research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,14-di­ethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]do­cosane dinitrate dihydrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aBeamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 24 May 2019; accepted 27 May 2019; online 31 May 2019)

The crystal structure of title salt, C22H46N42+·2NO3·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water mol­ecule. The mol­ecular dication, C22H46N42+, together with the nitrate anion and hydrate water mol­ecule are involved in an extensive range of hydrogen bonds. The mol­ecule is stabilized, as is the conformation of the dication, by forming inter­molecular N—H⋯O, O—H⋯O, together with intra­molecular N—H⋯N hydrogen bonds.

1. Chemical context

The 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)doco­sane macrocycle (C22H44N4, L) contains a cyclam backbone with two cyclo­hexane subunits. Ethyl groups are also attached to the 3 and 14 carbon atoms of the propyl chains that bridge opposite pairs of N atoms in the structure. The macrocyclic ligand L is a strongly basic amine capable of forming the dication, [C22H46N4]2+ or the tetra­cation [C22H48N4]4+ in which all of the N—H bonds are generally available for hydrogen-bond formation. These di- or tetra-ammonium cations may be suitable for the removal of toxic heavy metal ions from water. The crystal structures of [Cu(L)](ClO4)2 (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)](NO3)2, [Cu(L)(H2O)2](SCN)2 (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]), [Ni(L)(NO3)2] (Subhan & Choi, 2014[Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410-415.]), [Ni(L)(N3)2] (Lim et al., 2015[Lim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43-48.]) and [Ni(L)(NCS)2] (Lim & Choi, 2017[Lim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361-368.]) have been reported. In these complexes, CuII or NiII cations have tetra­gonally distorted octa­hedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and the O/N atoms of anions or water mol­ecules in the axial positions, while [Ni(L)](ClO4)2·2H2O (Subhan & Choi, 2014[Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410-415.]) has a square-planar geometry around the NiII atom that binds to the four nitro­gen atoms of the macrocyclic ligand. The macrocyclic ligands in the CuII and NiII complexes adopt the most stable trans-III conformation. Recently, we also reported the crystal structures of [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]) and (C22H44N4)2·2NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]). To further investigate the hydrogen-bonding behavior, we report here on the synthesis of a new hydrated nitrate salt, [C22H46N4](NO3)2·2H2O, (I)[link], and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The title compound has a positively charged macrocyclic dication, two nitrate anions and two solvent water mol­ecules and was prepared during a study of the macrocyclic ligand and its silver(II) complex. An ellipsoid plot of the mol­ecular components in compound (I)[link] is shown in Fig. 1[link] along with the atom-numbering scheme. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, one nitrate anion and one solvent water mol­ecule. The four N atoms are coplanar, and the two ethyl substituents are anti with respect to the macrocyclic plane as a result of the mol­ecular inversion symmetry. The six-membered cyclo­hexane ring is in a stable chair conformation. Within the centrosymmetric diprotonated amine unit [C22H46N4]2+, the C—C and N—C bond lengths vary from 1.517 (2) to 1.533 (2) Å and from 1.485 (2) to 1.501 (2) Å, respectively. The macrocycle is protonated at the N2 atom, which is similar to the situation found for [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), but differs from the protonation of the N1 atom in [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]). The protonation on the N atom might depend on the location of the acceptor atoms of the counter-anion involved in hydrogen bonding. The ranges of N—C—C and C—N—C angles are 108.07 (11) to 111.14 (12)° and 115.09 (11) to 115.19 (10)°, respectively. The bond lengths and angles within the [C22H46N4]2+ dication are comparable to those found in [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]) and [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]). The nitrate counter-anion has a distorted trigonal-planar geometry as a result of the influence of hydrogen bonding on the N—O bond lengths and the O—N—O angles. The N—O bond distances range from 1.204 (3) to 1.214 (2) Å and the O—N—O angles from 117.4 (2) to 123.1 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], drawn with displacement ellipsoids at the 30% probability level. Primed atoms are related by the symmetry code (1 − x, 1 − y, 1 − z). Dashed lines represent N—H⋯O (cyan), N—H⋯N (pink) and O—H⋯O (blue) hydrogen-bonding inter­actions, respectively.

3. Supra­molecular features

Extensive N—H⋯O, O—H⋯O and N—H⋯N hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The crystal packing viewed along the a axis is shown in Fig. 2[link]. The O—H⋯O hydrogen bonds link the water mol­ecules to neighboring nitrate anions, while N—H⋯O hydrogen bonds inter­connect the [C22H46N4]2+ cations with both the nitrate anions and the water mol­ecules. The crystal structure is stabilized by mol­ecular hydrogen bonds involving the macrocycle N—H groups and water O—H groups as donors, and the O atoms of the water mol­ecules and nitrate anions as acceptors, giving rise to a three-dimensional framework (Figs. 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2AN⋯N1 0.90 2.40 2.9703 (18) 121
N2—H2AN⋯N1i 0.90 2.41 2.8141 (17) 107
N1—H1N⋯O4 0.94 1.84 2.7493 (19) 163
N2—H2AN⋯N1 0.90 2.40 2.9703 (18) 121
N2—H2BN⋯O1 0.90 2.27 3.031 (2) 142
O4—H1O⋯O1 0.94 (1) 2.57 (2) 3.169 (3) 122 (2)
O4—H1O⋯O2 0.94 (1) 1.84 (1) 2.768 (2) 174 (2)
O4—H2O⋯O2ii 0.94 (1) 2.04 (1) 2.914 (2) 155 (2)
O4—H2O⋯O3ii 0.94 (1) 2.31 (2) 3.120 (4) 144 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯O (cyan), N—H⋯N (pink) and O—H⋯O (blue) hydrogen bonding inter­actions, respectively. H atoms bound to C have been omitted.

4. Database survey

A search of the Cambridge Structural (Version 5.40, Feb 2019 with 1 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just three hits for organic compounds containing the macrocycles [C22H48N4]4+, [C22H46N4]2+ or (C22H44N4). The crystal structures of [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]) and (C22H44N4)2·2NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]) were reported by us previously. Until now, no crystal structures of any [C22H46N4]2+ or [C22H48N4]4+ compounds with a nitrate anion have been deposited.

5. Synthesis and crystallization

Commercially available trans-1,2-cyclo­hexa­nedi­amine, ethyl vinyl ketone and silver nitrate (Sigma–Aldrich) were used as provided. All other chemicals were reagent grade and used without further purification. As a starting material, 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane, L was prepared according to a published procedure (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]). A solution of the macrocyclic ligand, L (0.33 g, 1.0 mmol) in methanol 10 mL was added dropwise to a stirred solution of AgNO3 (0.34 g, 2.0 mmol) in water 10 mL. The solution turned an orange color and the metallic silver that formed was filtered off. The orange filtrate was kept in an open beaker, protected from light, at room temperature. Block-like colorless crystals of suitable for X-ray analysis were obtained unexpectedly from the solution over a period of a few weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, and with an N—H distance of 0.90 Å with Uiso(H) values of 1.2 and 1.5 times the Ueq of the parent atoms, respectively. The N-bound H atoms of the [C22H46N4]2+ cation and the O-bound H atoms of the water mol­ecules were located in a difference-Fourier map and refined isotropically, with the N—H distance restrained using DFIX [0.9 (2) Å] and the O—H distances and H—O—H angles restrained using DFIX and DANG constraints [0.94 (2) and 1.55 (2) Å], respectively.

Table 2
Experimental details

Crystal data
Chemical formula C22H46N42+·2NO3·2H2O
Mr 526.68
Crystal system, space group Monoclinic, P21/c
Temperature (K) 220
a, b, c (Å) 8.6420 (17), 16.687 (3), 9.7340 (19)
β (°) 96.46 (3)
V3) 1394.8 (5)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.07
Crystal size (mm) 0.13 × 0.09 × 0.05
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.])
Tmin, Tmax 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14284, 3736, 2968
Rint 0.027
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.211, 1.10
No. of reflections 3736
No. of parameters 170
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.56
Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dinitrate dihydrate top
Crystal data top
C22H46N42+·2NO3·2H2OF(000) = 576
Mr = 526.68Dx = 1.254 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.610 Å
a = 8.6420 (17) ÅCell parameters from 46866 reflections
b = 16.687 (3) Åθ = 0.4–33.7°
c = 9.7340 (19) ŵ = 0.07 mm1
β = 96.46 (3)°T = 220 K
V = 1394.8 (5) Å3Block, colorless
Z = 20.13 × 0.09 × 0.05 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
2968 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.027
ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.919, Tmax = 1.000k = 2121
14284 measured reflectionsl = 1313
3736 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1295P)2 + 0.2454P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3736 reflectionsΔρmax = 0.73 e Å3
170 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51219 (14)0.59626 (8)0.36407 (11)0.0308 (3)
H1N0.4733000.6342000.4228000.037*
N20.28123 (13)0.47313 (7)0.42499 (11)0.0278 (3)
H2AN0.3857110.4768340.4317100.033*
H2BN0.2467190.5132350.4753560.033*
C10.76020 (15)0.60393 (9)0.51374 (13)0.0286 (3)
H10.7168850.6475570.5667810.034*
C20.93544 (17)0.61843 (10)0.51640 (16)0.0365 (3)
H2A0.9837630.6173560.6124130.044*
H2B0.9811480.5750020.4665030.044*
C30.97155 (18)0.69835 (10)0.45121 (17)0.0386 (4)
H3A0.9360380.7422850.5066640.046*
H3B1.0843680.7036930.4503420.046*
C40.89135 (18)0.70410 (10)0.30389 (15)0.0373 (3)
H4A0.9353580.6639040.2459830.045*
H4B0.9103230.7571610.2660130.045*
C50.71640 (17)0.69051 (9)0.30041 (15)0.0342 (3)
H5A0.6676800.6923820.2045530.041*
H5B0.6708300.7332240.3520560.041*
C60.68403 (16)0.60924 (9)0.36398 (13)0.0296 (3)
H60.7268330.5663540.3089930.035*
C70.42136 (18)0.59147 (10)0.22379 (14)0.0353 (3)
H7A0.4673590.5505190.1687180.042*
H7B0.4272020.6430300.1764340.042*
C80.25211 (17)0.57083 (9)0.23440 (14)0.0337 (3)
H8A0.1927620.5808700.1442150.040*
H8B0.2127150.6076520.3007770.040*
C90.21823 (17)0.48504 (9)0.27811 (13)0.0314 (3)
H90.1037450.4786720.2715390.038*
C100.2802 (3)0.42191 (11)0.18588 (16)0.0471 (4)
H10A0.3932720.4282420.1892020.056*
H10B0.2599780.3687490.2227440.056*
C110.2090 (4)0.42595 (16)0.0363 (2)0.0792 (8)
H11A0.0964170.4276280.0325970.119*
H11B0.2396390.3789960.0128200.119*
H11C0.2454530.4738170.0066000.119*
N30.2912 (2)0.63006 (12)0.76865 (18)0.0581 (5)
O10.3086 (2)0.58294 (10)0.6746 (2)0.0812 (6)
O20.2872 (2)0.70307 (10)0.74420 (17)0.0696 (5)
O30.2875 (5)0.6094 (2)0.8868 (3)0.1636 (16)
O40.42576 (16)0.72874 (9)0.50503 (14)0.0501 (3)
H1O0.373 (3)0.7221 (16)0.5829 (17)0.075*
H2O0.366 (3)0.7605 (14)0.439 (2)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0327 (6)0.0418 (7)0.0171 (5)0.0017 (5)0.0003 (4)0.0035 (4)
N20.0303 (6)0.0363 (6)0.0163 (5)0.0001 (4)0.0003 (4)0.0006 (4)
C10.0300 (6)0.0370 (7)0.0185 (6)0.0006 (5)0.0012 (5)0.0007 (5)
C20.0303 (7)0.0486 (9)0.0302 (7)0.0013 (6)0.0012 (5)0.0050 (6)
C30.0361 (7)0.0496 (9)0.0305 (7)0.0078 (6)0.0055 (6)0.0016 (6)
C40.0380 (7)0.0482 (9)0.0269 (7)0.0029 (6)0.0090 (6)0.0038 (6)
C50.0368 (7)0.0423 (8)0.0240 (6)0.0006 (5)0.0048 (5)0.0065 (5)
C60.0317 (6)0.0389 (7)0.0180 (6)0.0007 (5)0.0024 (5)0.0015 (5)
C70.0393 (8)0.0476 (8)0.0176 (6)0.0062 (6)0.0027 (5)0.0057 (5)
C80.0344 (7)0.0437 (8)0.0213 (6)0.0024 (5)0.0040 (5)0.0046 (5)
C90.0329 (7)0.0430 (8)0.0172 (6)0.0033 (5)0.0013 (5)0.0010 (5)
C100.0721 (12)0.0461 (10)0.0240 (7)0.0041 (8)0.0097 (7)0.0044 (6)
C110.141 (3)0.0743 (15)0.0214 (8)0.0135 (15)0.0046 (11)0.0093 (9)
N30.0674 (11)0.0633 (11)0.0418 (9)0.0045 (8)0.0025 (8)0.0016 (7)
O10.1056 (14)0.0553 (10)0.0739 (12)0.0074 (8)0.0284 (10)0.0228 (8)
O20.1060 (14)0.0545 (9)0.0509 (9)0.0048 (8)0.0204 (9)0.0098 (6)
O30.285 (5)0.140 (3)0.0760 (18)0.010 (3)0.063 (2)0.0501 (17)
O40.0555 (8)0.0574 (8)0.0384 (7)0.0082 (6)0.0088 (6)0.0009 (5)
Geometric parameters (Å, º) top
N1—C71.4987 (17)C5—H5B0.9800
N1—C61.5009 (18)C6—H60.9900
N1—H1N0.94C7—C81.517 (2)
N2—C1i1.4784 (18)C7—H7A0.9800
N2—C91.4850 (16)C7—H7B0.9800
N2—H2AN0.9000C8—C91.531 (2)
N2—H2BN0.9000C8—H8A0.9800
C1—C21.5309 (19)C8—H8B0.9800
C1—C61.5330 (18)C9—C101.520 (2)
C1—H10.9900C9—H90.9900
C2—C31.524 (2)C10—C111.517 (3)
C2—H2A0.9800C10—H10A0.9800
C2—H2B0.9800C10—H10B0.9800
C3—C41.524 (2)C11—H11A0.9700
C3—H3A0.9800C11—H11B0.9700
C3—H3B0.9800C11—H11C0.9700
C4—C51.525 (2)N3—O31.204 (3)
C4—H4A0.9800N3—O11.229 (3)
C4—H4B0.9800N3—O21.241 (2)
C5—C61.529 (2)O4—H1O0.937 (10)
C5—H5A0.9800O4—H2O0.941 (9)
C7—N1—C6115.09 (11)N1—C6—C1108.07 (11)
C7—N1—H1N114C5—C6—C1110.95 (12)
C6—N1—H1N109N1—C6—H6109.0
C1i—N2—C9115.19 (10)C5—C6—H6109.0
C1i—N2—H2AN108.5C1—C6—H6109.0
C9—N2—H2AN108.5N1—C7—C8111.11 (11)
C1i—N2—H2BN108.5N1—C7—H7A109.4
C9—N2—H2BN108.5C8—C7—H7A109.4
H2AN—N2—H2BN107.5N1—C7—H7B109.4
N2i—C1—C2114.50 (12)C8—C7—H7B109.4
N2i—C1—C6109.65 (11)H7A—C7—H7B108.0
C2—C1—C6108.97 (11)C7—C8—C9116.55 (12)
N2i—C1—H1107.8C7—C8—H8A108.2
C2—C1—H1107.8C9—C8—H8A108.2
C6—C1—H1107.8C7—C8—H8B108.2
C3—C2—C1112.32 (12)C9—C8—H8B108.2
C3—C2—H2A109.1H8A—C8—H8B107.3
C1—C2—H2A109.1N2—C9—C10111.14 (12)
C3—C2—H2B109.1N2—C9—C8109.38 (11)
C1—C2—H2B109.1C10—C9—C8113.13 (13)
H2A—C2—H2B107.9N2—C9—H9107.7
C4—C3—C2110.74 (13)C10—C9—H9107.7
C4—C3—H3A109.5C8—C9—H9107.7
C2—C3—H3A109.5C11—C10—C9113.86 (17)
C4—C3—H3B109.5C11—C10—H10A108.8
C2—C3—H3B109.5C9—C10—H10A108.8
H3A—C3—H3B108.1C11—C10—H10B108.8
C3—C4—C5110.87 (12)C9—C10—H10B108.8
C3—C4—H4A109.5H10A—C10—H10B107.7
C5—C4—H4A109.5C10—C11—H11A109.5
C3—C4—H4B109.5C10—C11—H11B109.5
C5—C4—H4B109.5H11A—C11—H11B109.5
H4A—C4—H4B108.1C10—C11—H11C109.5
C4—C5—C6110.41 (12)H11A—C11—H11C109.5
C4—C5—H5A109.6H11B—C11—H11C109.5
C6—C5—H5A109.6O3—N3—O1123.1 (3)
C4—C5—H5B109.6O3—N3—O2117.4 (2)
C6—C5—H5B109.6O1—N3—O2119.23 (19)
H5A—C5—H5B108.1H1O—O4—H2O109.8 (18)
N1—C6—C5110.75 (11)
N2i—C1—C2—C3179.62 (12)N2i—C1—C6—C5176.50 (11)
C6—C1—C2—C356.43 (16)C2—C1—C6—C557.46 (15)
C1—C2—C3—C455.92 (17)C6—N1—C7—C8174.85 (12)
C2—C3—C4—C555.43 (18)N1—C7—C8—C971.31 (16)
C3—C4—C5—C657.05 (17)C1i—N2—C9—C1061.66 (16)
C7—N1—C6—C564.03 (15)C1i—N2—C9—C8172.72 (11)
C7—N1—C6—C1174.25 (12)C7—C8—C9—N268.87 (16)
C4—C5—C6—N1178.64 (11)C7—C8—C9—C1055.60 (17)
C4—C5—C6—C158.63 (16)N2—C9—C10—C11174.71 (16)
N2i—C1—C6—N154.91 (14)C8—C9—C10—C1161.8 (2)
C2—C1—C6—N1179.05 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2AN···N10.902.402.9703 (18)121
N2—H2AN···N1i0.902.412.8141 (17)107
N1—H1N···O40.941.842.7493 (19)163
N2—H2AN···N10.902.402.9703 (18)121
N2—H2BN···O10.902.273.031 (2)142
O4—H1O···O10.94 (1)2.57 (2)3.169 (3)122 (2)
O4—H1O···O20.94 (1)1.84 (1)2.768 (2)174 (2)
O4—H2O···O2ii0.94 (1)2.04 (1)2.914 (2)155 (2)
O4—H2O···O3ii0.94 (1)2.31 (2)3.120 (4)144 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSICT and POSTECH.

References

First citationAree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361–368.  CrossRef CAS Google Scholar
First citationLim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43–48.  CrossRef CAS Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds