research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cLaboratory Organic synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: fouadelkalai80@gmail.com, cemle28baydere@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 April 2019; accepted 21 May 2019; online 24 May 2019)

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.

1. Chemical context

Pyridazines are an important family of six-membered aromatic heterocycles (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]). The related compound pyridazinone is an important pharmacophore with a wide range of biological applications (Asif, 2015[Asif, M. (2015). Mini Rev. Med. Chem. 14, 1093-1103.]), and its chemistry has been studied for several decades. Pyridazinones are used as scaffolds for potential drug candidates (Dubey & Bhosle, 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]; Thakur et al., 2010[Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem, 3, 265-271.]) because of their significant potential as anti­microbial (Sönmez et al., 2006[Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101-105.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti-inflammatory (Barberot et al., 2018[Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139-146.]), anti­hypertensive (Siddiqui et al., 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), analgesic (Gökçe et al., 2009[Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]), anti-HIV (Livermore et al., 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784-3794.]), anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]; Sharma et al., 2014[Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146-157.]), cardiotonic (Wang et al., 2008[Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569-573.]), anti­histaminic (Tao et al., 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]), glucan synthase inhibitors (Zhou et al., 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]), phospho­diesterase (PDE) inhibitors (Ochiai et al., 2012[Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644-1658.]) and herbicidal (Asif, 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]) agents.

[Scheme 1]

In this context and in a continuation of our work in this field (Chkirate et al., 2019a[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154-158.],b[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33-37.]; Karrouchi et al., 2015[Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890-o891.], 2016a[Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883-886.],b[Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839-841.]), we report herein the synthesis and the mol­ecular and crystal structures of the title pyridazinone derivative, together with its Hirshfeld surface analysis.

2. Structural commentary

The mol­ecule of the title compound is not planar (Fig. 1[link]). The unsubstituted phenyl ring (C12–C17) and the pyridazine ring (C8–C11/N1/N2) are twisted relative to each other, making a dihedral angle of 17.41 (13)°; the chloro-substituted phenyl ring (C1–C6) is inclined to the pyridazine ring by 88.19 (13)°. Atoms C8 and N2 of the pyridazine ring show the largest deviations from planarity (root-mean-square deviation = 0.0236 Å) in positive and negative directions [C8 = 0.0357 (15) Å; N2 = −0.0319 (14) Å]. The O1=C8 bond length of the pyridazinone carbonyl function is 1.230 (3) Å, and the N1—N2 bond length in the pyridazine ring is 1.362 (2) Å, both in accordance with values for related pyridazinones.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing exhibits C—H⋯O hydrogen bonds between aryl or methyl­ene groups and carbonyl O atoms (Table 1[link]), as well as C—H⋯π inter­actions and van der Waals contacts. Inter­molecular C7—H7B⋯O1 and C14—H14⋯O2 hydrogen bonds produce R22(10) and R22(24) motif rings (Fig. 2[link]), supplemented by C15—H15⋯O1 contacts, forming chains extending parallel to the c axis (Fig. 2[link]). A weak C20—H20BCg2 (−x + 1, −y, −z + 1; Cg2 is the centroid of the C1–C6 phenyl ring) contact is also present in this chain (Table 1[link]; Fig. 2[link]). Weak aromatic ππ stacking inter­actions between adjacent pyridazine rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.8833 (13) Å, where Cg1 is the centroid of the C8–C11/N1/N2 ring] along the a axis lead to the formation of a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.53 3.416 (3) 160
C7—H7B⋯O1ii 0.97 2.54 3.485 (3) 164
C15—H15⋯O1iii 0.93 2.66 3.474 (3) 147
C20—H20BCg2iv 0.97 2.81 3.759 (3) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1, y-1, z; (iv) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal structure of the title compound. Black dashed lines symbolize inter­molecular C—H⋯O hydrogen bonds; C—H⋯π inter­actions are shown as green dashes lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009[Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350-o1351.]) and ethyl 3-methyl-6-oxo-5-(3-(tri­fluoro­meth­yl)phen­yl)-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]). In the crystal structure of YOTVIN, the mol­ecules are connected two-by-two through N—H⋯O hydrogen bonds with an R22(8) graph-set motif, forming dimers arranged around an inversion center. Weak C—H⋯O hydrogen bonds and weak offset ππ stacking stabilize the packing. In the crystal structure of QANVOR, the phenyl and pyridazinone rings are approximately co-planar, making a dihedral angle of 4.84 (13)°. Centrosymmetrically related mol­ecules form dimers through non-classical inter­molecular C—H⋯O hydrogen bonds.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]), using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1647 (red) to 1.1730 (blue) a.u. The three-dimensional dnorm surface of the title mol­ecule is illustrated in Fig. 3[link]a. The pale-red spots symbolize short contacts and negative dnorm values on the surface and correspond to the C—H⋯O inter­actions (Table 1[link]).

[Figure 3]
Figure 3
(a) dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions, (b) shape-index map of the title compound and (c) curvedness map of the title compound.

The shape-index map of the title mol­ecule was generated in the range −1 to 1 Å (Fig. 3[link]b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. ππ inter­actions are generally indicated by adjacent red and blue triangles in the shape-index map, as is the case for the title mol­ecule.

The curvedness map of the title complex was generated in the range −4.0 to 0.4 Å (Fig. 3[link]c). The curvedness plot of the title complex shows large regions of green with a relatively flat (i.e. planar) surface area, indicating the presence of ππ stacking inter­actions, while the blue regions demonstrate areas of curvature.

The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]a, delineated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 4[link]bf, respectively. The most important inter­molecular inter­action is H⋯H, contributing 44.5% to the overall crystal packing, with the centre of the peak de = di = 1.18 Å (Fig. 4[link]b). H⋯C/ C⋯H contacts, with a 18.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π inter­action (Table 1[link]). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at de + di ∼2.8 Å are present (Fig. 4[link]c). H⋯O/O⋯H contacts arising from inter­molecular C—H⋯O hydrogen bonding make a 15.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.35 Å The C⋯C contacts are a measure of π–\p stacking inter­actions and contribute 2.8% of the Hirshfeld surface. They appear as an arrow-shaped distribution at de + di ∼3.3 Å. Another contact to the Hirshfeld surface is from H⋯Cl/Cl⋯H inter­actions (10.6%).

[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl⋯H and (f) C⋯C inter­actions.

6. Synthesis and crystallization

To a solution (0.99 g, 3 mmol) of 4-(3-di­chloro­benz­yl)-6-phenyl­pyridazin-3(2H)-one in 30 ml of tetra­hydro­furan (THF), potassium carbonate (0.5 g, 3.5 mmol) was added. The mixture was refluxed for 1 h. After cooling, ethyl bromo­acetate (0.66 g, 4 mmol) was added and the mixture was refluxed for 8 h. The precipitated material was removed by filtration and the solvent evaporated under vacuum. The residue was purified through silica gel column chromatography using hexa­ne/ethyl acetate (4:6 v/v). Slow evaporation at room temperature led to formation of single crystals with a yield of 70%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl [Uiso(H) = 1.2Ueq(C)], C—H = 0.96 Å for methyl­ene [Uiso(H) = 1.5Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2Ueq(C)] and C—H = 0.98 Å for methine [Uiso(H) = 1.2Ueq(C)] H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C21H19ClN2O3
Mr 382.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.8410 (11), 10.3043 (12), 11.3610 (12)
α, β, γ (°) 94.801 (9), 103.596 (9), 106.905 (9)
V3) 949.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.88 × 0.53 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.876, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 9612, 3716, 2058
Rint 0.031
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 0.91
No. of reflections 3716
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.34
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Ethyl 2-[5-(3-chlorobenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetate top
Crystal data top
C21H19ClN2O3Z = 2
Mr = 382.83F(000) = 400
Triclinic, P1Dx = 1.339 Mg m3
a = 8.8410 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3043 (12) ÅCell parameters from 11025 reflections
c = 11.3610 (12) Åθ = 3.0–31.4°
α = 94.801 (9)°µ = 0.23 mm1
β = 103.596 (9)°T = 296 K
γ = 106.905 (9)°Prism, yellow
V = 949.6 (2) Å30.88 × 0.53 × 0.19 mm
Data collection top
Stoe IPDS 2
diffractometer
2058 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.031
rotation method scansθmax = 26.0°, θmin = 3.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.876, Tmax = 0.960k = 1212
9612 measured reflectionsl = 1414
3716 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3716 reflectionsΔρmax = 0.26 e Å3
245 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29831 (14)0.53925 (11)0.10674 (8)0.1264 (4)
O30.72303 (19)0.86361 (16)0.93869 (13)0.0654 (5)
O20.4976 (2)0.87323 (18)0.80559 (15)0.0704 (5)
O10.6649 (2)0.89797 (17)0.57180 (15)0.0725 (5)
N10.4130 (2)0.57611 (18)0.60996 (15)0.0503 (5)
N20.5368 (2)0.69655 (18)0.62523 (15)0.0542 (5)
C120.1658 (3)0.4089 (2)0.49033 (17)0.0463 (5)
C110.3033 (3)0.5381 (2)0.50375 (17)0.0462 (5)
C190.6111 (3)0.8315 (2)0.83046 (19)0.0536 (6)
C100.3151 (3)0.6166 (2)0.40745 (18)0.0507 (5)
H100.2381580.5837820.3313770.061*
C90.4352 (3)0.7377 (2)0.42376 (19)0.0528 (6)
C130.0216 (3)0.3784 (2)0.39727 (19)0.0556 (6)
H130.0126810.4379260.3407940.067*
C80.5539 (3)0.7869 (2)0.5427 (2)0.0557 (6)
C50.3334 (3)0.7688 (2)0.2046 (2)0.0602 (6)
C170.1752 (3)0.3177 (2)0.5723 (2)0.0617 (6)
H170.2701300.3355200.6360540.074*
C180.6531 (3)0.7357 (2)0.7459 (2)0.0618 (6)
H18A0.7622080.7800760.7378380.074*
H18B0.6546490.6536800.7816670.074*
C140.1095 (3)0.2608 (3)0.3867 (2)0.0659 (7)
H140.2060770.2427340.3245060.079*
C60.3669 (3)0.6883 (3)0.1175 (2)0.0693 (7)
H60.4658110.6695380.1347090.083*
C150.0967 (4)0.1717 (3)0.4678 (3)0.0735 (7)
H150.1837520.0919110.4602550.088*
C70.4550 (3)0.8283 (2)0.3280 (2)0.0659 (7)
H7A0.5651020.8463000.3184710.079*
H7B0.4441440.9155700.3566660.079*
C200.6983 (3)0.9534 (3)1.0330 (2)0.0697 (7)
H20A0.5924640.9124681.0480730.084*
H20B0.7021851.0416291.0077470.084*
C160.0439 (4)0.1999 (3)0.5596 (3)0.0749 (8)
H160.0518840.1389340.6149120.090*
C10.2528 (4)0.6351 (3)0.0037 (2)0.0752 (8)
C40.1844 (4)0.7928 (3)0.1767 (2)0.0752 (8)
H40.1600600.8473450.2343010.090*
C20.1061 (4)0.6593 (3)0.0218 (3)0.0839 (9)
H20.0300670.6228090.0977960.101*
C30.0711 (4)0.7371 (3)0.0646 (3)0.0902 (9)
H30.0297260.7526770.0477190.108*
C210.8330 (5)0.9709 (4)1.1455 (3)0.1279 (16)
H21A0.9362521.0194221.1317450.192*
H21B0.8344030.8822601.1648310.192*
H21C0.8155871.0223741.2125960.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1545 (9)0.1266 (8)0.0925 (6)0.0370 (7)0.0468 (6)0.0221 (5)
O30.0619 (10)0.0768 (11)0.0468 (8)0.0251 (9)0.0023 (8)0.0084 (7)
O20.0597 (11)0.0818 (12)0.0620 (10)0.0286 (9)0.0007 (8)0.0056 (8)
O10.0687 (11)0.0536 (10)0.0731 (11)0.0058 (9)0.0156 (9)0.0070 (8)
N10.0517 (11)0.0514 (11)0.0437 (10)0.0153 (9)0.0090 (8)0.0008 (8)
N20.0504 (11)0.0545 (11)0.0460 (10)0.0091 (10)0.0048 (8)0.0036 (8)
C120.0519 (13)0.0456 (12)0.0411 (11)0.0144 (10)0.0158 (10)0.0004 (9)
C110.0502 (13)0.0478 (12)0.0386 (11)0.0162 (11)0.0100 (10)0.0005 (9)
C190.0475 (13)0.0558 (13)0.0452 (12)0.0093 (11)0.0012 (10)0.0008 (9)
C100.0563 (14)0.0501 (13)0.0401 (11)0.0141 (11)0.0086 (10)0.0009 (9)
C90.0594 (14)0.0458 (12)0.0505 (12)0.0126 (11)0.0175 (11)0.0015 (9)
C130.0589 (14)0.0537 (13)0.0475 (12)0.0142 (12)0.0098 (11)0.0004 (10)
C80.0573 (15)0.0511 (13)0.0525 (13)0.0119 (12)0.0145 (11)0.0035 (10)
C50.0752 (17)0.0482 (13)0.0541 (13)0.0100 (12)0.0218 (12)0.0158 (10)
C170.0624 (16)0.0636 (15)0.0562 (13)0.0174 (13)0.0130 (12)0.0126 (11)
C180.0541 (14)0.0672 (15)0.0505 (12)0.0165 (12)0.0014 (11)0.0082 (11)
C140.0514 (15)0.0637 (16)0.0668 (15)0.0067 (13)0.0084 (12)0.0105 (13)
C60.0742 (18)0.0634 (15)0.0690 (16)0.0162 (13)0.0246 (14)0.0100 (12)
C150.0699 (18)0.0566 (16)0.0838 (18)0.0018 (13)0.0295 (15)0.0022 (14)
C70.0793 (18)0.0524 (14)0.0592 (14)0.0114 (12)0.0179 (13)0.0110 (11)
C200.0812 (19)0.0734 (17)0.0524 (13)0.0277 (14)0.0147 (13)0.0022 (12)
C160.091 (2)0.0592 (16)0.0750 (17)0.0149 (16)0.0318 (16)0.0214 (13)
C10.095 (2)0.0646 (16)0.0622 (16)0.0137 (16)0.0299 (15)0.0051 (12)
C40.089 (2)0.0779 (18)0.0639 (16)0.0308 (16)0.0244 (15)0.0151 (13)
C20.092 (2)0.085 (2)0.0601 (16)0.0142 (17)0.0099 (16)0.0108 (14)
C30.088 (2)0.101 (2)0.083 (2)0.0356 (18)0.0183 (17)0.0193 (17)
C210.156 (3)0.171 (4)0.0489 (16)0.091 (3)0.0186 (19)0.0337 (18)
Geometric parameters (Å, º) top
Cl1—C11.724 (3)C17—H170.9300
O3—C191.331 (2)C18—H18A0.9700
O3—C201.454 (3)C18—H18B0.9700
O2—C191.187 (3)C14—C151.362 (4)
O1—C81.230 (3)C14—H140.9300
N1—C111.304 (2)C6—C11.391 (4)
N1—N21.362 (2)C6—H60.9300
N2—C81.378 (3)C15—C161.359 (4)
N2—C181.450 (3)C15—H150.9300
C12—C171.383 (3)C7—H7A0.9700
C12—C131.385 (3)C7—H7B0.9700
C12—C111.487 (3)C20—C211.484 (4)
C11—C101.420 (3)C20—H20A0.9700
C19—C181.502 (3)C20—H20B0.9700
C10—C91.347 (3)C16—H160.9300
C10—H100.9300C1—C21.360 (4)
C9—C81.447 (3)C4—C31.378 (4)
C9—C71.500 (3)C4—H40.9300
C13—C141.386 (3)C2—C31.363 (4)
C13—H130.9300C2—H20.9300
C5—C61.378 (3)C3—H30.9300
C5—C41.380 (4)C21—H21A0.9600
C5—C71.503 (3)C21—H21B0.9600
C17—C161.384 (4)C21—H21C0.9600
C19—O3—C20116.13 (18)C13—C14—H14120.1
C11—N1—N2116.83 (18)C5—C6—C1120.0 (3)
N1—N2—C8126.86 (17)C5—C6—H6120.0
N1—N2—C18114.58 (19)C1—C6—H6120.0
C8—N2—C18118.35 (19)C16—C15—C14119.7 (2)
C17—C12—C13117.8 (2)C16—C15—H15120.1
C17—C12—C11121.31 (19)C14—C15—H15120.1
C13—C12—C11120.81 (19)C9—C7—C5114.18 (19)
N1—C11—C10121.6 (2)C9—C7—H7A108.7
N1—C11—C12116.04 (18)C5—C7—H7A108.7
C10—C11—C12122.40 (17)C9—C7—H7B108.7
O2—C19—O3125.0 (2)C5—C7—H7B108.7
O2—C19—C18126.11 (19)H7A—C7—H7B107.6
O3—C19—C18108.9 (2)O3—C20—C21106.6 (2)
C9—C10—C11121.50 (19)O3—C20—H20A110.4
C9—C10—H10119.3C21—C20—H20A110.4
C11—C10—H10119.3O3—C20—H20B110.4
C10—C9—C8118.4 (2)C21—C20—H20B110.4
C10—C9—C7125.0 (2)H20A—C20—H20B108.6
C8—C9—C7116.5 (2)C15—C16—C17121.1 (3)
C12—C13—C14121.3 (2)C15—C16—H16119.4
C12—C13—H13119.4C17—C16—H16119.4
C14—C13—H13119.4C2—C1—C6120.6 (3)
O1—C8—N2120.3 (2)C2—C1—Cl1119.6 (2)
O1—C8—C9125.2 (2)C6—C1—Cl1119.8 (3)
N2—C8—C9114.5 (2)C3—C4—C5120.9 (3)
C6—C5—C4118.5 (2)C3—C4—H4119.6
C6—C5—C7121.1 (3)C5—C4—H4119.6
C4—C5—C7120.4 (2)C1—C2—C3119.7 (3)
C12—C17—C16120.2 (2)C1—C2—H2120.1
C12—C17—H17119.9C3—C2—H2120.1
C16—C17—H17119.9C2—C3—C4120.3 (3)
N2—C18—C19112.24 (19)C2—C3—H3119.9
N2—C18—H18A109.2C4—C3—H3119.9
C19—C18—H18A109.2C20—C21—H21A109.5
N2—C18—H18B109.2C20—C21—H21B109.5
C19—C18—H18B109.2H21A—C21—H21B109.5
H18A—C18—H18B107.9C20—C21—H21C109.5
C15—C14—C13119.8 (2)H21A—C21—H21C109.5
C15—C14—H14120.1H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.533.416 (3)160
C7—H7B···O1ii0.972.543.485 (3)164
C15—H15···O1iii0.932.663.474 (3)147
C20—H20B···Cg2iv0.972.813.759 (3)165
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y1, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationAsif, M. (2015). Mini Rev. Med. Chem. 14, 1093–1103.  CrossRef PubMed Google Scholar
First citationBarberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146.  CrossRef CAS PubMed Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158.  CSD CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37.  CSD CrossRef IUCr Journals Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886.  CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841.  CAS Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOchiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644–1658.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  CrossRef CAS PubMed Google Scholar
First citationSharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105.  Web of Science PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem, 3, 265–271.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds