research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(4-tert-but­­oxy­phen­yl)-3-(4-n-octyloxyphen­yl)-4,5-di­hydro­isoxazole

aInstituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, 91501 - 970 - Porto Alegre - RS, Brazil, and bDepto. de Química - Campus Trindade, Universidade Federal de Santa Catarina - UFSC, 88040-900 - Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: aloir.merlo@ufrgs.br

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 May 2019; accepted 21 May 2019; online 24 May 2019)

The mol­ecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cyclo­addition of 4-n-octyl­phenyl­nitrile oxide and 4-tert-but­oxy­styrene, the latter compound being a very useful inter­mediate to the synthesis of liquid-crystalline materials. In the mol­ecule, the benzene rings of the n-octyloxyphenyl and tert-but­oxy­phenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen inter­actions into chains running parallel to the b axis.

1. Chemical context

Nitro­gen- and oxygen-containing heterocycles known as Δ2-isoxazolines constitute an important class of five-membered heterocycles which have significant synthetic and biological applications (Pirrung et al., 2002[Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, M. L., Fierke, C. A., Gantt, S. L. & Rusche, K. M. (2002). J. Med. Chem. 45, 4359-4370.]; Choe et al., 2016[Choe, H., Pham, T. T., Lee, J. Y., Latif, M., Park, H., Kang, Y. K. & Lee, J. (2016). J. Org. Chem. 81, 2612-2617.]; Huang et al., 2017[Huang, H., Li, F., Xu, Z., Cai, J., Ji, X. & Deng, G.-J. (2017). Adv. Synth. Catal. 359, 3102-3107.]; Stosic-Grujicic et al., 2007[Stosic-Grujicic, S., Cvetkovic, I., Mangano, K., Fresta, M., Maksimovic-Ivanic, D., Harhaji, L., Popadic, D., Momcilovic, M., Miljkovic, D., Kim, J., Abed, Y. A. & Nicoletti, F. (2007). J. Pharmacol. Exp. Ther. 320, 1038-1049.]). Isoxazolines display diverse biological and pharmacological properties. This unique class of pharmacophores occurs naturally in many therapeutic agents. The chlorinated isoxazoline anti­tumor anti­biotics U-42,126 and U-43,795 isolated from Streptomyces sviceus, exhibit significant activity against L 1210 lymphoid leukaemia in mice (Martin et al., 1975[Martin, D. G., Chidester, C. G., Mizsak, S. A., Duchamp, D. J., Baczynskyj, L., Krueger, W. C., Wnuk, R. J. & Meulman, P. A. (1975). J. Antibiot. 28, 91-93.]; Hanka et al., 1975[Hanka, L. J., Gerpheide, S. A., Spieles, P. R., Martin, D. G., Belter, P. A., Coleman, T. A. & Meyer, H. F. (1975). Antimicrob. Agents Chemother. 7, 807-810.]). Inspired by this class of natural anti­biotics, a new library of natural products probes have been designed, synthesized and tested for bacterial proteome analysis (Orth et al., 2010[Orth, R., Böttcher, T. & Sieber, S. A. (2010). Chem. Commun. 46, 8475-8477.]). Nitro­furan­ylisoxazolines with increased proteolytic stability have been investigated, leading to the discovery of several compounds with potent in vitro anti-tuberculosis activity (Tangallapally et al., 2007[Tangallapally, R. P., Sun, D., Rakesh, , Budha, N., Lee, R. E., Lenaerts, A. J., Meibohm, B. & Lee, R. E. (2007). Bioorg. & Med. Chem. Lett. 17, 6638-6642.]). Trihalomethyl-pyrimidine sugar-modified nucleosides containing the isoxazoline ring were synthesized and their in vitro anti­proliferactive activity evaluated against human cancer cell lines and one of them was three times more selective than MXT standard anti­cancer drugs (Lobo et al., 2015[Lobo, M. M., Viau, C. M., dos Santos, J. M., Bonacorso, H. G., Martins, M. A. P., Amaral, S. S., Saffi, J. & Zanatta, N. (2015). Eur. J. Med. Chem. 101, 836-842.]). Isoxazolines have proven be an excellent GABA receptors, as demonstrated by Ozoe et al. (2010[Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K. & Mita, T. (2010). Biochem. Biophys. Res. Commun. 391, 744-749.]) who reported isoxazoline A1443 to exhibit anti­parasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. From a synthetic point of view, Δ2-isoxazolines constitute an important way to synthesize many natural products with diverse and intricate mol­ecular connectivity. Bafilomycin A1 and erythromycin A, reported by the Carreira group, are examples of the versatility of isoxazoline in the total synthesis of natural products (Kleinbeck & Carreira 2009[Kleinbeck, F. & Carreira, E. M. (2009). Angew. Chem. Int. Ed. 48, 578-581.]; Muri & Carreira 2009[Muri, D. & Carreira, E. M. (2009). J. Org. Chem. 74, 8695-8712.]).

Previously we have demonstrated that [3 + 2] 1,3-dipolar cyclo­addition of aryl­nitrile oxide to alkene is a excellent route to access different 3,5-disubstituted isoxazolines (Tavares et al., 2010[Tavares, A., Ritter, O. M. S., Vasconcelos, U. B., Arruda, B. C., Schrader, A., Schneider, P. H. & Merlo, A. A. (2010). Liq. Cryst. 37, 159-169.], 2016[Tavares, A., Toldo, J. M., Vilela, G. D., Gonçalves, P. F. B., Bechtold, I. H., Kitney, S. P., Kelly, S. M. & Merlo, A. A. (2016). New J. Chem. 40, 393-401.]; Fritsch & Merlo, 2016[Fritsch, L. & Merlo, A. A. (2016). ChemistrySelect, 1, 23-30.]; Lopes et al., 2018[Lopes, L. D., Bortoluzzi, A. J., Prampolini, G., dos Santos, F. P., Livotto, P. R. & Merlo, A. A. (2018). J. Fluor. Chem. 211, 24-36.]). Using this methodology, a collection of isoxazolines can be constructed with specific applications ranging from biological compounds through use as inter­mediates in organic synthesis to liquid-crystal materials (El-Khatatneh et al., 2017[El-Khatatneh, N., Vinayaka, A. C., Chandra, , Sadashiva, M. P., Jeyaseelan, S. & Mahendra, M. (2017). IUCrData, 2, x170278.]; Fader & Carreira, 2004[Fader, L. D. & Carreira, E. M. (2004). Org. Lett. 6, 2485-2488.]; Bezborodov et al., 2004[Bezborodov, V., Kauhanka, N. & Lapanik, V. (2004). Mol. Cryst. Liq. Cryst. 411, 1145-1152.]). With this purpose in mind, we have established a concise route to the synthesis of liquid crystals based on isoxazolines and their full characterization. The [3 + 2] 1,3-dipolar cyclo­addition requires two partners, one being nitrile oxide (1,3-dipole) obtained from oxime correspondent and other is an alkene (Huisgen, 1976[Huisgen, R. (1976). J. Org. Chem. 41, 403-419.]). Thus, considering the liquid crystals thematic, we focused our attention on the preparation of distorted rod-shaped mol­ecules based on isoxazolines using 4-t-but­oxy­phenyl styrene as the dipholarophile and 4-n-alk­oxy­phenyl nitrile oxide as the 1,3-dipole. The title compound was synthesized in three steps starting from 4-hy­droxy­benzaldehyde by alkyl­ation reaction (85% yield), oximation reaction (89% yield) and [3 + 2] 1,3-dipolar cyclo­addition (51% yield).

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the isoxazoline ring adopts a twist conformation, with puckering parameters q2 = 0.1522 (11) Å and Φ2 = 149.6 (4)°. The mean plane through the isoxazoline ring [maximum deviation 0.1113 (12) Å for atom C7] is approximately coplanar with the C10–C15 aromatic ring of the n-octyloxyphenyl group [dihedral angle = 2.83 (7)°], whereas it is almost perpendicular to the C1–C6 benzene ring of the t-but­oxy­phenyl group [dihedral angle = 85.49 (3)°]. The C16–C23 aliphatic chain shows a regular extended conformation.

[Figure 1]
Figure 1
ORTEP plot of the title compound showing displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, mol­ecules of Δ2-isoxazolines are accommodated in sheets parallel to (010). In each sheet, centrosymmetrically related mol­ecules are connected by a pair of weak non-classical C—H⋯O hydrogen bonds (Table 1[link]), forming dimeric units (Fig. 2[link]), which are further linked into chains parallel to the b axis by weak C—H⋯O hydrogen bonds involving the oxygen atoms of the t-but­oxy group as acceptors. No C—H⋯π contacts or ππ inter­actions involving the benzene rings of the 3,5-di­aryl­isoxazoline system are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26B⋯O2i 0.98 2.56 3.4652 (14) 154
C15—H15⋯O1ii 0.95 2.61 3.5542 (12) 173
Symmetry codes: (i) -x+3, -y+2, -z; (ii) -x+3, -y+1, -z.
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions (dashed lines) in the title compound.

4. Database survey

A search of the 3,5-di­aryl­isoxazoline moiety revealed 22 entries in the Cambridge Structural Database (Version 2.0.1, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, when the search was restricted to para-diether-3,5-di­aryl­isoxazoline, just one entry was retrieved. The match AWUYUN is associated with the work published by Samshuddin et al. (2011[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975-o1976.]), which describes the crystal structure of 3,5-bis(4-meth­oxy­phen­yl)-4,5-di­hydro­isoxazole. In both cases, the five-membered isoxazoline ring is coplanar with the phenyl ring bonded to the nitro­gen side, whereas the phenyl ring on the oxygen side is very twisted, with dihedral angles between the mean planes of the phenyl rings close to orthogonal.

5. Synthesis and crystallization

4-(n-Oct­yloxy)benzaldehyde and 4-(n-oct­yloxy)benzaldehyde oxime were prepared according to the procedures reported by Passo et al. (2008[Passo, J. A., Vilela, G. D., Schneider, P. H., Ritter, O. M. S. & Merlo, A. A. (2008). Liq. Cryst. 35, 833-840.]) and Tavares et al. (2009[Tavares, A., Schneider, P. H. & Merlo, A. A. (2009). Eur. J. Org. Chem. pp. 889-897.]). The general procedure for the preparation of 5-[4-(tert-but­oxy)phen­yl]-3-[4-(oct­yloxy)phen­yl]-4,5-di­hydro­isoxazole is described as follows: To a solution of 4-n-octyloxybenzaldehyde oxime (5 mmol, 1,246 g) and N-chloro­succinimide (5.35 mmol, 0.72 g) in THF (40 mL) was added 1 drop of concentrated HCl. The final solution was stirred by additional 30 min and cooled to 273 K. Then 4-tert-but­oxy­stirene (5 mmol, 0.9 mL) in tri­ethyl­amine (15 mmol, 2.1 mL) was added dropwise, followed by stirring for one h at room temperature. The final solution was filtered and THF was removed by evaporation. The crude product was dissolved in CH2Cl2 (2 ×100mL) and washed with 1 M HCl (3 × 50 mL), saturated NaHCO3 (1 × 50 mL) and brine (1 × 50 mL). The organic solution was dried over Na2SO4, the solvent was removed by evaporation and the yellow solid was recrystallized in ethanol. Single crystals of the title compound were collected on slow evaporation of the solvent. Data collected for 5-[4-(tert-but­oxy)phen­yl)-3-[4-(n-oct­yloxy)phen­yl]-4,5-di­hydro-isoxazole: white solid; yield: 51%; m.p. 335–337 K; 1H NMR (300 MHz, CDCl3), δ (ppm): 7.65–7.58 (m, 2H), 7.32–7.26 (m, 2H), 7.02–6.95 (m, 2H), 6.95–6.88 (m, 2H), 5.66 (dd, Jcis = 10.8 Hz, Jtrans = 8.5 Hz, 1H), 3.98 (t, J = 6.6 Hz, 2H), 3.71 (dd, Jgem = 16.6 Hz, Jcis = 10.8 Hz, 1H), 3.32 (dd, Jgem = 16.6 Hz, Jtrans = 8.5 Hz, 1H), 1.84–1.72 (m, 2H), 1.53–1.19 (m, 19H), 0.93–0.83 (m, 3H); 13C NMR (75 MHz, CDCl3), δ (ppm): 160.8, 156.0, 155.5, 135.8, 128.4, 126.8, 124.5, 121.9, 114.8, 82.3, 78.8, 77.4, 68.3, 43.4, 31.9, 29.5, 29.4, 29.3, 29.0, 26.1, 22.8, 14.3 (1 signal is missing).

6. Refinement

Selected crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were positioned geometrically using a riding atom approximation, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C27H37NO3
Mr 423.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 5.8493 (1), 10.7773 (3), 19.3201 (6)
α, β, γ (°) 92.325 (1), 91.806 (1), 94.145 (1)
V3) 1213.02 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.711, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 10857, 7607, 6342
Rint 0.009
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.03
No. of reflections 7607
No. of parameters 284
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and publCIF (Westrip, 2010).

5-(4-tert-Butoxyphenyl)-3-(4-n-octyloxyphenyl)-4,5-\ dihydroisoxazole top
Crystal data top
C27H37NO3Z = 2
Mr = 423.57F(000) = 460
Triclinic, P1Dx = 1.160 Mg m3
a = 5.8493 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7773 (3) ÅCell parameters from 7320 reflections
c = 19.3201 (6) Åθ = 2.8–34.2°
α = 92.325 (1)°µ = 0.07 mm1
β = 91.806 (1)°T = 173 K
γ = 94.145 (1)°Block, colourless
V = 1213.02 (5) Å30.50 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII DUO
diffractometer
7607 independent reflections
Radiation source: fine-focus sealed tube6342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
φ and ω scansθmax = 31.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 78
Tmin = 0.711, Tmax = 0.747k = 1515
10857 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.4021P]
where P = (Fo2 + 2Fc2)/3
7607 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.64769 (16)0.74894 (8)0.05545 (5)0.02252 (17)
C21.43190 (17)0.69199 (10)0.04304 (5)0.02649 (19)
H21.3181170.6809260.0793840.032*
C31.38402 (17)0.65151 (10)0.02272 (5)0.0276 (2)
H31.2366870.6130660.0310100.033*
C41.54893 (17)0.66646 (9)0.07669 (5)0.02462 (18)
C51.76598 (18)0.71882 (10)0.06288 (6)0.0287 (2)
H51.8816080.7273130.0987550.034*
C61.81591 (17)0.75896 (10)0.00292 (5)0.0275 (2)
H61.9657000.7933260.0118550.033*
C71.4927 (2)0.63786 (10)0.14996 (6)0.0298 (2)
H71.6391200.6358640.1779010.036*
C81.3386 (2)0.52173 (10)0.16367 (6)0.0331 (2)
H8A1.2573320.4867550.1207340.040*
H8B1.4265630.4568410.1846590.040*
C91.17552 (18)0.57422 (9)0.21388 (5)0.02437 (18)
C101.00340 (17)0.50153 (9)0.25159 (5)0.02354 (18)
C110.85608 (19)0.56078 (9)0.29567 (5)0.0283 (2)
H110.8703720.6490140.3012320.034*
C120.6903 (2)0.49430 (10)0.33136 (6)0.0305 (2)
H120.5909520.5365890.3606120.037*
C130.66989 (19)0.36438 (10)0.32407 (5)0.0277 (2)
C140.8169 (2)0.30396 (10)0.28077 (6)0.0305 (2)
H140.8045780.2156160.2760840.037*
C150.98029 (19)0.37134 (9)0.24460 (5)0.0282 (2)
H151.0776910.3289590.2147630.034*
C160.3577 (2)0.34639 (11)0.40164 (6)0.0317 (2)
H16A0.2643820.4028080.3754050.038*
H16B0.4427350.3954950.4398700.038*
C170.2055 (2)0.24281 (11)0.43018 (6)0.0335 (2)
H17A0.3024370.1843830.4535250.040*
H17B0.1190580.1961730.3913410.040*
C180.0366 (2)0.29097 (11)0.48151 (6)0.0330 (2)
H18A0.0604420.3494890.4582640.040*
H18B0.1227290.3373100.5205010.040*
C190.1167 (2)0.18553 (11)0.50984 (6)0.0349 (2)
H19A0.2087920.1426550.4708920.042*
H19B0.0183490.1242930.5300060.042*
C200.2783 (2)0.22801 (10)0.56467 (6)0.0318 (2)
H20A0.3796200.2875850.5442320.038*
H20B0.1867640.2725740.6031920.038*
C210.4267 (2)0.12127 (10)0.59381 (6)0.0327 (2)
H21A0.5087400.0723000.5549870.039*
H21B0.3263140.0654770.6179310.039*
C220.6008 (2)0.16621 (11)0.64401 (6)0.0331 (2)
H22A0.6998660.2225950.6198490.040*
H22B0.5181140.2149700.6828030.040*
C230.7519 (3)0.06135 (14)0.67351 (7)0.0447 (3)
H23A0.8378830.0138910.6355840.067*
H23B0.8594950.0966880.7054000.067*
H23C0.6556690.0060540.6985160.067*
C241.65820 (16)0.91821 (9)0.13541 (5)0.02269 (17)
C251.40381 (18)0.93736 (11)0.13308 (6)0.0317 (2)
H25A1.3177240.8742460.1634690.047*
H25B1.3763221.0204790.1488080.047*
H25C1.3532490.9297230.0854650.047*
C261.7923 (2)1.00842 (10)0.08406 (6)0.0312 (2)
H26A1.7382920.9949480.0372620.047*
H26B1.7693051.0940890.0963350.047*
H26C1.9558190.9944390.0854520.047*
C271.7451 (2)0.93263 (11)0.20797 (5)0.0308 (2)
H27A1.9094800.9203860.2078960.046*
H27B1.7195011.0163270.2231550.046*
H27C1.6624180.8704910.2397490.046*
N11.19161 (18)0.69382 (8)0.21931 (5)0.0310 (2)
O11.69856 (13)0.78825 (6)0.12071 (4)0.02499 (15)
O21.36545 (16)0.74135 (7)0.17716 (4)0.03545 (19)
O30.51450 (15)0.28925 (8)0.35685 (4)0.03590 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (4)0.0203 (4)0.0240 (4)0.0033 (3)0.0063 (3)0.0010 (3)
C20.0241 (4)0.0280 (4)0.0268 (4)0.0020 (3)0.0016 (3)0.0013 (3)
C30.0227 (4)0.0290 (5)0.0312 (5)0.0010 (3)0.0053 (4)0.0046 (4)
C40.0273 (4)0.0212 (4)0.0263 (4)0.0042 (3)0.0056 (3)0.0051 (3)
C50.0256 (4)0.0315 (5)0.0291 (5)0.0007 (4)0.0000 (4)0.0070 (4)
C60.0211 (4)0.0300 (5)0.0316 (5)0.0004 (3)0.0031 (3)0.0065 (4)
C70.0351 (5)0.0285 (5)0.0271 (5)0.0050 (4)0.0069 (4)0.0079 (4)
C80.0458 (6)0.0206 (4)0.0353 (5)0.0092 (4)0.0192 (5)0.0071 (4)
C90.0314 (5)0.0211 (4)0.0214 (4)0.0048 (3)0.0044 (3)0.0024 (3)
C100.0294 (4)0.0211 (4)0.0205 (4)0.0035 (3)0.0030 (3)0.0011 (3)
C110.0361 (5)0.0224 (4)0.0268 (4)0.0034 (4)0.0077 (4)0.0008 (3)
C120.0367 (5)0.0267 (5)0.0285 (5)0.0029 (4)0.0104 (4)0.0013 (4)
C130.0317 (5)0.0271 (5)0.0238 (4)0.0011 (4)0.0044 (4)0.0004 (3)
C140.0388 (6)0.0214 (4)0.0312 (5)0.0000 (4)0.0074 (4)0.0013 (4)
C150.0357 (5)0.0223 (4)0.0272 (4)0.0034 (4)0.0080 (4)0.0005 (3)
C160.0332 (5)0.0341 (5)0.0278 (5)0.0007 (4)0.0072 (4)0.0018 (4)
C170.0329 (5)0.0352 (5)0.0320 (5)0.0036 (4)0.0067 (4)0.0037 (4)
C180.0327 (5)0.0369 (5)0.0295 (5)0.0010 (4)0.0055 (4)0.0045 (4)
C190.0346 (6)0.0351 (5)0.0346 (5)0.0028 (4)0.0097 (4)0.0002 (4)
C200.0336 (5)0.0309 (5)0.0306 (5)0.0021 (4)0.0068 (4)0.0000 (4)
C210.0359 (5)0.0275 (5)0.0352 (5)0.0017 (4)0.0098 (4)0.0021 (4)
C220.0376 (6)0.0318 (5)0.0295 (5)0.0019 (4)0.0084 (4)0.0008 (4)
C230.0443 (7)0.0479 (7)0.0425 (7)0.0032 (6)0.0112 (5)0.0131 (6)
C240.0229 (4)0.0216 (4)0.0240 (4)0.0036 (3)0.0037 (3)0.0014 (3)
C250.0233 (4)0.0380 (5)0.0347 (5)0.0080 (4)0.0034 (4)0.0019 (4)
C260.0344 (5)0.0241 (4)0.0345 (5)0.0013 (4)0.0036 (4)0.0006 (4)
C270.0341 (5)0.0327 (5)0.0272 (5)0.0065 (4)0.0090 (4)0.0060 (4)
N10.0436 (5)0.0233 (4)0.0265 (4)0.0019 (3)0.0114 (4)0.0008 (3)
O10.0318 (4)0.0211 (3)0.0230 (3)0.0046 (3)0.0093 (3)0.0011 (2)
O20.0524 (5)0.0219 (3)0.0328 (4)0.0004 (3)0.0180 (4)0.0023 (3)
O30.0399 (4)0.0302 (4)0.0372 (4)0.0043 (3)0.0151 (3)0.0002 (3)
Geometric parameters (Å, º) top
C1—O11.3808 (11)C17—C181.5243 (16)
C1—C61.3866 (14)C17—H17A0.9900
C1—C21.3951 (13)C17—H17B0.9900
C2—C31.3902 (14)C18—C191.5259 (16)
C2—H20.9500C18—H18A0.9900
C3—C41.3944 (15)C18—H18B0.9900
C3—H30.9500C19—C201.5205 (15)
C4—C51.3898 (14)C19—H19A0.9900
C4—C71.5024 (14)C19—H19B0.9900
C5—C61.3923 (14)C20—C211.5272 (15)
C5—H50.9500C20—H20A0.9900
C6—H60.9500C20—H20B0.9900
C7—O21.4735 (13)C21—C221.5188 (15)
C7—C81.5256 (15)C21—H21A0.9900
C7—H71.0000C21—H21B0.9900
C8—C91.5043 (14)C22—C231.5244 (17)
C8—H8A0.9900C22—H22A0.9900
C8—H8B0.9900C22—H22B0.9900
C9—N11.2854 (13)C23—H23A0.9800
C9—C101.4616 (13)C23—H23B0.9800
C10—C111.3991 (13)C23—H23C0.9800
C10—C151.4005 (13)C24—O11.4744 (11)
C11—C121.3825 (14)C24—C271.5160 (14)
C11—H110.9500C24—C251.5188 (14)
C12—C131.3976 (15)C24—C261.5190 (14)
C12—H120.9500C25—H25A0.9800
C13—O31.3618 (12)C25—H25B0.9800
C13—C141.3945 (15)C25—H25C0.9800
C14—C151.3830 (14)C26—H26A0.9800
C14—H140.9500C26—H26B0.9800
C15—H150.9500C26—H26C0.9800
C16—O31.4345 (13)C27—H27A0.9800
C16—C171.5099 (15)C27—H27B0.9800
C16—H16A0.9900C27—H27C0.9800
C16—H16B0.9900N1—O21.4036 (12)
O1—C1—C6119.95 (9)C17—C18—H18A109.2
O1—C1—C2120.37 (9)C19—C18—H18A109.2
C6—C1—C2119.56 (9)C17—C18—H18B109.2
C3—C2—C1119.74 (9)C19—C18—H18B109.2
C3—C2—H2120.1H18A—C18—H18B107.9
C1—C2—H2120.1C20—C19—C18114.01 (10)
C2—C3—C4121.02 (9)C20—C19—H19A108.7
C2—C3—H3119.5C18—C19—H19A108.8
C4—C3—H3119.5C20—C19—H19B108.8
C5—C4—C3118.59 (9)C18—C19—H19B108.7
C5—C4—C7119.33 (9)H19A—C19—H19B107.6
C3—C4—C7121.87 (9)C19—C20—C21113.48 (9)
C4—C5—C6120.76 (10)C19—C20—H20A108.9
C4—C5—H5119.6C21—C20—H20A108.9
C6—C5—H5119.6C19—C20—H20B108.9
C1—C6—C5120.21 (9)C21—C20—H20B108.9
C1—C6—H6119.9H20A—C20—H20B107.7
C5—C6—H6119.9C22—C21—C20112.75 (9)
O2—C7—C4106.70 (8)C22—C21—H21A109.0
O2—C7—C8104.03 (8)C20—C21—H21A109.0
C4—C7—C8119.41 (10)C22—C21—H21B109.0
O2—C7—H7108.7C20—C21—H21B109.0
C4—C7—H7108.7H21A—C21—H21B107.8
C8—C7—H7108.7C21—C22—C23113.74 (10)
C9—C8—C7101.00 (8)C21—C22—H22A108.8
C9—C8—H8A111.6C23—C22—H22A108.8
C7—C8—H8A111.6C21—C22—H22B108.8
C9—C8—H8B111.6C23—C22—H22B108.8
C7—C8—H8B111.6H22A—C22—H22B107.7
H8A—C8—H8B109.4C22—C23—H23A109.5
N1—C9—C10120.82 (9)C22—C23—H23B109.5
N1—C9—C8113.57 (9)H23A—C23—H23B109.5
C10—C9—C8125.54 (8)C22—C23—H23C109.5
C11—C10—C15118.12 (9)H23A—C23—H23C109.5
C11—C10—C9120.59 (9)H23B—C23—H23C109.5
C15—C10—C9121.29 (9)O1—C24—C27103.52 (7)
C12—C11—C10121.74 (9)O1—C24—C25110.07 (8)
C12—C11—H11119.1C27—C24—C25111.21 (9)
C10—C11—H11119.1O1—C24—C26110.96 (8)
C11—C12—C13119.47 (9)C27—C24—C26110.80 (9)
C11—C12—H12120.3C25—C24—C26110.12 (9)
C13—C12—H12120.3C24—C25—H25A109.5
O3—C13—C14115.85 (9)C24—C25—H25B109.5
O3—C13—C12124.70 (9)H25A—C25—H25B109.5
C14—C13—C12119.45 (9)C24—C25—H25C109.5
C15—C14—C13120.66 (9)H25A—C25—H25C109.5
C15—C14—H14119.7H25B—C25—H25C109.5
C13—C14—H14119.7C24—C26—H26A109.5
C14—C15—C10120.55 (9)C24—C26—H26B109.5
C14—C15—H15119.7H26A—C26—H26B109.5
C10—C15—H15119.7C24—C26—H26C109.5
O3—C16—C17107.12 (9)H26A—C26—H26C109.5
O3—C16—H16A110.3H26B—C26—H26C109.5
C17—C16—H16A110.3C24—C27—H27A109.5
O3—C16—H16B110.3C24—C27—H27B109.5
C17—C16—H16B110.3H27A—C27—H27B109.5
H16A—C16—H16B108.5C24—C27—H27C109.5
C16—C17—C18112.46 (10)H27A—C27—H27C109.5
C16—C17—H17A109.1H27B—C27—H27C109.5
C18—C17—H17A109.1C9—N1—O2109.83 (8)
C16—C17—H17B109.1C1—O1—C24117.13 (7)
C18—C17—H17B109.1N1—O2—C7109.13 (7)
H17A—C17—H17B107.8C13—O3—C16118.29 (9)
C17—C18—C19111.98 (10)
O1—C1—C2—C3179.22 (9)C11—C12—C13—C140.15 (17)
C6—C1—C2—C33.20 (15)O3—C13—C14—C15179.57 (10)
C1—C2—C3—C40.24 (16)C12—C13—C14—C150.68 (17)
C2—C3—C4—C52.29 (15)C13—C14—C15—C100.94 (17)
C2—C3—C4—C7172.41 (10)C11—C10—C15—C140.37 (16)
C3—C4—C5—C61.90 (15)C9—C10—C15—C14179.85 (10)
C7—C4—C5—C6172.94 (10)O3—C16—C17—C18177.42 (9)
O1—C1—C6—C5179.63 (9)C16—C17—C18—C19179.84 (10)
C2—C1—C6—C53.60 (15)C17—C18—C19—C20176.39 (10)
C4—C5—C6—C11.04 (16)C18—C19—C20—C21178.64 (10)
C5—C4—C7—O298.97 (11)C19—C20—C21—C22175.20 (10)
C3—C4—C7—O275.69 (12)C20—C21—C22—C23179.67 (11)
C5—C4—C7—C8143.67 (10)C10—C9—N1—O2178.73 (9)
C3—C4—C7—C841.67 (14)C8—C9—N1—O21.68 (13)
O2—C7—C8—C914.56 (11)C6—C1—O1—C2491.52 (11)
C4—C7—C8—C9133.30 (10)C2—C1—O1—C2492.48 (11)
C7—C8—C9—N110.69 (13)C27—C24—O1—C1176.34 (8)
C7—C8—C9—C10172.42 (9)C25—C24—O1—C164.71 (11)
N1—C9—C10—C111.52 (15)C26—C24—O1—C157.44 (11)
C8—C9—C10—C11178.19 (10)C9—N1—O2—C78.77 (12)
N1—C9—C10—C15178.25 (10)C4—C7—O2—N1142.06 (9)
C8—C9—C10—C151.58 (16)C8—C7—O2—N114.95 (12)
C15—C10—C11—C120.47 (16)C14—C13—O3—C16179.53 (10)
C9—C10—C11—C12179.31 (10)C12—C13—O3—C160.74 (17)
C10—C11—C12—C130.72 (17)C17—C16—O3—C13179.46 (9)
C11—C12—C13—O3179.58 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26B···O2i0.982.563.4652 (14)154
C15—H15···O1ii0.952.613.5542 (12)173
Symmetry codes: (i) x+3, y+2, z; (ii) x+3, y+1, z.
 

Acknowledgements

The authors thank the Financiadora de Estudos e Projetos (FINEP) for the X-ray diffraction facilities.

Funding information

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; Finance Code 001) and the Conselho Nacional de Pesquisa Científica (CNPq) for fellowships and for financial support under CNPq/Universal grant No. 01/2016 403075 2016–5.

References

First citationBezborodov, V., Kauhanka, N. & Lapanik, V. (2004). Mol. Cryst. Liq. Cryst. 411, 1145–1152.  CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoe, H., Pham, T. T., Lee, J. Y., Latif, M., Park, H., Kang, Y. K. & Lee, J. (2016). J. Org. Chem. 81, 2612–2617.  CSD CrossRef CAS PubMed Google Scholar
First citationEl-Khatatneh, N., Vinayaka, A. C., Chandra, , Sadashiva, M. P., Jeyaseelan, S. & Mahendra, M. (2017). IUCrData, 2, x170278.  Google Scholar
First citationFader, L. D. & Carreira, E. M. (2004). Org. Lett. 6, 2485–2488.  CrossRef PubMed CAS Google Scholar
First citationFritsch, L. & Merlo, A. A. (2016). ChemistrySelect, 1, 23–30.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanka, L. J., Gerpheide, S. A., Spieles, P. R., Martin, D. G., Belter, P. A., Coleman, T. A. & Meyer, H. F. (1975). Antimicrob. Agents Chemother. 7, 807–810.  CrossRef PubMed CAS Google Scholar
First citationHuang, H., Li, F., Xu, Z., Cai, J., Ji, X. & Deng, G.-J. (2017). Adv. Synth. Catal. 359, 3102–3107.  CrossRef CAS Google Scholar
First citationHuisgen, R. (1976). J. Org. Chem. 41, 403–419.  CrossRef CAS Google Scholar
First citationKleinbeck, F. & Carreira, E. M. (2009). Angew. Chem. Int. Ed. 48, 578–581.  CrossRef CAS Google Scholar
First citationLobo, M. M., Viau, C. M., dos Santos, J. M., Bonacorso, H. G., Martins, M. A. P., Amaral, S. S., Saffi, J. & Zanatta, N. (2015). Eur. J. Med. Chem. 101, 836–842.  CSD CrossRef CAS PubMed Google Scholar
First citationLopes, L. D., Bortoluzzi, A. J., Prampolini, G., dos Santos, F. P., Livotto, P. R. & Merlo, A. A. (2018). J. Fluor. Chem. 211, 24–36.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, D. G., Chidester, C. G., Mizsak, S. A., Duchamp, D. J., Baczynskyj, L., Krueger, W. C., Wnuk, R. J. & Meulman, P. A. (1975). J. Antibiot. 28, 91–93.  CrossRef PubMed CAS Google Scholar
First citationMuri, D. & Carreira, E. M. (2009). J. Org. Chem. 74, 8695–8712.  CrossRef PubMed CAS Google Scholar
First citationOrth, R., Böttcher, T. & Sieber, S. A. (2010). Chem. Commun. 46, 8475–8477.  CrossRef CAS Google Scholar
First citationOzoe, Y., Asahi, M., Ozoe, F., Nakahira, K. & Mita, T. (2010). Biochem. Biophys. Res. Commun. 391, 744–749.  CrossRef PubMed CAS Google Scholar
First citationPasso, J. A., Vilela, G. D., Schneider, P. H., Ritter, O. M. S. & Merlo, A. A. (2008). Liq. Cryst. 35, 833–840.  CrossRef CAS Google Scholar
First citationPirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, M. L., Fierke, C. A., Gantt, S. L. & Rusche, K. M. (2002). J. Med. Chem. 45, 4359–4370.  CrossRef PubMed CAS Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStosic-Grujicic, S., Cvetkovic, I., Mangano, K., Fresta, M., Maksimovic-Ivanic, D., Harhaji, L., Popadic, D., Momcilovic, M., Miljkovic, D., Kim, J., Abed, Y. A. & Nicoletti, F. (2007). J. Pharmacol. Exp. Ther. 320, 1038–1049.  PubMed CAS Google Scholar
First citationTangallapally, R. P., Sun, D., Rakesh, , Budha, N., Lee, R. E., Lenaerts, A. J., Meibohm, B. & Lee, R. E. (2007). Bioorg. & Med. Chem. Lett. 17, 6638–6642.  Google Scholar
First citationTavares, A., Ritter, O. M. S., Vasconcelos, U. B., Arruda, B. C., Schrader, A., Schneider, P. H. & Merlo, A. A. (2010). Liq. Cryst. 37, 159–169.  CrossRef CAS Google Scholar
First citationTavares, A., Schneider, P. H. & Merlo, A. A. (2009). Eur. J. Org. Chem. pp. 889–897.  CrossRef Google Scholar
First citationTavares, A., Toldo, J. M., Vilela, G. D., Gonçalves, P. F. B., Bechtold, I. H., Kitney, S. P., Kelly, S. M. & Merlo, A. A. (2016). New J. Chem. 40, 393–401.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds