research communications
tert-butoxyphenyl)-3-(4-n-octyloxyphenyl)-4,5-dihydroisoxazole
of 5-(4-aInstituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, 91501 - 970 - Porto Alegre - RS, Brazil, and bDepto. de Química - Campus Trindade, Universidade Federal de Santa Catarina - UFSC, 88040-900 - Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: aloir.merlo@ufrgs.br
The molecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cycloaddition of 4-n-octylphenylnitrile oxide and 4-tert-butoxystyrene, the latter compound being a very useful intermediate to the synthesis of liquid-crystalline materials. In the molecule, the benzene rings of the n-octyloxyphenyl and tert-butoxyphenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, molecules are linked by weak C—H⋯O hydrogen interactions into chains running parallel to the b axis.
Keywords: isoxazolines; liquid crystals; [3 + 2] cycloaddition; single crystals; crystal structure.
CCDC reference: 1917652
1. Chemical context
Nitrogen- and oxygen-containing heterocycles known as Δ2-isoxazolines constitute an important class of five-membered heterocycles which have significant synthetic and biological applications (Pirrung et al., 2002; Choe et al., 2016; Huang et al., 2017; Stosic-Grujicic et al., 2007). Isoxazolines display diverse biological and pharmacological properties. This unique class of pharmacophores occurs naturally in many therapeutic agents. The chlorinated isoxazoline antitumor antibiotics U-42,126 and U-43,795 isolated from Streptomyces sviceus, exhibit significant activity against L 1210 lymphoid leukaemia in mice (Martin et al., 1975; Hanka et al., 1975). Inspired by this class of natural antibiotics, a new library of natural products probes have been designed, synthesized and tested for bacterial proteome analysis (Orth et al., 2010). Nitrofuranylisoxazolines with increased proteolytic stability have been investigated, leading to the discovery of several compounds with potent in vitro anti-tuberculosis activity (Tangallapally et al., 2007). Trihalomethyl-pyrimidine sugar-modified containing the isoxazoline ring were synthesized and their in vitro antiproliferactive activity evaluated against human cancer cell lines and one of them was three times more selective than MXT standard anticancer drugs (Lobo et al., 2015). Isoxazolines have proven be an excellent GABA receptors, as demonstrated by Ozoe et al. (2010) who reported isoxazoline A1443 to exhibit antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. From a synthetic point of view, Δ2-isoxazolines constitute an important way to synthesize many natural products with diverse and intricate molecular connectivity. Bafilomycin A1 and erythromycin A, reported by the Carreira group, are examples of the versatility of isoxazoline in the total synthesis of natural products (Kleinbeck & Carreira 2009; Muri & Carreira 2009).
Previously we have demonstrated that [3 + 2] 1,3-dipolar cycloaddition of arylnitrile oxide to alkene is a excellent route to access different 3,5-disubstituted isoxazolines (Tavares et al., 2010, 2016; Fritsch & Merlo, 2016; Lopes et al., 2018). Using this methodology, a collection of isoxazolines can be constructed with specific applications ranging from biological compounds through use as intermediates in organic synthesis to liquid-crystal materials (El-Khatatneh et al., 2017; Fader & Carreira, 2004; Bezborodov et al., 2004). With this purpose in mind, we have established a concise route to the synthesis of liquid crystals based on isoxazolines and their full characterization. The [3 + 2] 1,3-dipolar cycloaddition requires two partners, one being nitrile oxide (1,3-dipole) obtained from oxime correspondent and other is an alkene (Huisgen, 1976). Thus, considering the liquid crystals thematic, we focused our attention on the preparation of distorted rod-shaped molecules based on isoxazolines using 4-t-butoxyphenyl styrene as the dipholarophile and 4-n-alkoxyphenyl nitrile oxide as the 1,3-dipole. The title compound was synthesized in three steps starting from 4-hydroxybenzaldehyde by alkylation reaction (85% yield), oximation reaction (89% yield) and [3 + 2] 1,3-dipolar cycloaddition (51% yield).
2. Structural commentary
In the molecule of the title compound (Fig. 1), the isoxazoline ring adopts a twist conformation, with puckering parameters q2 = 0.1522 (11) Å and Φ2 = 149.6 (4)°. The mean plane through the isoxazoline ring [maximum deviation 0.1113 (12) Å for atom C7] is approximately coplanar with the C10–C15 aromatic ring of the n-octyloxyphenyl group [dihedral angle = 2.83 (7)°], whereas it is almost perpendicular to the C1–C6 benzene ring of the t-butoxyphenyl group [dihedral angle = 85.49 (3)°]. The C16–C23 aliphatic chain shows a regular extended conformation.
3. Supramolecular features
In the crystal, molecules of Δ2-isoxazolines are accommodated in sheets parallel to (010). In each sheet, centrosymmetrically related molecules are connected by a pair of weak non-classical C—H⋯O hydrogen bonds (Table 1), forming dimeric units (Fig. 2), which are further linked into chains parallel to the b axis by weak C—H⋯O hydrogen bonds involving the oxygen atoms of the t-butoxy group as acceptors. No C—H⋯π contacts or π–π interactions involving the benzene rings of the 3,5-diarylisoxazoline system are observed.
4. Database survey
A search of the 3,5-diarylisoxazoline moiety revealed 22 entries in the Cambridge Structural Database (Version 2.0.1, update of February 2019; Groom et al., 2016). However, when the search was restricted to para-diether-3,5-diarylisoxazoline, just one entry was retrieved. The match AWUYUN is associated with the work published by Samshuddin et al. (2011), which describes the of 3,5-bis(4-methoxyphenyl)-4,5-dihydroisoxazole. In both cases, the five-membered isoxazoline ring is coplanar with the phenyl ring bonded to the nitrogen side, whereas the phenyl ring on the oxygen side is very twisted, with dihedral angles between the mean planes of the phenyl rings close to orthogonal.
5. Synthesis and crystallization
4-(n-Octyloxy)benzaldehyde and 4-(n-octyloxy)benzaldehyde oxime were prepared according to the procedures reported by Passo et al. (2008) and Tavares et al. (2009). The general procedure for the preparation of 5-[4-(tert-butoxy)phenyl]-3-[4-(octyloxy)phenyl]-4,5-dihydroisoxazole is described as follows: To a solution of 4-n-octyloxybenzaldehyde oxime (5 mmol, 1,246 g) and N-chlorosuccinimide (5.35 mmol, 0.72 g) in THF (40 mL) was added 1 drop of concentrated HCl. The final solution was stirred by additional 30 min and cooled to 273 K. Then 4-tert-butoxystirene (5 mmol, 0.9 mL) in triethylamine (15 mmol, 2.1 mL) was added dropwise, followed by stirring for one h at room temperature. The final solution was filtered and THF was removed by evaporation. The crude product was dissolved in CH2Cl2 (2 ×100mL) and washed with 1 M HCl (3 × 50 mL), saturated NaHCO3 (1 × 50 mL) and brine (1 × 50 mL). The organic solution was dried over Na2SO4, the solvent was removed by evaporation and the yellow solid was recrystallized in ethanol. Single crystals of the title compound were collected on slow evaporation of the solvent. Data collected for 5-[4-(tert-butoxy)phenyl)-3-[4-(n-octyloxy)phenyl]-4,5-dihydro-isoxazole: white solid; yield: 51%; m.p. 335–337 K; 1H NMR (300 MHz, CDCl3), δ (ppm): 7.65–7.58 (m, 2H), 7.32–7.26 (m, 2H), 7.02–6.95 (m, 2H), 6.95–6.88 (m, 2H), 5.66 (dd, Jcis = 10.8 Hz, Jtrans = 8.5 Hz, 1H), 3.98 (t, J = 6.6 Hz, 2H), 3.71 (dd, Jgem = 16.6 Hz, Jcis = 10.8 Hz, 1H), 3.32 (dd, Jgem = 16.6 Hz, Jtrans = 8.5 Hz, 1H), 1.84–1.72 (m, 2H), 1.53–1.19 (m, 19H), 0.93–0.83 (m, 3H); 13C NMR (75 MHz, CDCl3), δ (ppm): 160.8, 156.0, 155.5, 135.8, 128.4, 126.8, 124.5, 121.9, 114.8, 82.3, 78.8, 77.4, 68.3, 43.4, 31.9, 29.5, 29.4, 29.3, 29.0, 26.1, 22.8, 14.3 (1 signal is missing).
6. Refinement
Selected crystal data, data collection and structure . All hydrogen atoms were positioned geometrically using a riding atom approximation, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1917652
https://doi.org/10.1107/S2056989019007412/rz5256sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007412/rz5256Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007412/rz5256Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007412/rz5256Isup4.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and publCIF (Westrip, 2010).C27H37NO3 | Z = 2 |
Mr = 423.57 | F(000) = 460 |
Triclinic, P1 | Dx = 1.160 Mg m−3 |
a = 5.8493 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7773 (3) Å | Cell parameters from 7320 reflections |
c = 19.3201 (6) Å | θ = 2.8–34.2° |
α = 92.325 (1)° | µ = 0.07 mm−1 |
β = 91.806 (1)° | T = 173 K |
γ = 94.145 (1)° | Block, colourless |
V = 1213.02 (5) Å3 | 0.50 × 0.20 × 0.12 mm |
Bruker APEXII DUO diffractometer | 7607 independent reflections |
Radiation source: fine-focus sealed tube | 6342 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.009 |
φ and ω scans | θmax = 31.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −7→8 |
Tmin = 0.711, Tmax = 0.747 | k = −15→15 |
10857 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0667P)2 + 0.4021P] where P = (Fo2 + 2Fc2)/3 |
7607 reflections | (Δ/σ)max = 0.001 |
284 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.64769 (16) | 0.74894 (8) | −0.05545 (5) | 0.02252 (17) | |
C2 | 1.43190 (17) | 0.69199 (10) | −0.04304 (5) | 0.02649 (19) | |
H2 | 1.318117 | 0.680926 | −0.079384 | 0.032* | |
C3 | 1.38402 (17) | 0.65151 (10) | 0.02272 (5) | 0.0276 (2) | |
H3 | 1.236687 | 0.613066 | 0.031010 | 0.033* | |
C4 | 1.54893 (17) | 0.66646 (9) | 0.07669 (5) | 0.02462 (18) | |
C5 | 1.76598 (18) | 0.71882 (10) | 0.06288 (6) | 0.0287 (2) | |
H5 | 1.881608 | 0.727313 | 0.098755 | 0.034* | |
C6 | 1.81591 (17) | 0.75896 (10) | −0.00292 (5) | 0.0275 (2) | |
H6 | 1.965700 | 0.793326 | −0.011855 | 0.033* | |
C7 | 1.4927 (2) | 0.63786 (10) | 0.14996 (6) | 0.0298 (2) | |
H7 | 1.639120 | 0.635864 | 0.177901 | 0.036* | |
C8 | 1.3386 (2) | 0.52173 (10) | 0.16367 (6) | 0.0331 (2) | |
H8A | 1.257332 | 0.486755 | 0.120734 | 0.040* | |
H8B | 1.426563 | 0.456841 | 0.184659 | 0.040* | |
C9 | 1.17552 (18) | 0.57422 (9) | 0.21388 (5) | 0.02437 (18) | |
C10 | 1.00340 (17) | 0.50153 (9) | 0.25159 (5) | 0.02354 (18) | |
C11 | 0.85608 (19) | 0.56078 (9) | 0.29567 (5) | 0.0283 (2) | |
H11 | 0.870372 | 0.649014 | 0.301232 | 0.034* | |
C12 | 0.6903 (2) | 0.49430 (10) | 0.33136 (6) | 0.0305 (2) | |
H12 | 0.590952 | 0.536589 | 0.360612 | 0.037* | |
C13 | 0.66989 (19) | 0.36438 (10) | 0.32407 (5) | 0.0277 (2) | |
C14 | 0.8169 (2) | 0.30396 (10) | 0.28077 (6) | 0.0305 (2) | |
H14 | 0.804578 | 0.215616 | 0.276084 | 0.037* | |
C15 | 0.98029 (19) | 0.37134 (9) | 0.24460 (5) | 0.0282 (2) | |
H15 | 1.077691 | 0.328959 | 0.214763 | 0.034* | |
C16 | 0.3577 (2) | 0.34639 (11) | 0.40164 (6) | 0.0317 (2) | |
H16A | 0.264382 | 0.402808 | 0.375405 | 0.038* | |
H16B | 0.442735 | 0.395495 | 0.439870 | 0.038* | |
C17 | 0.2055 (2) | 0.24281 (11) | 0.43018 (6) | 0.0335 (2) | |
H17A | 0.302437 | 0.184383 | 0.453525 | 0.040* | |
H17B | 0.119058 | 0.196173 | 0.391341 | 0.040* | |
C18 | 0.0366 (2) | 0.29097 (11) | 0.48151 (6) | 0.0330 (2) | |
H18A | −0.060442 | 0.349489 | 0.458264 | 0.040* | |
H18B | 0.122729 | 0.337310 | 0.520501 | 0.040* | |
C19 | −0.1167 (2) | 0.18553 (11) | 0.50984 (6) | 0.0349 (2) | |
H19A | −0.208792 | 0.142655 | 0.470892 | 0.042* | |
H19B | −0.018349 | 0.124293 | 0.530006 | 0.042* | |
C20 | −0.2783 (2) | 0.22801 (10) | 0.56467 (6) | 0.0318 (2) | |
H20A | −0.379620 | 0.287585 | 0.544232 | 0.038* | |
H20B | −0.186764 | 0.272574 | 0.603192 | 0.038* | |
C21 | −0.4267 (2) | 0.12127 (10) | 0.59381 (6) | 0.0327 (2) | |
H21A | −0.508740 | 0.072300 | 0.554987 | 0.039* | |
H21B | −0.326314 | 0.065477 | 0.617931 | 0.039* | |
C22 | −0.6008 (2) | 0.16621 (11) | 0.64401 (6) | 0.0331 (2) | |
H22A | −0.699866 | 0.222595 | 0.619849 | 0.040* | |
H22B | −0.518114 | 0.214970 | 0.682803 | 0.040* | |
C23 | −0.7519 (3) | 0.06135 (14) | 0.67351 (7) | 0.0447 (3) | |
H23A | −0.837883 | 0.013891 | 0.635584 | 0.067* | |
H23B | −0.859495 | 0.096688 | 0.705400 | 0.067* | |
H23C | −0.655669 | 0.006054 | 0.698516 | 0.067* | |
C24 | 1.65820 (16) | 0.91821 (9) | −0.13541 (5) | 0.02269 (17) | |
C25 | 1.40381 (18) | 0.93736 (11) | −0.13308 (6) | 0.0317 (2) | |
H25A | 1.317724 | 0.874246 | −0.163469 | 0.047* | |
H25B | 1.376322 | 1.020479 | −0.148808 | 0.047* | |
H25C | 1.353249 | 0.929723 | −0.085465 | 0.047* | |
C26 | 1.7923 (2) | 1.00842 (10) | −0.08406 (6) | 0.0312 (2) | |
H26A | 1.738292 | 0.994948 | −0.037262 | 0.047* | |
H26B | 1.769305 | 1.094089 | −0.096335 | 0.047* | |
H26C | 1.955819 | 0.994439 | −0.085452 | 0.047* | |
C27 | 1.7451 (2) | 0.93263 (11) | −0.20797 (5) | 0.0308 (2) | |
H27A | 1.909480 | 0.920386 | −0.207896 | 0.046* | |
H27B | 1.719501 | 1.016327 | −0.223155 | 0.046* | |
H27C | 1.662418 | 0.870491 | −0.239749 | 0.046* | |
N1 | 1.19161 (18) | 0.69382 (8) | 0.21931 (5) | 0.0310 (2) | |
O1 | 1.69856 (13) | 0.78825 (6) | −0.12071 (4) | 0.02499 (15) | |
O2 | 1.36545 (16) | 0.74135 (7) | 0.17716 (4) | 0.03545 (19) | |
O3 | 0.51450 (15) | 0.28925 (8) | 0.35685 (4) | 0.03590 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0238 (4) | 0.0203 (4) | 0.0240 (4) | 0.0033 (3) | 0.0063 (3) | 0.0010 (3) |
C2 | 0.0241 (4) | 0.0280 (4) | 0.0268 (4) | −0.0020 (3) | 0.0016 (3) | 0.0013 (3) |
C3 | 0.0227 (4) | 0.0290 (5) | 0.0312 (5) | −0.0010 (3) | 0.0053 (4) | 0.0046 (4) |
C4 | 0.0273 (4) | 0.0212 (4) | 0.0263 (4) | 0.0042 (3) | 0.0056 (3) | 0.0051 (3) |
C5 | 0.0256 (4) | 0.0315 (5) | 0.0291 (5) | 0.0007 (4) | 0.0000 (4) | 0.0070 (4) |
C6 | 0.0211 (4) | 0.0300 (5) | 0.0316 (5) | 0.0004 (3) | 0.0031 (3) | 0.0065 (4) |
C7 | 0.0351 (5) | 0.0285 (5) | 0.0271 (5) | 0.0050 (4) | 0.0069 (4) | 0.0079 (4) |
C8 | 0.0458 (6) | 0.0206 (4) | 0.0353 (5) | 0.0092 (4) | 0.0192 (5) | 0.0071 (4) |
C9 | 0.0314 (5) | 0.0211 (4) | 0.0214 (4) | 0.0048 (3) | 0.0044 (3) | 0.0024 (3) |
C10 | 0.0294 (4) | 0.0211 (4) | 0.0205 (4) | 0.0035 (3) | 0.0030 (3) | 0.0011 (3) |
C11 | 0.0361 (5) | 0.0224 (4) | 0.0268 (4) | 0.0034 (4) | 0.0077 (4) | −0.0008 (3) |
C12 | 0.0367 (5) | 0.0267 (5) | 0.0285 (5) | 0.0029 (4) | 0.0104 (4) | −0.0013 (4) |
C13 | 0.0317 (5) | 0.0271 (5) | 0.0238 (4) | −0.0011 (4) | 0.0044 (4) | 0.0004 (3) |
C14 | 0.0388 (6) | 0.0214 (4) | 0.0312 (5) | 0.0000 (4) | 0.0074 (4) | −0.0013 (4) |
C15 | 0.0357 (5) | 0.0223 (4) | 0.0272 (4) | 0.0034 (4) | 0.0080 (4) | −0.0005 (3) |
C16 | 0.0332 (5) | 0.0341 (5) | 0.0278 (5) | −0.0007 (4) | 0.0072 (4) | 0.0018 (4) |
C17 | 0.0329 (5) | 0.0352 (5) | 0.0320 (5) | −0.0036 (4) | 0.0067 (4) | 0.0037 (4) |
C18 | 0.0327 (5) | 0.0369 (5) | 0.0295 (5) | −0.0010 (4) | 0.0055 (4) | 0.0045 (4) |
C19 | 0.0346 (6) | 0.0351 (5) | 0.0346 (5) | −0.0028 (4) | 0.0097 (4) | −0.0002 (4) |
C20 | 0.0336 (5) | 0.0309 (5) | 0.0306 (5) | −0.0021 (4) | 0.0068 (4) | 0.0000 (4) |
C21 | 0.0359 (5) | 0.0275 (5) | 0.0352 (5) | 0.0017 (4) | 0.0098 (4) | 0.0021 (4) |
C22 | 0.0376 (6) | 0.0318 (5) | 0.0295 (5) | −0.0019 (4) | 0.0084 (4) | −0.0008 (4) |
C23 | 0.0443 (7) | 0.0479 (7) | 0.0425 (7) | −0.0032 (6) | 0.0112 (5) | 0.0131 (6) |
C24 | 0.0229 (4) | 0.0216 (4) | 0.0240 (4) | 0.0036 (3) | 0.0037 (3) | 0.0014 (3) |
C25 | 0.0233 (4) | 0.0380 (5) | 0.0347 (5) | 0.0080 (4) | 0.0034 (4) | 0.0019 (4) |
C26 | 0.0344 (5) | 0.0241 (4) | 0.0345 (5) | 0.0013 (4) | −0.0036 (4) | −0.0006 (4) |
C27 | 0.0341 (5) | 0.0327 (5) | 0.0272 (5) | 0.0065 (4) | 0.0090 (4) | 0.0060 (4) |
N1 | 0.0436 (5) | 0.0233 (4) | 0.0265 (4) | 0.0019 (3) | 0.0114 (4) | 0.0008 (3) |
O1 | 0.0318 (4) | 0.0211 (3) | 0.0230 (3) | 0.0046 (3) | 0.0093 (3) | 0.0011 (2) |
O2 | 0.0524 (5) | 0.0219 (3) | 0.0328 (4) | 0.0004 (3) | 0.0180 (4) | 0.0023 (3) |
O3 | 0.0399 (4) | 0.0302 (4) | 0.0372 (4) | −0.0043 (3) | 0.0151 (3) | −0.0002 (3) |
C1—O1 | 1.3808 (11) | C17—C18 | 1.5243 (16) |
C1—C6 | 1.3866 (14) | C17—H17A | 0.9900 |
C1—C2 | 1.3951 (13) | C17—H17B | 0.9900 |
C2—C3 | 1.3902 (14) | C18—C19 | 1.5259 (16) |
C2—H2 | 0.9500 | C18—H18A | 0.9900 |
C3—C4 | 1.3944 (15) | C18—H18B | 0.9900 |
C3—H3 | 0.9500 | C19—C20 | 1.5205 (15) |
C4—C5 | 1.3898 (14) | C19—H19A | 0.9900 |
C4—C7 | 1.5024 (14) | C19—H19B | 0.9900 |
C5—C6 | 1.3923 (14) | C20—C21 | 1.5272 (15) |
C5—H5 | 0.9500 | C20—H20A | 0.9900 |
C6—H6 | 0.9500 | C20—H20B | 0.9900 |
C7—O2 | 1.4735 (13) | C21—C22 | 1.5188 (15) |
C7—C8 | 1.5256 (15) | C21—H21A | 0.9900 |
C7—H7 | 1.0000 | C21—H21B | 0.9900 |
C8—C9 | 1.5043 (14) | C22—C23 | 1.5244 (17) |
C8—H8A | 0.9900 | C22—H22A | 0.9900 |
C8—H8B | 0.9900 | C22—H22B | 0.9900 |
C9—N1 | 1.2854 (13) | C23—H23A | 0.9800 |
C9—C10 | 1.4616 (13) | C23—H23B | 0.9800 |
C10—C11 | 1.3991 (13) | C23—H23C | 0.9800 |
C10—C15 | 1.4005 (13) | C24—O1 | 1.4744 (11) |
C11—C12 | 1.3825 (14) | C24—C27 | 1.5160 (14) |
C11—H11 | 0.9500 | C24—C25 | 1.5188 (14) |
C12—C13 | 1.3976 (15) | C24—C26 | 1.5190 (14) |
C12—H12 | 0.9500 | C25—H25A | 0.9800 |
C13—O3 | 1.3618 (12) | C25—H25B | 0.9800 |
C13—C14 | 1.3945 (15) | C25—H25C | 0.9800 |
C14—C15 | 1.3830 (14) | C26—H26A | 0.9800 |
C14—H14 | 0.9500 | C26—H26B | 0.9800 |
C15—H15 | 0.9500 | C26—H26C | 0.9800 |
C16—O3 | 1.4345 (13) | C27—H27A | 0.9800 |
C16—C17 | 1.5099 (15) | C27—H27B | 0.9800 |
C16—H16A | 0.9900 | C27—H27C | 0.9800 |
C16—H16B | 0.9900 | N1—O2 | 1.4036 (12) |
O1—C1—C6 | 119.95 (9) | C17—C18—H18A | 109.2 |
O1—C1—C2 | 120.37 (9) | C19—C18—H18A | 109.2 |
C6—C1—C2 | 119.56 (9) | C17—C18—H18B | 109.2 |
C3—C2—C1 | 119.74 (9) | C19—C18—H18B | 109.2 |
C3—C2—H2 | 120.1 | H18A—C18—H18B | 107.9 |
C1—C2—H2 | 120.1 | C20—C19—C18 | 114.01 (10) |
C2—C3—C4 | 121.02 (9) | C20—C19—H19A | 108.7 |
C2—C3—H3 | 119.5 | C18—C19—H19A | 108.8 |
C4—C3—H3 | 119.5 | C20—C19—H19B | 108.8 |
C5—C4—C3 | 118.59 (9) | C18—C19—H19B | 108.7 |
C5—C4—C7 | 119.33 (9) | H19A—C19—H19B | 107.6 |
C3—C4—C7 | 121.87 (9) | C19—C20—C21 | 113.48 (9) |
C4—C5—C6 | 120.76 (10) | C19—C20—H20A | 108.9 |
C4—C5—H5 | 119.6 | C21—C20—H20A | 108.9 |
C6—C5—H5 | 119.6 | C19—C20—H20B | 108.9 |
C1—C6—C5 | 120.21 (9) | C21—C20—H20B | 108.9 |
C1—C6—H6 | 119.9 | H20A—C20—H20B | 107.7 |
C5—C6—H6 | 119.9 | C22—C21—C20 | 112.75 (9) |
O2—C7—C4 | 106.70 (8) | C22—C21—H21A | 109.0 |
O2—C7—C8 | 104.03 (8) | C20—C21—H21A | 109.0 |
C4—C7—C8 | 119.41 (10) | C22—C21—H21B | 109.0 |
O2—C7—H7 | 108.7 | C20—C21—H21B | 109.0 |
C4—C7—H7 | 108.7 | H21A—C21—H21B | 107.8 |
C8—C7—H7 | 108.7 | C21—C22—C23 | 113.74 (10) |
C9—C8—C7 | 101.00 (8) | C21—C22—H22A | 108.8 |
C9—C8—H8A | 111.6 | C23—C22—H22A | 108.8 |
C7—C8—H8A | 111.6 | C21—C22—H22B | 108.8 |
C9—C8—H8B | 111.6 | C23—C22—H22B | 108.8 |
C7—C8—H8B | 111.6 | H22A—C22—H22B | 107.7 |
H8A—C8—H8B | 109.4 | C22—C23—H23A | 109.5 |
N1—C9—C10 | 120.82 (9) | C22—C23—H23B | 109.5 |
N1—C9—C8 | 113.57 (9) | H23A—C23—H23B | 109.5 |
C10—C9—C8 | 125.54 (8) | C22—C23—H23C | 109.5 |
C11—C10—C15 | 118.12 (9) | H23A—C23—H23C | 109.5 |
C11—C10—C9 | 120.59 (9) | H23B—C23—H23C | 109.5 |
C15—C10—C9 | 121.29 (9) | O1—C24—C27 | 103.52 (7) |
C12—C11—C10 | 121.74 (9) | O1—C24—C25 | 110.07 (8) |
C12—C11—H11 | 119.1 | C27—C24—C25 | 111.21 (9) |
C10—C11—H11 | 119.1 | O1—C24—C26 | 110.96 (8) |
C11—C12—C13 | 119.47 (9) | C27—C24—C26 | 110.80 (9) |
C11—C12—H12 | 120.3 | C25—C24—C26 | 110.12 (9) |
C13—C12—H12 | 120.3 | C24—C25—H25A | 109.5 |
O3—C13—C14 | 115.85 (9) | C24—C25—H25B | 109.5 |
O3—C13—C12 | 124.70 (9) | H25A—C25—H25B | 109.5 |
C14—C13—C12 | 119.45 (9) | C24—C25—H25C | 109.5 |
C15—C14—C13 | 120.66 (9) | H25A—C25—H25C | 109.5 |
C15—C14—H14 | 119.7 | H25B—C25—H25C | 109.5 |
C13—C14—H14 | 119.7 | C24—C26—H26A | 109.5 |
C14—C15—C10 | 120.55 (9) | C24—C26—H26B | 109.5 |
C14—C15—H15 | 119.7 | H26A—C26—H26B | 109.5 |
C10—C15—H15 | 119.7 | C24—C26—H26C | 109.5 |
O3—C16—C17 | 107.12 (9) | H26A—C26—H26C | 109.5 |
O3—C16—H16A | 110.3 | H26B—C26—H26C | 109.5 |
C17—C16—H16A | 110.3 | C24—C27—H27A | 109.5 |
O3—C16—H16B | 110.3 | C24—C27—H27B | 109.5 |
C17—C16—H16B | 110.3 | H27A—C27—H27B | 109.5 |
H16A—C16—H16B | 108.5 | C24—C27—H27C | 109.5 |
C16—C17—C18 | 112.46 (10) | H27A—C27—H27C | 109.5 |
C16—C17—H17A | 109.1 | H27B—C27—H27C | 109.5 |
C18—C17—H17A | 109.1 | C9—N1—O2 | 109.83 (8) |
C16—C17—H17B | 109.1 | C1—O1—C24 | 117.13 (7) |
C18—C17—H17B | 109.1 | N1—O2—C7 | 109.13 (7) |
H17A—C17—H17B | 107.8 | C13—O3—C16 | 118.29 (9) |
C17—C18—C19 | 111.98 (10) | ||
O1—C1—C2—C3 | 179.22 (9) | C11—C12—C13—C14 | −0.15 (17) |
C6—C1—C2—C3 | 3.20 (15) | O3—C13—C14—C15 | 179.57 (10) |
C1—C2—C3—C4 | −0.24 (16) | C12—C13—C14—C15 | −0.68 (17) |
C2—C3—C4—C5 | −2.29 (15) | C13—C14—C15—C10 | 0.94 (17) |
C2—C3—C4—C7 | 172.41 (10) | C11—C10—C15—C14 | −0.37 (16) |
C3—C4—C5—C6 | 1.90 (15) | C9—C10—C15—C14 | 179.85 (10) |
C7—C4—C5—C6 | −172.94 (10) | O3—C16—C17—C18 | 177.42 (9) |
O1—C1—C6—C5 | −179.63 (9) | C16—C17—C18—C19 | 179.84 (10) |
C2—C1—C6—C5 | −3.60 (15) | C17—C18—C19—C20 | 176.39 (10) |
C4—C5—C6—C1 | 1.04 (16) | C18—C19—C20—C21 | −178.64 (10) |
C5—C4—C7—O2 | 98.97 (11) | C19—C20—C21—C22 | −175.20 (10) |
C3—C4—C7—O2 | −75.69 (12) | C20—C21—C22—C23 | 179.67 (11) |
C5—C4—C7—C8 | −143.67 (10) | C10—C9—N1—O2 | −178.73 (9) |
C3—C4—C7—C8 | 41.67 (14) | C8—C9—N1—O2 | −1.68 (13) |
O2—C7—C8—C9 | −14.56 (11) | C6—C1—O1—C24 | −91.52 (11) |
C4—C7—C8—C9 | −133.30 (10) | C2—C1—O1—C24 | 92.48 (11) |
C7—C8—C9—N1 | 10.69 (13) | C27—C24—O1—C1 | 176.34 (8) |
C7—C8—C9—C10 | −172.42 (9) | C25—C24—O1—C1 | −64.71 (11) |
N1—C9—C10—C11 | −1.52 (15) | C26—C24—O1—C1 | 57.44 (11) |
C8—C9—C10—C11 | −178.19 (10) | C9—N1—O2—C7 | −8.77 (12) |
N1—C9—C10—C15 | 178.25 (10) | C4—C7—O2—N1 | 142.06 (9) |
C8—C9—C10—C15 | 1.58 (16) | C8—C7—O2—N1 | 14.95 (12) |
C15—C10—C11—C12 | −0.47 (16) | C14—C13—O3—C16 | −179.53 (10) |
C9—C10—C11—C12 | 179.31 (10) | C12—C13—O3—C16 | 0.74 (17) |
C10—C11—C12—C13 | 0.72 (17) | C17—C16—O3—C13 | 179.46 (9) |
C11—C12—C13—O3 | 179.58 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26B···O2i | 0.98 | 2.56 | 3.4652 (14) | 154 |
C15—H15···O1ii | 0.95 | 2.61 | 3.5542 (12) | 173 |
Symmetry codes: (i) −x+3, −y+2, −z; (ii) −x+3, −y+1, −z. |
Acknowledgements
The authors thank the Financiadora de Estudos e Projetos (FINEP) for the X-ray diffraction facilities.
Funding information
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; Finance Code 001) and the Conselho Nacional de Pesquisa Científica (CNPq) for fellowships and for financial support under CNPq/Universal grant No. 01/2016 403075 2016–5.
References
Bezborodov, V., Kauhanka, N. & Lapanik, V. (2004). Mol. Cryst. Liq. Cryst. 411, 1145–1152. CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choe, H., Pham, T. T., Lee, J. Y., Latif, M., Park, H., Kang, Y. K. & Lee, J. (2016). J. Org. Chem. 81, 2612–2617. CSD CrossRef CAS PubMed Google Scholar
El-Khatatneh, N., Vinayaka, A. C., Chandra, , Sadashiva, M. P., Jeyaseelan, S. & Mahendra, M. (2017). IUCrData, 2, x170278. Google Scholar
Fader, L. D. & Carreira, E. M. (2004). Org. Lett. 6, 2485–2488. CrossRef PubMed CAS Google Scholar
Fritsch, L. & Merlo, A. A. (2016). ChemistrySelect, 1, 23–30. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanka, L. J., Gerpheide, S. A., Spieles, P. R., Martin, D. G., Belter, P. A., Coleman, T. A. & Meyer, H. F. (1975). Antimicrob. Agents Chemother. 7, 807–810. CrossRef PubMed CAS Google Scholar
Huang, H., Li, F., Xu, Z., Cai, J., Ji, X. & Deng, G.-J. (2017). Adv. Synth. Catal. 359, 3102–3107. CrossRef CAS Google Scholar
Huisgen, R. (1976). J. Org. Chem. 41, 403–419. CrossRef CAS Google Scholar
Kleinbeck, F. & Carreira, E. M. (2009). Angew. Chem. Int. Ed. 48, 578–581. CrossRef CAS Google Scholar
Lobo, M. M., Viau, C. M., dos Santos, J. M., Bonacorso, H. G., Martins, M. A. P., Amaral, S. S., Saffi, J. & Zanatta, N. (2015). Eur. J. Med. Chem. 101, 836–842. CSD CrossRef CAS PubMed Google Scholar
Lopes, L. D., Bortoluzzi, A. J., Prampolini, G., dos Santos, F. P., Livotto, P. R. & Merlo, A. A. (2018). J. Fluor. Chem. 211, 24–36. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martin, D. G., Chidester, C. G., Mizsak, S. A., Duchamp, D. J., Baczynskyj, L., Krueger, W. C., Wnuk, R. J. & Meulman, P. A. (1975). J. Antibiot. 28, 91–93. CrossRef PubMed CAS Google Scholar
Muri, D. & Carreira, E. M. (2009). J. Org. Chem. 74, 8695–8712. CrossRef PubMed CAS Google Scholar
Orth, R., Böttcher, T. & Sieber, S. A. (2010). Chem. Commun. 46, 8475–8477. CrossRef CAS Google Scholar
Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K. & Mita, T. (2010). Biochem. Biophys. Res. Commun. 391, 744–749. CrossRef PubMed CAS Google Scholar
Passo, J. A., Vilela, G. D., Schneider, P. H., Ritter, O. M. S. & Merlo, A. A. (2008). Liq. Cryst. 35, 833–840. CrossRef CAS Google Scholar
Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, M. L., Fierke, C. A., Gantt, S. L. & Rusche, K. M. (2002). J. Med. Chem. 45, 4359–4370. CrossRef PubMed CAS Google Scholar
Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975–o1976. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stosic-Grujicic, S., Cvetkovic, I., Mangano, K., Fresta, M., Maksimovic-Ivanic, D., Harhaji, L., Popadic, D., Momcilovic, M., Miljkovic, D., Kim, J., Abed, Y. A. & Nicoletti, F. (2007). J. Pharmacol. Exp. Ther. 320, 1038–1049. PubMed CAS Google Scholar
Tangallapally, R. P., Sun, D., Rakesh, , Budha, N., Lee, R. E., Lenaerts, A. J., Meibohm, B. & Lee, R. E. (2007). Bioorg. & Med. Chem. Lett. 17, 6638–6642. Google Scholar
Tavares, A., Ritter, O. M. S., Vasconcelos, U. B., Arruda, B. C., Schrader, A., Schneider, P. H. & Merlo, A. A. (2010). Liq. Cryst. 37, 159–169. CrossRef CAS Google Scholar
Tavares, A., Schneider, P. H. & Merlo, A. A. (2009). Eur. J. Org. Chem. pp. 889–897. CrossRef Google Scholar
Tavares, A., Toldo, J. M., Vilela, G. D., Gonçalves, P. F. B., Bechtold, I. H., Kitney, S. P., Kelly, S. M. & Merlo, A. A. (2016). New J. Chem. 40, 393–401. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.