research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(4-meth­­oxy­pyridine-κN)(meso-5,10,15,20-tetra­phenyl­porphyrinato-κ4N,N′,N′′,N′′′)iron(III) perchlorate

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 1 April 2019; accepted 2 May 2019; online 10 May 2019)

In the crystal structure of the title compound, [Fe(C44H28N4)(C6H7NO)2]ClO4, the FeIII ions are coordinated in an octa­hedral fashion by four N atoms of the porphyrin moiety and two N atoms of two 4-meth­oxy­pyridine ligands into discrete complexes that are located on inversion centers. Charge-balance is achieved by perchlorate anions that are disordered around twofold rotation axes. In the crystal structure, the discrete cationic complexes and the perchlorate anions are arranged into layers with weak C—H⋯O inter­actions between the cations and the anions. The porphyrin moieties of neighboring layers show a herringbone-like arrangement.

1. Chemical context

Porphyrins are of great inter­est for a number of different applications in medicine and nature (Peters & Herges, 2018[Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177-3182.]; Peters et al., 2018[Peters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018). Org. Lett. 20, 7879-7883.]; Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750.]; Dommaschk et al., 2015[Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552-7555.]). For example, metal porphyrins show spin crossover (SCO), which is the key step in a number of enzymatic reactions, e.g. catalysts in selective CH activation (cytochrome P450) (Konishi et al., 1992[Konishi, K., Oda, K., Nishida, K., Aida, T. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 1313-1317.]; Momenteau et al., 1983[Momenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189-196.]), hydrogen peroxide decomposition (catalases) (Maté et al., 2001[Maté, M. J., Murshudov, G., Bravo, J., Melik-Adamyan, W., Loewen, P. C. & Fita, I. (2001). Handbook of Metalloproteins 1, 486-502.]) and a number of other biologically important processes (Collman et al., 1995[Collman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692-703.]; Gunter et al., 1994[Gunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810-4823.]; Morgan & Dolphin, 1987[Morgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115-203.]). The spin state and electronic configuration of ferrous porphyrins are dependent on temperature, pressure, light or axial ligands.

[Scheme 1]

Iron(III) porphyrins can exist in high-spin (S = [5\over2]), inter­mediate-spin (S = [3\over2]), admixed-spin (S = [3\over2], [5\over2]) and low-spin (S = [1\over2]) states of iron (Scheidt, 2000[Scheidt, W. R. (2000). The Porphyrin Handbook 3, 49.]; Ikezaki et al., 2009[Ikezaki, A., Ohgo, Y. & Nakamura, M. (2009). Coord. Chem. Rev. 253, 2056-2069.]; Nakamura, 2006[Nakamura, M. (2006). Coord. Chem. Rev. 250, 2271-2294.]; Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750.]). Most of the anionic ligands such as chloride, hydroxide and azide lead to the formation of complexes in the high-spin state, whereas weak ligands like ClO4 and SbF6 usually give the complexes in an admixed-spin state (Scheidt, 2000[Scheidt, W. R. (2000). The Porphyrin Handbook 3, 49.]). However, six-coordinate complexes with strong axial ligands tend to be in the low-spin state (Scheidt, 2000[Scheidt, W. R. (2000). The Porphyrin Handbook 3, 49.]). In our ongoing investigations on SCO compounds based on iron porphyrins, we became inter­ested in the complex bis­(4-meth­oxy­pyridine-κN)(meso-5,10,15,20-tetra­phenyl­porphyrinato-κ4N,N′,N′′,N′′′iron(III) perchlorate, which was synthesized and characterized by high-resolution mass spectroscopy (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750.]). Preliminary investigations indicate that the complex is in the low-spin state but unfortunately no single crystals were obtained. In the course of subsequent investigations, we we able to obtain crystals by the layering technique starting from the FeIII tetra­phenyl­porphyrin perchlorate complexes and using 4-meth­oxy­pyridine dissolved in di­chloro­methane as the lower and n-heptane as the upper layer. These crystals were identified by single crystal X-ray diffraction, which confirmed that crystals of the title compound were obtained.

2. Structural commentary

The crystal structure of the title compound consists of discrete complexes which lie on inversion centers. The FeIII ions are sixfold coordinated by four N atoms of the porphyrin moiety and two N atoms of two 4-meth­oxy­pyridine ligands in an octa­hedral coordination environment (Fig. 1[link]). The Fe—N bond lengths to the porphyrin atoms of 1.9989 (13) Å and to the pyridine N atoms of 2.0002 (13) Å are nearly identical and the iron cations are located exactly in the plane of the coordinating porphyrin N atoms (Table 1[link]). The Fe—N bond lengths to the two axial 4-meth­oxy­pyridine ligands at 2.0 Å are typical for low-spin complexes (Geiger et al., 1985[Geiger, D. K., Chunplang, V. & Scheidt, W. R. (1985). Inorg. Chem. 24, 4736-4741.]; Scheidt & Geiger, 1979[Scheidt, W. R. & Geiger, D. K. (1979). J. Chem. Soc. Chem. Commun. pp. 1154-1155.]), whereas high-spin complexes have a significant longer bond length of about 2.2 Å (Geiger et al., 1984[Geiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339-6343.], 1985[Geiger, D. K., Chunplang, V. & Scheidt, W. R. (1985). Inorg. Chem. 24, 4736-4741.]; Geiger & Scheidt, 1984[Geiger, D. K. & Scheidt, W. R. (1984). Inorg. Chem. 23, 1970-1972.]). The N—Fe—N bond angles within the equatorial porphyrin plane range between 88.56 (5) and 91.44 (5)°, whereas that to the axial ligands are 180° because of symmetry, which proves that the octa­hedra are slightly distorted (Table 1[link]). The six-membered ring planes of the two coordinating 4-meth­oxy­pyridine ligands are eclipsed and rotated relative to the Fe—N bonds of the FeIII-porphyrin moiety (Fig. 2[link]). Two of the four phenyl rings are nearly perpendicular to the porphyrin ring planes with a dihedral angle of 87.82 (5)°, whereas the other two rings are rotated out of this plane by 63.64 (5)°. The positive charge of the FeIII-porphyrin moiety is compensated by one perchlorate anion that is disordered around a twofold rotation axis.

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 1.9989 (13) Fe1—N2 2.0003 (13)
Fe1—N2i 2.0002 (13) Fe1—N31 2.0177 (14)
       
N1i—Fe1—N1 180.00 (4) N1—Fe1—N31 91.13 (5)
N1—Fe1—N2i 91.44 (5) N2—Fe1—N31 89.64 (6)
N1—Fe1—N2 88.56 (5) N2—Fe1—N31i 90.36 (6)
N2i—Fe1—N2 180.00 (8) N31—Fe1—N31i 180.0
N1i—Fe1—N31 88.87 (6)    
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Atoms with the suffix A are generated by the symmetry operation (1 − x, 1 − y, 1 − z).
[Figure 2]
Figure 2
Mol­ecular structure of the title compound viewed onto the porphyrin plane.

3. Supra­molecular features

In the crystal structure, the Fe-porphyrin cations and the perchlorate anions are each arranged in layers that are located parallel to the ab plane (Fig. 3[link]). These layers are connected to the perchlorate anions by weak C—H⋯O contacts (Table 2[link]). For one of these contacts, the C—H⋯O angle is close to linearity, indicating weak inter­molecular hydrogen bonding (Fig. 3[link] and Table 2[link]). The porphyrin units of neighboring layers exhibit a herringbone-like arrangement (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯O4ii 0.95 2.55 3.103 (8) 117
C36—H36C⋯O1 0.98 2.64 3.551 (3) 154
Symmetry code: (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the b axis. Inter­molecular C—H⋯O contacts are shown as dashed lines.
[Figure 4]
Figure 4
Crystal packing of the title compound viewed along the a axis.

4. Database survey

According to a search in the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 1009 structures of ferrous porphyrins have been reported. However, ferrous porphyrins with axial 4-meth­oxy­pyridine ligands are unknown although ferrous porphyrins with perchlorate as counter-ion and other pyridines as axial ligands have been published, for instance the sterically congested porphyrin (2,3,7,8,12,13,17,18-octa­methyl-5,10,15,20-tetra­phenyl­porph­yrinato)iron(III) perchlorate which has two pyridine mol­ecules as axial ligands (Ohgo et al., 2002[Ohgo, Y., Ikeue, T. & Nakamura, M. (2002). Inorg. Chem. 41, 1698-1700.], 2004[Ohgo, Y., Ikeue, T., Takahashi, M., Takeda, M. & Nakamura, M. (2004). Eur. J. Inorg. Chem. pp. 798-809.]). Other iron(III) porphyrin perchlorates are known with 3-chloro­pyridine (Scheidt & Geiger, 1979[Scheidt, W. R. & Geiger, D. K. (1979). J. Chem. Soc. Chem. Commun. pp. 1154-1155.]), 4-cyano­pyridine (Safo et al., 1994[Safo, M. K. M., Walker, F. A., Raitsimring, A. M., Walters, W. P., Dolata, D. P., Debrunner, P. G. & Scheidt, W. R. (1994). J. Am. Chem. Soc. 116, 7760-7770.]), 3,5-di­chloro­pyridine (Scheidt et al., 1989[Scheidt, W. R., Osvath, S. R., Lee, Y. J., Reed, C. A., Shaevitz, B. & Gupta, G. P. (1989). Inorg. Chem. 28, 1591-1595.]) and 4-cyano­pyridine ligands (Yatsunyk & Walker 2004[Yatsunyk, L. A. & Walker, F. A. (2004). Inorg. Chem. 43, 757-777.]; Safo et al. 1994[Safo, M. K. M., Walker, F. A., Raitsimring, A. M., Walters, W. P., Dolata, D. P., Debrunner, P. G. & Scheidt, W. R. (1994). J. Am. Chem. Soc. 116, 7760-7770.]; Safo et al. 1992[Safo, M. K., Gupta, G. P., Watson, C. T., Simonis, U., Walker, F. A. & Scheidt, W. R. (1992). J. Am. Chem. Soc. 114, 7066-7075.]).

5. Synthesis and crystallization

FeIII tetra­phenyl­porphyrin perchlorate (FeTPPClO4) was synthesized as previously reported (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750.]). The layering technique was used for crystallization. The lower layer was di­chloro­methane with 50 µL 4-meth­oxy­pyridine and n-heptane was used for the upper anti­solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.98 Å; methyl H atoms allowed to rotate but not to tip) and were refined isotropically using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The perchlorate anion is disordered around a twofold rotation axis that passes through O1 and thus, disordered because of symmetry.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C44H28N4)(C6H7NO)2]ClO4
Mr 986.25
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 170
a, b, c (Å) 16.9772 (4), 11.1879 (2), 24.3484 (6)
V3) 4624.72 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.12 × 0.10 × 0.09
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 36542, 5029, 4454
Rint 0.033
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.07
No. of reflections 5029
No. of parameters 337
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.48
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-methoxypyridine-κN)(meso-5,10,15,20-tetraphenylporphyrinato-κ4N,N',N'',N''')iron(III) perchlorate top
Crystal data top
[Fe(C44H28N4)(C6H7NO)2]ClO4Dx = 1.416 Mg m3
Mr = 986.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 36542 reflections
a = 16.9772 (4) Åθ = 1.7–27.0°
b = 11.1879 (2) ŵ = 0.45 mm1
c = 24.3484 (6) ÅT = 170 K
V = 4624.72 (18) Å3Block, colorless
Z = 40.12 × 0.10 × 0.09 mm
F(000) = 2044
Data collection top
STOE IPDS-2
diffractometer
Rint = 0.033
ω scansθmax = 27.0°, θmin = 1.7°
36542 measured reflectionsh = 2121
5029 independent reflectionsk = 1314
4454 reflections with I > 2σ(I)l = 2931
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0472P)2 + 2.1988P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5029 reflectionsΔρmax = 0.28 e Å3
337 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.50000.50000.02670 (10)
N10.51998 (8)0.59036 (13)0.43056 (5)0.0287 (3)
N20.38550 (8)0.53845 (13)0.49210 (5)0.0285 (3)
C10.66431 (9)0.56717 (15)0.42585 (6)0.0303 (3)
C20.59265 (9)0.61091 (16)0.40705 (7)0.0312 (3)
C30.58436 (10)0.68660 (18)0.36008 (7)0.0386 (4)
H30.62570.71360.33690.046*
C40.50747 (10)0.71259 (17)0.35457 (7)0.0374 (4)
H40.48440.76180.32710.045*
C50.46682 (9)0.65166 (15)0.39806 (6)0.0301 (3)
C60.38565 (9)0.65732 (15)0.40647 (6)0.0294 (3)
C70.34876 (9)0.60222 (15)0.45098 (6)0.0295 (3)
C80.26493 (9)0.60202 (16)0.45999 (7)0.0322 (3)
H80.22630.63860.43730.039*
C90.25149 (10)0.54030 (17)0.50662 (7)0.0332 (3)
H90.20160.52570.52300.040*
C100.32645 (9)0.50074 (15)0.52689 (7)0.0293 (3)
C110.33579 (9)0.72443 (15)0.36631 (6)0.0294 (3)
C120.33009 (10)0.68687 (16)0.31184 (7)0.0341 (4)
H120.36000.62030.29960.041*
C130.28082 (10)0.74660 (19)0.27552 (7)0.0390 (4)
H130.27680.71990.23860.047*
C140.23762 (10)0.84445 (19)0.29253 (8)0.0415 (4)
H140.20400.88490.26750.050*
C150.24377 (10)0.88294 (17)0.34625 (8)0.0395 (4)
H150.21450.95060.35810.047*
C160.29235 (10)0.82350 (16)0.38300 (7)0.0341 (4)
H160.29600.85060.41990.041*
C170.73642 (9)0.59461 (16)0.39261 (7)0.0312 (3)
C180.76060 (12)0.51717 (19)0.35181 (8)0.0437 (4)
H180.73160.44610.34500.052*
C190.82706 (12)0.5424 (2)0.32064 (9)0.0500 (5)
H190.84380.48780.29310.060*
C200.86880 (10)0.6461 (2)0.32953 (8)0.0434 (4)
H200.91370.66400.30770.052*
C210.84516 (11)0.72356 (19)0.37005 (9)0.0460 (5)
H210.87400.79500.37640.055*
C220.77939 (11)0.69788 (18)0.40173 (8)0.0423 (4)
H220.76370.75160.42990.051*
N310.48297 (8)0.34725 (13)0.45758 (6)0.0299 (3)
C310.50607 (12)0.23963 (17)0.47644 (8)0.0420 (4)
H310.53200.23600.51100.050*
C320.49415 (13)0.13525 (18)0.44838 (8)0.0457 (5)
H320.51160.06140.46330.055*
C330.45604 (11)0.13819 (16)0.39757 (7)0.0363 (4)
C340.43316 (10)0.24801 (16)0.37747 (7)0.0351 (4)
H340.40770.25410.34290.042*
C350.44775 (10)0.34847 (16)0.40822 (7)0.0342 (4)
H350.43190.42350.39370.041*
O310.44631 (9)0.03299 (12)0.37175 (6)0.0467 (3)
C360.41268 (13)0.03669 (19)0.31772 (8)0.0461 (5)
H36A0.36050.07380.31940.069*
H36B0.40780.04480.30340.069*
H36C0.44680.08360.29340.069*
Cl10.51249 (9)0.41187 (7)0.25605 (9)0.0354 (3)0.5
O10.50000.28459 (18)0.25000.0480 (5)
O20.4431 (3)0.4585 (8)0.2775 (3)0.084 (3)0.5
O30.5724 (2)0.4344 (3)0.29567 (16)0.0722 (10)0.5
O40.5362 (5)0.4650 (9)0.2069 (3)0.095 (3)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02464 (16)0.02978 (17)0.02567 (16)0.00148 (12)0.00190 (11)0.00273 (12)
N10.0254 (6)0.0324 (7)0.0282 (6)0.0014 (5)0.0020 (5)0.0033 (5)
N20.0259 (6)0.0325 (7)0.0272 (6)0.0018 (5)0.0017 (5)0.0032 (5)
C10.0285 (7)0.0334 (9)0.0292 (8)0.0003 (6)0.0032 (6)0.0012 (6)
C20.0294 (8)0.0347 (9)0.0296 (8)0.0003 (6)0.0044 (6)0.0042 (7)
C30.0323 (8)0.0479 (11)0.0357 (9)0.0010 (7)0.0057 (7)0.0118 (8)
C40.0324 (8)0.0431 (10)0.0367 (9)0.0022 (7)0.0018 (7)0.0116 (8)
C50.0296 (8)0.0327 (9)0.0281 (7)0.0023 (6)0.0002 (6)0.0047 (6)
C60.0294 (7)0.0302 (8)0.0288 (7)0.0025 (6)0.0003 (6)0.0005 (6)
C70.0276 (7)0.0322 (8)0.0286 (8)0.0023 (6)0.0011 (6)0.0005 (6)
C80.0269 (8)0.0377 (9)0.0321 (8)0.0034 (7)0.0008 (6)0.0029 (7)
C90.0264 (7)0.0382 (9)0.0349 (8)0.0020 (7)0.0022 (6)0.0019 (7)
C100.0263 (7)0.0322 (8)0.0293 (8)0.0006 (6)0.0022 (6)0.0003 (6)
C110.0268 (7)0.0315 (8)0.0300 (8)0.0003 (6)0.0004 (6)0.0044 (6)
C120.0339 (8)0.0364 (9)0.0321 (8)0.0007 (7)0.0021 (6)0.0016 (7)
C130.0348 (8)0.0528 (11)0.0294 (8)0.0045 (8)0.0030 (7)0.0058 (8)
C140.0305 (8)0.0516 (11)0.0424 (9)0.0022 (8)0.0026 (7)0.0168 (9)
C150.0325 (8)0.0375 (10)0.0486 (10)0.0074 (7)0.0047 (8)0.0096 (8)
C160.0334 (8)0.0351 (9)0.0339 (8)0.0019 (7)0.0024 (7)0.0022 (7)
C170.0262 (7)0.0366 (9)0.0309 (8)0.0020 (6)0.0014 (6)0.0063 (7)
C180.0439 (10)0.0459 (11)0.0414 (10)0.0082 (8)0.0113 (8)0.0035 (8)
C190.0459 (11)0.0614 (13)0.0427 (10)0.0035 (10)0.0156 (8)0.0055 (10)
C200.0288 (8)0.0622 (13)0.0394 (9)0.0021 (8)0.0052 (7)0.0110 (9)
C210.0332 (9)0.0473 (11)0.0574 (12)0.0083 (8)0.0014 (8)0.0054 (9)
C220.0356 (9)0.0424 (10)0.0489 (10)0.0017 (8)0.0081 (8)0.0037 (8)
N310.0284 (6)0.0325 (7)0.0289 (6)0.0019 (5)0.0009 (5)0.0019 (6)
C310.0550 (11)0.0366 (10)0.0342 (9)0.0036 (8)0.0073 (8)0.0035 (7)
C320.0652 (13)0.0338 (10)0.0381 (10)0.0025 (9)0.0075 (9)0.0052 (8)
C330.0404 (9)0.0330 (9)0.0355 (9)0.0041 (7)0.0010 (7)0.0001 (7)
C340.0341 (8)0.0388 (9)0.0324 (8)0.0020 (7)0.0034 (7)0.0005 (7)
C350.0352 (8)0.0349 (9)0.0325 (8)0.0040 (7)0.0017 (6)0.0021 (7)
O310.0652 (9)0.0333 (7)0.0416 (7)0.0056 (6)0.0088 (6)0.0011 (6)
C360.0558 (12)0.0411 (10)0.0413 (10)0.0094 (9)0.0083 (9)0.0030 (8)
Cl10.0332 (11)0.0327 (3)0.0404 (10)0.0001 (4)0.0032 (6)0.0014 (4)
O10.0637 (13)0.0331 (10)0.0472 (11)0.0000.0063 (9)0.000
O20.044 (2)0.053 (3)0.154 (8)0.0169 (19)0.050 (3)0.008 (4)
O30.066 (2)0.067 (2)0.083 (2)0.0006 (18)0.0318 (19)0.0234 (19)
O40.184 (9)0.051 (3)0.050 (3)0.006 (5)0.049 (4)0.006 (2)
Geometric parameters (Å, º) top
Fe1—N1i1.9988 (13)C17—C221.384 (3)
Fe1—N11.9989 (13)C18—C191.389 (3)
Fe1—N2i2.0002 (13)C18—H180.9500
Fe1—N22.0003 (13)C19—C201.377 (3)
Fe1—N312.0177 (14)C19—H190.9500
Fe1—N31i2.0177 (14)C20—C211.373 (3)
N1—C21.379 (2)C20—H200.9500
N1—C51.382 (2)C21—C221.387 (3)
N2—C101.379 (2)C21—H210.9500
N2—C71.379 (2)C22—H220.9500
C1—C10i1.388 (2)N31—C351.342 (2)
C1—C21.389 (2)N31—C311.347 (2)
C1—C171.499 (2)C31—C321.368 (3)
C2—C31.430 (2)C31—H310.9500
C3—C41.344 (2)C32—C331.397 (3)
C3—H30.9500C32—H320.9500
C4—C51.436 (2)C33—O311.344 (2)
C4—H40.9500C33—C341.378 (3)
C5—C61.395 (2)C34—C351.373 (3)
C6—C71.395 (2)C34—H340.9500
C6—C111.495 (2)C35—H350.9500
C7—C81.440 (2)O31—C361.435 (2)
C8—C91.348 (2)C36—H36A0.9800
C8—H80.9500C36—H36B0.9800
C9—C101.435 (2)C36—H36C0.9800
C9—H90.9500Cl1—Cl1ii0.5162 (19)
C10—C1i1.388 (2)Cl1—O2ii1.228 (6)
C11—C161.392 (2)Cl1—O4ii1.361 (8)
C11—C121.395 (2)Cl1—O21.391 (5)
C12—C131.389 (2)Cl1—O41.396 (8)
C12—H120.9500Cl1—O31.425 (3)
C13—C141.381 (3)Cl1—O11.447 (2)
C13—H130.9500Cl1—O3ii1.931 (3)
C14—C151.381 (3)O1—Cl1ii1.447 (2)
C14—H140.9500O2—O4ii0.524 (14)
C15—C161.387 (2)O2—Cl1ii1.228 (6)
C15—H150.9500O3—Cl1ii1.931 (3)
C16—H160.9500O4—O2ii0.524 (14)
C17—C181.381 (3)O4—Cl1ii1.361 (8)
N1i—Fe1—N1180.00 (4)C19—C18—H18119.8
N1i—Fe1—N2i88.56 (5)C20—C19—C18120.21 (19)
N1—Fe1—N2i91.44 (5)C20—C19—H19119.9
N1i—Fe1—N291.44 (5)C18—C19—H19119.9
N1—Fe1—N288.56 (5)C21—C20—C19119.64 (17)
N2i—Fe1—N2180.00 (8)C21—C20—H20120.2
N1i—Fe1—N3188.87 (6)C19—C20—H20120.2
N1—Fe1—N3191.13 (5)C20—C21—C22120.27 (19)
N2i—Fe1—N3190.36 (6)C20—C21—H21119.9
N2—Fe1—N3189.64 (6)C22—C21—H21119.9
N1i—Fe1—N31i91.13 (5)C17—C22—C21120.52 (18)
N1—Fe1—N31i88.87 (6)C17—C22—H22119.7
N2i—Fe1—N31i89.64 (6)C21—C22—H22119.7
N2—Fe1—N31i90.36 (6)C35—N31—C31116.36 (15)
N31—Fe1—N31i180.0C35—N31—Fe1120.90 (12)
C2—N1—C5105.28 (13)C31—N31—Fe1122.74 (12)
C2—N1—Fe1125.95 (11)N31—C31—C32123.34 (17)
C5—N1—Fe1128.63 (11)N31—C31—H31118.3
C10—N2—C7106.01 (13)C32—C31—H31118.3
C10—N2—Fe1125.58 (11)C31—C32—C33119.39 (18)
C7—N2—Fe1128.37 (11)C31—C32—H32120.3
C10i—C1—C2124.42 (15)C33—C32—H32120.3
C10i—C1—C17117.87 (14)O31—C33—C34125.44 (16)
C2—C1—C17117.71 (14)O31—C33—C32116.77 (17)
N1—C2—C1126.01 (15)C34—C33—C32117.78 (17)
N1—C2—C3110.04 (14)C35—C34—C33119.04 (16)
C1—C2—C3123.95 (15)C35—C34—H34120.5
C4—C3—C2107.67 (15)C33—C34—H34120.5
C4—C3—H3126.2N31—C35—C34124.07 (16)
C2—C3—H3126.2N31—C35—H35118.0
C3—C4—C5106.88 (15)C34—C35—H35118.0
C3—C4—H4126.6C33—O31—C36116.89 (15)
C5—C4—H4126.6O31—C36—H36A109.5
N1—C5—C6125.70 (15)O31—C36—H36B109.5
N1—C5—C4110.12 (14)H36A—C36—H36B109.5
C6—C5—C4124.16 (15)O31—C36—H36C109.5
C5—C6—C7122.52 (15)H36A—C36—H36C109.5
C5—C6—C11119.09 (14)H36B—C36—H36C109.5
C7—C6—C11118.39 (14)Cl1ii—Cl1—O2ii97.2 (6)
N2—C7—C6126.14 (14)Cl1ii—Cl1—O4ii83.1 (6)
N2—C7—C8109.61 (14)O2ii—Cl1—O4ii128.9 (2)
C6—C7—C8124.24 (15)Cl1ii—Cl1—O261.2 (6)
C9—C8—C7107.24 (14)O2ii—Cl1—O2127.7 (7)
C9—C8—H8126.4O4ii—Cl1—O221.9 (6)
C7—C8—H8126.4Cl1ii—Cl1—O475.4 (6)
C8—C9—C10107.31 (14)O2ii—Cl1—O421.8 (6)
C8—C9—H9126.3O4ii—Cl1—O4123.9 (7)
C10—C9—H9126.3O2—Cl1—O4114.0 (4)
N2—C10—C1i126.50 (15)Cl1ii—Cl1—O3166.6 (5)
N2—C10—C9109.82 (14)O2ii—Cl1—O386.4 (4)
C1i—C10—C9123.66 (15)O4ii—Cl1—O384.7 (4)
C16—C11—C12118.74 (15)O2—Cl1—O3106.5 (4)
C16—C11—C6120.59 (15)O4—Cl1—O3107.4 (4)
C12—C11—C6120.65 (15)Cl1ii—Cl1—O179.73 (4)
C13—C12—C11120.16 (17)O2ii—Cl1—O1116.1 (5)
C13—C12—H12119.9O4ii—Cl1—O1114.1 (4)
C11—C12—H12119.9O2—Cl1—O1106.5 (4)
C14—C13—C12120.68 (17)O4—Cl1—O1112.0 (4)
C14—C13—H13119.7O3—Cl1—O1110.32 (17)
C12—C13—H13119.7Cl1ii—Cl1—O3ii9.8 (3)
C15—C14—C13119.41 (16)O2ii—Cl1—O3ii88.3 (4)
C15—C14—H14120.3O4ii—Cl1—O3ii85.6 (4)
C13—C14—H14120.3O2—Cl1—O3ii64.1 (4)
C14—C15—C16120.43 (17)O4—Cl1—O3ii66.4 (4)
C14—C15—H15119.8O3—Cl1—O3ii162.2 (3)
C16—C15—H15119.8O1—Cl1—O3ii87.28 (13)
C15—C16—C11120.57 (16)Cl1—O1—Cl1ii20.54 (8)
C15—C16—H16119.7O4ii—O2—Cl1ii97.4 (13)
C11—C16—H16119.7O4ii—O2—Cl175.8 (13)
C18—C17—C22118.85 (16)Cl1ii—O2—Cl121.61 (13)
C18—C17—C1120.18 (16)Cl1—O3—Cl1ii3.54 (12)
C22—C17—C1120.96 (16)O2ii—O4—Cl1ii82.2 (13)
C17—C18—C19120.50 (19)O2ii—O4—Cl160.7 (12)
C17—C18—H18119.8Cl1ii—O4—Cl121.53 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···O4ii0.952.553.103 (8)117
C36—H36C···O10.982.643.551 (3)154
Symmetry code: (ii) x+1, y, z+1/2.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692–703.  CSD CrossRef CAS Web of Science Google Scholar
First citationDommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552–7555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGeiger, D. K., Chunplang, V. & Scheidt, W. R. (1985). Inorg. Chem. 24, 4736–4741.  CSD CrossRef CAS Web of Science Google Scholar
First citationGeiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339–6343.  CSD CrossRef CAS Web of Science Google Scholar
First citationGeiger, D. K. & Scheidt, W. R. (1984). Inorg. Chem. 23, 1970–1972.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810–4823.  CSD CrossRef CAS Web of Science Google Scholar
First citationIkezaki, A., Ohgo, Y. & Nakamura, M. (2009). Coord. Chem. Rev. 253, 2056–2069.  Web of Science CrossRef CAS Google Scholar
First citationKonishi, K., Oda, K., Nishida, K., Aida, T. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 1313–1317.  CrossRef CAS Web of Science Google Scholar
First citationMaté, M. J., Murshudov, G., Bravo, J., Melik-Adamyan, W., Loewen, P. C. & Fita, I. (2001). Handbook of Metalloproteins 1, 486–502.  Google Scholar
First citationMomenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189–196.  CrossRef Web of Science Google Scholar
First citationMorgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115–203.  CrossRef CAS Google Scholar
First citationNakamura, M. (2006). Coord. Chem. Rev. 250, 2271–2294.  Web of Science CrossRef CAS Google Scholar
First citationOhgo, Y., Ikeue, T. & Nakamura, M. (2002). Inorg. Chem. 41, 1698–1700.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhgo, Y., Ikeue, T., Takahashi, M., Takeda, M. & Nakamura, M. (2004). Eur. J. Inorg. Chem. pp. 798–809.  Web of Science CSD CrossRef Google Scholar
First citationPeters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177–3182.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPeters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018). Org. Lett. 20, 7879–7883.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSafo, M. K., Gupta, G. P., Watson, C. T., Simonis, U., Walker, F. A. & Scheidt, W. R. (1992). J. Am. Chem. Soc. 114, 7066–7075.  CSD CrossRef CAS Web of Science Google Scholar
First citationSafo, M. K. M., Walker, F. A., Raitsimring, A. M., Walters, W. P., Dolata, D. P., Debrunner, P. G. & Scheidt, W. R. (1994). J. Am. Chem. Soc. 116, 7760–7770.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. (2000). The Porphyrin Handbook 3, 49.  Google Scholar
First citationScheidt, W. R. & Geiger, D. K. (1979). J. Chem. Soc. Chem. Commun. pp. 1154–1155.  CSD CrossRef Web of Science Google Scholar
First citationScheidt, W. R., Osvath, S. R., Lee, Y. J., Reed, C. A., Shaevitz, B. & Gupta, G. P. (1989). Inorg. Chem. 28, 1591–1595.  CSD CrossRef CAS Web of Science Google Scholar
First citationShankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. Article No. 4750.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsunyk, L. A. & Walker, F. A. (2004). Inorg. Chem. 43, 757–777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds