research communications
κN)(meso-5,10,15,20-tetraphenylporphyrinato-κ4N,N′,N′′,N′′′)iron(III) perchlorate
of bis(4-methoxypyridine-aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de
In the 44H28N4)(C6H7NO)2]ClO4, the FeIII ions are coordinated in an octahedral fashion by four N atoms of the porphyrin moiety and two N atoms of two 4-methoxypyridine ligands into discrete complexes that are located on inversion centers. Charge-balance is achieved by perchlorate anions that are disordered around twofold rotation axes. In the the discrete cationic complexes and the perchlorate anions are arranged into layers with weak C—H⋯O interactions between the cations and the anions. The porphyrin moieties of neighboring layers show a herringbone-like arrangement.
of the title compound, [Fe(CKeywords: crystal structure; hydrogen bonding; spin crossover; P450; iron(III) porphyrin.
CCDC reference: 1913651
1. Chemical context
; Peters et al., 2018; Shankar et al., 2018; Dommaschk et al., 2015). For example, metal show spin crossover (SCO), which is the key step in a number of enzymatic reactions, e.g. catalysts in selective CH activation (cytochrome P450) (Konishi et al., 1992; Momenteau et al., 1983), hydrogen peroxide decomposition (catalases) (Maté et al., 2001) and a number of other biologically important processes (Collman et al., 1995; Gunter et al., 1994; Morgan & Dolphin, 1987). The spin state and of ferrous are dependent on temperature, pressure, light or axial ligands.
are of great interest for a number of different applications in medicine and nature (Peters & Herges, 2018Iron(III) S = ), intermediate-spin (S = ), admixed-spin (S = , ) and low-spin (S = ) states of iron (Scheidt, 2000; Ikezaki et al., 2009; Nakamura, 2006; Shankar et al., 2018). Most of the anionic ligands such as chloride, hydroxide and azide lead to the formation of complexes in the high-spin state, whereas weak ligands like ClO4− and SbF6− usually give the complexes in an admixed-spin state (Scheidt, 2000). However, six-coordinate complexes with strong axial ligands tend to be in the low-spin state (Scheidt, 2000). In our ongoing investigations on SCO compounds based on iron we became interested in the complex bis(4-methoxypyridine-κN)(meso-5,10,15,20-tetraphenylporphyrinato-κ4N,N′,N′′,N′′′iron(III) perchlorate, which was synthesized and characterized by high-resolution (Shankar et al., 2018). Preliminary investigations indicate that the complex is in the low-spin state but unfortunately no single crystals were obtained. In the course of subsequent investigations, we we able to obtain crystals by the layering technique starting from the FeIII tetraphenylporphyrin perchlorate complexes and using 4-methoxypyridine dissolved in dichloromethane as the lower and n-heptane as the upper layer. These crystals were identified by single crystal X-ray diffraction, which confirmed that crystals of the title compound were obtained.
can exist in high-spin (2. Structural commentary
The III ions are sixfold coordinated by four N atoms of the porphyrin moiety and two N atoms of two 4-methoxypyridine ligands in an octahedral coordination environment (Fig. 1). The Fe—N bond lengths to the porphyrin atoms of 1.9989 (13) Å and to the pyridine N atoms of 2.0002 (13) Å are nearly identical and the iron cations are located exactly in the plane of the coordinating porphyrin N atoms (Table 1). The Fe—N bond lengths to the two axial 4-methoxypyridine ligands at 2.0 Å are typical for low-spin complexes (Geiger et al., 1985; Scheidt & Geiger, 1979), whereas high-spin complexes have a significant longer bond length of about 2.2 Å (Geiger et al., 1984, 1985; Geiger & Scheidt, 1984). The N—Fe—N bond angles within the equatorial porphyrin plane range between 88.56 (5) and 91.44 (5)°, whereas that to the axial ligands are 180° because of symmetry, which proves that the octahedra are slightly distorted (Table 1). The six-membered ring planes of the two coordinating 4-methoxypyridine ligands are eclipsed and rotated relative to the Fe—N bonds of the FeIII-porphyrin moiety (Fig. 2). Two of the four phenyl rings are nearly perpendicular to the porphyrin ring planes with a dihedral angle of 87.82 (5)°, whereas the other two rings are rotated out of this plane by 63.64 (5)°. The positive charge of the FeIII-porphyrin moiety is compensated by one perchlorate anion that is disordered around a twofold rotation axis.
of the title compound consists of discrete complexes which lie on inversion centers. The Fe3. Supramolecular features
In the ab plane (Fig. 3). These layers are connected to the perchlorate anions by weak C—H⋯O contacts (Table 2). For one of these contacts, the C—H⋯O angle is close to linearity, indicating weak intermolecular hydrogen bonding (Fig. 3 and Table 2). The porphyrin units of neighboring layers exhibit a herringbone-like arrangement (Fig. 4).
the Fe-porphyrin cations and the perchlorate anions are each arranged in layers that are located parallel to the4. Database survey
According to a search in the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016), 1009 structures of ferrous have been reported. However, ferrous with axial 4-methoxypyridine ligands are unknown although ferrous with perchlorate as counter-ion and other pyridines as axial ligands have been published, for instance the sterically congested porphyrin (2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetraphenylporphyrinato)iron(III) perchlorate which has two pyridine molecules as axial ligands (Ohgo et al., 2002, 2004). Other iron(III) porphyrin perchlorates are known with 3-chloropyridine (Scheidt & Geiger, 1979), 4-cyanopyridine (Safo et al., 1994), 3,5-dichloropyridine (Scheidt et al., 1989) and 4-cyanopyridine ligands (Yatsunyk & Walker 2004; Safo et al. 1994; Safo et al. 1992).
5. Synthesis and crystallization
FeIII tetraphenylporphyrin perchlorate (FeTPPClO4) was synthesized as previously reported (Shankar et al., 2018). The layering technique was used for crystallization. The lower layer was dichloromethane with 50 µL 4-methoxypyridine and n-heptane was used for the upper antisolvent.
6. Refinement
Crystal data, data collection and structure . The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.98 Å; methyl H atoms allowed to rotate but not to tip) and were refined isotropically using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). The perchlorate anion is disordered around a twofold rotation axis that passes through O1 and thus, disordered because of symmetry.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1913651
https://doi.org/10.1107/S2056989019006194/lh5899sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006194/lh5899Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Fe(C44H28N4)(C6H7NO)2]ClO4 | Dx = 1.416 Mg m−3 |
Mr = 986.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 36542 reflections |
a = 16.9772 (4) Å | θ = 1.7–27.0° |
b = 11.1879 (2) Å | µ = 0.45 mm−1 |
c = 24.3484 (6) Å | T = 170 K |
V = 4624.72 (18) Å3 | Block, colorless |
Z = 4 | 0.12 × 0.10 × 0.09 mm |
F(000) = 2044 |
STOE IPDS-2 diffractometer | Rint = 0.033 |
ω scans | θmax = 27.0°, θmin = 1.7° |
36542 measured reflections | h = −21→21 |
5029 independent reflections | k = −13→14 |
4454 reflections with I > 2σ(I) | l = −29→31 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0472P)2 + 2.1988P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
5029 reflections | Δρmax = 0.28 e Å−3 |
337 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.5000 | 0.5000 | 0.5000 | 0.02670 (10) | |
N1 | 0.51998 (8) | 0.59036 (13) | 0.43056 (5) | 0.0287 (3) | |
N2 | 0.38550 (8) | 0.53845 (13) | 0.49210 (5) | 0.0285 (3) | |
C1 | 0.66431 (9) | 0.56717 (15) | 0.42585 (6) | 0.0303 (3) | |
C2 | 0.59265 (9) | 0.61091 (16) | 0.40705 (7) | 0.0312 (3) | |
C3 | 0.58436 (10) | 0.68660 (18) | 0.36008 (7) | 0.0386 (4) | |
H3 | 0.6257 | 0.7136 | 0.3369 | 0.046* | |
C4 | 0.50747 (10) | 0.71259 (17) | 0.35457 (7) | 0.0374 (4) | |
H4 | 0.4844 | 0.7618 | 0.3271 | 0.045* | |
C5 | 0.46682 (9) | 0.65166 (15) | 0.39806 (6) | 0.0301 (3) | |
C6 | 0.38565 (9) | 0.65732 (15) | 0.40647 (6) | 0.0294 (3) | |
C7 | 0.34876 (9) | 0.60222 (15) | 0.45098 (6) | 0.0295 (3) | |
C8 | 0.26493 (9) | 0.60202 (16) | 0.45999 (7) | 0.0322 (3) | |
H8 | 0.2263 | 0.6386 | 0.4373 | 0.039* | |
C9 | 0.25149 (10) | 0.54030 (17) | 0.50662 (7) | 0.0332 (3) | |
H9 | 0.2016 | 0.5257 | 0.5230 | 0.040* | |
C10 | 0.32645 (9) | 0.50074 (15) | 0.52689 (7) | 0.0293 (3) | |
C11 | 0.33579 (9) | 0.72443 (15) | 0.36631 (6) | 0.0294 (3) | |
C12 | 0.33009 (10) | 0.68687 (16) | 0.31184 (7) | 0.0341 (4) | |
H12 | 0.3600 | 0.6203 | 0.2996 | 0.041* | |
C13 | 0.28082 (10) | 0.74660 (19) | 0.27552 (7) | 0.0390 (4) | |
H13 | 0.2768 | 0.7199 | 0.2386 | 0.047* | |
C14 | 0.23762 (10) | 0.84445 (19) | 0.29253 (8) | 0.0415 (4) | |
H14 | 0.2040 | 0.8849 | 0.2675 | 0.050* | |
C15 | 0.24377 (10) | 0.88294 (17) | 0.34625 (8) | 0.0395 (4) | |
H15 | 0.2145 | 0.9506 | 0.3581 | 0.047* | |
C16 | 0.29235 (10) | 0.82350 (16) | 0.38300 (7) | 0.0341 (4) | |
H16 | 0.2960 | 0.8506 | 0.4199 | 0.041* | |
C17 | 0.73642 (9) | 0.59461 (16) | 0.39261 (7) | 0.0312 (3) | |
C18 | 0.76060 (12) | 0.51717 (19) | 0.35181 (8) | 0.0437 (4) | |
H18 | 0.7316 | 0.4461 | 0.3450 | 0.052* | |
C19 | 0.82706 (12) | 0.5424 (2) | 0.32064 (9) | 0.0500 (5) | |
H19 | 0.8438 | 0.4878 | 0.2931 | 0.060* | |
C20 | 0.86880 (10) | 0.6461 (2) | 0.32953 (8) | 0.0434 (4) | |
H20 | 0.9137 | 0.6640 | 0.3077 | 0.052* | |
C21 | 0.84516 (11) | 0.72356 (19) | 0.37005 (9) | 0.0460 (5) | |
H21 | 0.8740 | 0.7950 | 0.3764 | 0.055* | |
C22 | 0.77939 (11) | 0.69788 (18) | 0.40173 (8) | 0.0423 (4) | |
H22 | 0.7637 | 0.7516 | 0.4299 | 0.051* | |
N31 | 0.48297 (8) | 0.34725 (13) | 0.45758 (6) | 0.0299 (3) | |
C31 | 0.50607 (12) | 0.23963 (17) | 0.47644 (8) | 0.0420 (4) | |
H31 | 0.5320 | 0.2360 | 0.5110 | 0.050* | |
C32 | 0.49415 (13) | 0.13525 (18) | 0.44838 (8) | 0.0457 (5) | |
H32 | 0.5116 | 0.0614 | 0.4633 | 0.055* | |
C33 | 0.45604 (11) | 0.13819 (16) | 0.39757 (7) | 0.0363 (4) | |
C34 | 0.43316 (10) | 0.24801 (16) | 0.37747 (7) | 0.0351 (4) | |
H34 | 0.4077 | 0.2541 | 0.3429 | 0.042* | |
C35 | 0.44775 (10) | 0.34847 (16) | 0.40822 (7) | 0.0342 (4) | |
H35 | 0.4319 | 0.4235 | 0.3937 | 0.041* | |
O31 | 0.44631 (9) | 0.03299 (12) | 0.37175 (6) | 0.0467 (3) | |
C36 | 0.41268 (13) | 0.03669 (19) | 0.31772 (8) | 0.0461 (5) | |
H36A | 0.3605 | 0.0738 | 0.3194 | 0.069* | |
H36B | 0.4078 | −0.0448 | 0.3034 | 0.069* | |
H36C | 0.4468 | 0.0836 | 0.2934 | 0.069* | |
Cl1 | 0.51249 (9) | 0.41187 (7) | 0.25605 (9) | 0.0354 (3) | 0.5 |
O1 | 0.5000 | 0.28459 (18) | 0.2500 | 0.0480 (5) | |
O2 | 0.4431 (3) | 0.4585 (8) | 0.2775 (3) | 0.084 (3) | 0.5 |
O3 | 0.5724 (2) | 0.4344 (3) | 0.29567 (16) | 0.0722 (10) | 0.5 |
O4 | 0.5362 (5) | 0.4650 (9) | 0.2069 (3) | 0.095 (3) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02464 (16) | 0.02978 (17) | 0.02567 (16) | 0.00148 (12) | 0.00190 (11) | 0.00273 (12) |
N1 | 0.0254 (6) | 0.0324 (7) | 0.0282 (6) | 0.0014 (5) | 0.0020 (5) | 0.0033 (5) |
N2 | 0.0259 (6) | 0.0325 (7) | 0.0272 (6) | 0.0018 (5) | 0.0017 (5) | 0.0032 (5) |
C1 | 0.0285 (7) | 0.0334 (9) | 0.0292 (8) | 0.0003 (6) | 0.0032 (6) | 0.0012 (6) |
C2 | 0.0294 (8) | 0.0347 (9) | 0.0296 (8) | 0.0003 (6) | 0.0044 (6) | 0.0042 (7) |
C3 | 0.0323 (8) | 0.0479 (11) | 0.0357 (9) | 0.0010 (7) | 0.0057 (7) | 0.0118 (8) |
C4 | 0.0324 (8) | 0.0431 (10) | 0.0367 (9) | 0.0022 (7) | 0.0018 (7) | 0.0116 (8) |
C5 | 0.0296 (8) | 0.0327 (9) | 0.0281 (7) | 0.0023 (6) | 0.0002 (6) | 0.0047 (6) |
C6 | 0.0294 (7) | 0.0302 (8) | 0.0288 (7) | 0.0025 (6) | 0.0003 (6) | 0.0005 (6) |
C7 | 0.0276 (7) | 0.0322 (8) | 0.0286 (8) | 0.0023 (6) | −0.0011 (6) | 0.0005 (6) |
C8 | 0.0269 (8) | 0.0377 (9) | 0.0321 (8) | 0.0034 (7) | −0.0008 (6) | 0.0029 (7) |
C9 | 0.0264 (7) | 0.0382 (9) | 0.0349 (8) | 0.0020 (7) | 0.0022 (6) | 0.0019 (7) |
C10 | 0.0263 (7) | 0.0322 (8) | 0.0293 (8) | 0.0006 (6) | 0.0022 (6) | 0.0003 (6) |
C11 | 0.0268 (7) | 0.0315 (8) | 0.0300 (8) | 0.0003 (6) | 0.0004 (6) | 0.0044 (6) |
C12 | 0.0339 (8) | 0.0364 (9) | 0.0321 (8) | 0.0007 (7) | 0.0021 (6) | 0.0016 (7) |
C13 | 0.0348 (8) | 0.0528 (11) | 0.0294 (8) | −0.0045 (8) | −0.0030 (7) | 0.0058 (8) |
C14 | 0.0305 (8) | 0.0516 (11) | 0.0424 (9) | 0.0022 (8) | −0.0026 (7) | 0.0168 (9) |
C15 | 0.0325 (8) | 0.0375 (10) | 0.0486 (10) | 0.0074 (7) | 0.0047 (8) | 0.0096 (8) |
C16 | 0.0334 (8) | 0.0351 (9) | 0.0339 (8) | 0.0019 (7) | 0.0024 (7) | 0.0022 (7) |
C17 | 0.0262 (7) | 0.0366 (9) | 0.0309 (8) | 0.0020 (6) | 0.0014 (6) | 0.0063 (7) |
C18 | 0.0439 (10) | 0.0459 (11) | 0.0414 (10) | −0.0082 (8) | 0.0113 (8) | −0.0035 (8) |
C19 | 0.0459 (11) | 0.0614 (13) | 0.0427 (10) | −0.0035 (10) | 0.0156 (8) | −0.0055 (10) |
C20 | 0.0288 (8) | 0.0622 (13) | 0.0394 (9) | −0.0021 (8) | 0.0052 (7) | 0.0110 (9) |
C21 | 0.0332 (9) | 0.0473 (11) | 0.0574 (12) | −0.0083 (8) | 0.0014 (8) | 0.0054 (9) |
C22 | 0.0356 (9) | 0.0424 (10) | 0.0489 (10) | −0.0017 (8) | 0.0081 (8) | −0.0037 (8) |
N31 | 0.0284 (6) | 0.0325 (7) | 0.0289 (6) | 0.0019 (5) | 0.0009 (5) | 0.0019 (6) |
C31 | 0.0550 (11) | 0.0366 (10) | 0.0342 (9) | 0.0036 (8) | −0.0073 (8) | 0.0035 (7) |
C32 | 0.0652 (13) | 0.0338 (10) | 0.0381 (10) | 0.0025 (9) | −0.0075 (9) | 0.0052 (8) |
C33 | 0.0404 (9) | 0.0330 (9) | 0.0355 (9) | −0.0041 (7) | 0.0010 (7) | 0.0001 (7) |
C34 | 0.0341 (8) | 0.0388 (9) | 0.0324 (8) | 0.0020 (7) | −0.0034 (7) | 0.0005 (7) |
C35 | 0.0352 (8) | 0.0349 (9) | 0.0325 (8) | 0.0040 (7) | −0.0017 (6) | 0.0021 (7) |
O31 | 0.0652 (9) | 0.0333 (7) | 0.0416 (7) | −0.0056 (6) | −0.0088 (6) | −0.0011 (6) |
C36 | 0.0558 (12) | 0.0411 (10) | 0.0413 (10) | −0.0094 (9) | −0.0083 (9) | −0.0030 (8) |
Cl1 | 0.0332 (11) | 0.0327 (3) | 0.0404 (10) | 0.0001 (4) | 0.0032 (6) | −0.0014 (4) |
O1 | 0.0637 (13) | 0.0331 (10) | 0.0472 (11) | 0.000 | −0.0063 (9) | 0.000 |
O2 | 0.044 (2) | 0.053 (3) | 0.154 (8) | 0.0169 (19) | 0.050 (3) | −0.008 (4) |
O3 | 0.066 (2) | 0.067 (2) | 0.083 (2) | −0.0006 (18) | −0.0318 (19) | −0.0234 (19) |
O4 | 0.184 (9) | 0.051 (3) | 0.050 (3) | −0.006 (5) | 0.049 (4) | 0.006 (2) |
Fe1—N1i | 1.9988 (13) | C17—C22 | 1.384 (3) |
Fe1—N1 | 1.9989 (13) | C18—C19 | 1.389 (3) |
Fe1—N2i | 2.0002 (13) | C18—H18 | 0.9500 |
Fe1—N2 | 2.0003 (13) | C19—C20 | 1.377 (3) |
Fe1—N31 | 2.0177 (14) | C19—H19 | 0.9500 |
Fe1—N31i | 2.0177 (14) | C20—C21 | 1.373 (3) |
N1—C2 | 1.379 (2) | C20—H20 | 0.9500 |
N1—C5 | 1.382 (2) | C21—C22 | 1.387 (3) |
N2—C10 | 1.379 (2) | C21—H21 | 0.9500 |
N2—C7 | 1.379 (2) | C22—H22 | 0.9500 |
C1—C10i | 1.388 (2) | N31—C35 | 1.342 (2) |
C1—C2 | 1.389 (2) | N31—C31 | 1.347 (2) |
C1—C17 | 1.499 (2) | C31—C32 | 1.368 (3) |
C2—C3 | 1.430 (2) | C31—H31 | 0.9500 |
C3—C4 | 1.344 (2) | C32—C33 | 1.397 (3) |
C3—H3 | 0.9500 | C32—H32 | 0.9500 |
C4—C5 | 1.436 (2) | C33—O31 | 1.344 (2) |
C4—H4 | 0.9500 | C33—C34 | 1.378 (3) |
C5—C6 | 1.395 (2) | C34—C35 | 1.373 (3) |
C6—C7 | 1.395 (2) | C34—H34 | 0.9500 |
C6—C11 | 1.495 (2) | C35—H35 | 0.9500 |
C7—C8 | 1.440 (2) | O31—C36 | 1.435 (2) |
C8—C9 | 1.348 (2) | C36—H36A | 0.9800 |
C8—H8 | 0.9500 | C36—H36B | 0.9800 |
C9—C10 | 1.435 (2) | C36—H36C | 0.9800 |
C9—H9 | 0.9500 | Cl1—Cl1ii | 0.5162 (19) |
C10—C1i | 1.388 (2) | Cl1—O2ii | 1.228 (6) |
C11—C16 | 1.392 (2) | Cl1—O4ii | 1.361 (8) |
C11—C12 | 1.395 (2) | Cl1—O2 | 1.391 (5) |
C12—C13 | 1.389 (2) | Cl1—O4 | 1.396 (8) |
C12—H12 | 0.9500 | Cl1—O3 | 1.425 (3) |
C13—C14 | 1.381 (3) | Cl1—O1 | 1.447 (2) |
C13—H13 | 0.9500 | Cl1—O3ii | 1.931 (3) |
C14—C15 | 1.381 (3) | O1—Cl1ii | 1.447 (2) |
C14—H14 | 0.9500 | O2—O4ii | 0.524 (14) |
C15—C16 | 1.387 (2) | O2—Cl1ii | 1.228 (6) |
C15—H15 | 0.9500 | O3—Cl1ii | 1.931 (3) |
C16—H16 | 0.9500 | O4—O2ii | 0.524 (14) |
C17—C18 | 1.381 (3) | O4—Cl1ii | 1.361 (8) |
N1i—Fe1—N1 | 180.00 (4) | C19—C18—H18 | 119.8 |
N1i—Fe1—N2i | 88.56 (5) | C20—C19—C18 | 120.21 (19) |
N1—Fe1—N2i | 91.44 (5) | C20—C19—H19 | 119.9 |
N1i—Fe1—N2 | 91.44 (5) | C18—C19—H19 | 119.9 |
N1—Fe1—N2 | 88.56 (5) | C21—C20—C19 | 119.64 (17) |
N2i—Fe1—N2 | 180.00 (8) | C21—C20—H20 | 120.2 |
N1i—Fe1—N31 | 88.87 (6) | C19—C20—H20 | 120.2 |
N1—Fe1—N31 | 91.13 (5) | C20—C21—C22 | 120.27 (19) |
N2i—Fe1—N31 | 90.36 (6) | C20—C21—H21 | 119.9 |
N2—Fe1—N31 | 89.64 (6) | C22—C21—H21 | 119.9 |
N1i—Fe1—N31i | 91.13 (5) | C17—C22—C21 | 120.52 (18) |
N1—Fe1—N31i | 88.87 (6) | C17—C22—H22 | 119.7 |
N2i—Fe1—N31i | 89.64 (6) | C21—C22—H22 | 119.7 |
N2—Fe1—N31i | 90.36 (6) | C35—N31—C31 | 116.36 (15) |
N31—Fe1—N31i | 180.0 | C35—N31—Fe1 | 120.90 (12) |
C2—N1—C5 | 105.28 (13) | C31—N31—Fe1 | 122.74 (12) |
C2—N1—Fe1 | 125.95 (11) | N31—C31—C32 | 123.34 (17) |
C5—N1—Fe1 | 128.63 (11) | N31—C31—H31 | 118.3 |
C10—N2—C7 | 106.01 (13) | C32—C31—H31 | 118.3 |
C10—N2—Fe1 | 125.58 (11) | C31—C32—C33 | 119.39 (18) |
C7—N2—Fe1 | 128.37 (11) | C31—C32—H32 | 120.3 |
C10i—C1—C2 | 124.42 (15) | C33—C32—H32 | 120.3 |
C10i—C1—C17 | 117.87 (14) | O31—C33—C34 | 125.44 (16) |
C2—C1—C17 | 117.71 (14) | O31—C33—C32 | 116.77 (17) |
N1—C2—C1 | 126.01 (15) | C34—C33—C32 | 117.78 (17) |
N1—C2—C3 | 110.04 (14) | C35—C34—C33 | 119.04 (16) |
C1—C2—C3 | 123.95 (15) | C35—C34—H34 | 120.5 |
C4—C3—C2 | 107.67 (15) | C33—C34—H34 | 120.5 |
C4—C3—H3 | 126.2 | N31—C35—C34 | 124.07 (16) |
C2—C3—H3 | 126.2 | N31—C35—H35 | 118.0 |
C3—C4—C5 | 106.88 (15) | C34—C35—H35 | 118.0 |
C3—C4—H4 | 126.6 | C33—O31—C36 | 116.89 (15) |
C5—C4—H4 | 126.6 | O31—C36—H36A | 109.5 |
N1—C5—C6 | 125.70 (15) | O31—C36—H36B | 109.5 |
N1—C5—C4 | 110.12 (14) | H36A—C36—H36B | 109.5 |
C6—C5—C4 | 124.16 (15) | O31—C36—H36C | 109.5 |
C5—C6—C7 | 122.52 (15) | H36A—C36—H36C | 109.5 |
C5—C6—C11 | 119.09 (14) | H36B—C36—H36C | 109.5 |
C7—C6—C11 | 118.39 (14) | Cl1ii—Cl1—O2ii | 97.2 (6) |
N2—C7—C6 | 126.14 (14) | Cl1ii—Cl1—O4ii | 83.1 (6) |
N2—C7—C8 | 109.61 (14) | O2ii—Cl1—O4ii | 128.9 (2) |
C6—C7—C8 | 124.24 (15) | Cl1ii—Cl1—O2 | 61.2 (6) |
C9—C8—C7 | 107.24 (14) | O2ii—Cl1—O2 | 127.7 (7) |
C9—C8—H8 | 126.4 | O4ii—Cl1—O2 | 21.9 (6) |
C7—C8—H8 | 126.4 | Cl1ii—Cl1—O4 | 75.4 (6) |
C8—C9—C10 | 107.31 (14) | O2ii—Cl1—O4 | 21.8 (6) |
C8—C9—H9 | 126.3 | O4ii—Cl1—O4 | 123.9 (7) |
C10—C9—H9 | 126.3 | O2—Cl1—O4 | 114.0 (4) |
N2—C10—C1i | 126.50 (15) | Cl1ii—Cl1—O3 | 166.6 (5) |
N2—C10—C9 | 109.82 (14) | O2ii—Cl1—O3 | 86.4 (4) |
C1i—C10—C9 | 123.66 (15) | O4ii—Cl1—O3 | 84.7 (4) |
C16—C11—C12 | 118.74 (15) | O2—Cl1—O3 | 106.5 (4) |
C16—C11—C6 | 120.59 (15) | O4—Cl1—O3 | 107.4 (4) |
C12—C11—C6 | 120.65 (15) | Cl1ii—Cl1—O1 | 79.73 (4) |
C13—C12—C11 | 120.16 (17) | O2ii—Cl1—O1 | 116.1 (5) |
C13—C12—H12 | 119.9 | O4ii—Cl1—O1 | 114.1 (4) |
C11—C12—H12 | 119.9 | O2—Cl1—O1 | 106.5 (4) |
C14—C13—C12 | 120.68 (17) | O4—Cl1—O1 | 112.0 (4) |
C14—C13—H13 | 119.7 | O3—Cl1—O1 | 110.32 (17) |
C12—C13—H13 | 119.7 | Cl1ii—Cl1—O3ii | 9.8 (3) |
C15—C14—C13 | 119.41 (16) | O2ii—Cl1—O3ii | 88.3 (4) |
C15—C14—H14 | 120.3 | O4ii—Cl1—O3ii | 85.6 (4) |
C13—C14—H14 | 120.3 | O2—Cl1—O3ii | 64.1 (4) |
C14—C15—C16 | 120.43 (17) | O4—Cl1—O3ii | 66.4 (4) |
C14—C15—H15 | 119.8 | O3—Cl1—O3ii | 162.2 (3) |
C16—C15—H15 | 119.8 | O1—Cl1—O3ii | 87.28 (13) |
C15—C16—C11 | 120.57 (16) | Cl1—O1—Cl1ii | 20.54 (8) |
C15—C16—H16 | 119.7 | O4ii—O2—Cl1ii | 97.4 (13) |
C11—C16—H16 | 119.7 | O4ii—O2—Cl1 | 75.8 (13) |
C18—C17—C22 | 118.85 (16) | Cl1ii—O2—Cl1 | 21.61 (13) |
C18—C17—C1 | 120.18 (16) | Cl1—O3—Cl1ii | 3.54 (12) |
C22—C17—C1 | 120.96 (16) | O2ii—O4—Cl1ii | 82.2 (13) |
C17—C18—C19 | 120.50 (19) | O2ii—O4—Cl1 | 60.7 (12) |
C17—C18—H18 | 119.8 | Cl1ii—O4—Cl1 | 21.53 (14) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C35—H35···O4ii | 0.95 | 2.55 | 3.103 (8) | 117 |
C36—H36C···O1 | 0.98 | 2.64 | 3.551 (3) | 154 |
Symmetry code: (ii) −x+1, y, −z+1/2. |
Acknowledgements
We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.
Funding information
The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.
References
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Collman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692–703. CSD CrossRef CAS Web of Science Google Scholar
Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552–7555. Web of Science CrossRef CAS PubMed Google Scholar
Geiger, D. K., Chunplang, V. & Scheidt, W. R. (1985). Inorg. Chem. 24, 4736–4741. CSD CrossRef CAS Web of Science Google Scholar
Geiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339–6343. CSD CrossRef CAS Web of Science Google Scholar
Geiger, D. K. & Scheidt, W. R. (1984). Inorg. Chem. 23, 1970–1972. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810–4823. CSD CrossRef CAS Web of Science Google Scholar
Ikezaki, A., Ohgo, Y. & Nakamura, M. (2009). Coord. Chem. Rev. 253, 2056–2069. Web of Science CrossRef CAS Google Scholar
Konishi, K., Oda, K., Nishida, K., Aida, T. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 1313–1317. CrossRef CAS Web of Science Google Scholar
Maté, M. J., Murshudov, G., Bravo, J., Melik-Adamyan, W., Loewen, P. C. & Fita, I. (2001). Handbook of Metalloproteins 1, 486–502. Google Scholar
Momenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189–196. CrossRef Web of Science Google Scholar
Morgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115–203. CrossRef CAS Google Scholar
Nakamura, M. (2006). Coord. Chem. Rev. 250, 2271–2294. Web of Science CrossRef CAS Google Scholar
Ohgo, Y., Ikeue, T. & Nakamura, M. (2002). Inorg. Chem. 41, 1698–1700. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ohgo, Y., Ikeue, T., Takahashi, M., Takeda, M. & Nakamura, M. (2004). Eur. J. Inorg. Chem. pp. 798–809. Web of Science CSD CrossRef Google Scholar
Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177–3182. Web of Science CrossRef CAS PubMed Google Scholar
Peters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018). Org. Lett. 20, 7879–7883. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safo, M. K., Gupta, G. P., Watson, C. T., Simonis, U., Walker, F. A. & Scheidt, W. R. (1992). J. Am. Chem. Soc. 114, 7066–7075. CSD CrossRef CAS Web of Science Google Scholar
Safo, M. K. M., Walker, F. A., Raitsimring, A. M., Walters, W. P., Dolata, D. P., Debrunner, P. G. & Scheidt, W. R. (1994). J. Am. Chem. Soc. 116, 7760–7770. CSD CrossRef CAS Web of Science Google Scholar
Scheidt, W. R. (2000). The Porphyrin Handbook 3, 49. Google Scholar
Scheidt, W. R. & Geiger, D. K. (1979). J. Chem. Soc. Chem. Commun. pp. 1154–1155. CSD CrossRef Web of Science Google Scholar
Scheidt, W. R., Osvath, S. R., Lee, Y. J., Reed, C. A., Shaevitz, B. & Gupta, G. P. (1989). Inorg. Chem. 28, 1591–1595. CSD CrossRef CAS Web of Science Google Scholar
Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsunyk, L. A. & Walker, F. A. (2004). Inorg. Chem. 43, 757–777. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.