research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-(2,4,6-tri­methyl­benzyl­­idene)-3,4-di­hydro­naphthalen-1(2H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, bSakarya University, Faculty of Arts & Sciences, Chemistry Department, Sakarya, Turkey, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., 01601, Kiev, Ukraine
*Correspondence e-mail: cemle28baydere@hotmail.com, necmid@omu.edu.tr, igolenya@ua.fm

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 March 2019; accepted 2 May 2019; online 10 May 2019)

A novel chalcone, C20H20O, derived from benzyl­idene­tetra­lone, was synthesized via Claissen–Schmidt condensation between tetra­lone and 2,4,6-tri­methyl­benzaldehyde. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, producing R22(20) and R24(12) ring motifs. In addition, weak C—H⋯π and π-stacking inter­actions are observed. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (66.0%), H⋯C/ C⋯H (22.3%), H⋯O/O⋯H (9.3%), and C⋯C (2.4%) inter­actions. Shape-index plots show ππ stacking inter­actions and the curvedness plots show flat surface patches characteristic of planar stacking.

1. Chemical context

Chalcone (systematic name 1,3-diphenyl-2-propene-1-one) is an aromatic ketone that represents the central core for various derivatives with inter­esting properties, known as chalcones (Kostanecki & Tambor, 1899[Kostanecki, S. V. & Tambor, J. (1899). Ber. Dtsch. Chem. Ges. 32, 1921-1926.]). For example, chalcones are found in fruits, vegetables, spices, tea or soy, and find applications as pharmaceuticals (Di Carlo et al., 1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]). Chalcones are also major inter­mediates in the synthesis of natural products and are widely used in synthetic and pharmaceutical chemistry (Dhar, 1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: Wiley.]; Ansari et al., 2005[Ansari, F. L., Nazir, S., Noureen, H. & Mirza, B. (2005). Chem. Biodivers. 2, 1656-1664.]) because they have anti­tumor (Modzelewska et al., 2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]), anti­fungal (López et al., 2001[López, S. N., Castelli, M. V., Zacchino, S. A., Dom\?ínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodr\?íguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999-2013.]), anti-inflammatory (Lee et al., 2006[Lee, S. H., Seo, G. S., Kim, Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178-186.]), anti-bacterial (Batovska et al., 2009[Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M. & Najdenski, H. (2009). Eur. J. Med. Chem. 44, 2211-2218.]) or anti­tubercular properties (Lin et al., 2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]). In general, chalcones consist of two aromatic rings that are linked by a three-carbon α,β-unsaturated carbonyl system, leading to a completely delocalized π-electron system. Recently, chalcones have also been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017[Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550-2556.]). As part of our studies in this area, we report herein the synthesis, crystal structure and Hirshfeld surface analysis of a new chalcone.

[Scheme 1]

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the cyclo­hexa­none ring (C1/C2,C7/C8,C9/C10) has an envelope conformation with the flap atom C9 deviating by 0.280 (3) Å from the least-squares plane through the ring. The cyclo­hexa­none ring is nearly co-planar with the benzene ring (C2–C7) being fused at a dihedral angle of 4.70 (18)°, but is inclined to the other benzene ring (C12–C17) by 74.95 (13)°. Torsion angles involving the methyl­ene group C10=C11 are 83.3 (5)° (C17—C12—C11—C10), 129.8 (4)° (C11—C10—C9—C8) and 27.7 (6)° (O1—C1—C10—C11).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The main inter­molecular inter­actions in the crystal structure of the title compound are of type C—H⋯O, C—H⋯π (Table 1[link]) and ππ. Inter­actions between a methyl group and the carbonyl O atom (C20—H20C⋯O1ii) as well as between an aromatic H atom and the carbonyl atom (C16—H16⋯O1i) lead to R22(20) and R24(12) motifs (Fig. 2[link]), linking adjacent mol­ecules parallel to (001) (Table 2[link], Fig. 2[link]). A weak C9—H9ACg2iii (Cg2 is the centroid of the C2–C7 benzene ring) inter­action is also present (Fig. 2[link]), along with weak aromatic π-stacking inter­actions [Cg2⋯Cg2(−2 − x, −y, −1 − z) = 3.887 (3) Å] that consolidate the three-dimensional packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.69 3.493 (5) 145
C20—H20C⋯O1ii 0.96 2.60 3.535 (5) 165
C9—H9ACg2iii 0.97 2.90 3.865 (6) 175
Symmetry codes: (i) x+1, y-1, z; (ii) -x-1, -y-1, -z-2; (iii) -x+1, -y, -z+1.

Table 2
Experimental details

Crystal data
Chemical formula C20H20O
Mr 276.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.728 (2), 8.757 (2), 12.094 (3)
α, β, γ (°) 77.768 (19), 80.822 (19), 61.929 (18)
V3) 795.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.64 × 0.51 × 0.33
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.956, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 8143, 2726, 1102
Rint 0.088
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.155, 0.91
No. of reflections 2726
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.14
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 2]
Figure 2
A view along the a axis of the title structure. Blue dashed lines denote the C—H⋯O hydrogen bonds which form R22(20) and R24(12) ring motifs. C—H⋯π inter­actions are shown as green dashes lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-2-(4-methyl­benzyl­idene)-3,4-di­hydro­naphthalen-1(2H)-one as the main skeleton revealed the presence of four structures containing the chalcone moiety with different substituents that are similar to the title compound: (E)-4-[(1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMAI; Baddeley et al., 2017[Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317-333.]); (E)-4-[(5-meth­oxy-1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMEM; Baddeley et al., 2017[Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317-333.]); (E)-4-[(6-meth­oxy-1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMIQ; Baddeley et al., 2017[Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317-333.]); 1′-(4-bromo­phen­yl)-4′-{4-[(1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene) meth­yl]phen­yl}-3′′,4′′-di­hydro-1′′H,2H-di­spiro­(ace­naphthyl­ene-1,2′-pyrrolidine-3′,2′′-naphthalene)-1′′,2-dione (VUZXOE; Saravanan et al., 2010[Saravanan, B., Rajesh, R., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o2801.]). QEVMAI and VUZXOE both crystallize in space group P[\overline{1}], while QEVMEM and QEVMIQ crystallize in space group P21/c. In the structures of QEVMAI, QEVMEM and QEVMIQ, the dihedral angles between the phenyl groups are 45.66 (5), 55.06 (7) and 69.78 (5)°, respectively. In the structure of VUZXOE, the central benzene ring makes a dihedral angle of 42.71 (7)° with the bromo­phenyl ring.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]), using standard surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.0870 (red) to 1.2944 (blue) a.u.. The three-dimensional dnorm surface of the title mol­ecule is illustrated in Fig. 3[link]a and 4[link]. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the C—H⋯O inter­actions described above (Table 1[link]). The overall two-dimensional fingerprint plot is illustrated in Fig. 5[link]a. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), and the two-dimensional fingerprint plots are shown in Fig. 5[link]b and 5c, respectively, associated with their relative contributions to the Hirshfeld surface. The largest contribution to the overall crystal packing is from H⋯H inter­actions (66.0%); H⋯H contacts are shown in the middle region 1.10 Å < (di + de) < 1.18 Å. H⋯C/C⋯H contacts contribute 22.3% to the Hirshfeld surface, resulting in two pairs of characteristic wings in the fingerprint plot. The pair of tips appears at 1.10 Å < (di + de) < 1.65 Å. H⋯O/O⋯H contacts make a 9.3% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the region 1.05 Å < (di + de) < 1.4 Å in the fingerprint plot. The C⋯C contacts are a measure of ππ stacking inter­actions and contribute 2.4% to the Hirshfeld surface. They appear as an arrow-shaped distribution at 1.80 Å < (di + de) < 2.0 Å.

[Figure 3]
Figure 3
(a) dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions; (b) shape-index map and (c) curvedness map of the title compound.
[Figure 4]
Figure 4
dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions.
[Figure 5]
Figure 5
(a) The overall two-dimensional fingerprint plot and (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for (i) H⋯H, (ii) H⋯C/C⋯H, (iii) H⋯O/O⋯H and (iv) C⋯C inter­actions. (c) The two-dimensional fingerprint plots for the title compound, delineated into (i) H⋯H, (ii) H⋯C/ C⋯H, (iii) H⋯O/O⋯H, (iv) C⋯C inter­actions.

The shape-index map of the title mol­ecule (Fig. 3[link]b) was generated in the ranges −1 to 1 Å. The convex blue regions symbolize hydrogen-donor groups and concave red regions symbolize hydrogen-acceptor groups. ππ inter­actions on the shape-index map are indicated by adjacent red and blue triangles. As can be seen in Fig. 3[link]b, there are ππ inter­actions present between adjacent mol­ecules in the title complex.

The curvedness map of the title compound (Fig. 3[link]c) was generated in the range −4 to 0.4 Å. The large green regions represent a relatively flat (i.e. planar) surface area, while the blue regions demonstrate areas of curvature. The presence of ππ stacking inter­actions is also evident as flat regions around the rings on the Hirshfeld surface plotted over curvedness.

6. Synthesis and crystallization

2,4,6-Tri­methyl­benzyl­idene­tetra­lone was prepared according to a literature protocol (Kumar et al., 2017[Kumar, B., Smita, K. & Flores, L. C. (2017). Arabian J. Chem. 10, S2335-S2342.]). 10 ml of a NaOH solution (40%wt) was slowly added to a mixture of tetra­lone (1 mmol) and 2,4,6-tri­methyl­benzaldehyde (1 mmol) in ethanol (10 ml) at room temperature and stirred overnight. Then ice-cold water was added to the reaction mixture. The resulting precipitate was filtered off and dried in vacuo. The compound was purified by crystallization from ethanol, resulting in colourless prismatic crystals.

Yield 85%, m.p. 358 K; IR (ν, cm−1): 3060 (C—H, aromatic), 2920 (C—H, aliphatic), 1670 (C=O), 1620 (C=C, aromatic); 1H NMR (300 MHz, DMSO-d6, δ, ppm): 7.9 (1H, d, =C—H), 7.58 (1H, s, =C—H), 7.50 (1H, t, =C—H), 7.38 (1H,t, =C—H), 7.30 (1H, d, =C—H), 6.82 (2H, s, =C—H), 2.8 (2H, t, —CH2), 2.4 (2H, t, —CH2), 2.2 (3H, s,—CH3), 2.02 (6H, s, 2 CH3); 13C NMR (75 MHz, DMSO-d6, δ, ppm): 186.9, 144.5, 138.0, 137.2, 135.9, 135.6, 134.2, 133.5, 132.4, 129.3, 128.6, 128.0, 127.6, 28.9, 27.4, 21.3, 20.5. Analysis calculated for C20H20O: C, 86.92%; H, 7.29%; O, 5.79%. Found: C, 86.99%; H, 7.35%; O, 5.90%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl groups, 0.96 Å for methyl­ene groups, 0.93 Å for aromatic hydrogen atoms and 0.98 Å for methine groups, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-2-(2,4,6-Trimethylbenzylidene)-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C20H20OZ = 2
Mr = 276.36F(000) = 296
Triclinic, P1Dx = 1.154 Mg m3
a = 8.728 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.757 (2) ÅCell parameters from 12610 reflections
c = 12.094 (3) Åθ = 2.7–30.2°
α = 77.768 (19)°µ = 0.07 mm1
β = 80.822 (19)°T = 293 K
γ = 61.929 (18)°Prism, colorless
V = 795.2 (4) Å30.64 × 0.51 × 0.33 mm
Data collection top
Stoe IPDS 2
diffractometer
1102 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.088
rotation method scansθmax = 25.0°, θmin = 2.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.956, Tmax = 0.982k = 1010
8143 measured reflectionsl = 1414
2726 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.25 e Å3
2726 reflectionsΔρmin = 0.14 e Å3
194 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.016 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0524 (3)0.2385 (4)0.7862 (2)0.0977 (9)
C120.4930 (4)0.5186 (5)0.8354 (3)0.0635 (9)
C21.0387 (4)0.2214 (4)0.5971 (3)0.0639 (9)
C170.4278 (4)0.6907 (5)0.8516 (3)0.0705 (10)
C10.9638 (4)0.2867 (5)0.7056 (3)0.0715 (10)
C100.7746 (4)0.4083 (4)0.7133 (3)0.0695 (10)
C130.3805 (5)0.4437 (5)0.8456 (3)0.0744 (10)
C110.6837 (4)0.4120 (4)0.8119 (3)0.0736 (11)
H110.7459280.3396130.8739420.088*
C150.1364 (4)0.7151 (5)0.8870 (3)0.0711 (10)
C70.9379 (4)0.2800 (5)0.5040 (3)0.0743 (10)
C160.2502 (5)0.7860 (5)0.8766 (3)0.0762 (11)
H160.2065510.9020350.8865590.091*
C140.2038 (5)0.5443 (5)0.8704 (3)0.0798 (11)
H140.1289200.4944470.8759190.096*
C31.2113 (4)0.0905 (5)0.5883 (3)0.0792 (11)
H31.2800000.0514170.6494520.095*
C90.7027 (5)0.5193 (6)0.6044 (3)0.1051 (15)
H9A0.7454520.6063340.5832410.126*
H9B0.5768550.5807560.6153530.126*
C80.7503 (4)0.4167 (5)0.5111 (3)0.0951 (13)
H8A0.6765880.3589740.5202870.114*
H8B0.7262570.4967590.4398950.114*
C41.2801 (5)0.0192 (5)0.4895 (4)0.0909 (13)
H41.3943810.0679730.4843980.109*
C61.0115 (5)0.2062 (6)0.4058 (3)0.0942 (13)
H60.9455710.2447320.3432600.113*
C51.1799 (6)0.0771 (6)0.4000 (4)0.0988 (14)
H51.2263120.0285530.3337870.119*
C200.0576 (4)0.8225 (6)0.9157 (3)0.1039 (15)
H20A0.0948840.9409320.8776190.156*
H20B0.1212240.7725470.8914300.156*
H20C0.0787220.8216510.9961620.156*
C180.5449 (5)0.7765 (5)0.8436 (4)0.1077 (15)
H18A0.5890230.7925070.7663090.162*
H18B0.4797940.8883780.8686950.162*
H18C0.6402310.7033450.8906050.162*
C190.4477 (5)0.2554 (5)0.8281 (4)0.1150 (16)
H19A0.5314840.1783970.8823650.173*
H19B0.3523490.2266330.8381820.173*
H19C0.5015710.2419940.7527960.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0782 (16)0.112 (2)0.088 (2)0.0233 (15)0.0269 (14)0.0175 (16)
C120.069 (2)0.057 (2)0.060 (2)0.0271 (19)0.0034 (16)0.0044 (18)
C20.061 (2)0.066 (2)0.066 (2)0.0311 (19)0.0055 (18)0.0045 (19)
C170.079 (2)0.061 (3)0.073 (3)0.032 (2)0.0094 (18)0.0086 (19)
C10.073 (2)0.071 (3)0.069 (3)0.031 (2)0.019 (2)0.001 (2)
C100.062 (2)0.070 (3)0.062 (2)0.0218 (19)0.0091 (18)0.0017 (19)
C130.082 (3)0.058 (3)0.081 (3)0.032 (2)0.0010 (19)0.014 (2)
C110.072 (2)0.072 (3)0.072 (3)0.029 (2)0.0174 (19)0.001 (2)
C150.077 (2)0.070 (3)0.058 (2)0.026 (2)0.0030 (18)0.012 (2)
C70.071 (2)0.084 (3)0.067 (2)0.037 (2)0.005 (2)0.006 (2)
C160.095 (3)0.059 (3)0.069 (2)0.028 (2)0.010 (2)0.0122 (19)
C140.082 (3)0.081 (3)0.085 (3)0.045 (2)0.0018 (19)0.015 (2)
C30.069 (2)0.077 (3)0.091 (3)0.032 (2)0.013 (2)0.008 (2)
C90.092 (3)0.101 (3)0.079 (3)0.013 (2)0.015 (2)0.003 (3)
C80.080 (3)0.099 (3)0.081 (3)0.018 (2)0.024 (2)0.003 (3)
C40.076 (3)0.085 (3)0.102 (3)0.030 (2)0.008 (3)0.022 (3)
C60.095 (3)0.109 (3)0.072 (3)0.040 (3)0.010 (2)0.012 (3)
C50.101 (3)0.107 (4)0.085 (3)0.045 (3)0.008 (3)0.025 (3)
C200.076 (3)0.113 (4)0.098 (3)0.020 (2)0.003 (2)0.030 (3)
C180.114 (3)0.093 (3)0.141 (4)0.065 (3)0.010 (3)0.023 (3)
C190.107 (3)0.073 (3)0.172 (5)0.044 (2)0.007 (3)0.038 (3)
Geometric parameters (Å, º) top
O1—C11.218 (4)C3—C41.383 (5)
C12—C171.384 (4)C3—H30.9300
C12—C131.393 (4)C9—C81.477 (5)
C12—C111.491 (4)C9—H9A0.9700
C2—C71.396 (5)C9—H9B0.9700
C2—C31.404 (4)C8—H8A0.9700
C2—C11.473 (4)C8—H8B0.9700
C17—C161.390 (4)C4—C51.359 (5)
C17—C181.510 (5)C4—H40.9300
C1—C101.486 (4)C6—C51.371 (5)
C10—C111.319 (4)C6—H60.9300
C10—C91.490 (5)C5—H50.9300
C13—C141.389 (4)C20—H20A0.9600
C13—C191.519 (5)C20—H20B0.9600
C11—H110.9300C20—H20C0.9600
C15—C141.373 (5)C18—H18A0.9600
C15—C161.377 (5)C18—H18B0.9600
C15—C201.524 (4)C18—H18C0.9600
C7—C61.390 (5)C19—H19A0.9600
C7—C81.508 (5)C19—H19B0.9600
C16—H160.9300C19—H19C0.9600
C14—H140.9300
C17—C12—C13119.7 (3)C10—C9—H9A109.0
C17—C12—C11120.0 (3)C8—C9—H9B109.0
C13—C12—C11120.3 (3)C10—C9—H9B109.0
C7—C2—C3119.0 (3)H9A—C9—H9B107.8
C7—C2—C1121.2 (3)C9—C8—C7114.6 (4)
C3—C2—C1119.8 (4)C9—C8—H8A108.6
C12—C17—C16119.0 (3)C7—C8—H8A108.6
C12—C17—C18121.7 (3)C9—C8—H8B108.6
C16—C17—C18119.3 (4)C7—C8—H8B108.6
O1—C1—C2121.3 (3)H8A—C8—H8B107.6
O1—C1—C10121.8 (3)C5—C4—C3119.6 (4)
C2—C1—C10116.9 (4)C5—C4—H4120.2
C11—C10—C1119.9 (3)C3—C4—H4120.2
C11—C10—C9125.0 (3)C5—C6—C7120.9 (4)
C1—C10—C9115.1 (3)C5—C6—H6119.6
C14—C13—C12119.3 (3)C7—C6—H6119.6
C14—C13—C19119.7 (4)C4—C5—C6121.0 (4)
C12—C13—C19121.1 (3)C4—C5—H5119.5
C10—C11—C12127.7 (3)C6—C5—H5119.5
C10—C11—H11116.2C15—C20—H20A109.5
C12—C11—H11116.2C15—C20—H20B109.5
C14—C15—C16117.6 (3)H20A—C20—H20B109.5
C14—C15—C20121.2 (4)C15—C20—H20C109.5
C16—C15—C20121.2 (4)H20A—C20—H20C109.5
C6—C7—C2118.9 (3)H20B—C20—H20C109.5
C6—C7—C8120.4 (4)C17—C18—H18A109.5
C2—C7—C8120.6 (3)C17—C18—H18B109.5
C15—C16—C17122.4 (4)H18A—C18—H18B109.5
C15—C16—H16118.8C17—C18—H18C109.5
C17—C16—H16118.8H18A—C18—H18C109.5
C15—C14—C13122.0 (4)H18B—C18—H18C109.5
C15—C14—H14119.0C13—C19—H19A109.5
C13—C14—H14119.0C13—C19—H19B109.5
C4—C3—C2120.6 (4)H19A—C19—H19B109.5
C4—C3—H3119.7C13—C19—H19C109.5
C2—C3—H3119.7H19A—C19—H19C109.5
C8—C9—C10112.8 (4)H19B—C19—H19C109.5
C8—C9—H9A109.0
C13—C12—C17—C160.7 (5)C3—C2—C7—C8178.2 (3)
C11—C12—C17—C16178.2 (3)C1—C2—C7—C82.0 (5)
C13—C12—C17—C18178.9 (3)C14—C15—C16—C170.8 (5)
C11—C12—C17—C181.3 (5)C20—C15—C16—C17179.4 (3)
C7—C2—C1—O1178.4 (4)C12—C17—C16—C150.7 (5)
C3—C2—C1—O15.3 (5)C18—C17—C16—C15178.9 (3)
C7—C2—C1—C103.8 (5)C16—C15—C14—C131.0 (5)
C3—C2—C1—C10172.5 (3)C20—C15—C14—C13179.2 (3)
O1—C1—C10—C1127.7 (6)C12—C13—C14—C151.0 (5)
C2—C1—C10—C11150.1 (3)C19—C13—C14—C15179.9 (4)
O1—C1—C10—C9152.2 (4)C7—C2—C3—C40.7 (5)
C2—C1—C10—C930.0 (5)C1—C2—C3—C4175.6 (3)
C17—C12—C13—C140.8 (5)C11—C10—C9—C8129.8 (4)
C11—C12—C13—C14178.4 (3)C1—C10—C9—C850.3 (5)
C17—C12—C13—C19179.9 (4)C10—C9—C8—C743.9 (5)
C11—C12—C13—C192.6 (5)C6—C7—C8—C9163.5 (4)
C1—C10—C11—C12177.2 (3)C2—C7—C8—C918.7 (6)
C9—C10—C11—C122.9 (7)C2—C3—C4—C50.4 (6)
C17—C12—C11—C1083.3 (5)C2—C7—C6—C50.3 (6)
C13—C12—C11—C1099.2 (5)C8—C7—C6—C5177.5 (4)
C3—C2—C7—C60.4 (5)C3—C4—C5—C60.3 (7)
C1—C2—C7—C6175.9 (3)C7—C6—C5—C40.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.693.493 (5)145
C20—H20C···O1ii0.962.603.535 (5)165
C9—H9A···Cg2iii0.972.903.865 (6)175
Symmetry codes: (i) x+1, y1, z; (ii) x1, y1, z2; (iii) x+1, y, z+1.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationAnsari, F. L., Nazir, S., Noureen, H. & Mirza, B. (2005). Chem. Biodivers. 2, 1656–1664.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317–333.  CAS Google Scholar
First citationBatovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M. & Najdenski, H. (2009). Eur. J. Med. Chem. 44, 2211–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: Wiley.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKostanecki, S. V. & Tambor, J. (1899). Ber. Dtsch. Chem. Ges. 32, 1921–1926.  Google Scholar
First citationKumar, B., Smita, K. & Flores, L. C. (2017). Arabian J. Chem. 10, S2335–S2342.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. H., Seo, G. S., Kim, Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLópez, S. N., Castelli, M. V., Zacchino, S. A., Dom\?ínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodr\?íguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.  Web of Science CrossRef Google Scholar
First citationSaravanan, B., Rajesh, R., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds