)
C18—C13—C3122.5 (3)C45—C40—C30120.3 (3)
C18—C13—C14117.8 (3)C45—C40—C41117.8 (3)
C13—C14—H14119.5C40—C41—H41119.6
C15—C14—C13121.0 (3)C42—C41—C40120.7 (3)
C15—C14—H14119.5C42—C41—H41119.6
C14—C15—H15119.7C41—C42—H42119.6
C16—C15—C14120.7 (4)C41—C42—C43120.8 (3)
C16—C15—H15119.7C43—C42—H42119.6
C15—C16—H16120.4C42—C43—H43120.2
C15—C16—C17119.2 (4)C42—C43—C44119.6 (3)
C17—C16—H16120.4C44—C43—H43120.2
C16—C17—H17119.7C43—C44—H44119.8
C16—C17—C18120.6 (3)C43—C44—C45120.3 (3)
C18—C17—H17119.7C45—C44—H44119.8
C13—C18—H18119.6C40—C45—H45119.6
C17—C18—C13120.7 (3)C44—C45—C40120.8 (3)
C17—C18—H18119.6C44—C45—H45119.6
C20—C19—C6117.7 (3)C47—C46—C33122.4 (3)
C24—C19—C6122.4 (3)C47—C46—C51119.5 (3)
C24—C19—C20119.9 (3)C51—C46—C33118.1 (3)
C19—C20—C25120.0 (3)C46—C47—C52122.3 (3)
C21—C20—C19119.3 (3)C48—C47—C46118.6 (3)
C21—C20—C25120.7 (3)C48—C47—C52119.1 (3)
C20—C21—H21119.3C47—C48—H48118.8
C22—C21—C20121.5 (3)C49—C48—C47122.3 (3)
C22—C21—H21119.3C49—C48—H48118.8
C21—C22—C26121.4 (3)C48—C49—C50118.2 (3)
C23—C22—C21118.4 (3)C48—C49—C53121.5 (3)
C23—C22—C26120.2 (3)C50—C49—C53120.4 (3)
C22—C23—H23118.8C49—C50—H50119.2
C22—C23—C24122.4 (3)C51—C50—C49121.6 (3)
C24—C23—H23118.8C51—C50—H50119.2
C19—C24—C27122.8 (3)C46—C51—C54119.7 (3)
C23—C24—C19118.5 (3)C50—C51—C46119.8 (3)
C23—C24—C27118.6 (3)C50—C51—C54120.5 (3)
C20—C25—H25A109.5C47—C52—H52A109.5
C20—C25—H25B109.5C47—C52—H52B109.5
C20—C25—H25C109.5C47—C52—H52C109.5
H25A—C25—H25B109.5H52A—C52—H52B109.5
H25A—C25—H25C109.5H52A—C52—H52C109.5
H25B—C25—H25C109.5H52B—C52—H52C109.5
C22—C26—H26A109.5C49—C53—H53A109.5
C22—C26—H26B109.5C49—C53—H53B109.5
C22—C26—H26C109.5C49—C53—H53C109.5
H26A—C26—H26B109.5H53A—C53—H53B109.5
H26A—C26—H26C109.5H53A—C53—H53C109.5
H26B—C26—H26C109.5H53B—C53—H53C109.5
C24—C27—H27A109.5C51—C54—H54A109.5
C24—C27—H27B109.5C51—C54—H54B109.5
C24—C27—H27C109.5C51—C54—H54C109.5
H27A—C27—H27B109.5H54A—C54—H54B109.5
H27A—C27—H27C109.5H54A—C54—H54C109.5
H27B—C27—H27C109.5H54B—C54—H54C109.5
Hydrogen-bond geometry (Å, º) top
Cg5, Cg6, Cg7, Cg8, and Cg9 are the centroids of the C40–C45, C7–C12, C13–C18, C28–C32, and C34–C39 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg5i0.932.813.5059 (7)132
C25—H25C···Cg6ii0.962.813.7115 (8)158
C37—H37···Cg7iii0.932.713.5129 (8)145
C39—H39···Cg8ii0.932.973.5817 (8)125
C53—H53A···Cg7iv0.962.943.6503 (8)132
C54—H54C···Cg9v0.962.883.7983 (8)160
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z; (iii) x, y+2, z+1/2; (iv) x+1/2, y, z; (v) x, y1, z.
{3-[(2,3,4,5,6-Pentamethylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (IV) top
Crystal data top
C29H28F(000) = 1616
Mr = 376.51Dx = 1.183 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.987 (7) ÅCell parameters from 3475 reflections
b = 5.8273 (14) Åθ = 2.3–26.2°
c = 23.557 (6) ŵ = 0.07 mm1
β = 96.192 (3)°T = 100 K
V = 4228.9 (17) Å3Needle, orange
Z = 80.44 × 0.11 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3213 reflections with I > 2σ(I)
φ and ω scansRint = 0.082
Absorption correction: multi-scan
SADABS
θmax = 26.5°, θmin = 2.1°
Tmin = 0.587, Tmax = 0.745h = 3838
37965 measured reflectionsk = 77
4394 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0562P)2 + 4.4117P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4394 reflectionsΔρmax = 0.24 e Å3
267 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.59242 (5)0.5116 (3)0.64414 (7)0.0214 (4)
C70.55646 (5)0.0887 (3)0.82183 (7)0.0213 (4)
C190.67937 (5)0.5436 (3)0.86724 (7)0.0214 (4)
C50.61684 (5)0.3893 (3)0.79995 (7)0.0221 (4)
C200.67537 (6)0.7194 (3)0.90741 (7)0.0221 (4)
C40.62469 (6)0.5125 (3)0.74821 (7)0.0228 (4)
H40.6463590.6261480.7455420.027*
C140.57411 (6)0.3657 (3)0.60104 (7)0.0242 (4)
H140.5631450.2202690.6107280.029*
C120.54703 (5)0.1649 (3)0.87570 (7)0.0229 (4)
H120.5565000.3124440.8889290.027*
C80.54204 (5)0.1290 (3)0.80385 (7)0.0233 (4)
H80.5486620.1854050.7679490.028*
C30.59587 (5)0.4381 (3)0.70428 (7)0.0216 (4)
C10.57895 (5)0.2366 (3)0.78360 (7)0.0222 (4)
C20.56767 (5)0.2650 (3)0.72698 (7)0.0221 (4)
H20.5449040.1850410.7050810.026*
C180.60730 (6)0.7271 (3)0.62895 (7)0.0241 (4)
H180.6188810.8305110.6578400.029*
C60.64079 (6)0.3964 (3)0.85109 (7)0.0230 (4)
H60.6321730.2971500.8798140.028*
C240.71917 (6)0.5018 (3)0.84579 (7)0.0247 (4)
C230.75536 (6)0.6403 (3)0.86477 (7)0.0259 (4)
C100.50940 (6)0.1886 (3)0.89086 (8)0.0273 (4)
H100.4935520.2828160.9141920.033*
C110.52397 (6)0.0264 (3)0.90983 (7)0.0257 (4)
H110.5181380.0791650.9463870.031*
C160.58769 (6)0.6439 (3)0.52940 (7)0.0279 (4)
H160.5865080.6877950.4904250.033*
C210.71147 (6)0.8557 (3)0.92605 (7)0.0241 (4)
C90.51823 (6)0.2643 (3)0.83749 (8)0.0263 (4)
H90.5078830.4098380.8239130.032*
C220.75145 (6)0.8155 (3)0.90470 (7)0.0258 (4)
C150.57181 (6)0.4318 (3)0.54404 (7)0.0273 (4)
H150.5593120.3313090.5150370.033*
C250.63232 (6)0.7587 (3)0.93028 (8)0.0274 (4)
H25A0.6349090.7207120.9710330.041*
H25B0.6101760.6607970.9096500.041*
H25C0.6239210.9200340.9250040.041*
C170.60526 (6)0.7913 (3)0.57185 (7)0.0262 (4)
H170.6159840.9369800.5619290.031*
C290.72431 (6)0.3065 (4)0.80483 (8)0.0315 (5)
H29A0.6973830.2170500.7996320.047*
H29B0.7482590.2072750.8203700.047*
H29C0.7306030.3684370.7679380.047*
C260.70788 (6)1.0445 (3)0.96918 (8)0.0323 (5)
H26A0.7282861.0149411.0031410.048*
H26B0.6782241.0490160.9799740.048*
H26C0.7148081.1921600.9524170.048*
C280.79882 (6)0.5958 (4)0.84287 (8)0.0361 (5)
H28A0.8107600.7406730.8303220.054*
H28B0.7949430.4887700.8106340.054*
H28C0.8188740.5291840.8734920.054*
C270.79006 (6)0.9625 (4)0.92679 (8)0.0353 (5)
H27A0.7960790.9427740.9681950.053*
H27B0.7835131.1241200.9181150.053*
H27C0.8155190.9157270.9083110.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.0167 (8)0.0278 (10)0.0198 (8)0.0020 (7)0.0020 (7)0.0000 (7)
C70.0150 (8)0.0271 (9)0.0210 (8)0.0010 (7)0.0020 (7)0.0029 (7)
C190.0204 (9)0.0265 (9)0.0164 (8)0.0024 (7)0.0016 (7)0.0039 (7)
C50.0197 (9)0.0242 (9)0.0222 (9)0.0013 (7)0.0009 (7)0.0007 (7)
C200.0216 (9)0.0257 (9)0.0182 (8)0.0012 (7)0.0015 (7)0.0046 (7)
C40.0203 (9)0.0263 (9)0.0215 (9)0.0013 (7)0.0019 (7)0.0020 (7)
C140.0212 (9)0.0273 (10)0.0242 (9)0.0018 (7)0.0027 (7)0.0006 (7)
C120.0196 (9)0.0258 (9)0.0224 (9)0.0016 (7)0.0022 (7)0.0006 (7)
C80.0198 (9)0.0264 (10)0.0232 (9)0.0009 (7)0.0003 (7)0.0012 (7)
C30.0205 (9)0.0229 (9)0.0216 (9)0.0015 (7)0.0033 (7)0.0004 (7)
C10.0205 (9)0.0250 (9)0.0208 (9)0.0005 (7)0.0009 (7)0.0000 (7)
C20.0190 (9)0.0258 (9)0.0210 (8)0.0018 (7)0.0000 (7)0.0019 (7)
C180.0225 (9)0.0275 (10)0.0219 (9)0.0007 (8)0.0011 (7)0.0005 (7)
C60.0228 (9)0.0257 (9)0.0204 (8)0.0028 (7)0.0018 (7)0.0021 (7)
C240.0240 (9)0.0301 (10)0.0191 (8)0.0002 (8)0.0016 (7)0.0044 (7)
C230.0197 (9)0.0344 (11)0.0231 (9)0.0015 (8)0.0004 (7)0.0067 (8)
C100.0195 (9)0.0336 (11)0.0283 (10)0.0031 (8)0.0002 (7)0.0079 (8)
C110.0204 (9)0.0350 (11)0.0217 (9)0.0010 (8)0.0015 (7)0.0013 (8)
C160.0276 (10)0.0373 (11)0.0190 (9)0.0081 (8)0.0035 (7)0.0040 (8)
C210.0245 (9)0.0261 (10)0.0206 (8)0.0023 (8)0.0025 (7)0.0043 (7)
C90.0227 (9)0.0238 (10)0.0312 (10)0.0034 (7)0.0033 (8)0.0028 (8)
C220.0207 (9)0.0316 (10)0.0238 (9)0.0042 (8)0.0037 (7)0.0069 (8)
C150.0245 (9)0.0362 (11)0.0208 (9)0.0040 (8)0.0001 (7)0.0049 (8)
C250.0211 (9)0.0343 (11)0.0265 (9)0.0006 (8)0.0012 (7)0.0012 (8)
C170.0234 (9)0.0300 (10)0.0255 (9)0.0028 (8)0.0047 (7)0.0049 (8)
C290.0275 (10)0.0393 (12)0.0274 (10)0.0010 (9)0.0016 (8)0.0027 (8)
C260.0303 (10)0.0333 (11)0.0321 (10)0.0053 (9)0.0025 (8)0.0029 (8)
C280.0234 (10)0.0534 (14)0.0315 (10)0.0003 (9)0.0026 (8)0.0057 (10)
C270.0271 (10)0.0425 (12)0.0350 (11)0.0111 (9)0.0025 (8)0.0037 (9)
Geometric parameters (Å, º) top
C13—C141.397 (2)C23—C221.402 (3)
C13—C31.473 (2)C23—C281.516 (3)
C13—C181.397 (3)C10—H100.9500
C7—C121.405 (2)C10—C111.389 (3)
C7—C81.396 (3)C10—C91.387 (3)
C7—C11.475 (2)C11—H110.9500
C19—C201.409 (2)C16—H160.9500
C19—C61.487 (2)C16—C151.388 (3)
C19—C241.404 (2)C16—C171.384 (3)
C5—C41.457 (2)C21—C221.406 (3)
C5—C11.490 (2)C21—C261.510 (3)
C5—C61.346 (2)C9—H90.9500
C20—C211.403 (2)C22—C271.517 (3)
C20—C251.509 (2)C15—H150.9500
C4—H40.9500C25—H25A0.9800
C4—C31.363 (2)C25—H25B0.9800
C14—H140.9500C25—H25C0.9800
C14—C151.391 (2)C17—H170.9500
C12—H120.9500C29—H29A0.9800
C12—C111.390 (2)C29—H29B0.9800
C8—H80.9500C29—H29C0.9800
C8—C91.386 (2)C26—H26A0.9800
C3—C21.472 (2)C26—H26B0.9800
C1—C21.352 (2)C26—H26C0.9800
C2—H20.9500C28—H28A0.9800
C18—H180.9500C28—H28B0.9800
C18—C171.391 (2)C28—H28C0.9800
C6—H60.9500C27—H27A0.9800
C24—C231.415 (3)C27—H27B0.9800
C24—C291.511 (3)C27—H27C0.9800
C14—C13—C3120.24 (16)C12—C11—H11119.8
C14—C13—C18118.70 (16)C10—C11—C12120.48 (17)
C18—C13—C3121.06 (16)C10—C11—H11119.8
C12—C7—C1121.66 (16)C15—C16—H16120.1
C8—C7—C12118.08 (16)C17—C16—H16120.1
C8—C7—C1120.18 (16)C17—C16—C15119.70 (17)
C20—C19—C6117.68 (15)C20—C21—C22119.81 (17)
C24—C19—C20120.83 (16)C20—C21—C26120.60 (16)
C24—C19—C6121.39 (16)C22—C21—C26119.59 (16)
C4—C5—C1106.01 (14)C8—C9—C10120.46 (17)
C6—C5—C4127.44 (16)C8—C9—H9119.8
C6—C5—C1126.35 (16)C10—C9—H9119.8
C19—C20—C25119.69 (16)C23—C22—C21120.30 (16)
C21—C20—C19119.79 (16)C23—C22—C27121.28 (17)
C21—C20—C25120.52 (16)C21—C22—C27118.42 (17)
C5—C4—H4125.6C14—C15—H15119.9
C3—C4—C5108.87 (16)C16—C15—C14120.25 (17)
C3—C4—H4125.6C16—C15—H15119.9
C13—C14—H14119.8C20—C25—H25A109.5
C15—C14—C13120.50 (18)C20—C25—H25B109.5
C15—C14—H14119.8C20—C25—H25C109.5
C7—C12—H12119.7H25A—C25—H25B109.5
C11—C12—C7120.59 (17)H25A—C25—H25C109.5
C11—C12—H12119.7H25B—C25—H25C109.5
C7—C8—H8119.5C18—C17—H17119.8
C9—C8—C7121.08 (17)C16—C17—C18120.32 (18)
C9—C8—H8119.5C16—C17—H17119.8
C4—C3—C13127.69 (16)C24—C29—H29A109.5
C4—C3—C2107.95 (15)C24—C29—H29B109.5
C2—C3—C13124.37 (15)C24—C29—H29C109.5
C7—C1—C5127.02 (15)H29A—C29—H29B109.5
C2—C1—C7125.79 (16)H29A—C29—H29C109.5
C2—C1—C5107.15 (15)H29B—C29—H29C109.5
C3—C2—H2125.0C21—C26—H26A109.5
C1—C2—C3109.98 (15)C21—C26—H26B109.5
C1—C2—H2125.0C21—C26—H26C109.5
C13—C18—H18119.8H26A—C26—H26B109.5
C17—C18—C13120.49 (17)H26A—C26—H26C109.5
C17—C18—H18119.8H26B—C26—H26C109.5
C19—C6—H6116.7C23—C28—H28A109.5
C5—C6—C19126.66 (16)C23—C28—H28B109.5
C5—C6—H6116.7C23—C28—H28C109.5
C19—C24—C23118.97 (17)H28A—C28—H28B109.5
C19—C24—C29121.18 (16)H28A—C28—H28C109.5
C23—C24—C29119.81 (16)H28B—C28—H28C109.5
C24—C23—C28119.87 (17)C22—C27—H27A109.5
C22—C23—C24120.31 (17)C22—C27—H27B109.5
C22—C23—C28119.81 (17)C22—C27—H27C109.5
C11—C10—H10120.4H27A—C27—H27B109.5
C9—C10—H10120.4H27A—C27—H27C109.5
C9—C10—C11119.27 (17)H27B—C27—H27C109.5
C13—C14—C15—C160.1 (3)C3—C13—C18—C17177.71 (16)
C13—C3—C2—C1179.76 (16)C1—C7—C12—C11176.90 (16)
C13—C18—C17—C161.2 (3)C1—C7—C8—C9175.49 (16)
C7—C12—C11—C100.8 (3)C1—C5—C4—C31.99 (19)
C7—C8—C9—C102.1 (3)C1—C5—C6—C19178.18 (17)
C7—C1—C2—C3175.98 (16)C18—C13—C14—C151.7 (3)
C19—C20—C21—C220.3 (2)C18—C13—C3—C425.0 (3)
C19—C20—C21—C26179.85 (16)C18—C13—C3—C2155.29 (17)
C19—C24—C23—C220.4 (3)C6—C19—C20—C21176.97 (15)
C19—C24—C23—C28179.05 (16)C6—C19—C20—C252.7 (2)
C5—C4—C3—C13178.73 (16)C6—C19—C24—C23176.92 (16)
C5—C4—C3—C21.0 (2)C6—C19—C24—C290.7 (3)
C5—C1—C2—C31.7 (2)C6—C5—C4—C3173.08 (18)
C20—C19—C6—C5112.0 (2)C6—C5—C1—C79.5 (3)
C20—C19—C24—C230.5 (3)C6—C5—C1—C2172.87 (18)
C20—C19—C24—C29177.06 (16)C24—C19—C20—C210.4 (2)
C20—C21—C22—C230.2 (3)C24—C19—C20—C25179.27 (16)
C20—C21—C22—C27178.62 (16)C24—C19—C6—C571.5 (3)
C4—C5—C1—C7175.40 (16)C24—C23—C22—C210.3 (3)
C4—C5—C1—C22.27 (19)C24—C23—C22—C27178.50 (16)
C4—C5—C6—C194.1 (3)C11—C10—C9—C81.2 (3)
C4—C3—C2—C10.5 (2)C9—C10—C11—C120.2 (3)
C14—C13—C3—C4154.94 (18)C15—C16—C17—C180.4 (3)
C14—C13—C3—C224.7 (3)C25—C20—C21—C22179.43 (16)
C14—C13—C18—C172.3 (3)C25—C20—C21—C260.1 (2)
C12—C7—C8—C91.5 (2)C17—C16—C15—C141.0 (3)
C12—C7—C1—C542.2 (3)C29—C24—C23—C22177.17 (16)
C12—C7—C1—C2135.07 (19)C29—C24—C23—C281.4 (3)
C8—C7—C12—C110.0 (2)C26—C21—C22—C23179.79 (16)
C8—C7—C1—C5140.94 (18)C26—C21—C22—C271.0 (2)
C8—C7—C1—C241.8 (3)C28—C23—C22—C21178.90 (16)
C3—C13—C14—C15178.30 (16)C28—C23—C22—C270.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg10 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg10i0.952.703.4521 (9)136
Symmetry code: (i) x, y+1, z+1/2.
Fulvene-phenyl torsion angles (°) top
IIIIIIIV
Fulvenea-(1-phenylb)32.08 (7)31.83 (5)21.33 (13)41.65 (7)
Fulvenea-(3-phenylb)19.50 (6)20.92 (5)38.02 (13)25.17 (7)
Fulvenea-(6-phenylb)31.99 (6)35.13 (5)57.22 (14)64.15 (7)
Notes: (a) plane defined by atoms C1–C5; (a) plane defined by the atoms of the specific phenyl ring substituent.
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

First citationAdas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationErker, G. (2011). Organometallics, 30, 358–368.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGómez-Ruiz, S., Höcher, T., Prashar, S. & Hey-Hawkins, E. (2005). Organometallics, 24, 2061–2064.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJayamurugan, G., Dumele, O., Gisselbrecht, J. P., Boudon, C., Schweizer, W. B., Bernet, B. & Diederich, F. (2013). J. Am. Chem. Soc. 135, 3599–3606.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMömming, C. M., Kehr, G., Fröhlich, R. & Erker, G. (2011). Chem. Commun. 47, 2006–2007.  Google Scholar
First citationPeloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds