research communications
and Hirshfeld surface analysis of ethyl 2-[5-(3-chlorobenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetate
aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cLaboratory Organic synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: fouadelkalai80@gmail.com, cemle28baydere@hotmail.com
The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O interactions, forming chains extending parallel to the c-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.
Keywords: crystal structure; pyridazine; Hirshfeld surface analysis.
CCDC reference: 1917654
1. Chemical context
Pyridazines are an important family of six-membered aromatic heterocycles (Akhtar et al., 2016). The related compound pyridazinone is an important pharmacophore with a wide range of biological applications (Asif, 2015), and its chemistry has been studied for several decades. Pyridazinones are used as scaffolds for potential drug candidates (Dubey & Bhosle, 2015; Thakur et al., 2010) because of their significant potential as antimicrobial (Sönmez et al., 2006), antidepressant (Boukharsa et al., 2016), anti-inflammatory (Barberot et al., 2018), antihypertensive (Siddiqui et al., 2011), analgesic (Gökçe et al., 2009), anti-HIV (Livermore et al., 1993), anticonvulsant (Partap et al., 2018; Sharma et al., 2014), cardiotonic (Wang et al., 2008), antihistaminic (Tao et al., 2012), glucan synthase inhibitors (Zhou et al., 2011), phosphodiesterase (PDE) inhibitors (Ochiai et al., 2012) and herbicidal (Asif, 2013) agents.
In this context and in a continuation of our work in this field (Chkirate et al., 2019a,b; Karrouchi et al., 2015, 2016a,b), we report herein the synthesis and the molecular and crystal structures of the title pyridazinone derivative, together with its Hirshfeld surface analysis.
2. Structural commentary
The molecule of the title compound is not planar (Fig. 1). The unsubstituted phenyl ring (C12–C17) and the pyridazine ring (C8–C11/N1/N2) are twisted relative to each other, making a dihedral angle of 17.41 (13)°; the chloro-substituted phenyl ring (C1–C6) is inclined to the pyridazine ring by 88.19 (13)°. Atoms C8 and N2 of the pyridazine ring show the largest deviations from planarity (root-mean-square deviation = 0.0236 Å) in positive and negative directions [C8 = 0.0357 (15) Å; N2 = −0.0319 (14) Å]. The O1=C8 bond length of the pyridazinone carbonyl function is 1.230 (3) Å, and the N1—N2 bond length in the pyridazine ring is 1.362 (2) Å, both in accordance with values for related pyridazinones.
3. Supramolecular features
The crystal packing exhibits C—H⋯O hydrogen bonds between aryl or methylene groups and carbonyl O atoms (Table 1), as well as C—H⋯π interactions and van der Waals contacts. Intermolecular C7—H7B⋯O1 and C14—H14⋯O2 hydrogen bonds produce R22(10) and R22(24) motif rings (Fig. 2), supplemented by C15—H15⋯O1 contacts, forming chains extending parallel to the c axis (Fig. 2). A weak C20—H20B⋯Cg2 (−x + 1, −y, −z + 1; Cg2 is the centroid of the C1–C6 phenyl ring) contact is also present in this chain (Table 1; Fig. 2). Weak aromatic π–π stacking interactions between adjacent pyridazine rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.8833 (13) Å, where Cg1 is the centroid of the C8–C11/N1/N2 ring] along the a axis lead to the formation of a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 4-benzyl-6-p-tolylpyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009) and ethyl 3-methyl-6-oxo-5-(3-(trifluoromethyl)phenyl)-1,6-dihydro-1-pyridazineacetate (QANVOR; Xu et al., 2005). In the of YOTVIN, the molecules are connected two-by-two through N—H⋯O hydrogen bonds with an R22(8) graph-set motif, forming dimers arranged around an inversion center. Weak C—H⋯O hydrogen bonds and weak offset π–π stacking stabilize the packing. In the of QANVOR, the phenyl and pyridazinone rings are approximately co-planar, making a dihedral angle of 4.84 (13)°. Centrosymmetrically related molecules form dimers through non-classical intermolecular C—H⋯O hydrogen bonds.
5. Hirshfeld surface analysis
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017), using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1647 (red) to 1.1730 (blue) a.u. The three-dimensional dnorm surface of the title molecule is illustrated in Fig. 3a. The pale-red spots symbolize short contacts and negative dnorm values on the surface and correspond to the C—H⋯O interactions (Table 1).
The shape-index map of the title molecule was generated in the range −1 to 1 Å (Fig. 3b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. π–π interactions are generally indicated by adjacent red and blue triangles in the shape-index map, as is the case for the title molecule.
The curvedness map of the title complex was generated in the range −4.0 to 0.4 Å (Fig. 3c). The curvedness plot of the title complex shows large regions of green with a relatively flat (i.e. planar) surface area, indicating the presence of π–π stacking interactions, while the blue regions demonstrate areas of curvature.
The overall two-dimensional fingerprint plot is illustrated in Fig. 4a, delineated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 4b–f, respectively. The most important intermolecular interaction is H⋯H, contributing 44.5% to the overall crystal packing, with the centre of the peak de = di = 1.18 Å (Fig. 4b). H⋯C/ C⋯H contacts, with a 18.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π interaction (Table 1). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at de + di ∼2.8 Å are present (Fig. 4c). H⋯O/O⋯H contacts arising from intermolecular C—H⋯O hydrogen bonding make a 15.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.35 Å The C⋯C contacts are a measure of π–\p stacking interactions and contribute 2.8% of the Hirshfeld surface. They appear as an arrow-shaped distribution at de + di ∼3.3 Å. Another contact to the Hirshfeld surface is from H⋯Cl/Cl⋯H interactions (10.6%).
6. Synthesis and crystallization
To a solution (0.99 g, 3 mmol) of 4-(3-dichlorobenzyl)-6-phenylpyridazin-3(2H)-one in 30 ml of tetrahydrofuran (THF), potassium carbonate (0.5 g, 3.5 mmol) was added. The mixture was refluxed for 1 h. After cooling, ethyl bromoacetate (0.66 g, 4 mmol) was added and the mixture was refluxed for 8 h. The precipitated material was removed by filtration and the solvent evaporated under vacuum. The residue was purified through silica gel using hexane/ethyl acetate (4:6 v/v). Slow evaporation at room temperature led to formation of single crystals with a yield of 70%.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl [Uiso(H) = 1.2Ueq(C)], C—H = 0.96 Å for methylene [Uiso(H) = 1.5Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2Ueq(C)] and C—H = 0.98 Å for methine [Uiso(H) = 1.2Ueq(C)] H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1917654
https://doi.org/10.1107/S2056989019007424/wm5505sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007424/wm5505Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007424/wm5505Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C21H19ClN2O3 | Z = 2 |
Mr = 382.83 | F(000) = 400 |
Triclinic, P1 | Dx = 1.339 Mg m−3 |
a = 8.8410 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3043 (12) Å | Cell parameters from 11025 reflections |
c = 11.3610 (12) Å | θ = 3.0–31.4° |
α = 94.801 (9)° | µ = 0.23 mm−1 |
β = 103.596 (9)° | T = 296 K |
γ = 106.905 (9)° | Prism, yellow |
V = 949.6 (2) Å3 | 0.88 × 0.53 × 0.19 mm |
Stoe IPDS 2 diffractometer | 2058 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.031 |
rotation method scans | θmax = 26.0°, θmin = 3.0° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −10→10 |
Tmin = 0.876, Tmax = 0.960 | k = −12→12 |
9612 measured reflections | l = −14→14 |
3716 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
3716 reflections | Δρmax = 0.26 e Å−3 |
245 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29831 (14) | 0.53925 (11) | −0.10674 (8) | 0.1264 (4) | |
O3 | 0.72303 (19) | 0.86361 (16) | 0.93869 (13) | 0.0654 (5) | |
O2 | 0.4976 (2) | 0.87323 (18) | 0.80559 (15) | 0.0704 (5) | |
O1 | 0.6649 (2) | 0.89797 (17) | 0.57180 (15) | 0.0725 (5) | |
N1 | 0.4130 (2) | 0.57611 (18) | 0.60996 (15) | 0.0503 (5) | |
N2 | 0.5368 (2) | 0.69655 (18) | 0.62523 (15) | 0.0542 (5) | |
C12 | 0.1658 (3) | 0.4089 (2) | 0.49033 (17) | 0.0463 (5) | |
C11 | 0.3033 (3) | 0.5381 (2) | 0.50375 (17) | 0.0462 (5) | |
C19 | 0.6111 (3) | 0.8315 (2) | 0.83046 (19) | 0.0536 (6) | |
C10 | 0.3151 (3) | 0.6166 (2) | 0.40745 (18) | 0.0507 (5) | |
H10 | 0.238158 | 0.583782 | 0.331377 | 0.061* | |
C9 | 0.4352 (3) | 0.7377 (2) | 0.42376 (19) | 0.0528 (6) | |
C13 | 0.0216 (3) | 0.3784 (2) | 0.39727 (19) | 0.0556 (6) | |
H13 | 0.012681 | 0.437926 | 0.340794 | 0.067* | |
C8 | 0.5539 (3) | 0.7869 (2) | 0.5427 (2) | 0.0557 (6) | |
C5 | 0.3334 (3) | 0.7688 (2) | 0.2046 (2) | 0.0602 (6) | |
C17 | 0.1752 (3) | 0.3177 (2) | 0.5723 (2) | 0.0617 (6) | |
H17 | 0.270130 | 0.335520 | 0.636054 | 0.074* | |
C18 | 0.6531 (3) | 0.7357 (2) | 0.7459 (2) | 0.0618 (6) | |
H18A | 0.762208 | 0.780076 | 0.737838 | 0.074* | |
H18B | 0.654649 | 0.653680 | 0.781667 | 0.074* | |
C14 | −0.1095 (3) | 0.2608 (3) | 0.3867 (2) | 0.0659 (7) | |
H14 | −0.206077 | 0.242734 | 0.324506 | 0.079* | |
C6 | 0.3669 (3) | 0.6883 (3) | 0.1175 (2) | 0.0693 (7) | |
H6 | 0.465811 | 0.669538 | 0.134709 | 0.083* | |
C15 | −0.0967 (4) | 0.1717 (3) | 0.4678 (3) | 0.0735 (7) | |
H15 | −0.183752 | 0.091911 | 0.460255 | 0.088* | |
C7 | 0.4550 (3) | 0.8283 (2) | 0.3280 (2) | 0.0659 (7) | |
H7A | 0.565102 | 0.846300 | 0.318471 | 0.079* | |
H7B | 0.444144 | 0.915570 | 0.356666 | 0.079* | |
C20 | 0.6983 (3) | 0.9534 (3) | 1.0330 (2) | 0.0697 (7) | |
H20A | 0.592464 | 0.912468 | 1.048073 | 0.084* | |
H20B | 0.702185 | 1.041629 | 1.007747 | 0.084* | |
C16 | 0.0439 (4) | 0.1999 (3) | 0.5596 (3) | 0.0749 (8) | |
H16 | 0.051884 | 0.138934 | 0.614912 | 0.090* | |
C1 | 0.2528 (4) | 0.6351 (3) | 0.0037 (2) | 0.0752 (8) | |
C4 | 0.1844 (4) | 0.7928 (3) | 0.1767 (2) | 0.0752 (8) | |
H4 | 0.160060 | 0.847345 | 0.234301 | 0.090* | |
C2 | 0.1061 (4) | 0.6593 (3) | −0.0218 (3) | 0.0839 (9) | |
H2 | 0.030067 | 0.622809 | −0.097796 | 0.101* | |
C3 | 0.0711 (4) | 0.7371 (3) | 0.0646 (3) | 0.0902 (9) | |
H3 | −0.029726 | 0.752677 | 0.047719 | 0.108* | |
C21 | 0.8330 (5) | 0.9709 (4) | 1.1455 (3) | 0.1279 (16) | |
H21A | 0.936252 | 1.019422 | 1.131745 | 0.192* | |
H21B | 0.834403 | 0.882260 | 1.164831 | 0.192* | |
H21C | 0.815587 | 1.022374 | 1.212596 | 0.192* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1545 (9) | 0.1266 (8) | 0.0925 (6) | 0.0370 (7) | 0.0468 (6) | −0.0221 (5) |
O3 | 0.0619 (10) | 0.0768 (11) | 0.0468 (8) | 0.0251 (9) | −0.0023 (8) | −0.0084 (7) |
O2 | 0.0597 (11) | 0.0818 (12) | 0.0620 (10) | 0.0286 (9) | 0.0007 (8) | −0.0056 (8) |
O1 | 0.0687 (11) | 0.0536 (10) | 0.0731 (11) | −0.0058 (9) | 0.0156 (9) | −0.0070 (8) |
N1 | 0.0517 (11) | 0.0514 (11) | 0.0437 (10) | 0.0153 (9) | 0.0090 (8) | 0.0008 (8) |
N2 | 0.0504 (11) | 0.0545 (11) | 0.0460 (10) | 0.0091 (10) | 0.0048 (8) | −0.0036 (8) |
C12 | 0.0519 (13) | 0.0456 (12) | 0.0411 (11) | 0.0144 (10) | 0.0158 (10) | 0.0004 (9) |
C11 | 0.0502 (13) | 0.0478 (12) | 0.0386 (11) | 0.0162 (11) | 0.0100 (10) | 0.0005 (9) |
C19 | 0.0475 (13) | 0.0558 (13) | 0.0452 (12) | 0.0093 (11) | 0.0012 (10) | 0.0008 (9) |
C10 | 0.0563 (14) | 0.0501 (13) | 0.0401 (11) | 0.0141 (11) | 0.0086 (10) | 0.0009 (9) |
C9 | 0.0594 (14) | 0.0458 (12) | 0.0505 (12) | 0.0126 (11) | 0.0175 (11) | 0.0015 (9) |
C13 | 0.0589 (14) | 0.0537 (13) | 0.0475 (12) | 0.0142 (12) | 0.0098 (11) | −0.0004 (10) |
C8 | 0.0573 (15) | 0.0511 (13) | 0.0525 (13) | 0.0119 (12) | 0.0145 (11) | −0.0035 (10) |
C5 | 0.0752 (17) | 0.0482 (13) | 0.0541 (13) | 0.0100 (12) | 0.0218 (12) | 0.0158 (10) |
C17 | 0.0624 (16) | 0.0636 (15) | 0.0562 (13) | 0.0174 (13) | 0.0130 (12) | 0.0126 (11) |
C18 | 0.0541 (14) | 0.0672 (15) | 0.0505 (12) | 0.0165 (12) | −0.0014 (11) | −0.0082 (11) |
C14 | 0.0514 (15) | 0.0637 (16) | 0.0668 (15) | 0.0067 (13) | 0.0084 (12) | −0.0105 (13) |
C6 | 0.0742 (18) | 0.0634 (15) | 0.0690 (16) | 0.0162 (13) | 0.0246 (14) | 0.0100 (12) |
C15 | 0.0699 (18) | 0.0566 (16) | 0.0838 (18) | 0.0018 (13) | 0.0295 (15) | −0.0022 (14) |
C7 | 0.0793 (18) | 0.0524 (14) | 0.0592 (14) | 0.0114 (12) | 0.0179 (13) | 0.0110 (11) |
C20 | 0.0812 (19) | 0.0734 (17) | 0.0524 (13) | 0.0277 (14) | 0.0147 (13) | −0.0022 (12) |
C16 | 0.091 (2) | 0.0592 (16) | 0.0750 (17) | 0.0149 (16) | 0.0318 (16) | 0.0214 (13) |
C1 | 0.095 (2) | 0.0646 (16) | 0.0622 (16) | 0.0137 (16) | 0.0299 (15) | 0.0051 (12) |
C4 | 0.089 (2) | 0.0779 (18) | 0.0639 (16) | 0.0308 (16) | 0.0244 (15) | 0.0151 (13) |
C2 | 0.092 (2) | 0.085 (2) | 0.0601 (16) | 0.0142 (17) | 0.0099 (16) | 0.0108 (14) |
C3 | 0.088 (2) | 0.101 (2) | 0.083 (2) | 0.0356 (18) | 0.0183 (17) | 0.0193 (17) |
C21 | 0.156 (3) | 0.171 (4) | 0.0489 (16) | 0.091 (3) | −0.0186 (19) | −0.0337 (18) |
Cl1—C1 | 1.724 (3) | C17—H17 | 0.9300 |
O3—C19 | 1.331 (2) | C18—H18A | 0.9700 |
O3—C20 | 1.454 (3) | C18—H18B | 0.9700 |
O2—C19 | 1.187 (3) | C14—C15 | 1.362 (4) |
O1—C8 | 1.230 (3) | C14—H14 | 0.9300 |
N1—C11 | 1.304 (2) | C6—C1 | 1.391 (4) |
N1—N2 | 1.362 (2) | C6—H6 | 0.9300 |
N2—C8 | 1.378 (3) | C15—C16 | 1.359 (4) |
N2—C18 | 1.450 (3) | C15—H15 | 0.9300 |
C12—C17 | 1.383 (3) | C7—H7A | 0.9700 |
C12—C13 | 1.385 (3) | C7—H7B | 0.9700 |
C12—C11 | 1.487 (3) | C20—C21 | 1.484 (4) |
C11—C10 | 1.420 (3) | C20—H20A | 0.9700 |
C19—C18 | 1.502 (3) | C20—H20B | 0.9700 |
C10—C9 | 1.347 (3) | C16—H16 | 0.9300 |
C10—H10 | 0.9300 | C1—C2 | 1.360 (4) |
C9—C8 | 1.447 (3) | C4—C3 | 1.378 (4) |
C9—C7 | 1.500 (3) | C4—H4 | 0.9300 |
C13—C14 | 1.386 (3) | C2—C3 | 1.363 (4) |
C13—H13 | 0.9300 | C2—H2 | 0.9300 |
C5—C6 | 1.378 (3) | C3—H3 | 0.9300 |
C5—C4 | 1.380 (4) | C21—H21A | 0.9600 |
C5—C7 | 1.503 (3) | C21—H21B | 0.9600 |
C17—C16 | 1.384 (4) | C21—H21C | 0.9600 |
C19—O3—C20 | 116.13 (18) | C13—C14—H14 | 120.1 |
C11—N1—N2 | 116.83 (18) | C5—C6—C1 | 120.0 (3) |
N1—N2—C8 | 126.86 (17) | C5—C6—H6 | 120.0 |
N1—N2—C18 | 114.58 (19) | C1—C6—H6 | 120.0 |
C8—N2—C18 | 118.35 (19) | C16—C15—C14 | 119.7 (2) |
C17—C12—C13 | 117.8 (2) | C16—C15—H15 | 120.1 |
C17—C12—C11 | 121.31 (19) | C14—C15—H15 | 120.1 |
C13—C12—C11 | 120.81 (19) | C9—C7—C5 | 114.18 (19) |
N1—C11—C10 | 121.6 (2) | C9—C7—H7A | 108.7 |
N1—C11—C12 | 116.04 (18) | C5—C7—H7A | 108.7 |
C10—C11—C12 | 122.40 (17) | C9—C7—H7B | 108.7 |
O2—C19—O3 | 125.0 (2) | C5—C7—H7B | 108.7 |
O2—C19—C18 | 126.11 (19) | H7A—C7—H7B | 107.6 |
O3—C19—C18 | 108.9 (2) | O3—C20—C21 | 106.6 (2) |
C9—C10—C11 | 121.50 (19) | O3—C20—H20A | 110.4 |
C9—C10—H10 | 119.3 | C21—C20—H20A | 110.4 |
C11—C10—H10 | 119.3 | O3—C20—H20B | 110.4 |
C10—C9—C8 | 118.4 (2) | C21—C20—H20B | 110.4 |
C10—C9—C7 | 125.0 (2) | H20A—C20—H20B | 108.6 |
C8—C9—C7 | 116.5 (2) | C15—C16—C17 | 121.1 (3) |
C12—C13—C14 | 121.3 (2) | C15—C16—H16 | 119.4 |
C12—C13—H13 | 119.4 | C17—C16—H16 | 119.4 |
C14—C13—H13 | 119.4 | C2—C1—C6 | 120.6 (3) |
O1—C8—N2 | 120.3 (2) | C2—C1—Cl1 | 119.6 (2) |
O1—C8—C9 | 125.2 (2) | C6—C1—Cl1 | 119.8 (3) |
N2—C8—C9 | 114.5 (2) | C3—C4—C5 | 120.9 (3) |
C6—C5—C4 | 118.5 (2) | C3—C4—H4 | 119.6 |
C6—C5—C7 | 121.1 (3) | C5—C4—H4 | 119.6 |
C4—C5—C7 | 120.4 (2) | C1—C2—C3 | 119.7 (3) |
C12—C17—C16 | 120.2 (2) | C1—C2—H2 | 120.1 |
C12—C17—H17 | 119.9 | C3—C2—H2 | 120.1 |
C16—C17—H17 | 119.9 | C2—C3—C4 | 120.3 (3) |
N2—C18—C19 | 112.24 (19) | C2—C3—H3 | 119.9 |
N2—C18—H18A | 109.2 | C4—C3—H3 | 119.9 |
C19—C18—H18A | 109.2 | C20—C21—H21A | 109.5 |
N2—C18—H18B | 109.2 | C20—C21—H21B | 109.5 |
C19—C18—H18B | 109.2 | H21A—C21—H21B | 109.5 |
H18A—C18—H18B | 107.9 | C20—C21—H21C | 109.5 |
C15—C14—C13 | 119.8 (2) | H21A—C21—H21C | 109.5 |
C15—C14—H14 | 120.1 | H21B—C21—H21C | 109.5 |
Cg2 is the centroid of the C1–C6 phenyl ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O2i | 0.93 | 2.53 | 3.416 (3) | 160 |
C7—H7B···O1ii | 0.97 | 2.54 | 3.485 (3) | 164 |
C15—H15···O1iii | 0.93 | 2.66 | 3.474 (3) | 147 |
C20—H20B···Cg2iv | 0.97 | 2.81 | 3.759 (3) | 165 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x−1, y−1, z; (iv) −x+1, −y, −z+1. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122. Web of Science CrossRef CAS Google Scholar
Asif, M. (2015). Mini Rev. Med. Chem. 14, 1093–1103. CrossRef PubMed Google Scholar
Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. CrossRef CAS PubMed Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158. CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. CSD CrossRef IUCr Journals Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886. CAS Google Scholar
Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841. CAS Google Scholar
Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644–1658. Web of Science CrossRef CAS PubMed Google Scholar
Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. Web of Science CSD CrossRef IUCr Journals Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. CrossRef CAS PubMed Google Scholar
Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. Web of Science PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. Web of Science CrossRef CAS PubMed Google Scholar
Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem, 3, 265–271. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. Web of Science PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.