research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-bis­­[3-(methyl­sulfan­yl)prop­yl]-1,8:4,5-naphthalene­tetra­carb­­oxy­lic di­imide

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 21 May 2019; accepted 29 May 2019; online 31 May 2019)

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride with 3-(methyl­sulfan­yl)propyl­amine. The whole mol­ecule is generated by an inversion operation of the asymmetric unit. This mol­ecule has an anti form with the terminal methyl­thio­propyl groups above and below the aromatic di­imide plane, where four intra­molecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the mol­ecules into chains along the [2[\overline20]] direction. adjacent chains are inter­connected by ππ inter­actions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals inter­actions make important contributions to the inter­molecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%).

1. Chemical context

Naphthalene di­imide, which has an expanded π-electron-deficient plane has attracted considerable inter­est as an excellent organic linker material for the production of photochromic coordination polymers as a result of their photoinduced electron transfer from neutral organic moieties to stable anionic radicals (Liu et al., 2018[Liu, J.-J., Dong, Y., Chen, L.-Z., Wang, L., Xia, S.-B. & Huang, C.-C. (2018). Acta Cryst. C74, 94-99.]). Aromatic imides are highly fluorescent residues that are used in the signal generation of sensors or on–off mol­ecular switches. They have also been used in the design of receptors (Claudio-Catalán et al., 2016[Claudio-Catalán, M. Á., Medrano, F., Tlahuext, H. & Godoy-Alcántar, C. (2016). Acta Cryst. E72, 1503-1508.]) and sensors to recognize charged species and other guests (Landey-Álvarez et al., 2016[Landey-Álvarez, M. A., Ochoa-Terán, A., Pina-Luis, G., Martínez-Quiroz, M., Aguilar-Martínez, M., Elías-García, J., Miranda-Soto, V., Ramírez, J.-Z., Machi-Lara, L., Labastida-Galván, V. & Ordoñez, M. (2016). Supramol. Chem. 28, 892-906.]). In addition, naphthalene di­imides are ideal for studying anionic⋯π inter­actions because the quadrupole moments are highly positive (Fang et al., 2015[Fang, X., Guo, M.-D., Weng, L.-J., Chen, Y. & Lin, M.-J. (2015). Dyes & Pigments, 113, 251-256.]). We have extended our work on naphthalene di­imides to produce the title compound by the reaction of naphthalene­carb­oxy­lic dianhydride with methyl­thio­pyrimidine and report its crystal structure here.

[Scheme 1]

2. Structural commentary

The title compound comprises a central naphthalene di­imide with terminal thio­propyl chains (Fig. 1[link]). The mol­ecule lies on a crystallographic inversion center located at the centroid of the naphthalene ring system and the asymmetric unit is composed of one half of the mol­ecule. As expected, the naphthalene di­imide plane (N1/C5/O1/C6/C10/C7/C8/C11/C9/O2) is roughly planar with an r.m.s. deviation of 0.024 Å. The total distance between the terminal carbon atoms is 18.621 Å. Furthermore, this mol­ecule has an anti form as a result of the intra­molecular C4—H4A⋯O1 and C4—H4A⋯S1 hydrogen bonds (Table 1[link]). The terminal methyl­thio­propyl­amine group is fixed at an O1⋯H4A⋯S1 angle of 100.8° by the aforementioned intra­molecular hydrogen bonds. The C3/C2/S1/C1 section of the methyl­thio­propyl substituent is almost parallel to the naphthalene di­imide unit with the C3/C2/S1/C1 mean plane inclined to the naphthalene di­imide plane at a dihedral angle of 13.1 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S1 0.99 2.84 3.300 (2) 109
C4—H4A⋯O1 0.99 2.32 2.688 (3) 101
C10—H10⋯O1i 0.95 2.39 3.316 (3) 164
C11—H11⋯S1ii 0.95 2.86 3.779 (2) 162
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow and green dashed lines represent intra­molecular C—H⋯S and C—H⋯O hydrogen bonds, respectively. Unlabelled atoms are generated by the symmetry operation (−x + 2, −y + 1, −z).

3. Theoretical calculations

DFT calculations were performed using the GAUSSIAN09 software package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.]) and the calculated distances and angles were compared with experimental values from the X-ray diffraction studies. The overall structural calculation was performed using the B3LYP level theory with a 6–311++G** basis set. The parameters optimized for bond lengths and bond angles are in close agreement with experimental crystallographic data (Table 2[link]). The terminal methyl­thio­propyl group is fixed by inter­nal hydrogen bonding in the crystal, whereas its inter­nal hydrogen bonds are broken in the gas-phase structural calculation. This can be confirmed by the fact that the O1⋯H4A⋯S1 angle of the methyl­thio­propyl group has changed from 100.8 to 122.0° (Fig. 2[link]). However, even in the gas phase the mol­ecule has an anti form similar to that found in the solid state.

Table 2
Experimental and calculated bond lengths (Å)

Bond X-ray B3LYP (6–311++G**)
O1—C5 1.210 (3) 1.2158
O2—C9 1.221 (3) 1.2173
N1—C4 1.471 (3) 1.4779
N1—C5 1.404 (3) 1.4047
N1—C9 1.394 (3) 1.4029
S1—C1 1.785 (3) 1.8244
S1—C2 1.803 (2) 1.8399
C2—C3 1.523 (3) 1.5301
C3—C4 1.521 (3) 1.5341
C5—C6 1.479 (3) 1.4880
C6—C7 1.408 (3) 1.4135
C7—C8 1.415 (3) 1.4136
C8—C9 1.478 (3) 1.4877
C6—C10 1.381 (3) 1.3835
C8—C11 1.373 (3) 1.3835
[Figure 2]
Figure 2
Atom-by-atom superimposition of the calculated structure (blue) using B3LYP/6–311++G** and the X-ray structure (green) for the title compound.

4. Supra­molecular features

In the crystal, C—H⋯O and C—H⋯S hydrogen bonds (Table 1[link]) link the mol­ecules, forming R22(11) and R22(10) rings (Fig. 3[link]) and resulting in chains along the [2[\overline{2}]0] direction. Adjacent chains are linked by inter­molecular ππ inter­actions between naphthalene di­imide rings [Cg1⋯Cg2 = 3.5756 (12) Å; Cg1 and Cg2 are the centroids of the C6/C7/C7iii/C8iii/C10/C11iii and C6iv/C7iv/C7v/C8v/C10iv/C11v rings, respectively; symmetry codes: (iii) −x + 2, −y + 1, −z; (iv) −x + 2, −y, −z; (v) x, y − 1, z]. These ππ inter­actions lead to a two-dimensional network structure parallel to the (001) plane (Fig. 4[link]). The network structures are stacked in an alternating ABAB sequence along the c-axis direction (Fig. 5[link]).

[Figure 3]
Figure 3
Inter­molecular C—H⋯S and C—H⋯O hydrogen bonds (yellow and green dashed lines) forming chains along the [2[\overline{2}]0] direction with R22(11) and R22(10) motifs.
[Figure 4]
Figure 4
A packing diagram for the title compound, showing the two-dimensional network formed by C—H⋯S and C—H⋯O hydrogen bonds (yellow and green dashed lines) and ππ inter­actions (black dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 5]
Figure 5
Packing diagrams of the title compound showing (a) the ABAB stacking pattern and (b) the two-dimensional structure.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]) to qu­antify the various inter­molecular inter­actions in the mol­ecular packing of the title compound. The bright red dots in Fig. 6[link] showing the Hirshfeld surface mapped to the normalized contact distance (dnorm) indicate the R22(11) and R22(10) loops, and the contact points of the inter­molecular C—H⋯O and C—H⋯S hydrogen bonds. The lighter red dot on the surface represents the ππ inter­action with adjacent mol­ecules. The white and blue colours that make up the majority of the surface indicate contact distances that are equal to or greater than the van der Waals radii.

[Figure 6]
Figure 6
A view of the Hirshfeld surface of the title compound mapped over dnorm, showing the H⋯S and H⋯O contacts of the inter­molecular inter­actions using a fixed colour scale of −0.2580 (red) to 1.0789 (blue) a.u.

The C—H⋯O and C—H⋯S hydrogen bonds and ππ stacking inter­actions are identified in the two-dimensional fingerprint plots (Fig. 7[link]ae), which show the H⋯H, H⋯C/C⋯H, H⋯O/ O⋯H, H⋯N/N⋯H, and H⋯S/S⋯H contacts. The relative contributions of the atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. These show that the dominant inter­action, accounting for 44.2% of the surface, is the H⋯H van der Waals inter­action. Substantial contributions are also made by H⋯O/O⋯H (18.3%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%) contacts, which are indicated by two sharp peaks in each fingerprint plot. Lesser contributions from C⋯O/O⋯C, C⋯C, H⋯N/N⋯H, O⋯O, N⋯O/O⋯N, and C⋯S/S⋯C contacts are included in Table 3[link] for completeness.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound.

Contact Percentage contribution
H⋯H 44.2
H⋯O/O⋯H 18.3
H⋯C/C⋯H 14.4
H⋯S/S⋯H 10.2
C⋯O/O⋯C 5.6
C⋯C 4.5
H⋯N/N⋯H 1.4
O⋯O 0.5
N⋯O/O⋯N 0.4
C⋯S/S⋯C 0.4
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H and (e) H⋯S/S⋯H contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

6. Synthesis and crystallization

A mixture of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride (6.70 g, 25.0 mmol) and 3-(methyl­sulfan­yl)propyl­amine (5.6 mL, 50.0 mmol) in toluene (5 mL) and quinoline (15 mL) was heated at 453 K with stirring for 1h. Upon cooling to room temperature, a golden yellow crude solid was filtered off and washed with diethyl ether. A golden yellow powder was obtained. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a di­chloro­methane solution of the title compound.

1H NMR (300 MHz, CDCl3): δ 8.77 (s, 2H, Ar), 4.33 (t, 2H, CH2N), 2.64 (t, 2H, CH2), 2.14 (s, 3H, CH3), 2.07 (t, 2H, CH2S). 13C NMR (75.4 MHz, CDCl3): δ 162.81, 130.99, 126.69, 126.57, 40.01, 31.61, 27.16 and 15.31. IR (ν, cm−1): 3344 (m); 3071 (m); 2916 (s); 2848 (s); 1999 (s); 1693 (s).

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, updated February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for naphthalene di­imide derivatives gave 31 hits for structures that include a terminal propyl group. The title compound was not found. Related compounds include a series of cyclo­alkyl-substituted naphthalene tetra­carb­oxy­lic di­imides (Kakinuma et al., 2013[Kakinuma, T., Kojima, H., Ashizawa, M., Matsumoto, H. & Mori, T. (2013). J. Mater. Chem. C. 1, 5395-5401.]). Other terminal n-alkyl groups are known with 2,7-di­butyl­benzo[lmn][3,8]phenanthroline-1,3,6,8-tetra­one (Alvey et al., 2010[Alvey, P. M., Reczek, J. J., Lynch, V. & Iverson, B. L. (2010). J. Org. Chem. 75, 7682-7690.]), bis-N,N′-di­pentyl­naphthalene-1,4,5,8-tetra­carb­oxy­lic di­imide (Andric et al., 2004[Andric, G., Boas, J. F., Bond, A. M., Fallon, G. D., Ghiggino, K. P., Hogan, C. F., Hutchison, J. A., Lee, M. A.-P., Langford, S. J., Pilbrow, J. R., Troup, G. J. & Woodward, C. P. (2004). Aust. J. Chem. 57, 1011-1019.]), N,N′-di-n-hexyl-1,4;5,8-naphthalene­tetra­carb­oxy­lic di­imide (Ofir et al., 2006[Ofir, Y., Zelichenok, A. & Yitzchaik, S. (2006). J. Mater. Chem. 16, 2142-2149.]), and N,N′-di(n-dodec­yl)naphthalene-4,5,8,9-tetra­carb­oxy­lic acid di­imide (Kozycz et al., 2015[Kozycz, L. M., Guo, C., Manion, J. G., Tilley, A. J., Lough, A. J., Li, Y. & Seferos, D. S. (2015). J. Mater. Chem. C. 3, 11505-11515.]).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for methyl­ene, and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for the methyl H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C22H22N2O4S2
Mr 442.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 8.0500 (2), 4.9407 (1), 24.9626 (7)
β (°) 94.333 (2)
V3) 989.99 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.23 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.676, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5641, 1732, 1360
Rint 0.046
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.05
No. of reflections 1732
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

N,N'-Bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide top
Crystal data top
C22H22N2O4S2F(000) = 464
Mr = 442.53Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0500 (2) ÅCell parameters from 1676 reflections
b = 4.9407 (1) Åθ = 3.1–26.1°
c = 24.9626 (7) ŵ = 0.30 mm1
β = 94.333 (2)°T = 173 K
V = 989.99 (4) Å3Rod, yellow
Z = 20.23 × 0.05 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1360 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.6°
Tmin = 0.676, Tmax = 0.746h = 99
5641 measured reflectionsk = 55
1732 independent reflectionsl = 2925
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3426P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1732 reflectionsΔρmax = 0.25 e Å3
137 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25895 (9)0.32924 (13)0.17605 (3)0.0356 (2)
O10.5336 (2)0.2804 (3)0.04996 (7)0.0310 (4)
O20.8407 (2)0.9669 (3)0.12693 (6)0.0326 (5)
N10.6852 (2)0.6297 (4)0.08708 (8)0.0243 (5)
C10.0764 (4)0.4611 (6)0.20299 (12)0.0458 (8)
H1A0.08880.45060.24230.069*
H1B0.02070.35480.18950.069*
H1C0.06090.65030.19190.069*
C20.4130 (3)0.5621 (5)0.20506 (10)0.0273 (6)
H2A0.36850.74880.20240.033*
H2B0.43740.51910.24360.033*
C30.5728 (3)0.5448 (5)0.17623 (9)0.0276 (6)
H3A0.66500.63150.19850.033*
H3B0.60230.35260.17100.033*
C40.5500 (3)0.6857 (5)0.12200 (10)0.0274 (6)
H4A0.44310.62690.10350.033*
H4B0.54340.88340.12790.033*
C50.6592 (3)0.4151 (4)0.05056 (9)0.0243 (6)
C60.7912 (3)0.3668 (4)0.01356 (9)0.0214 (5)
C70.9374 (3)0.5241 (4)0.01778 (8)0.0200 (5)
C80.9613 (3)0.7304 (4)0.05690 (9)0.0228 (5)
C90.8287 (3)0.7878 (4)0.09317 (9)0.0249 (6)
C100.7698 (3)0.1661 (4)0.02484 (9)0.0234 (5)
H100.67120.05980.02730.028*
C111.1054 (3)0.8802 (4)0.06017 (9)0.0242 (6)
H111.12101.01730.08680.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0366 (5)0.0304 (4)0.0400 (4)0.0049 (3)0.0038 (3)0.0064 (3)
O10.0268 (11)0.0293 (9)0.0371 (10)0.0088 (8)0.0036 (8)0.0010 (8)
O20.0372 (11)0.0284 (9)0.0322 (10)0.0041 (8)0.0025 (8)0.0113 (8)
N10.0252 (12)0.0200 (10)0.0273 (11)0.0021 (9)0.0009 (9)0.0004 (8)
C10.0360 (19)0.0483 (17)0.0541 (19)0.0024 (14)0.0104 (14)0.0018 (15)
C20.0320 (16)0.0220 (12)0.0276 (13)0.0002 (11)0.0003 (11)0.0003 (10)
C30.0292 (15)0.0272 (13)0.0260 (13)0.0017 (11)0.0011 (11)0.0019 (10)
C40.0254 (15)0.0255 (13)0.0314 (14)0.0034 (11)0.0038 (11)0.0005 (11)
C50.0275 (15)0.0199 (12)0.0247 (13)0.0006 (11)0.0034 (10)0.0039 (10)
C60.0237 (14)0.0150 (11)0.0248 (13)0.0001 (10)0.0031 (10)0.0028 (9)
C70.0226 (14)0.0152 (11)0.0214 (12)0.0006 (10)0.0037 (9)0.0028 (9)
C80.0253 (14)0.0178 (11)0.0246 (13)0.0015 (10)0.0026 (10)0.0028 (9)
C90.0284 (15)0.0211 (12)0.0246 (13)0.0008 (10)0.0021 (10)0.0034 (10)
C100.0220 (14)0.0198 (12)0.0273 (13)0.0028 (10)0.0065 (10)0.0044 (10)
C110.0302 (15)0.0177 (11)0.0236 (13)0.0019 (10)0.0045 (10)0.0018 (9)
Geometric parameters (Å, º) top
S1—C11.785 (3)C3—H3B0.9900
S1—C21.803 (2)C4—H4A0.9900
O1—C51.210 (3)C4—H4B0.9900
O2—C91.221 (3)C5—C61.479 (3)
N1—C91.394 (3)C6—C101.381 (3)
N1—C51.404 (3)C6—C71.408 (3)
N1—C41.471 (3)C7—C7i1.413 (4)
C1—H1A0.9800C7—C81.415 (3)
C1—H1B0.9800C8—C111.373 (3)
C1—H1C0.9800C8—C91.478 (3)
C2—C31.523 (3)C10—C11i1.404 (3)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C10i1.404 (3)
C3—C41.521 (3)C11—H110.9500
C3—H3A0.9900
C1—S1—C2100.17 (12)N1—C4—H4B108.9
C9—N1—C5125.2 (2)C3—C4—H4B108.9
C9—N1—C4118.31 (19)H4A—C4—H4B107.7
C5—N1—C4116.52 (19)O1—C5—N1120.4 (2)
S1—C1—H1A109.5O1—C5—C6122.9 (2)
S1—C1—H1B109.5N1—C5—C6116.7 (2)
H1A—C1—H1B109.5C10—C6—C7120.5 (2)
S1—C1—H1C109.5C10—C6—C5119.5 (2)
H1A—C1—H1C109.5C7—C6—C5120.0 (2)
H1B—C1—H1C109.5C6—C7—C7i119.5 (2)
C3—C2—S1110.75 (16)C6—C7—C8121.3 (2)
C3—C2—H2A109.5C7i—C7—C8119.3 (3)
S1—C2—H2A109.5C11—C8—C7120.0 (2)
C3—C2—H2B109.5C11—C8—C9120.4 (2)
S1—C2—H2B109.5C7—C8—C9119.6 (2)
H2A—C2—H2B108.1O2—C9—N1120.2 (2)
C4—C3—C2110.2 (2)O2—C9—C8122.6 (2)
C4—C3—H3A109.6N1—C9—C8117.2 (2)
C2—C3—H3A109.6C6—C10—C11i119.7 (2)
C4—C3—H3B109.6C6—C10—H10120.1
C2—C3—H3B109.6C11i—C10—H10120.1
H3A—C3—H3B108.1C8—C11—C10i121.1 (2)
N1—C4—C3113.37 (19)C8—C11—H11119.5
N1—C4—H4A108.9C10i—C11—H11119.5
C3—C4—H4A108.9
C1—S1—C2—C3163.99 (17)C6—C7—C8—C11179.8 (2)
S1—C2—C3—C475.4 (2)C7i—C7—C8—C110.3 (4)
C9—N1—C4—C384.9 (2)C6—C7—C8—C91.7 (3)
C5—N1—C4—C394.0 (2)C7i—C7—C8—C9178.1 (2)
C2—C3—C4—N1167.95 (19)C5—N1—C9—O2178.5 (2)
C9—N1—C5—O1176.4 (2)C4—N1—C9—O20.3 (3)
C4—N1—C5—O12.5 (3)C5—N1—C9—C82.2 (3)
C9—N1—C5—C64.1 (3)C4—N1—C9—C8178.94 (19)
C4—N1—C5—C6177.07 (18)C11—C8—C9—O20.0 (3)
O1—C5—C6—C102.3 (3)C7—C8—C9—O2178.4 (2)
N1—C5—C6—C10177.28 (19)C11—C8—C9—N1179.24 (19)
O1—C5—C6—C7177.5 (2)C7—C8—C9—N10.8 (3)
N1—C5—C6—C73.0 (3)C7—C6—C10—C11i0.4 (3)
C10—C6—C7—C7i0.2 (4)C5—C6—C10—C11i179.8 (2)
C5—C6—C7—C7i179.9 (2)C7—C8—C11—C10i0.5 (3)
C10—C6—C7—C8179.9 (2)C9—C8—C11—C10i177.9 (2)
C5—C6—C7—C80.2 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S10.992.843.300 (2)109
C4—H4A···O10.992.322.688 (3)101
C10—H10···O1ii0.952.393.316 (3)164
C11—H11···S1iii0.952.863.779 (2)162
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z.
Experimental and calculated bond lengths (Å) top
BondX-rayB3LYP (6-311++G**)
O1—C51.210 (3)1.2158
O2—C91.221 (3)1.2173
N1—C41.471 (3)1.4779
N1—C51.404 (3)1.4047
N1—C91.394 (3)1.4029
S1—C11.785 (3)1.8244
S1—C21.803 (2)1.8399
C2—C31.523 (3)1.5301
C3—C41.521 (3)1.5341
C5—C61.479 (3)1.4880
C6—C71.408 (3)1.4135
C7—C81.415 (3)1.4136
C8—C91.478 (3)1.4877
C6—C101.381 (3)1.3835
C8—C111.373 (3)1.3835
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound. top
ContactPercentage contribution
H···H44.2
H···O/O···H18.3
H···C/C···H14.4
H···S/S···H10.2
C···O/O···C5.6
C···C4.5
H···N/N···H1.4
O···O0.5
N···O/O···N0.4
C···S/S···C0.4
 

Acknowledgements

The authors thank Dr J.-E. Lee of the Central Research Facilities for her assistance with the NMR and XRD experiments.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant Nos. 2017M2B2A9A020049940 and 2018R1D1A3B07042615).

References

First citationAlvey, P. M., Reczek, J. J., Lynch, V. & Iverson, B. L. (2010). J. Org. Chem. 75, 7682–7690.  CrossRef CAS PubMed Google Scholar
First citationAndric, G., Boas, J. F., Bond, A. M., Fallon, G. D., Ghiggino, K. P., Hogan, C. F., Hutchison, J. A., Lee, M. A.-P., Langford, S. J., Pilbrow, J. R., Troup, G. J. & Woodward, C. P. (2004). Aust. J. Chem. 57, 1011–1019.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaudio-Catalán, M. Á., Medrano, F., Tlahuext, H. & Godoy-Alcántar, C. (2016). Acta Cryst. E72, 1503–1508.  CrossRef IUCr Journals Google Scholar
First citationFang, X., Guo, M.-D., Weng, L.-J., Chen, Y. & Lin, M.-J. (2015). Dyes & Pigments, 113, 251–256.  CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKakinuma, T., Kojima, H., Ashizawa, M., Matsumoto, H. & Mori, T. (2013). J. Mater. Chem. C. 1, 5395–5401.  CrossRef CAS Google Scholar
First citationKozycz, L. M., Guo, C., Manion, J. G., Tilley, A. J., Lough, A. J., Li, Y. & Seferos, D. S. (2015). J. Mater. Chem. C. 3, 11505–11515.  CrossRef CAS Google Scholar
First citationLandey-Álvarez, M. A., Ochoa-Terán, A., Pina-Luis, G., Martínez-Quiroz, M., Aguilar-Martínez, M., Elías-García, J., Miranda-Soto, V., Ramírez, J.-Z., Machi-Lara, L., Labastida-Galván, V. & Ordoñez, M. (2016). Supramol. Chem. 28, 892–906.  Google Scholar
First citationLiu, J.-J., Dong, Y., Chen, L.-Z., Wang, L., Xia, S.-B. & Huang, C.-C. (2018). Acta Cryst. C74, 94–99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOfir, Y., Zelichenok, A. & Yitzchaik, S. (2006). J. Mater. Chem. 16, 2142–2149.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds