research communications
E)-2-chloro-4-{[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]methyl}phenol acetonitrile hemisolvate
and DFT study of (aOndokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, cOndokuz Mayis University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm
The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an acetonitrile hemisolvate; the solvent molecule being located on a twofold rotation axis. The molecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intramolecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supramolecular framework. Within the framework there are offset π–π stacking interactions [intercentroid distance = 3.833 (2) Å] present involving inversion-related molecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-dinitrobenzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.
Keywords: crystal structure; hydrazine; 2,4-dinitrophenyl; Schiff base; hydrogen bonding; supramolecular framework; DFT.
CCDC reference: 1912273
1. Chemical context
Over the past 25 years, extensive research has surrounded the synthesis and use of Schiff base compounds in organic and inorganic chemistry, as they have important medicinal and pharmaceutical applications. These compounds show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999). are also becoming increasingly important in the dye and plastics industries as well as for liquid-crystal technology and the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006). 2,4-Dinitrophenylhydrazine is frequently used as a reagent for the characterization of and (Furniss et al., 1999). Its derivatives are widely used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2007). The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a), fluorescence sensors (Faizi et al., 2016b) and coordination compounds (Faizi & Prisyazhnaya, 2015). We report herein on the synthesis, and DFT computational calculations of the title new Schiff base compound. The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The configuration about the C7=N1 bond is E, and there is intramolecular N—H⋯Onitro hydrogen bond that generates an S(6) ring motif (Fig. 1 and Table 1). The N1—N2 bond length is 1.380 (3) Å and the N1=C7 bond length is 1.275 (4) Å. These bond lengths are comparable with those of some closely related compounds (Fun et al., 2013; Faizi et al., 2017; Ghosh et al., 2016). The C8—C9 and C8—C13 bonds [1.411 (5) and 1.414 (4) Å, respectively], which are adjacent to the imino N2 atom, are significantly longer than the average distance of 1.375 (3) Å for the other C—C bonds in the same benzene ring. This same pattern of bond lengths has been observed previously in some 2,4-dinitrophenylhydrazone derivatives (Ohba, 1996; Borwick et al., 1997). The title molecule is almost planar with the dihedral angle between the benzene rings being 3.70 (17)°. The nitro groups of the 2,4-dinitrophenyl unit are twisted slightly with respect to the C8–C13 benzene ring to which they are attached: nitro group N2/O4/O5 is inclined to the benzene ring by 2.1 (4)°, while nitro group N3/O2/O3 is inclined to it by 6.5 (5)°.
3. Supramolecular features
In the crystal, molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds (Table 1), forming layers lying parallel to (10), as shown in Fig. 2. The layers are linked by C—H⋯Cl hydrogen bonds, forming a supramolecular framework (Fig. 3 and Table 1). Within the framework, inversion-related molecules are linked by offset π–π stacking interactions (Fig. 3); Cg1⋯Cg2i = 3.833 (2) Å, where Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively, α = 3.70 (17)°, β = 27.9°, γ = 24.5°, interplanar distances are 3.489 (2) and 3.388 (2) Å, offset = 1.791 Å; symmetry code: (i) −x + 1, −y + 1, −z + 1. There are no other significant intermolecular contacts present in the crystal.
4. DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). The DFT structure optimization of the title compound was performed starting from the X-ray geometry, with experimental values of bond lengths and bond angles matching with theoretical values. The 6-311 G(d,p) basis set is well suited in its approach to the experimental data. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the 2,4-dinitrobenzene ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The HOMO molecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.13061 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO are −0.24019 and −0.10958 a.u., respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016) for the 1-benzylidene-2-(2,4-dinitrophenyl)hydrazine skeleton gave 71 hits (see supporting information). 18 of these structures involve a halide substituent and 23 involve a hydroxyl substituent. Only one compound involves both a halide and an hydroxyl substituent and closely resembles the title compound, viz. 4-chloro-2-{[(2,4-dinitrophenyl)hydrazono]methyl}phenol (CSD refcode HUTHOV; Ghosh et al., 2016). Here the benzene rings are inclined to each other by 3.40 (9)°, compared to 3.70 (17)° in the title compound, and again there is an intramolecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In fact, in all 71 structures (see supporting information) there is an intramolecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif, and in the majority of the compounds the two benzene rings are almost coplanar with the dihedral angle varying between ca 0 to 8°, with a few exceptions.
6. Synthesis and crystallization
The title compound was prepared by refluxing a mixture of 4-chloro-3-hydroxybenzaldehyde (39.1 mg, 0.25 mmol) in ethanol (15 ml) and 2,4-dinitrophenylhydrazine (49.5 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Orange plate-like crystals of the title compound were obtained by slow evaporation of a solution in ethanol (yield 68%, m.p. 542–544K).
7. Refinement
Crystal data, data collection and structure . The OH and NH hydrogen atoms and the C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(O-hydroxyl, C-methyl) and 1.2Ueq(N,C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1912273
https://doi.org/10.1107/S205698901900642X/su5496sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901900642X/su5496Isup2.hkl
CSD search S1. DOI: https://doi.org/10.1107/S205698901900642X/su5496sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S205698901900642X/su5496Isup4.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C13H9ClN4O5·0.5C2H3N | F(000) = 1464 |
Mr = 357.22 | Dx = 1.542 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0614 (11) Å | Cell parameters from 8879 reflections |
b = 9.6960 (6) Å | θ = 1.6–27.9° |
c = 26.688 (2) Å | µ = 0.28 mm−1 |
β = 99.619 (7)° | T = 296 K |
V = 3077.2 (4) Å3 | Plate, orange |
Z = 8 | 0.49 × 0.28 × 0.04 mm |
Stoe IPDS 2 diffractometer | 3027 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1416 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.056 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 1.6° |
rotation method scans | h = −14→14 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −11→11 |
Tmin = 0.908, Tmax = 0.989 | l = −32→32 |
8928 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: mixed |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0568P)2] where P = (Fo2 + 2Fc2)/3 |
3027 reflections | (Δ/σ)max < 0.001 |
224 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.52434 (10) | 1.07475 (11) | 0.57323 (4) | 0.0964 (4) | |
O1 | 0.6912 (2) | 1.0735 (3) | 0.66391 (9) | 0.0832 (8) | |
H1 | 0.733227 | 1.065785 | 0.691276 | 0.125* | |
N1 | 0.6314 (2) | 0.5959 (3) | 0.49923 (11) | 0.0606 (7) | |
N2 | 0.6383 (2) | 0.4785 (3) | 0.47069 (11) | 0.0633 (8) | |
H2 | 0.684398 | 0.413575 | 0.481954 | 0.076* | |
O4 | 0.6517 (2) | 0.1472 (3) | 0.37327 (11) | 0.0926 (9) | |
N4 | 0.6512 (3) | 0.2398 (3) | 0.40402 (13) | 0.0736 (9) | |
O5 | 0.7122 (3) | 0.2383 (3) | 0.44573 (11) | 0.0972 (9) | |
O2 | 0.2825 (3) | 0.5344 (4) | 0.27290 (12) | 0.1162 (12) | |
N3 | 0.3566 (3) | 0.4469 (5) | 0.28233 (14) | 0.0906 (11) | |
C4 | 0.6977 (3) | 0.7239 (3) | 0.57388 (12) | 0.0547 (8) | |
O3 | 0.3675 (3) | 0.3539 (4) | 0.25304 (12) | 0.1189 (12) | |
C8 | 0.5723 (3) | 0.4668 (3) | 0.42510 (13) | 0.0572 (9) | |
C7 | 0.6998 (3) | 0.6042 (3) | 0.54105 (14) | 0.0620 (9) | |
H7 | 0.751146 | 0.533624 | 0.550646 | 0.074* | |
C1 | 0.6946 (3) | 0.9554 (3) | 0.63640 (13) | 0.0622 (9) | |
C3 | 0.6217 (3) | 0.8310 (3) | 0.55996 (12) | 0.0600 (9) | |
H3 | 0.571249 | 0.825918 | 0.529585 | 0.072* | |
C2 | 0.6210 (3) | 0.9437 (3) | 0.59087 (13) | 0.0618 (9) | |
C13 | 0.5754 (3) | 0.3556 (3) | 0.39104 (13) | 0.0582 (9) | |
C9 | 0.4926 (3) | 0.5706 (4) | 0.40833 (14) | 0.0666 (9) | |
H9 | 0.486539 | 0.645038 | 0.429653 | 0.080* | |
C5 | 0.7703 (3) | 0.7353 (4) | 0.61968 (13) | 0.0653 (10) | |
H5 | 0.820955 | 0.664350 | 0.629757 | 0.078* | |
C12 | 0.5062 (3) | 0.3507 (4) | 0.34458 (13) | 0.0664 (10) | |
H12 | 0.510551 | 0.276937 | 0.322720 | 0.080* | |
C11 | 0.4313 (3) | 0.4545 (4) | 0.33077 (13) | 0.0683 (10) | |
C6 | 0.7698 (3) | 0.8491 (4) | 0.65093 (13) | 0.0658 (10) | |
H6 | 0.819628 | 0.854208 | 0.681488 | 0.079* | |
C10 | 0.4249 (3) | 0.5663 (4) | 0.36269 (15) | 0.0724 (10) | |
H10 | 0.374492 | 0.637587 | 0.352688 | 0.087* | |
C14 | 0.500000 | 0.8470 (10) | 0.250000 | 0.108 (2) | |
N5 | 0.500000 | 0.7307 (8) | 0.250000 | 0.129 (2) | |
C15 | 0.500000 | 0.9945 (8) | 0.250000 | 0.133 (3) | |
H15A | 0.477479 | 1.027514 | 0.280695 | 0.200* | 0.5 |
H15B | 0.448298 | 1.027514 | 0.221207 | 0.200* | 0.5 |
H15C | 0.574223 | 1.027514 | 0.248098 | 0.200* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1112 (8) | 0.0726 (7) | 0.0951 (8) | 0.0330 (6) | −0.0125 (6) | −0.0092 (6) |
O1 | 0.096 (2) | 0.0762 (17) | 0.0716 (18) | 0.0121 (15) | −0.0028 (15) | −0.0197 (14) |
N1 | 0.0692 (19) | 0.0535 (17) | 0.0591 (18) | 0.0024 (14) | 0.0106 (17) | −0.0066 (14) |
N2 | 0.074 (2) | 0.0512 (17) | 0.0631 (19) | 0.0102 (14) | 0.0082 (17) | −0.0038 (14) |
O4 | 0.116 (2) | 0.0702 (17) | 0.0891 (19) | 0.0191 (16) | 0.0082 (18) | −0.0220 (16) |
N4 | 0.089 (2) | 0.063 (2) | 0.068 (2) | 0.0086 (18) | 0.009 (2) | −0.0067 (18) |
O5 | 0.123 (2) | 0.0750 (19) | 0.0822 (19) | 0.0406 (17) | −0.0170 (18) | −0.0116 (15) |
O2 | 0.086 (2) | 0.166 (3) | 0.089 (2) | 0.016 (2) | −0.0102 (19) | 0.023 (2) |
N3 | 0.067 (2) | 0.142 (4) | 0.063 (2) | −0.009 (3) | 0.010 (2) | 0.012 (2) |
C4 | 0.058 (2) | 0.0523 (19) | 0.054 (2) | −0.0033 (17) | 0.0103 (18) | 0.0007 (17) |
O3 | 0.102 (2) | 0.181 (4) | 0.068 (2) | 0.004 (2) | −0.0016 (18) | −0.029 (2) |
C8 | 0.065 (2) | 0.052 (2) | 0.054 (2) | −0.0015 (17) | 0.0092 (19) | 0.0003 (17) |
C7 | 0.067 (2) | 0.057 (2) | 0.063 (2) | 0.0063 (17) | 0.013 (2) | −0.0013 (18) |
C1 | 0.067 (2) | 0.061 (2) | 0.059 (2) | 0.0006 (19) | 0.0101 (19) | −0.0087 (18) |
C3 | 0.065 (2) | 0.058 (2) | 0.054 (2) | 0.0043 (18) | 0.0010 (18) | 0.0017 (17) |
C2 | 0.068 (2) | 0.055 (2) | 0.061 (2) | 0.0074 (18) | 0.006 (2) | 0.0002 (18) |
C13 | 0.060 (2) | 0.056 (2) | 0.059 (2) | 0.0045 (17) | 0.0111 (19) | 0.0004 (17) |
C9 | 0.070 (2) | 0.060 (2) | 0.071 (3) | 0.009 (2) | 0.015 (2) | 0.0028 (19) |
C5 | 0.060 (2) | 0.071 (2) | 0.064 (2) | 0.0143 (19) | 0.009 (2) | 0.003 (2) |
C12 | 0.075 (3) | 0.071 (2) | 0.055 (2) | −0.005 (2) | 0.016 (2) | −0.0022 (19) |
C11 | 0.065 (2) | 0.089 (3) | 0.051 (2) | −0.007 (2) | 0.010 (2) | 0.007 (2) |
C6 | 0.064 (2) | 0.076 (2) | 0.053 (2) | 0.003 (2) | −0.0012 (18) | −0.0052 (19) |
C10 | 0.071 (3) | 0.075 (2) | 0.072 (3) | 0.010 (2) | 0.013 (2) | 0.011 (2) |
C14 | 0.090 (5) | 0.123 (7) | 0.110 (6) | 0.000 | 0.012 (4) | 0.000 |
N5 | 0.121 (5) | 0.120 (5) | 0.137 (5) | 0.000 | −0.001 (4) | 0.000 |
C15 | 0.103 (6) | 0.103 (6) | 0.196 (9) | 0.000 | 0.029 (6) | 0.000 |
Cl1—C2 | 1.736 (3) | C3—C2 | 1.370 (4) |
O1—C1 | 1.364 (4) | C3—H3 | 0.9300 |
O1—H1 | 0.8200 | C13—C12 | 1.375 (5) |
N1—C7 | 1.275 (4) | C9—C10 | 1.349 (5) |
N1—N2 | 1.380 (3) | C9—H9 | 0.9300 |
N2—C8 | 1.343 (4) | C5—C6 | 1.384 (4) |
N2—H2 | 0.8600 | C5—H5 | 0.9300 |
O4—N4 | 1.217 (3) | C12—C11 | 1.362 (5) |
N4—O5 | 1.228 (4) | C12—H12 | 0.9300 |
N4—C13 | 1.452 (4) | C11—C10 | 1.388 (5) |
O2—N3 | 1.228 (5) | C6—H6 | 0.9300 |
N3—O3 | 1.215 (4) | C10—H10 | 0.9300 |
N3—C11 | 1.449 (5) | C14—N5 | 1.128 (9) |
C4—C5 | 1.384 (4) | C14—C15 | 1.430 (10) |
C4—C3 | 1.394 (4) | C15—H15A | 0.9600 |
C4—C7 | 1.457 (4) | C15—H15B | 0.9600 |
C8—C9 | 1.411 (5) | C15—H15C | 0.9600 |
C8—C13 | 1.414 (4) | C15—H15Ai | 0.9600 |
C7—H7 | 0.9300 | C15—H15Bi | 0.9600 |
C1—C2 | 1.384 (5) | C15—H15Ci | 0.9600 |
C1—C6 | 1.385 (5) | ||
C1—O1—H1 | 109.5 | C4—C5—H5 | 119.0 |
C7—N1—N2 | 116.5 (3) | C6—C5—H5 | 119.0 |
C8—N2—N1 | 119.2 (3) | C11—C12—C13 | 119.6 (3) |
C8—N2—H2 | 120.4 | C11—C12—H12 | 120.2 |
N1—N2—H2 | 120.4 | C13—C12—H12 | 120.2 |
O4—N4—O5 | 122.1 (3) | C12—C11—C10 | 120.9 (4) |
O4—N4—C13 | 118.9 (3) | C12—C11—N3 | 119.3 (4) |
O5—N4—C13 | 118.9 (3) | C10—C11—N3 | 119.8 (4) |
O3—N3—O2 | 122.3 (4) | C5—C6—C1 | 119.5 (3) |
O3—N3—C11 | 119.6 (4) | C5—C6—H6 | 120.2 |
O2—N3—C11 | 118.1 (4) | C1—C6—H6 | 120.2 |
C5—C4—C3 | 117.8 (3) | C9—C10—C11 | 119.4 (4) |
C5—C4—C7 | 121.5 (3) | C9—C10—H10 | 120.3 |
C3—C4—C7 | 120.6 (3) | C11—C10—H10 | 120.3 |
N2—C8—C9 | 119.8 (3) | N5—C14—C15 | 180.0 |
N2—C8—C13 | 124.8 (3) | C14—C15—H15A | 109.5 |
C9—C8—C13 | 115.4 (3) | C14—C15—H15B | 109.5 |
N1—C7—C4 | 120.2 (3) | H15A—C15—H15B | 109.5 |
N1—C7—H7 | 119.9 | C14—C15—H15C | 109.5 |
C4—C7—H7 | 119.9 | H15A—C15—H15C | 109.5 |
O1—C1—C2 | 117.9 (3) | H15B—C15—H15C | 109.5 |
O1—C1—C6 | 123.4 (3) | C14—C15—H15Ai | 109.471 (2) |
C2—C1—C6 | 118.6 (3) | H15A—C15—H15Ai | 141.1 |
C2—C3—C4 | 120.2 (3) | H15B—C15—H15Ai | 56.3 |
C2—C3—H3 | 119.9 | H15C—C15—H15Ai | 56.2 |
C4—C3—H3 | 119.9 | C14—C15—H15Bi | 109.470 (3) |
C3—C2—C1 | 121.8 (3) | H15A—C15—H15Bi | 56.3 |
C3—C2—Cl1 | 119.5 (3) | H15B—C15—H15Bi | 141.1 |
C1—C2—Cl1 | 118.8 (3) | H15C—C15—H15Bi | 56.3 |
C12—C13—C8 | 121.9 (3) | H15Ai—C15—H15Bi | 109.5 |
C12—C13—N4 | 116.8 (3) | C14—C15—H15Ci | 109.470 (5) |
C8—C13—N4 | 121.3 (3) | H15A—C15—H15Ci | 56.3 |
C10—C9—C8 | 122.8 (4) | H15B—C15—H15Ci | 56.2 |
C10—C9—H9 | 118.6 | H15C—C15—H15Ci | 141.1 |
C8—C9—H9 | 118.6 | H15Ai—C15—H15Ci | 109.5 |
C4—C5—C6 | 122.0 (3) | H15Bi—C15—H15Ci | 109.5 |
C7—N1—N2—C8 | −176.8 (3) | O4—N4—C13—C8 | −179.3 (3) |
N1—N2—C8—C9 | −3.5 (4) | O5—N4—C13—C8 | 1.0 (5) |
N1—N2—C8—C13 | 176.4 (3) | N2—C8—C9—C10 | 178.9 (3) |
N2—N1—C7—C4 | −179.4 (3) | C13—C8—C9—C10 | −1.0 (5) |
C5—C4—C7—N1 | 179.5 (3) | C3—C4—C5—C6 | −0.8 (5) |
C3—C4—C7—N1 | −0.4 (5) | C7—C4—C5—C6 | 179.4 (3) |
C5—C4—C3—C2 | 0.7 (5) | C8—C13—C12—C11 | −0.7 (5) |
C7—C4—C3—C2 | −179.4 (3) | N4—C13—C12—C11 | 178.3 (3) |
C4—C3—C2—C1 | 0.0 (5) | C13—C12—C11—C10 | 0.9 (5) |
C4—C3—C2—Cl1 | −179.1 (2) | C13—C12—C11—N3 | −178.4 (3) |
O1—C1—C2—C3 | 177.5 (3) | O3—N3—C11—C12 | −5.6 (5) |
C6—C1—C2—C3 | −0.6 (5) | O2—N3—C11—C12 | 172.9 (3) |
O1—C1—C2—Cl1 | −3.4 (4) | O3—N3—C11—C10 | 175.1 (4) |
C6—C1—C2—Cl1 | 178.5 (3) | O2—N3—C11—C10 | −6.4 (5) |
N2—C8—C13—C12 | −179.2 (3) | C4—C5—C6—C1 | 0.1 (5) |
C9—C8—C13—C12 | 0.7 (5) | O1—C1—C6—C5 | −177.5 (3) |
N2—C8—C13—N4 | 1.8 (5) | C2—C1—C6—C5 | 0.6 (5) |
C9—C8—C13—N4 | −178.3 (3) | C8—C9—C10—C11 | 1.3 (5) |
O4—N4—C13—C12 | 1.7 (5) | C12—C11—C10—C9 | −1.2 (5) |
O5—N4—C13—C12 | −178.0 (3) | N3—C11—C10—C9 | 178.1 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O5 | 0.86 | 2.01 | 2.619 (4) | 127 |
O1—H1···O2ii | 0.82 | 2.37 | 3.114 (4) | 152 |
O1—H1···O3ii | 0.82 | 2.25 | 2.998 (4) | 152 |
N2—H2···O5iii | 0.86 | 2.58 | 3.362 (4) | 152 |
C9—H9···Cl1iv | 0.93 | 2.72 | 3.485 (4) | 140 |
Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+3/2, −y+1/2, −z+1; (iv) −x+1, −y+2, −z+1. |
Funding information
Funding for this research was provided by: Ondokuz Mayıs University (project number PYO.FEN.1906.19.001) .
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Borwick, S. J., Howard, J. A. K., Lehmann, C. W. & O'Hagan, D. (1997). Acta Cryst. C53, 124–126. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96–98. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. CSD CrossRef CAS IUCr Journals Google Scholar
Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans. Google Scholar
Ghosh, P., Kumar, N., Mukhopadhyay, S. K. & Banerjee, P. (2016). Sens. Actuators B Chem. 224, 899–906. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85–92. Web of Science CrossRef CAS Google Scholar
Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohba, S. (1996). Acta Cryst. C52, 2118–2119. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903. Google Scholar
Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.