research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­­idene]meth­yl}phenol aceto­nitrile hemisolvate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, cOndokuz Mayis University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 May 2019; accepted 6 May 2019; online 10 May 2019)

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10[\overline{1}]). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset ππ stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.

1. Chemical context

Over the past 25 years, extensive research has surrounded the synthesis and use of Schiff base compounds in organic and inorganic chemistry, as they have important medicinal and pharmaceutical applications. These compounds show biological activities including anti­bacterial, anti­fungal, anti­cancer and herbicidal activities (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]). Schiff bases are also becoming increasingly important in the dye and plastics industries as well as for liquid-crystal technology and the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006[Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563-o3565.]). 2,4-Di­nitro­phenyl­hydrazine is frequently used as a reagent for the characterization of aldehydes and ketones (Furniss et al., 1999[Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans.]). Its derivatives are widely used as dyes (Guillaumont & Nakamura, 2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85-92.]). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.]), fluorescence sensors (Faizi et al., 2016b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.]) and coordination compounds (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]). We report herein on the synthesis, crystal structure and DFT computational calculations of the title new Schiff base compound. The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The configuration about the C7=N1 bond is E, and there is intra­molecular N—H⋯Onitro hydrogen bond that generates an S(6) ring motif (Fig. 1[link] and Table 1[link]). The N1—N2 bond length is 1.380 (3) Å and the N1=C7 bond length is 1.275 (4) Å. These bond lengths are comparable with those of some closely related compounds (Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]; Faizi et al., 2017[Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96-98.]; Ghosh et al., 2016[Ghosh, P., Kumar, N., Mukhopadhyay, S. K. & Banerjee, P. (2016). Sens. Actuators B Chem. 224, 899-906.]). The C8—C9 and C8—C13 bonds [1.411 (5) and 1.414 (4) Å, respectively], which are adjacent to the imino N2 atom, are significantly longer than the average distance of 1.375 (3) Å for the other C—C bonds in the same benzene ring. This same pattern of bond lengths has been observed previously in some 2,4-di­nitro­phenyl­hydrazone derivatives (Ohba, 1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]; Borwick et al., 1997[Borwick, S. J., Howard, J. A. K., Lehmann, C. W. & O'Hagan, D. (1997). Acta Cryst. C53, 124-126.]). The title mol­ecule is almost planar with the dihedral angle between the benzene rings being 3.70 (17)°. The nitro groups of the 2,4-di­nitro­phenyl unit are twisted slightly with respect to the C8–C13 benzene ring to which they are attached: nitro group N2/O4/O5 is inclined to the benzene ring by 2.1 (4)°, while nitro group N3/O2/O3 is inclined to it by 6.5 (5)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.86 2.01 2.619 (4) 127
O1—H1⋯O2i 0.82 2.37 3.114 (4) 152
O1—H1⋯O3i 0.82 2.25 2.998 (4) 152
N2—H2⋯O5ii 0.86 2.58 3.362 (4) 152
C9—H9⋯Cl1iii 0.93 2.72 3.485 (4) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular N—H⋯O hydrogen bond (see Table 1[link]), forming an S(6) ring motif, is shown as a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]), forming layers lying parallel to (10[\overline{1}]), as shown in Fig. 2[link]. The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework (Fig. 3[link] and Table 1[link]). Within the framework, inversion-related mol­ecules are linked by offset ππ stacking inter­actions (Fig. 3[link]); Cg1⋯Cg2i = 3.833 (2) Å, where Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively, α = 3.70 (17)°, β = 27.9°, γ = 24.5°, inter­planar distances are 3.489 (2) and 3.388 (2) Å, offset = 1.791 Å; symmetry code: (i) −x + 1, −y + 1, −z + 1. There are no other significant inter­molecular contacts present in the crystal.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds (see Table 1[link]) are shown as dashed lines. For clarity, the aceto­nitrile solvent mol­ecules have been omitted and only hydrogen atoms H1 and H2 have been included.
[Figure 3]
Figure 3
A view normal to plane (110) of the crystal packing of the title compound. Hydrogen bonds (see Table 1[link]) are shown as dashed lines, and, for clarity, only hydrogen atoms H1, H2 and H9 have been included.

4. DFT study

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The DFT structure optimization of the title compound was performed starting from the X-ray geometry, with experimental values of bond lengths and bond angles matching with theoretical values. The 6-311 G(d,p) basis set is well suited in its approach to the experimental data. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the 2,4-di­nitro­benzene ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4[link]. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.13061 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.24019 and −0.10958 a.u., respectively.

[Figure 4]
Figure 4
Electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-benzyl­idene-2-(2,4-di­nitro­phen­yl)hydrazine skeleton gave 71 hits (see supporting information). 18 of these structures involve a halide substituent and 23 involve a hydroxyl substituent. Only one compound involves both a halide and an hydroxyl substituent and closely resembles the title compound, viz. 4-chloro-2-{[(2,4-di­nitro­phen­yl)hydra­zono]meth­yl}phenol (CSD refcode HUTHOV; Ghosh et al., 2016[Ghosh, P., Kumar, N., Mukhopadhyay, S. K. & Banerjee, P. (2016). Sens. Actuators B Chem. 224, 899-906.]). Here the benzene rings are inclined to each other by 3.40 (9)°, compared to 3.70 (17)° in the title compound, and again there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In fact, in all 71 structures (see supporting information) there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif, and in the majority of the compounds the two benzene rings are almost coplanar with the dihedral angle varying between ca 0 to 8°, with a few exceptions.

6. Synthesis and crystallization

The title compound was prepared by refluxing a mixture of 4-chloro-3-hy­droxy­benzaldehyde (39.1 mg, 0.25 mmol) in ethanol (15 ml) and 2,4-di­nitro­phenyl­hydrazine (49.5 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Orange plate-like crystals of the title compound were obtained by slow evaporation of a solution in ethanol (yield 68%, m.p. 542–544K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and NH hydrogen atoms and the C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(O-hydroxyl, C-meth­yl) and 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H9ClN4O5·0.5C2H3N
Mr 357.22
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 12.0614 (11), 9.6960 (6), 26.688 (2)
β (°) 99.619 (7)
V3) 3077.2 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.49 × 0.28 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.908, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 8928, 3027, 1416
Rint 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 0.93
No. of reflections 3027
No. of parameters 224
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2-Chloro-4-{[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]methyl}phenol acetonitrile hemisolvate top
Crystal data top
C13H9ClN4O5·0.5C2H3NF(000) = 1464
Mr = 357.22Dx = 1.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.0614 (11) ÅCell parameters from 8879 reflections
b = 9.6960 (6) Åθ = 1.6–27.9°
c = 26.688 (2) ŵ = 0.28 mm1
β = 99.619 (7)°T = 296 K
V = 3077.2 (4) Å3Plate, orange
Z = 80.49 × 0.28 × 0.04 mm
Data collection top
Stoe IPDS 2
diffractometer
3027 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1416 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.056
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
rotation method scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.908, Tmax = 0.989l = 3232
8928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.137H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.52434 (10)1.07475 (11)0.57323 (4)0.0964 (4)
O10.6912 (2)1.0735 (3)0.66391 (9)0.0832 (8)
H10.7332271.0657850.6912760.125*
N10.6314 (2)0.5959 (3)0.49923 (11)0.0606 (7)
N20.6383 (2)0.4785 (3)0.47069 (11)0.0633 (8)
H20.6843980.4135750.4819540.076*
O40.6517 (2)0.1472 (3)0.37327 (11)0.0926 (9)
N40.6512 (3)0.2398 (3)0.40402 (13)0.0736 (9)
O50.7122 (3)0.2383 (3)0.44573 (11)0.0972 (9)
O20.2825 (3)0.5344 (4)0.27290 (12)0.1162 (12)
N30.3566 (3)0.4469 (5)0.28233 (14)0.0906 (11)
C40.6977 (3)0.7239 (3)0.57388 (12)0.0547 (8)
O30.3675 (3)0.3539 (4)0.25304 (12)0.1189 (12)
C80.5723 (3)0.4668 (3)0.42510 (13)0.0572 (9)
C70.6998 (3)0.6042 (3)0.54105 (14)0.0620 (9)
H70.7511460.5336240.5506460.074*
C10.6946 (3)0.9554 (3)0.63640 (13)0.0622 (9)
C30.6217 (3)0.8310 (3)0.55996 (12)0.0600 (9)
H30.5712490.8259180.5295850.072*
C20.6210 (3)0.9437 (3)0.59087 (13)0.0618 (9)
C130.5754 (3)0.3556 (3)0.39104 (13)0.0582 (9)
C90.4926 (3)0.5706 (4)0.40833 (14)0.0666 (9)
H90.4865390.6450380.4296530.080*
C50.7703 (3)0.7353 (4)0.61968 (13)0.0653 (10)
H50.8209550.6643500.6297570.078*
C120.5062 (3)0.3507 (4)0.34458 (13)0.0664 (10)
H120.5105510.2769370.3227200.080*
C110.4313 (3)0.4545 (4)0.33077 (13)0.0683 (10)
C60.7698 (3)0.8491 (4)0.65093 (13)0.0658 (10)
H60.8196280.8542080.6814880.079*
C100.4249 (3)0.5663 (4)0.36269 (15)0.0724 (10)
H100.3744920.6375870.3526880.087*
C140.5000000.8470 (10)0.2500000.108 (2)
N50.5000000.7307 (8)0.2500000.129 (2)
C150.5000000.9945 (8)0.2500000.133 (3)
H15A0.4774791.0275140.2806950.200*0.5
H15B0.4482981.0275140.2212070.200*0.5
H15C0.5742231.0275140.2480980.200*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1112 (8)0.0726 (7)0.0951 (8)0.0330 (6)0.0125 (6)0.0092 (6)
O10.096 (2)0.0762 (17)0.0716 (18)0.0121 (15)0.0028 (15)0.0197 (14)
N10.0692 (19)0.0535 (17)0.0591 (18)0.0024 (14)0.0106 (17)0.0066 (14)
N20.074 (2)0.0512 (17)0.0631 (19)0.0102 (14)0.0082 (17)0.0038 (14)
O40.116 (2)0.0702 (17)0.0891 (19)0.0191 (16)0.0082 (18)0.0220 (16)
N40.089 (2)0.063 (2)0.068 (2)0.0086 (18)0.009 (2)0.0067 (18)
O50.123 (2)0.0750 (19)0.0822 (19)0.0406 (17)0.0170 (18)0.0116 (15)
O20.086 (2)0.166 (3)0.089 (2)0.016 (2)0.0102 (19)0.023 (2)
N30.067 (2)0.142 (4)0.063 (2)0.009 (3)0.010 (2)0.012 (2)
C40.058 (2)0.0523 (19)0.054 (2)0.0033 (17)0.0103 (18)0.0007 (17)
O30.102 (2)0.181 (4)0.068 (2)0.004 (2)0.0016 (18)0.029 (2)
C80.065 (2)0.052 (2)0.054 (2)0.0015 (17)0.0092 (19)0.0003 (17)
C70.067 (2)0.057 (2)0.063 (2)0.0063 (17)0.013 (2)0.0013 (18)
C10.067 (2)0.061 (2)0.059 (2)0.0006 (19)0.0101 (19)0.0087 (18)
C30.065 (2)0.058 (2)0.054 (2)0.0043 (18)0.0010 (18)0.0017 (17)
C20.068 (2)0.055 (2)0.061 (2)0.0074 (18)0.006 (2)0.0002 (18)
C130.060 (2)0.056 (2)0.059 (2)0.0045 (17)0.0111 (19)0.0004 (17)
C90.070 (2)0.060 (2)0.071 (3)0.009 (2)0.015 (2)0.0028 (19)
C50.060 (2)0.071 (2)0.064 (2)0.0143 (19)0.009 (2)0.003 (2)
C120.075 (3)0.071 (2)0.055 (2)0.005 (2)0.016 (2)0.0022 (19)
C110.065 (2)0.089 (3)0.051 (2)0.007 (2)0.010 (2)0.007 (2)
C60.064 (2)0.076 (2)0.053 (2)0.003 (2)0.0012 (18)0.0052 (19)
C100.071 (3)0.075 (2)0.072 (3)0.010 (2)0.013 (2)0.011 (2)
C140.090 (5)0.123 (7)0.110 (6)0.0000.012 (4)0.000
N50.121 (5)0.120 (5)0.137 (5)0.0000.001 (4)0.000
C150.103 (6)0.103 (6)0.196 (9)0.0000.029 (6)0.000
Geometric parameters (Å, º) top
Cl1—C21.736 (3)C3—C21.370 (4)
O1—C11.364 (4)C3—H30.9300
O1—H10.8200C13—C121.375 (5)
N1—C71.275 (4)C9—C101.349 (5)
N1—N21.380 (3)C9—H90.9300
N2—C81.343 (4)C5—C61.384 (4)
N2—H20.8600C5—H50.9300
O4—N41.217 (3)C12—C111.362 (5)
N4—O51.228 (4)C12—H120.9300
N4—C131.452 (4)C11—C101.388 (5)
O2—N31.228 (5)C6—H60.9300
N3—O31.215 (4)C10—H100.9300
N3—C111.449 (5)C14—N51.128 (9)
C4—C51.384 (4)C14—C151.430 (10)
C4—C31.394 (4)C15—H15A0.9600
C4—C71.457 (4)C15—H15B0.9600
C8—C91.411 (5)C15—H15C0.9600
C8—C131.414 (4)C15—H15Ai0.9600
C7—H70.9300C15—H15Bi0.9600
C1—C21.384 (5)C15—H15Ci0.9600
C1—C61.385 (5)
C1—O1—H1109.5C4—C5—H5119.0
C7—N1—N2116.5 (3)C6—C5—H5119.0
C8—N2—N1119.2 (3)C11—C12—C13119.6 (3)
C8—N2—H2120.4C11—C12—H12120.2
N1—N2—H2120.4C13—C12—H12120.2
O4—N4—O5122.1 (3)C12—C11—C10120.9 (4)
O4—N4—C13118.9 (3)C12—C11—N3119.3 (4)
O5—N4—C13118.9 (3)C10—C11—N3119.8 (4)
O3—N3—O2122.3 (4)C5—C6—C1119.5 (3)
O3—N3—C11119.6 (4)C5—C6—H6120.2
O2—N3—C11118.1 (4)C1—C6—H6120.2
C5—C4—C3117.8 (3)C9—C10—C11119.4 (4)
C5—C4—C7121.5 (3)C9—C10—H10120.3
C3—C4—C7120.6 (3)C11—C10—H10120.3
N2—C8—C9119.8 (3)N5—C14—C15180.0
N2—C8—C13124.8 (3)C14—C15—H15A109.5
C9—C8—C13115.4 (3)C14—C15—H15B109.5
N1—C7—C4120.2 (3)H15A—C15—H15B109.5
N1—C7—H7119.9C14—C15—H15C109.5
C4—C7—H7119.9H15A—C15—H15C109.5
O1—C1—C2117.9 (3)H15B—C15—H15C109.5
O1—C1—C6123.4 (3)C14—C15—H15Ai109.471 (2)
C2—C1—C6118.6 (3)H15A—C15—H15Ai141.1
C2—C3—C4120.2 (3)H15B—C15—H15Ai56.3
C2—C3—H3119.9H15C—C15—H15Ai56.2
C4—C3—H3119.9C14—C15—H15Bi109.470 (3)
C3—C2—C1121.8 (3)H15A—C15—H15Bi56.3
C3—C2—Cl1119.5 (3)H15B—C15—H15Bi141.1
C1—C2—Cl1118.8 (3)H15C—C15—H15Bi56.3
C12—C13—C8121.9 (3)H15Ai—C15—H15Bi109.5
C12—C13—N4116.8 (3)C14—C15—H15Ci109.470 (5)
C8—C13—N4121.3 (3)H15A—C15—H15Ci56.3
C10—C9—C8122.8 (4)H15B—C15—H15Ci56.2
C10—C9—H9118.6H15C—C15—H15Ci141.1
C8—C9—H9118.6H15Ai—C15—H15Ci109.5
C4—C5—C6122.0 (3)H15Bi—C15—H15Ci109.5
C7—N1—N2—C8176.8 (3)O4—N4—C13—C8179.3 (3)
N1—N2—C8—C93.5 (4)O5—N4—C13—C81.0 (5)
N1—N2—C8—C13176.4 (3)N2—C8—C9—C10178.9 (3)
N2—N1—C7—C4179.4 (3)C13—C8—C9—C101.0 (5)
C5—C4—C7—N1179.5 (3)C3—C4—C5—C60.8 (5)
C3—C4—C7—N10.4 (5)C7—C4—C5—C6179.4 (3)
C5—C4—C3—C20.7 (5)C8—C13—C12—C110.7 (5)
C7—C4—C3—C2179.4 (3)N4—C13—C12—C11178.3 (3)
C4—C3—C2—C10.0 (5)C13—C12—C11—C100.9 (5)
C4—C3—C2—Cl1179.1 (2)C13—C12—C11—N3178.4 (3)
O1—C1—C2—C3177.5 (3)O3—N3—C11—C125.6 (5)
C6—C1—C2—C30.6 (5)O2—N3—C11—C12172.9 (3)
O1—C1—C2—Cl13.4 (4)O3—N3—C11—C10175.1 (4)
C6—C1—C2—Cl1178.5 (3)O2—N3—C11—C106.4 (5)
N2—C8—C13—C12179.2 (3)C4—C5—C6—C10.1 (5)
C9—C8—C13—C120.7 (5)O1—C1—C6—C5177.5 (3)
N2—C8—C13—N41.8 (5)C2—C1—C6—C50.6 (5)
C9—C8—C13—N4178.3 (3)C8—C9—C10—C111.3 (5)
O4—N4—C13—C121.7 (5)C12—C11—C10—C91.2 (5)
O5—N4—C13—C12178.0 (3)N3—C11—C10—C9178.1 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.862.012.619 (4)127
O1—H1···O2ii0.822.373.114 (4)152
O1—H1···O3ii0.822.252.998 (4)152
N2—H2···O5iii0.862.583.362 (4)152
C9—H9···Cl1iv0.932.723.485 (4)140
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: Ondokuz Mayıs University (project number PYO.FEN.1906.19.001) .

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBorwick, S. J., Howard, J. A. K., Lehmann, C. W. & O'Hagan, D. (1997). Acta Cryst. C53, 124–126.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96–98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans.  Google Scholar
First citationGhosh, P., Kumar, N., Mukhopadhyay, S. K. & Banerjee, P. (2016). Sens. Actuators B Chem. 224, 899–906.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds