research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­(μ-{2-[(5-bromo-2-oxido­benzyl­­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2′-[(3,4-di­thia­hexane-1,6-di­yl)bis­­(nitrilo­methanylyl­­idene)]bis­­(4-bromo­phenolato)-κ4O,N,N′,O′}dicobalt(III) di­methyl­formamide monosolvate

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 30 April 2019; accepted 19 May 2019; online 24 May 2019)

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L′ having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L′) mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.

1. Chemical context

Schiff bases represent one of the most widely used organic compounds. The ability to construct novel ligand systems by means of condensation of a variety of readily available aldehydes and amine makes them and their metal complexes ideal candidates for the construction of novel polynuclear compounds as well for investigation of a large range of properties (Mitra et al., 1997[Mitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735-3742.]; Bera et al., 1998[Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559-560.]; Prabhakaran et al., 2004[Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131-2140.]; Nesterov et al., 2014[Nesterov, D. S., Nesterova, O. V., Kokozay, V. N. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4496-4517.]). It has been shown that the formation and cleavage of di­sulfide bonds is important for the biological activity of several sulfur-containing peptides and proteins (Gilbert et al., 1999[Gilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891-1895.]; Jacob et al., 2003[Jacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742-4758.]), which makes the study of complexes having a multidentate NSO-containing mixed-ligand environment of considerable inter­est. Thus, such complexes can be considered as model objects for studying the active sites of biological systems (Halcrow et al., 1994[Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421-2481.]). Despite this, very few studies devoted to the synthesis and investigation of complexes of azomethines formed from thio­amino alcohol have been reported. In this work we present a novel binuclear CoIII complex with a mixed N,O,S-donor Schiff base ligand derived from the condensation of 5-bromo­salicyl­aldehyde with cyste­amine (2-amino­ethanthiol) hydro­chloride. The synthesis, crystal structure and spectroscopic characterization are described herein.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21. The asymmetric unit consists of a binuclear metal complex mol­ecule and a DMF solvent mol­ecule of crystallization. The coordination geometry around each CoIII ion can be described as slightly distorted octa­hedral with an S2N2O2 coordination sphere, each ligand spanning the metal atom meridionally. The ligand fragments coordinated to the CoIII ions are twisted, as defined by the dihedral angles of 70.41 (2)° between the mean planes of atoms O3/N3/C19/C24/C25 and O4/N4/C28/C33/C34 around Co1, and 64.78 (2)° between the mean planes of atoms O2/N2/C15/C10/C16 and O1/N1/C1/C6/C7 around Co2. During the synthesis, the ligand is partially oxidized with the formation of a –(CH2)2–S–S–(CH2)2– bridge. Thus, in contrast to a closely related complex (Chakraborty et al., 1994[Chakraborty, P., Chandra, S. K. & Chakravorty, A. (1994). Inorg. Chem. 33, 4959-4965.]), in the title complex the oxidized Schiff base ligand binds to Co1 in a tetra­dentate fashion while the non-oxidized ligand binds to Co2 in a tridentate fashion, and its thiol­ate atoms lie in a cis-position, bridging atoms Co1 and Co2. The Co2S2 bridge is almost planar, with a mean deviation of 0.0673 (4) Å. The Co—S distances in the title complex are in the range 2.207 (3)–2.289 (3) Å, which is generally comparable to the range 2.23–2.26 Å observed for other thio­ether–CoIII complexes published earlier (Chakraborty et al., 1994[Chakraborty, P., Chandra, S. K. & Chakravorty, A. (1994). Inorg. Chem. 33, 4959-4965.] and references therein). Contact distances such as for Co⋯Co and S⋯S are also similar.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, the bridging ligands are involved in short S⋯Br(x, y, 1 + z) [3.596 (2) Å] and S⋯ Br(x, y, −1 + z) [3.364 (2) Å] contacts, which connect neighboring structural units into chains along [001] (Fig. 2[link]). The solvent DMF mol­ecules are connected to the complex units by weak C—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]). In addition, the components are linked by C—H⋯Br (Table 1[link]), C⋯Br [C10⋯Br = 3 3.443 (8) Å and C15⋯Br3 = 3.506 (7) Å] and short S⋯C contacts. These inter­atomic C⋯Br distances are in agreement with reported data (Echenique-Errandonea et al., 2018[Echenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2018). Dalton Trans. 48, 190-201.]; Tan et al., 2018[Tan, Y., Jia, S., Hu, F., Liu, Y., Peng, L., Li, D. & Yan, H. (2018). J. Am. Chem. Soc. 140, 16893-16898.]). The inter­atomic distances between the aliphatic sulfur atom (S4) and the C16 carbon atom of the ligand of an adjacent mol­ecule (at 1 + x, y, z) are essentially shorter than the sum of the van der Waals radii for the atoms involved [S4⋯C16 = 3.198 (8) Å] (Fig. 4[link]). Analogous short contacts are well known for coordination compounds with the 1,2,3,4,5-di­thia­diazolyl radical (Beldjoudi et al., 2013[Beldjoudi, Y., Haynes, D. A., Hayward, J. J., Manning, W. J., Pratt, D. R. & Rawson, J. M. (2013). CrystEngComm, 15, 1107-1113.]; Boeré, 2016[Boeré, R. T. (2016). CrystEngComm, 18, 2748-2756.] and references therein).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42B⋯O2 0.96 2.35 3.25 (2) 157
C25—H25⋯O5i 0.93 2.56 3.39 (2) 149
C3—H3⋯Br3ii 0.93 2.85 3.633 (13) 142
C17—H17B⋯Br1i 0.97 3.00 3.743 (11) 134
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. Weak C—H⋯O hydrogen bonds and C—H⋯Br contacts are shown as dashed lines.
[Figure 3]
Figure 3
The crystal packing of the title compound with weak C—H⋯O hydrogen bonds and S⋯ Br contacts shown as dashed lines.
[Figure 4]
Figure 4
The crystal packing of the title compound. The S⋯Br, C⋯Br and C—H⋯Br contacts that link the components in the crystal are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.40; last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related Co complexes with an amino­ethane­thiol group gave 15 hits, including two closely related structures, binuclear bis­[(μ2-2-(salicyl­idene­amino)­ethane­thiol­ato]-N-(3-thia­pent-5-en­yl)sali­cylaldiminato-N,O)dicobalt(III) aceto­nitrile solvate and [1,8-bis­(salicyl­idene­amino)-3,6-di­thia­octa­ne)cobalt(III) perchlor­ate with a di­sulfide moiety (Chakraborty et al., 1994[Chakraborty, P., Chandra, S. K. & Chakravorty, A. (1994). Inorg. Chem. 33, 4959-4965.]). Closely related structures with short S⋯C contacts are 4-(4-methyl­phen­yl)-3H-1,2,3,5-di­thia­diazole (Beldjoudi et al., 2013[Beldjoudi, Y., Haynes, D. A., Hayward, J. J., Manning, W. J., Pratt, D. R. & Rawson, J. M. (2013). CrystEngComm, 15, 1107-1113.]) and bis­[4-(4-tri­fluoro­methyl­phen­yl)-1,2,3,5-di­thia­diaz­ol­yl radical] tri­phenyl­stibine (Boeré, 2016[Boeré, R. T. (2016). CrystEngComm, 18, 2748-2756.]).

5. Synthesis and crystallization

A solution of KOH (0.12 g, 2 mmol) in a minimum amount of methanol was added to a solution of 2-amino­ethanthiol hydro­chloride (0.23g, 2 mmol) in methanol (5 ml) and stirred in an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and 5-bromo­salicyl­aldehyde (0.40 g, 2 mmol) in di­methyl­formamide (10 ml) were added to the filtrate and stirred on air magnetically for 40 min. Cobalt acetate (0.25 g, 1 mmol) was added to the yellowish solution of the Schiff base formed in situ, and the resulting deep-brown solution was stirred magnetically and heated in air at 323–333 K for 2 h. Crystals suitable for X-ray crystallographic study were formed within ca 1 month after successive addition of i-PrOH into the resulting solution. The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 18%). Analysis calculated for C39H39Br4Co2N5O5S4 (M = 1223.49): C,38.28; N, 5.72; H, 3.21%. Found: C, 38.31; N, 5.79; H, 3.28%. The compound is sparingly soluble in CH3CN and good in DMSO, DMF.

The IR spectrum of the title complex in the 4000–400 cm−1 range shows the characteristic azomethine group (–H—C=N) peak at 1616 cm−1, indicating the formation of the Schiff base. There are no bands assignable to υ(O—H), indicating the loss of the phenolic hydrogen of the free ligand. In addition, all the characteristic functional group peaks are present in the spectrum. Thus, signals in the 3000–3100 cm−1 and 1600–1400 cm−1 regions were assigned to the aromatic C—H and C—C stretches, and weak bands at 544 cm−1 and 684 cm−1 to the S—S and C—S stretches, respectively. The very strong bands at 1454 cm−1 can be attributed to overlapped C—H bending (scissoring) (in the CH3 groups of the solvent mol­ecule) and aromatic –C=C stretching vibrations. Another strong band at 1310 cm−1 can be assigned to C—O vibrations.

The structural assignment of the title compound was supplemented by its 1H NMR spectra, obtained in DMSO-d6 at room temperature using TMS as the inter­nal standard. It revealed an azomethine proton singlet at 8.099 ppm as well the increase in spectroscopic complexity in both the aromatic and aliphatic regions. 1H NMR, DMSO-d6, δ in ppm: –CH=N, 8.099 (s); aromatic protons (C6H3): 7.94–6.52; aliphatic protons (–SCH2CH2N=): 4.44 (m); solvent CH3: 2.96 (s), 2.8 (s). Unfortunately, it could not provide any indication of the dinuclear binding mode, which was revealed only by the X-ray structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms bonded to carbon were included at geometrically calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atom. The crystal studied was refined as an inversion twin with the ratio of the twin components refining to 0.436 (12):0.564 (12).

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C9H8BrNOS)2C18H16Br2N2O2S2)]·C3H7NO
Mr 1223.49
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 11.532 (3), 17.714 (3), 12.192 (3)
β (°) 116.609 (6)
V3) 2226.9 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.57
Crystal size (mm) 0.33 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Numerical face-indexed
Tmin, Tmax 0.314, 0.633
No. of measured, independent and observed [I > 2σ(I)] reflections 21805, 8890, 4960
Rint 0.067
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.101, 0.94
No. of reflections 8890
No. of parameters 535
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.46
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.436 (12)
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ-{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido-κ3N,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O'}dicobalt(III) dimethylformamide monosolvate top
Crystal data top
[Co2(C9H8BrNOS)2C18H16Br2N2O2S2)]·C3H7NOF(000) = 1212
Mr = 1223.49Dx = 1.825 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.532 (3) ÅCell parameters from 920 reflections
b = 17.714 (3) Åθ = 2.3–18.8°
c = 12.192 (3) ŵ = 4.57 mm1
β = 116.609 (6)°T = 296 K
V = 2226.9 (8) Å3Prizm, brown
Z = 20.33 × 0.14 × 0.11 mm
Data collection top
Bruker SMART APEXII
diffractometer
8890 independent reflections
Radiation source: sealed tube4960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 26.6°, θmin = 1.9°
Absorption correction: numerical
face-indexed
h = 1414
Tmin = 0.314, Tmax = 0.633k = 2222
21805 measured reflectionsl = 1513
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max = 0.002
S = 0.94Δρmax = 0.45 e Å3
8890 reflectionsΔρmin = 0.46 e Å3
535 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.436 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
BR10.27868 (16)0.76620 (8)0.18956 (12)0.0773 (5)
BR20.57579 (17)0.57341 (10)1.36338 (12)0.0919 (6)
BR30.93442 (12)0.64978 (8)0.23531 (9)0.0583 (4)
BR41.20396 (17)0.42429 (7)1.46454 (11)0.0774 (5)
CO10.94686 (14)0.55635 (7)0.82744 (11)0.0349 (4)
CO20.67358 (15)0.63351 (8)0.81416 (12)0.0386 (4)
S10.7359 (3)0.57089 (15)0.6932 (2)0.0408 (7)
S20.8872 (3)0.63423 (16)0.9432 (2)0.0424 (7)
S31.2234 (4)0.38961 (19)0.7811 (3)0.0677 (10)
S41.3413 (4)0.4697 (2)0.8932 (3)0.0722 (11)
O10.4946 (7)0.6309 (4)0.6944 (7)0.050 (2)
O20.6291 (8)0.6884 (4)0.9258 (7)0.049 (2)
O30.9688 (7)0.6388 (4)0.7410 (5)0.0390 (18)
O40.9199 (8)0.4780 (4)0.9197 (6)0.046 (2)
O50.177 (3)0.8614 (10)0.602 (2)0.260 (15)
N10.7010 (9)0.7301 (5)0.7595 (8)0.040 (2)
N20.6434 (9)0.5376 (4)0.8673 (7)0.038 (2)
N30.9625 (8)0.4804 (5)0.7185 (7)0.036 (2)
N41.1350 (8)0.5635 (5)0.9465 (7)0.035 (2)
N50.356 (2)0.8298 (13)0.7453 (17)0.143 (8)
C10.4547 (11)0.6629 (6)0.5875 (11)0.044 (3)
C20.3323 (12)0.6388 (7)0.4908 (13)0.059 (3)
H20.2850370.6014370.5064360.071*
C30.2849 (12)0.6700 (7)0.3769 (13)0.065 (4)
H30.2076820.6518380.3148880.078*
C40.3498 (14)0.7284 (7)0.3514 (12)0.057 (4)
C50.4626 (12)0.7542 (6)0.4398 (10)0.050 (3)
H50.5051550.7933350.4218520.060*
C60.5185 (11)0.7231 (6)0.5601 (10)0.042 (3)
C70.6325 (12)0.7562 (6)0.6516 (10)0.045 (3)
H70.6602250.8010600.6314010.055*
C80.8050 (12)0.7758 (6)0.8552 (10)0.053 (3)
H8A0.7764270.7932890.9145520.064*
H8B0.8230980.8197090.8178320.064*
C90.9255 (12)0.7296 (6)0.9187 (10)0.051 (3)
H9A0.9812610.7525570.9969780.061*
H9B0.9720970.7287430.8693230.061*
C100.6155 (11)0.6597 (6)1.0181 (9)0.038 (3)
C110.5939 (11)0.7097 (7)1.0972 (10)0.053 (3)
H110.5867320.7612311.0810410.063*
C120.5833 (13)0.6823 (8)1.1993 (11)0.062 (4)
H120.5713890.7160671.2517580.074*
C130.5899 (13)0.6072 (8)1.2237 (10)0.054 (3)
C140.6085 (11)0.5577 (7)1.1483 (9)0.050 (3)
H140.6123560.5063391.1651840.060*
C150.6221 (10)0.5824 (6)1.0453 (8)0.033 (3)
C160.6296 (11)0.5264 (6)0.9648 (10)0.042 (3)
H160.6237390.4763830.9849810.051*
C170.6270 (13)0.4697 (6)0.7917 (10)0.060 (4)
H17A0.5413200.4487160.7676560.071*
H17B0.6903670.4320560.8400660.071*
C180.6431 (12)0.4873 (6)0.6793 (10)0.050 (3)
H18A0.5580720.4931040.6103530.060*
H18B0.6854030.4448900.6616650.060*
C190.9562 (10)0.6378 (6)0.6297 (9)0.034 (2)
C200.9507 (13)0.7066 (6)0.5724 (10)0.052 (3)
H200.9517160.7510350.6134260.062*
C210.9438 (12)0.7111 (6)0.4553 (10)0.052 (3)
H210.9401600.7576120.4185640.062*
C220.9424 (10)0.6445 (7)0.3951 (9)0.042 (3)
C230.9456 (10)0.5774 (7)0.4461 (8)0.041 (3)
H230.9431150.5335090.4032450.049*
C240.9527 (10)0.5724 (6)0.5641 (8)0.038 (3)
C250.9568 (10)0.4979 (6)0.6133 (9)0.036 (3)
H250.9551140.4577100.5634700.043*
C260.9674 (12)0.3996 (6)0.7432 (10)0.047 (3)
H26A0.9412010.3720000.6670300.057*
H26B0.9064480.3876620.7754840.057*
C271.1019 (12)0.3743 (6)0.8341 (11)0.057 (3)
H27A1.0993360.3209730.8509050.068*
H27B1.1270290.4014470.9105280.068*
C280.9865 (12)0.4679 (6)1.0383 (10)0.039 (3)
C290.9315 (12)0.4238 (6)1.1010 (9)0.050 (3)
H290.8498610.4024801.0566800.060*
C300.9965 (15)0.4120 (6)1.2256 (11)0.056 (4)
H300.9583760.3831011.2643950.067*
C311.1165 (14)0.4423 (6)1.2924 (10)0.049 (3)
C321.1763 (12)0.4823 (6)1.2377 (10)0.049 (3)
H321.2600040.5003641.2838220.059*
C331.1110 (12)0.4965 (6)1.1100 (9)0.039 (3)
C341.1809 (11)0.5396 (6)1.0563 (10)0.040 (3)
H341.2673890.5506431.1074270.048*
C351.2272 (10)0.6034 (6)0.9148 (9)0.043 (3)
H35A1.3044580.6148810.9897420.051*
H35B1.1888730.6508570.8758680.051*
C361.2666 (11)0.5590 (7)0.8294 (10)0.054 (3)
H36A1.3268410.5891020.8121780.065*
H36B1.1903670.5501400.7523670.065*
C410.303 (2)0.7791 (13)0.798 (2)0.238 (18)
H41A0.2135880.7702370.7422780.356*
H41B0.3091570.7997920.8730790.356*
H41C0.3498880.7323260.8145850.356*
C420.4848 (19)0.8462 (12)0.8032 (18)0.142 (9)
H42A0.5068360.8779920.7515400.214*
H42B0.5339900.8002810.8201190.214*
H42C0.5045100.8719530.8788170.214*
C430.284 (4)0.857 (3)0.637 (6)0.33 (4)
H430.3218910.8737530.5880750.400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BR10.0733 (11)0.0729 (9)0.0560 (8)0.0139 (8)0.0026 (8)0.0018 (8)
BR20.1197 (15)0.1217 (13)0.0522 (8)0.0358 (12)0.0545 (9)0.0168 (9)
BR30.0510 (8)0.0923 (10)0.0329 (6)0.0013 (8)0.0199 (6)0.0129 (7)
BR40.1218 (15)0.0692 (9)0.0374 (7)0.0211 (9)0.0323 (8)0.0133 (7)
CO10.0418 (10)0.0362 (8)0.0277 (7)0.0014 (8)0.0165 (7)0.0009 (7)
CO20.0442 (10)0.0364 (8)0.0394 (8)0.0026 (8)0.0224 (8)0.0026 (7)
S10.0432 (19)0.0482 (18)0.0303 (14)0.0017 (15)0.0158 (14)0.0006 (14)
S20.0497 (19)0.0478 (17)0.0300 (13)0.0016 (16)0.0181 (14)0.0026 (14)
S30.074 (3)0.061 (2)0.073 (2)0.019 (2)0.037 (2)0.0007 (19)
S40.050 (3)0.077 (3)0.081 (2)0.012 (2)0.021 (2)0.009 (2)
O10.044 (5)0.046 (5)0.065 (5)0.010 (4)0.029 (5)0.001 (4)
O20.067 (6)0.036 (4)0.060 (5)0.002 (4)0.042 (5)0.005 (4)
O30.056 (5)0.035 (4)0.026 (4)0.008 (4)0.019 (4)0.010 (3)
O40.059 (6)0.048 (5)0.032 (4)0.007 (4)0.020 (4)0.003 (4)
O50.53 (5)0.108 (13)0.23 (2)0.05 (2)0.24 (3)0.052 (13)
N10.040 (6)0.042 (5)0.039 (5)0.011 (5)0.018 (5)0.007 (5)
N20.041 (6)0.038 (5)0.036 (5)0.001 (4)0.020 (5)0.002 (4)
N30.042 (6)0.035 (5)0.031 (5)0.000 (4)0.018 (5)0.004 (4)
N40.037 (6)0.035 (5)0.031 (5)0.013 (5)0.014 (4)0.007 (4)
N50.105 (19)0.162 (17)0.121 (15)0.064 (15)0.015 (14)0.032 (13)
C10.037 (8)0.034 (7)0.066 (8)0.002 (6)0.028 (7)0.001 (6)
C20.036 (8)0.050 (8)0.086 (10)0.005 (7)0.021 (8)0.000 (8)
C30.038 (8)0.067 (10)0.069 (10)0.000 (8)0.004 (8)0.015 (8)
C40.052 (10)0.039 (7)0.067 (9)0.006 (7)0.015 (8)0.011 (7)
C50.051 (9)0.039 (7)0.047 (7)0.006 (7)0.010 (7)0.001 (6)
C60.042 (8)0.031 (6)0.049 (7)0.006 (6)0.017 (7)0.005 (6)
C70.050 (8)0.041 (7)0.041 (7)0.017 (6)0.017 (7)0.003 (6)
C80.069 (10)0.037 (7)0.048 (7)0.016 (7)0.021 (7)0.001 (6)
C90.057 (9)0.043 (7)0.050 (7)0.003 (6)0.023 (7)0.012 (6)
C100.035 (7)0.043 (7)0.035 (6)0.003 (5)0.016 (5)0.008 (6)
C110.044 (9)0.056 (8)0.054 (8)0.006 (7)0.017 (7)0.019 (7)
C120.063 (11)0.090 (12)0.042 (8)0.006 (8)0.032 (8)0.017 (7)
C130.058 (10)0.064 (9)0.038 (7)0.005 (7)0.021 (7)0.003 (7)
C140.045 (8)0.062 (8)0.045 (7)0.005 (7)0.022 (6)0.004 (7)
C150.037 (7)0.037 (7)0.022 (5)0.009 (5)0.012 (5)0.009 (5)
C160.033 (7)0.049 (7)0.043 (7)0.002 (6)0.015 (6)0.007 (6)
C170.079 (11)0.050 (8)0.068 (8)0.013 (7)0.050 (8)0.019 (7)
C180.047 (8)0.050 (7)0.048 (7)0.015 (6)0.018 (7)0.018 (6)
C190.043 (7)0.028 (6)0.033 (6)0.004 (6)0.018 (5)0.002 (6)
C200.072 (10)0.037 (7)0.038 (7)0.014 (6)0.016 (7)0.014 (6)
C210.064 (10)0.038 (7)0.040 (7)0.006 (7)0.013 (7)0.021 (6)
C220.034 (7)0.057 (8)0.032 (6)0.003 (6)0.013 (5)0.007 (7)
C230.050 (8)0.045 (7)0.027 (6)0.001 (6)0.018 (6)0.002 (6)
C240.039 (7)0.044 (7)0.034 (6)0.005 (6)0.019 (6)0.004 (6)
C250.036 (7)0.040 (7)0.037 (7)0.009 (6)0.021 (6)0.005 (5)
C260.060 (10)0.040 (7)0.043 (7)0.009 (6)0.023 (7)0.004 (6)
C270.065 (10)0.037 (7)0.061 (8)0.003 (7)0.022 (8)0.007 (6)
C280.047 (9)0.032 (6)0.039 (7)0.001 (6)0.021 (7)0.000 (6)
C290.062 (9)0.046 (7)0.040 (7)0.000 (7)0.021 (7)0.009 (6)
C300.096 (12)0.040 (8)0.048 (8)0.004 (8)0.045 (9)0.011 (6)
C310.082 (11)0.032 (7)0.036 (7)0.024 (7)0.029 (8)0.005 (6)
C320.061 (9)0.047 (7)0.041 (7)0.019 (7)0.024 (7)0.007 (6)
C330.052 (9)0.032 (6)0.037 (7)0.010 (6)0.023 (7)0.003 (5)
C340.036 (7)0.043 (7)0.038 (7)0.000 (6)0.013 (6)0.005 (6)
C350.031 (7)0.045 (7)0.048 (7)0.004 (6)0.013 (6)0.002 (6)
C360.049 (8)0.062 (8)0.058 (7)0.006 (7)0.029 (7)0.006 (7)
C410.14 (2)0.21 (3)0.29 (3)0.01 (2)0.03 (2)0.20 (3)
C420.072 (16)0.21 (2)0.118 (16)0.041 (15)0.014 (13)0.031 (15)
C430.14 (4)0.40 (7)0.50 (9)0.02 (4)0.18 (5)0.02 (6)
Geometric parameters (Å, º) top
BR1—C41.889 (13)C10—C111.411 (14)
BR2—C131.880 (12)C11—C121.391 (15)
BR3—C221.911 (9)C11—H110.9300
BR4—C311.904 (10)C12—C131.358 (16)
CO1—O31.883 (6)C12—H120.9300
CO1—O41.898 (7)C13—C141.355 (15)
CO1—N31.955 (8)C14—C151.403 (13)
CO1—N42.003 (9)C14—H140.9300
CO1—S12.258 (3)C15—C161.425 (13)
CO1—S22.289 (3)C16—H160.9300
CO2—N21.905 (8)C17—C181.497 (14)
CO2—N11.913 (9)C17—H17A0.9700
CO2—O21.920 (7)C17—H17B0.9700
CO2—O11.922 (8)C18—H18A0.9700
CO2—S12.207 (3)C18—H18B0.9700
CO2—S22.253 (3)C19—C201.392 (14)
S1—C181.790 (11)C19—C241.399 (14)
S2—C91.805 (11)C20—C211.396 (14)
S3—C271.807 (13)C20—H200.9300
S3—S42.016 (5)C21—C221.385 (15)
S4—C361.803 (12)C21—H210.9300
O1—C11.302 (12)C22—C231.335 (14)
O2—C101.306 (11)C23—C241.406 (12)
O3—C191.299 (10)C23—H230.9300
O4—C281.311 (12)C24—C251.442 (14)
O5—C431.11 (5)C25—H250.9300
N1—C71.279 (12)C26—C271.515 (15)
N1—C81.484 (13)C26—H26A0.9700
N2—C161.283 (12)C26—H26B0.9700
N2—C171.475 (12)C27—H27A0.9700
N3—C251.292 (12)C27—H27B0.9700
N3—C261.459 (12)C28—C331.399 (15)
N4—C341.271 (11)C28—C291.426 (14)
N4—C351.465 (12)C29—C301.376 (15)
N5—C431.30 (6)C29—H290.9300
N5—C421.36 (3)C30—C311.363 (17)
N5—C411.39 (3)C30—H300.9300
C1—C61.418 (14)C31—C321.355 (16)
C1—C21.440 (16)C32—C331.415 (14)
C2—C31.361 (16)C32—H320.9300
C2—H20.9300C33—C341.461 (14)
C3—C41.391 (17)C34—H340.9300
C3—H30.9300C35—C361.527 (14)
C4—C51.344 (16)C35—H35A0.9700
C5—C61.422 (14)C35—H35B0.9700
C5—H50.9300C36—H36A0.9700
C6—C71.415 (15)C36—H36B0.9700
C7—H70.9300C41—H41A0.9600
C8—C91.496 (15)C41—H41B0.9600
C8—H8A0.9700C41—H41C0.9600
C8—H8B0.9700C42—H42A0.9600
C9—H9A0.9700C42—H42B0.9600
C9—H9B0.9700C42—H42C0.9600
C10—C151.403 (15)C43—H430.9300
O3—CO1—O4176.0 (3)C13—C14—C15121.4 (12)
O3—CO1—N394.4 (3)C13—C14—H14119.3
O4—CO1—N389.4 (3)C15—C14—H14119.3
O3—CO1—N489.0 (3)C14—C15—C10119.9 (10)
O4—CO1—N491.6 (3)C14—C15—C16117.8 (10)
N3—CO1—N497.8 (4)C10—C15—C16122.0 (9)
O3—CO1—S182.9 (2)N2—C16—C15127.0 (10)
O4—CO1—S195.9 (3)N2—C16—H16116.5
N3—CO1—S189.1 (3)C15—C16—H16116.5
N4—CO1—S1169.8 (3)N2—C17—C18111.7 (9)
O3—CO1—S291.7 (2)N2—C17—H17A109.3
O4—CO1—S284.3 (2)C18—C17—H17A109.3
N3—CO1—S2168.1 (3)N2—C17—H17B109.3
N4—CO1—S292.4 (2)C18—C17—H17B109.3
S1—CO1—S281.64 (11)H17A—C17—H17B107.9
N2—CO2—N1179.1 (4)C17—C18—S1113.5 (8)
N2—CO2—O293.6 (3)C17—C18—H18A108.9
N1—CO2—O286.2 (3)S1—C18—H18A108.9
N2—CO2—O186.5 (4)C17—C18—H18B108.9
N1—CO2—O192.6 (4)S1—C18—H18B108.9
O2—CO2—O190.8 (3)H18A—C18—H18B107.7
N2—CO2—S186.7 (3)O3—C19—C20118.1 (9)
N1—CO2—S193.6 (3)O3—C19—C24124.8 (9)
O2—CO2—S1176.9 (3)C20—C19—C24117.1 (8)
O1—CO2—S192.3 (2)C19—C20—C21122.1 (10)
N2—CO2—S294.4 (3)C19—C20—H20118.9
N1—CO2—S286.5 (3)C21—C20—H20118.9
O2—CO2—S293.3 (3)C22—C21—C20118.4 (9)
O1—CO2—S2175.7 (2)C22—C21—H21120.8
S1—CO2—S283.57 (11)C20—C21—H21120.8
C18—S1—CO296.9 (4)C23—C22—C21121.3 (9)
C18—S1—CO1112.2 (4)C23—C22—BR3119.8 (8)
CO2—S1—CO198.07 (11)C21—C22—BR3118.8 (8)
C9—S2—CO299.3 (4)C22—C23—C24120.6 (10)
C9—S2—CO1107.4 (4)C22—C23—H23119.7
CO2—S2—CO195.88 (11)C24—C23—H23119.7
C27—S3—S4105.0 (4)C19—C24—C23120.4 (10)
C36—S4—S3106.2 (4)C19—C24—C25122.2 (8)
C1—O1—CO2121.8 (7)C23—C24—C25117.4 (10)
C10—O2—CO2125.9 (7)N3—C25—C24127.6 (10)
C19—O3—CO1126.4 (6)N3—C25—H25116.2
C28—O4—CO1125.7 (7)C24—C25—H25116.2
C7—N1—C8121.4 (9)N3—C26—C27111.9 (9)
C7—N1—CO2124.0 (8)N3—C26—H26A109.2
C8—N1—CO2114.5 (7)C27—C26—H26A109.2
C16—N2—C17114.7 (9)N3—C26—H26B109.2
C16—N2—CO2124.8 (8)C27—C26—H26B109.2
C17—N2—CO2120.4 (6)H26A—C26—H26B107.9
C25—N3—C26114.9 (9)C26—C27—S3113.4 (8)
C25—N3—CO1122.0 (7)C26—C27—H27A108.9
C26—N3—CO1122.8 (7)S3—C27—H27A108.9
C34—N4—C35115.4 (9)C26—C27—H27B108.9
C34—N4—CO1123.2 (8)S3—C27—H27B108.9
C35—N4—CO1121.2 (6)H27A—C27—H27B107.7
C43—N5—C42120 (4)O4—C28—C33124.8 (10)
C43—N5—C41120 (4)O4—C28—C29119.0 (11)
C42—N5—C41120.0 (19)C33—C28—C29116.2 (10)
O1—C1—C6125.1 (11)C30—C29—C28121.5 (12)
O1—C1—C2117.9 (10)C30—C29—H29119.3
C6—C1—C2116.9 (11)C28—C29—H29119.3
C3—C2—C1120.9 (12)C31—C30—C29120.4 (11)
C3—C2—H2119.6C31—C30—H30119.8
C1—C2—H2119.6C29—C30—H30119.8
C2—C3—C4121.3 (12)C32—C31—C30121.0 (11)
C2—C3—H3119.4C32—C31—BR4119.7 (11)
C4—C3—H3119.4C30—C31—BR4119.2 (10)
C5—C4—C3119.9 (12)C31—C32—C33119.8 (12)
C5—C4—BR1121.9 (10)C31—C32—H32120.1
C3—C4—BR1118.2 (10)C33—C32—H32120.1
C4—C5—C6121.6 (12)C28—C33—C32121.0 (11)
C4—C5—H5119.2C28—C33—C34121.8 (9)
C6—C5—H5119.2C32—C33—C34117.2 (11)
C7—C6—C1121.5 (10)N4—C34—C33126.4 (11)
C7—C6—C5119.0 (10)N4—C34—H34116.8
C1—C6—C5119.4 (11)C33—C34—H34116.8
N1—C7—C6126.1 (11)N4—C35—C36113.9 (8)
N1—C7—H7117.0N4—C35—H35A108.8
C6—C7—H7117.0C36—C35—H35A108.8
N1—C8—C9110.1 (9)N4—C35—H35B108.8
N1—C8—H8A109.6C36—C35—H35B108.8
C9—C8—H8A109.6H35A—C35—H35B107.7
N1—C8—H8B109.6C35—C36—S4112.8 (7)
C9—C8—H8B109.6C35—C36—H36A109.0
H8A—C8—H8B108.1S4—C36—H36A109.0
C8—C9—S2111.0 (8)C35—C36—H36B109.0
C8—C9—H9A109.4S4—C36—H36B109.0
S2—C9—H9A109.4H36A—C36—H36B107.8
C8—C9—H9B109.4N5—C41—H41A109.5
S2—C9—H9B109.4N5—C41—H41B109.5
H9A—C9—H9B108.0H41A—C41—H41B109.5
O2—C10—C15124.6 (9)N5—C41—H41C109.5
O2—C10—C11118.1 (10)H41A—C41—H41C109.5
C15—C10—C11117.3 (10)H41B—C41—H41C109.5
C12—C11—C10120.4 (12)N5—C42—H42A109.5
C12—C11—H11119.8N5—C42—H42B109.5
C10—C11—H11119.8H42A—C42—H42B109.5
C13—C12—C11121.3 (11)N5—C42—H42C109.5
C13—C12—H12119.4H42A—C42—H42C109.5
C11—C12—H12119.4H42B—C42—H42C109.5
C14—C13—C12119.7 (11)O5—C43—N5121 (6)
C14—C13—BR2120.9 (10)O5—C43—H43119.7
C12—C13—BR2119.4 (9)N5—C43—H43119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42B···O20.962.353.25 (2)157
C25—H25···O5i0.932.563.39 (2)149
C3—H3···Br3ii0.932.853.633 (13)142
C17—H17B···Br1i0.973.003.743 (11)134
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).

References

First citationBeldjoudi, Y., Haynes, D. A., Hayward, J. J., Manning, W. J., Pratt, D. R. & Rawson, J. M. (2013). CrystEngComm, 15, 1107–1113.  CSD CrossRef CAS Google Scholar
First citationBera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560.  Web of Science CSD CrossRef Google Scholar
First citationBoeré, R. T. (2016). CrystEngComm, 18, 2748–2756.  Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, P., Chandra, S. K. & Chakravorty, A. (1994). Inorg. Chem. 33, 4959–4965.  CSD CrossRef CAS Google Scholar
First citationEchenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2018). Dalton Trans. 48, 190–201.  PubMed Google Scholar
First citationGilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891–1895.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421–2481.  CrossRef CAS Web of Science Google Scholar
First citationJacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742–4758.  Web of Science CrossRef CAS Google Scholar
First citationMitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735–3742.  CSD CrossRef CAS Web of Science Google Scholar
First citationNesterov, D. S., Nesterova, O. V., Kokozay, V. N. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4496–4517.  CrossRef Google Scholar
First citationPrabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y., Jia, S., Hu, F., Liu, Y., Peng, L., Li, D. & Yan, H. (2018). J. Am. Chem. Soc. 140, 16893–16898.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds