research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[(μ-6-{[bis­­(pyridin-2-ylmeth­yl)amino]­meth­yl}pyridine-2-carboxyl­ato)copper(II)] perchlorate aceto­nitrile monosolvate]

CROSSMARK_Color_square_no_text.svg

aWestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
*Correspondence e-mail: Mark.Symes@glasgow.ac.uk

Edited by M. Zeller, Purdue University, USA (Received 8 April 2019; accepted 3 May 2019; online 14 May 2019)

The crystal structure of the title compound, {[Cu(C19H17N4O2)]ClO4·C2H3N}n, is reported and compared to similar structures in the literature. The compound crystallizes in the monoclinic space group P21. The unit cell contains one complex mol­ecule in addition to perchlorate as the counter-ion and solvent (aceto­nitrile). The crystal packing evinces extended chains whereby the carboxyl­ate moiety on the 6-carboxyl­ato-2-(pyridyl­meth­yl)bis­(pyridin-2-ylmeth­yl)amine ligand bridges between two different copper centers in adjacent mol­ecules. This packing arrangement for the title compound appears to be unique when compared to allied structures in the literature. The perchlorate anion showed signs of disorder and its oxygen atoms were modelled over two sets of partially occupied sites, the occupancy of which was competitively refined to 0.564 (12)/0.436 (12). The crystal studied was refined as a two-component inversion twin.

1. Chemical context

A key part of the natural nitro­gen cycle is the reduction of nitrite to nitric oxide by denitrifying bacteria. The copper-containing nitrite reductases are one of the classes of enzymes that undertake this reduction reaction (Maia & Moura, 2014[Maia, L. B. & Moura, J. J. G. (2014). Chem. Rev. 114, 5273-5357.]). Previous studies have shown that the active site of these enzymes consists of a Cu center coordinated by three N-donor ligands, with the coordination environment being completed by either water or nitrite, depending on the progress of the catalytic cycle (Godden et al., 1991[Godden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J. & LeGall, J. (1991). Science, 253, 438-442.]). This realization has spawned a large number of studies examining the use of copper centers held by multi-dentate N-donor ligands as mimics of the active sites of the copper-containing nitrite reductases (Wasser et al., 2002[Wasser, I. M., de Vries, S., Moënne-Loccoz, P., Schröder, I. & Karlin, K. D. (2002). Chem. Rev. 102, 1201-1234.]; Timmons & Symes, 2015[Timmons, A. J. & Symes, M. D. (2015). Chem. Soc. Rev. 44, 6708-6722.]). In this context, there has been inter­est from ourselves (Cioncoloni et al., 2018[Cioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070-5084.]) and others (Komeda et al., 1995[Komeda, N., Nagao, H., Kushi, Y., Adachi, G., Suzuki, M., Uehara, A. & Tanaka, K. (1995). Bull. Chem. Soc. Jpn, 68, 581-589.]; Nagao et al., 1996[Nagao, H., Komeda, N., Mukaida, M., Suzuki, M. & Tanaka, K. (1996). Inorg. Chem. 35, 6809-6815.]; Orain et al., 2013[Orain, C., Porras-Gutiérrez, A. G., Evoung Evoung, F., Charles, C., Cosquer, N., Gomila, A., Conan, F., Le Mest, Y. & Le Poul, N. (2013). Electrochem. Commun. 34, 204-207.]) in employing copper complexes based on the tetra­dentate ligand tris­(2-methyl­pyrid­yl)amine (TMPA) as electrocatalysts for the reduction of nitrite to nitric oxide, mimicking some of the activity of the copper nitrite reductases.

In the course of our previous study (Cioncoloni et al., 2018[Cioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070-5084.]), we reported two TMPA-based copper complexes that were electrocatalysts for nitrite reduction to NO: [Cu(OH2)(TMPA-CO2)]+ [where one of the TMPA pyridines bears a carboxyl­ate unit that can coordinate to the Cu center and in which the ligand can be named as 6-carboxyl­ato-2-(pyridyl­meth­yl)bis(pyridin-2-ylmeth­yl)amine] and the methyl­ated analogue of this complex, [Cu(OH2)(TMPA-CO2Me)]2+. The acid-bearing complex was found to be the more active of the two electrocatalysts. However, although we were able to report the crystal structure of the methyl ester complex after recrystallization from aceto­nitrile solution, and also the structure of the acid-bearing complex when coordinated to nitrite ([Cu(NO2)(TMPA-CO2)]), we were not able to obtain similar data for [Cu(TMPA-CO2)]+ when not bound to nitrite. This was a source of considerable frustration to us at the time, as the structure of the acid-bearing complex prior to nitrite addition constituted a `missing link' in our characterization of this suite of compounds.

[Scheme 1]

Herein, we report that we have now indeed been able to obtain crystals of the acid-bearing complex in the absence of nitrite ([Cu(TMPA-CO2)]+) by vapour diffusion of diethyl ether into an aceto­nitrile solution of [Cu(OH2)(TMPA-CO2)]+. In this manuscript, we report this crystal structure and compare it to the structures of [Cu(NO2)(TMPA-CO2)], [Cu(NCCH3)(TMPA-CO2Me)]2+, and other allied structures from the literature.

2. Structural commentary

The Cu ion in [Cu(TMPA-CO2)]+ is in a hexa-coordinated environment where the two oxygen atoms of the carboxyl­ate group are coordinated by two symmetry-related Cu centers, thus forming extended chains (see Figs. 1[link] and 2[link]). This suggests that the carboxyl­ate group is deprotonated. The presence of a perchlorate anion in the unit cell, coupled with the hexa-coordinate geometry, suggests that the copper is in the +2 oxidation state. The geometry around the Cu center is considerably distorted from octa­hedral, with all the vertices showing significant deviations from their positions in the platonic scenario as evinced by the following bond angles: N1—Cu1—O2 = 150.1 (2)°, O1i—Cu1—N2 = 161.0 (2)° and N4—Cu1—N3 = 158.7 (2)° [symmetry code: (i) −x + 1, y − [1\over2], −z].

[Figure 1]
Figure 1
View showing the asymmetric unit and atom labelling. Displacement ellipsoids are drawn at 50% probability level. The minor disorder component of the perchlorate ion and H atoms are omitted for clarity. Colour scheme: C = grey, Cl = green, Cu = purple, N = blue, O = red.
[Figure 2]
Figure 2
View showing a chain running parallel to the b axis generated by the 21 screw axis. Colour scheme: C = grey, Cl = green, Cu = purple, N = blue, O = red.

In terms of bond lengths, the Cu—N1 bond length is long [2.296 (6) Å], consistent with N1 being a tertiary amine, rather than a pyridine nitro­gen. The Cu—Npyrid­yl lengths are all significantly shorter than this Cu—Nalk­yl inter­action, covering the range 2.000 (5)–2.076 (6) Å. There is an intriguing disparity in the lengths of the two Cu–oxygen inter­actions, with Cu—O1i being very short [1.965 (5) Å] in comparison to the Cu—O2 bond length [2.387 (5) Å]. Coupled with the long Cu—N1 bond, this implies that the N1—Cu1—O2 axis is displaying the Jahn–Teller elongation characteristic of many octa­hedral CuII complexes. Indeed, this Jahn–Teller effect manifests along the same axis as we observed previously for the related complex [Cu(NO2)(TMPA-CO2)] (Cioncoloni et al., 2018[Cioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070-5084.]). Table 1[link] summarizes some selected geometric parameters for [Cu(TMPA-CO2)]+.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1i 1.965 (5) Cu1—N2 2.076 (6)
Cu1—O2 2.387 (5) Cu1—N3 2.026 (6)
Cu1—N1 2.296 (6) Cu1—N4 2.000 (5)
       
O1i—Cu1—O2 88.33 (19) N3—Cu1—O2 99.4 (2)
O1i—Cu1—N1 121.6 (2) N3—Cu1—N1 79.3 (2)
O1i—Cu1—N2 161.0 (2) N3—Cu1—N2 89.5 (2)
O1i—Cu1—N3 94.9 (2) N4—Cu1—O2 101.0 (2)
O1i—Cu1—N4 91.7 (2) N4—Cu1—N1 79.9 (2)
N1—Cu1—O2 150.1 (2) N4—Cu1—N2 90.8 (2)
N2—Cu1—O2 72.76 (19) N4—Cu1—N3 158.7 (2)
N2—Cu1—N1 77.3 (2)    
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z].

3. Supra­molecular features

The crystal structure shows that the carboxyl­ate moiety on the modified TMPA ligand bridges between two different copper centers, with the result that extended chains of complexes form (see above for a discussion of these coordination bonds). Between the chains, there is some evidence for weak hydrogen bond-type inter­actions between the perchlorate oxygen atoms and the protons on the –CH2– units in the TMPA ligands of complexes in neighbouring chains, and/or between the perchlorate anions and protons on the pyridine rings of some of the TMPA ligands (see Table 2[link]). In this sense, the perchlorate ions can be considered as bridging between adjacent chains of complexes. Meanwhile, the aceto­nitrile mol­ecule forms a hydrogen bond between its nitro­gen and a C—H proton on one of the aromatic rings of the ligand, whilst simultaneously engaging in a hydrogen-bond-like inter­action involving one of its methyl protons and the oxygen on a nearby perchlorate anion. However, there would appear to be no direct supra­molecular inter­actions between adjacent chains.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O5A 0.97 2.21 3.167 (19) 169
C3—H3A⋯O3ii 0.97 2.54 3.484 (16) 165
C3—H3B⋯O2i 0.97 2.44 3.149 (10) 130
C22—H22⋯N1Sii 0.93 2.53 3.393 (14) 154
C32—H32⋯O5ii 0.93 2.49 3.386 (17) 163
C32—H32⋯O3Aii 0.93 2.40 3.31 (2) 165
C34—H34⋯O3Aiii 0.93 2.41 3.23 (2) 148
C42—H42⋯O6iv 0.93 2.61 3.43 (2) 147
C42—H42⋯O6Aiv 0.93 2.64 3.21 (2) 121
C3S—H3SC⋯O4v 0.96 2.54 3.16 (2) 123
C3S—H3SC⋯O6 0.96 2.46 3.11 (2) 125
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z-1; (iv) [-x+2, y-{\script{1\over 2}}, -z+1]; (v) [-x+2, y+{\script{1\over 2}}, -z+1].

4. Comparison with related structures

Kojima and co-workers have previously reported complexes of this same (TMPA-CO2) ligand with RuIII and CrIII (Kojima et al., 2010[Kojima, T., Hirai, Y., Ishizuka, T., Shiota, Y., Yoshizawa, K., Ikemura, K., Ogura, T. & Fukuzumi, S. (2010). Angew. Chem. Int. Ed. 49, 8449-8453.]; Kotani et al., 2015[Kotani, H., Kaida, S., Ishizuka, T., Sakaguchi, M., Ogura, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2015). Chem. Sci. 6, 945-955.]). These complexes all display a distorted octa­hedral geometry in which the metals coordinate to the three pyridyl nitro­gen atoms and the alkyl nitro­gen in the TMPA backbone as well as to one of the carboxyl­ate oxygen atoms. However, in these examples the sixth coordination site is occupied by either chloride or BF4 (which binds through an F atom) and so the complexes do not form extended chains in the solid state (the carboxyl­ate does not bridge between adjacent metal centers). Likewise, Lonnon et al. (2003[Lonnon, D. G., Craig, D. C. & Colbran, S. B. (2003). Inorg. Chem. Commun. 6, 1351-1353.]) have described a CoIII complex of this ligand in which the carboxyl­ate coordinates to the metal center and where the sixth ligand is chloride. Again, the presence of this monodentate ligand means that these mol­ecules exist as discrete complexes in the solid state. The metal–Ocarboxyl­ate distances in the CrIII and CoIII complexes reported by Kojima and co-workers and Lonnon et al. are not dissimilar to the Cu1—O1 distance we observe [Cr—O = 1.959 Å and Co—O = 1.924 Å compared to Cu1—O1 = 1.965 (5) Å in our case].

In the aforementioned RuIII, CrIII and CoIII examples, the metal–chloride and metal–BF4 inter­actions tend to be long, and the pyridine bearing the carboxyl­ate unit is found to be trans to this chloride or BF4 ligand (and so it tends to display the shortest metal–Npyrid­yl length in the complex). In our case, however, it is precisely this Cu—Npyrid­yl bond between the Cu atom and the pyridine that bears the carboxyl­ate substituent which is the longest of the three Cu—Npyrid­yl bonds. A similar elongation of the Cu—Npyrid­yl bond for pyridines bearing substituents adjacent to the N-donor has been observed previously by Tanaka and co-workers for the complex [CuCl(TMPA-Me)]+, where the TMPA pyridine bearing the methyl group exhibited a significantly longer Cu—N inter­action than that found for the unsubstituted pyridines (2.337 vs. 1.99 Å; Nagao et al., 1996[Nagao, H., Komeda, N., Mukaida, M., Suzuki, M. & Tanaka, K. (1996). Inorg. Chem. 35, 6809-6815.]). We also noted an analogous elongation in our previously reported crystal structure of the complex [Cu(NCCH3)(TMPA-CO2Me)]2+ (Cioncoloni et al., 2018[Cioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070-5084.]). One possible cause of this bond-elongation effect could be steric crowding brought about by the close proximity of the various substituents to the N-donor atom (Symes & Wilson, 2018[Symes, M. D. & Wilson, C. (2018). Supramol. Chem. 30, 742-750.]). In support of this hypothesis, long Cu—N inter­actions of a similar nature also manifest in certain CuII–tris­(2-methyl­pyrid­yl)amine complexes (where all the pyridines bear substituents next to the N-donors) reported by Reinaud and co-workers (Izzet et al., 2007[Izzet, G., Zeng, X., Akdas, H., Marrot, J. & Reinaud, O. (2007). Chem. Commun. pp. 810-812.]).

Suzuki and co-workers have reported two related CuII complexes with carboxyl­ate-substituted TMPA-like ligands where the carboxyl­ate group binds to the CuII centre (Hayashi et al., 2002[Hayashi, H., Uozumi, K., Fujinami, S., Nagatomo, S., Shiren, K., Furutachi, H., Suzuki, M., Uehara, A. & Kitagawa, T. (2002). Chem. Lett. 31, 416-417.]; Mizuno et al., 2006[Mizuno, M., Honda, K., Cho, J., Furutachi, H., Tosha, T., Matsumoto, T., Fujinami, S., Kitagawa, T. & Suzuki, M. (2006). Angew. Chem. Int. Ed. 45, 6911-6914.]), but for both of these structures the metal is only five-coordinate. The same authors have also published the crystal structure of an allied six-coordinate NiII complex containing an Ni⋯Ocarboxyl­ate inter­action (2.084 Å) and where the sixth ligand is water (Shiren et al., 2000[Shiren, K., Ogo, S., Fujinami, S., Hayashi, H., Suzuki, M., Uehara, A., Watanabe, Y. & Moro-oka, Y. (2000). J. Am. Chem. Soc. 122, 254-262.]). Again, these complexes appear to exist as discrete ions in the solid state and the formation of extended chains of complexes was not reported.

A number of structures in which CuII is supported by a TMPA-like ligand (which also bears a carboxyl­ate group which coordinates to Cu), but where the linkage between the pyridine groups in the ligand is a bis­pidine have been described by Comba and co-workers (Comba et al., 2016[Comba, P., Grimm, L., Orvig, C., Rück, K. & Wadepohl, H. (2016). Inorg. Chem. 55, 12531-12543.], 2018[Comba, P., Jakob, M., Rück, K. & Wadepohl, H. (2018). Inorg. Chim. Acta, 481, 98-105.]). In these structures, the metal center adopts a distorted octa­hedral geometry, with bonds to each of the three pyridines, two bonds to the amines in the bis­pidine backbone and a final bond to the carboxyl­ate oxygen. Again, then, the carboxyl­ate does not bridge between two Cu centers in neighbouring complexes and so extended chains are not observed.

5. Synthesis and crystallization

The synthesis and characterization of the complex [Cu(OH2)(TMPA-CO2)](ClO4) have been reported previously (Cioncoloni et al., 2018[Cioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070-5084.]). Crystals of [Cu(TMPA-CO2)](ClO4) were grown by vapor diffusion of diethyl ether into a 14 mL vial containing 2 mg of [Cu(OH2)(TMPA-CO2)](ClO4) dissolved in 2 mL of aceto­nitrile. The 14 mL vial was sealed with a plastic cap, which was pierced by a needle, thus retarding the rate of mixing of the anti­solvent into the aceto­nitrile solution. Crystals suitable for diffraction were obtained after 2–3 weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The perchlorate anion showed signs of disorder and its oxygen atoms were modelled over two sets of partially occupied sites, the occupancy of which was competitively refined to 0.564 (12)/0.436 (12). Similarity distances restraints were applied to Cl—O bond lengths and O⋯O separations, as well as to the oxygen displacement parameters. Hydrogen atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å) and refined as part of a riding model with Uiso(H) values set at 1.2Ueq of the parent carbon atoms, except the methyl hydrogen atoms of the aceto­nitrile which were refined as a rigid rotor with Uiso(H) set at 1.5Ueq of the methyl carbon atom. The crystal studied was refined as a two-component inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C19H17N4O2)]ClO4·C2H3N
Mr 537.41
Crystal system, space group Monoclinic, P21
Temperature (K) 295
a, b, c (Å) 9.320 (3), 9.974 (3), 12.949 (5)
β (°) 109.710 (13)
V3) 1133.1 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.13
Crystal size (mm) 0.33 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.647, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15681, 5631, 4168
Rint 0.065
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.147, 1.01
No. of reflections 5631
No. of parameters 346
No. of restraints 203
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.36
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.01 (3)
Computer programs: APEX3 and, SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[(µ-6-{[bis(pyridin-2-ylmethyl)amino]methyl}pyridine-2-carboxylato)copper(II)] perchlorate acetonitrile monosolvate] top
Crystal data top
[Cu(C19H17N4O2)]ClO4·C2H3NF(000) = 550
Mr = 537.41Dx = 1.575 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.320 (3) ÅCell parameters from 5520 reflections
b = 9.974 (3) Åθ = 2.3–24.7°
c = 12.949 (5) ŵ = 1.13 mm1
β = 109.710 (13)°T = 295 K
V = 1133.1 (6) Å3Lath, blue
Z = 20.33 × 0.07 × 0.02 mm
Data collection top
Bruker D8 VENTURE
diffractometer
5631 independent reflections
Radiation source: microfocus sealed tube, INCOATEC Iµs 3.04168 reflections with I > 2σ(I)
Multilayer mirror optics monochromatorRint = 0.065
Detector resolution: 7.4074 pixels mm-1θmax = 28.4°, θmin = 2.3°
φ and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.647, Tmax = 0.746l = 1717
15681 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5631 reflectionsΔρmax = 0.82 e Å3
346 parametersΔρmin = 0.36 e Å3
203 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.51948 (8)0.34337 (8)0.09197 (6)0.0371 (2)
O10.4445 (6)0.7684 (4)0.0375 (4)0.0457 (12)
O20.4624 (7)0.5529 (4)0.0021 (4)0.0496 (12)
N10.5445 (7)0.2152 (5)0.2443 (5)0.0422 (13)
N20.4717 (6)0.4793 (5)0.1974 (5)0.0360 (12)
N30.3055 (7)0.2687 (5)0.0532 (5)0.0417 (13)
N40.7432 (6)0.3632 (6)0.1717 (5)0.0433 (14)
C20.5221 (11)0.2979 (7)0.3312 (7)0.0521 (19)
H2A0.6167380.3010360.3927930.062*
H2B0.4459060.2558130.3562770.062*
C30.4263 (9)0.1134 (8)0.2015 (7)0.0488 (19)
H3A0.4011610.0736970.2616600.059*
H3B0.4642040.0429100.1659580.059*
C40.7035 (9)0.1691 (8)0.2716 (7)0.0542 (19)
H4A0.7073380.0950620.2239950.065*
H4B0.7409550.1373090.3467500.065*
C210.4725 (8)0.4385 (7)0.2957 (6)0.0398 (15)
C220.4344 (9)0.5259 (8)0.3657 (7)0.0501 (18)
H220.4376090.4970170.4347330.060*
C230.3923 (10)0.6543 (9)0.3330 (7)0.057 (2)
H230.3638210.7127000.3786340.069*
C240.3925 (8)0.6965 (7)0.2317 (6)0.0480 (17)
H240.3648440.7838330.2081130.058*
C250.4344 (7)0.6066 (6)0.1658 (6)0.0348 (15)
C260.4491 (7)0.6439 (6)0.0574 (6)0.0376 (14)
C310.2860 (8)0.1743 (6)0.1209 (6)0.0456 (16)
C320.1394 (9)0.1350 (8)0.1130 (7)0.056 (2)
H320.1251790.0734060.1626370.068*
C330.0161 (11)0.1872 (10)0.0321 (9)0.073 (3)
H330.0821390.1600050.0252710.087*
C340.0397 (10)0.2809 (9)0.0390 (8)0.065 (2)
H340.0420820.3168310.0952200.079*
C350.1858 (9)0.3197 (7)0.0253 (6)0.0526 (19)
H350.2020070.3838080.0723210.063*
C410.8035 (9)0.2817 (7)0.2577 (6)0.0506 (18)
C420.9517 (10)0.2992 (9)0.3260 (7)0.066 (2)
H420.9917820.2431110.3862930.079*
C431.0397 (10)0.3970 (10)0.3066 (8)0.072 (3)
H431.1400190.4077940.3526110.087*
C440.9788 (10)0.4811 (10)0.2172 (8)0.070 (3)
H441.0361260.5499640.2021470.084*
C450.8316 (9)0.4590 (7)0.1523 (7)0.0508 (18)
H450.7903100.5135410.0912170.061*
Cl10.8713 (3)0.4368 (3)0.6178 (2)0.0791 (8)
O30.7360 (14)0.478 (2)0.6156 (15)0.122 (5)0.564 (12)
O40.8583 (19)0.2962 (13)0.5808 (15)0.105 (5)0.564 (12)
O50.9871 (17)0.4452 (18)0.7185 (10)0.113 (5)0.564 (12)
O60.933 (2)0.4989 (17)0.5431 (13)0.124 (5)0.564 (12)
O3A0.857 (3)0.3871 (19)0.7163 (13)0.118 (6)0.436 (12)
O4A0.776 (2)0.5562 (18)0.5965 (18)0.110 (6)0.436 (12)
O5A0.820 (3)0.348 (2)0.5358 (14)0.119 (6)0.436 (12)
O6A1.0168 (17)0.481 (2)0.639 (2)0.130 (7)0.436 (12)
N1S0.6734 (13)0.8932 (11)0.4305 (10)0.103 (3)
C2S0.7272 (12)0.8141 (11)0.3977 (8)0.075 (3)
C3S0.7983 (13)0.7027 (12)0.3537 (11)0.097 (4)
H3SA0.8136190.7317000.2874590.145*
H3SB0.7321110.6260350.3382650.145*
H3SC0.8946290.6790430.4071210.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0469 (4)0.0296 (3)0.0357 (4)0.0019 (4)0.0150 (3)0.0008 (4)
O10.069 (3)0.028 (2)0.044 (3)0.009 (2)0.024 (2)0.008 (2)
O20.081 (4)0.030 (2)0.042 (3)0.001 (2)0.026 (3)0.000 (2)
N10.057 (3)0.034 (3)0.036 (3)0.002 (2)0.016 (3)0.005 (3)
N20.042 (3)0.033 (3)0.033 (3)0.005 (2)0.012 (2)0.001 (2)
N30.054 (3)0.035 (3)0.039 (3)0.000 (2)0.018 (3)0.002 (2)
N40.048 (3)0.041 (4)0.043 (3)0.002 (3)0.018 (2)0.002 (3)
C20.080 (5)0.042 (4)0.037 (4)0.003 (3)0.024 (4)0.006 (3)
C30.063 (4)0.038 (4)0.050 (5)0.006 (3)0.026 (4)0.004 (3)
C40.055 (4)0.048 (4)0.056 (5)0.003 (3)0.014 (4)0.018 (4)
C210.045 (3)0.040 (3)0.032 (4)0.004 (3)0.011 (3)0.004 (3)
C220.057 (4)0.061 (5)0.039 (4)0.003 (4)0.026 (3)0.001 (4)
C230.070 (5)0.064 (5)0.049 (5)0.007 (4)0.035 (4)0.006 (4)
C240.052 (4)0.043 (3)0.054 (5)0.009 (3)0.024 (3)0.000 (3)
C250.034 (3)0.030 (3)0.040 (4)0.001 (2)0.012 (3)0.002 (3)
C260.034 (3)0.035 (3)0.041 (4)0.003 (3)0.010 (3)0.002 (3)
C310.060 (4)0.036 (3)0.045 (4)0.009 (3)0.024 (3)0.005 (3)
C320.062 (4)0.047 (4)0.063 (5)0.011 (3)0.025 (4)0.003 (4)
C330.058 (5)0.075 (6)0.090 (8)0.016 (4)0.031 (5)0.010 (6)
C340.057 (5)0.058 (4)0.070 (6)0.002 (4)0.006 (4)0.007 (4)
C350.067 (4)0.041 (5)0.045 (4)0.000 (3)0.012 (3)0.002 (3)
C410.056 (4)0.047 (4)0.048 (5)0.003 (3)0.016 (3)0.006 (3)
C420.056 (5)0.079 (6)0.053 (5)0.005 (4)0.006 (4)0.016 (4)
C430.047 (4)0.095 (7)0.066 (6)0.012 (4)0.006 (4)0.013 (5)
C440.059 (5)0.076 (6)0.077 (7)0.008 (4)0.026 (5)0.013 (5)
C450.056 (4)0.051 (4)0.047 (4)0.004 (3)0.021 (3)0.011 (3)
Cl10.0638 (13)0.102 (2)0.0718 (17)0.0176 (13)0.0237 (12)0.0053 (15)
O30.087 (9)0.157 (12)0.127 (11)0.012 (9)0.044 (8)0.032 (10)
O40.086 (9)0.103 (10)0.122 (12)0.029 (7)0.028 (9)0.020 (9)
O50.114 (10)0.149 (11)0.061 (8)0.027 (9)0.010 (7)0.023 (8)
O60.153 (11)0.136 (10)0.093 (10)0.018 (10)0.053 (9)0.003 (9)
O3A0.148 (12)0.125 (12)0.084 (10)0.033 (10)0.043 (9)0.001 (9)
O4A0.078 (10)0.135 (13)0.116 (12)0.004 (10)0.033 (9)0.029 (11)
O5A0.117 (11)0.162 (13)0.067 (10)0.009 (12)0.016 (9)0.031 (12)
O6A0.090 (11)0.115 (12)0.167 (15)0.025 (10)0.021 (11)0.005 (13)
N1S0.115 (8)0.105 (7)0.099 (8)0.010 (6)0.050 (6)0.033 (6)
C2S0.077 (6)0.084 (8)0.061 (6)0.018 (5)0.021 (5)0.019 (5)
C3S0.088 (7)0.093 (8)0.112 (10)0.006 (6)0.037 (7)0.034 (7)
Geometric parameters (Å, º) top
Cu1—O1i1.965 (5)C24—C251.382 (10)
Cu1—O22.387 (5)C25—C261.502 (10)
Cu1—N12.296 (6)C31—C321.392 (11)
Cu1—N22.076 (6)C32—H320.9300
Cu1—N32.026 (6)C32—C331.370 (13)
Cu1—N42.000 (5)C33—H330.9300
O1—C261.265 (7)C33—C341.381 (14)
O2—C261.224 (8)C34—H340.9300
N1—C21.466 (9)C34—C351.368 (11)
N1—C31.463 (9)C35—H350.9300
N1—C41.475 (10)C41—C421.377 (11)
N2—C211.334 (9)C42—H420.9300
N2—C251.344 (8)C42—C431.352 (12)
N3—C311.340 (9)C43—H430.9300
N3—C351.330 (9)C43—C441.386 (13)
N4—C411.340 (9)C44—H440.9300
N4—C451.340 (9)C44—C451.363 (12)
C2—H2A0.9700C45—H450.9300
C2—H2B0.9700Cl1—O31.317 (12)
C2—C211.499 (10)Cl1—O41.473 (12)
C3—H3A0.9700Cl1—O51.386 (11)
C3—H3B0.9700Cl1—O61.422 (12)
C3—C311.500 (11)Cl1—O3A1.415 (14)
C4—H4A0.9700Cl1—O4A1.456 (14)
C4—H4B0.9700Cl1—O5A1.339 (14)
C4—C411.508 (11)Cl1—O6A1.362 (13)
C21—C221.387 (10)N1S—C2S1.095 (13)
C22—H220.9300C2S—C3S1.501 (16)
C22—C231.364 (12)C3S—H3SA0.9600
C23—H230.9300C3S—H3SB0.9600
C23—C241.379 (11)C3S—H3SC0.9600
C24—H240.9300
O1i—Cu1—O288.33 (19)C23—C24—H24120.6
O1i—Cu1—N1121.6 (2)C23—C24—C25118.7 (7)
O1i—Cu1—N2161.0 (2)C25—C24—H24120.6
O1i—Cu1—N394.9 (2)N2—C25—C24121.5 (7)
O1i—Cu1—N491.7 (2)N2—C25—C26115.0 (6)
N1—Cu1—O2150.1 (2)C24—C25—C26123.4 (6)
N2—Cu1—O272.76 (19)O1—C26—C25115.2 (6)
N2—Cu1—N177.3 (2)O2—C26—O1127.1 (7)
N3—Cu1—O299.4 (2)O2—C26—C25117.7 (6)
N3—Cu1—N179.3 (2)N3—C31—C3117.5 (7)
N3—Cu1—N289.5 (2)N3—C31—C32119.8 (7)
N4—Cu1—O2101.0 (2)C32—C31—C3122.7 (7)
N4—Cu1—N179.9 (2)C31—C32—H32120.1
N4—Cu1—N290.8 (2)C33—C32—C31119.9 (8)
N4—Cu1—N3158.7 (2)C33—C32—H32120.1
C26—O1—Cu1ii122.9 (5)C32—C33—H33120.5
C26—O2—Cu1112.4 (4)C32—C33—C34119.1 (8)
C2—N1—Cu1110.3 (4)C34—C33—H33120.5
C2—N1—C4112.6 (6)C33—C34—H34120.7
C3—N1—Cu1102.5 (4)C35—C34—C33118.7 (8)
C3—N1—C2113.4 (6)C35—C34—H34120.7
C3—N1—C4116.2 (6)N3—C35—C34122.2 (8)
C4—N1—Cu1100.5 (4)N3—C35—H35118.9
C21—N2—Cu1119.7 (4)C34—C35—H35118.9
C21—N2—C25119.8 (6)N4—C41—C4116.6 (7)
C25—N2—Cu1120.5 (5)N4—C41—C42120.4 (7)
C31—N3—Cu1115.8 (5)C42—C41—C4123.0 (7)
C35—N3—Cu1123.4 (5)C41—C42—H42119.6
C35—N3—C31120.2 (7)C43—C42—C41120.8 (8)
C41—N4—Cu1116.2 (5)C43—C42—H42119.6
C45—N4—Cu1125.0 (5)C42—C43—H43120.4
C45—N4—C41118.4 (6)C42—C43—C44119.3 (8)
N1—C2—H2A108.8C44—C43—H43120.4
N1—C2—H2B108.8C43—C44—H44121.3
N1—C2—C21113.6 (6)C45—C44—C43117.4 (8)
H2A—C2—H2B107.7C45—C44—H44121.3
C21—C2—H2A108.8N4—C45—C44123.7 (7)
C21—C2—H2B108.8N4—C45—H45118.1
N1—C3—H3A109.5C44—C45—H45118.1
N1—C3—H3B109.5O3—Cl1—O4108.4 (9)
N1—C3—C31110.5 (6)O3—Cl1—O5116.0 (9)
H3A—C3—H3B108.1O3—Cl1—O6116.9 (11)
C31—C3—H3A109.5O5—Cl1—O4108.4 (9)
C31—C3—H3B109.5O5—Cl1—O6104.4 (9)
N1—C4—H4A109.5O6—Cl1—O4101.6 (9)
N1—C4—H4B109.5O3A—Cl1—O4A102.7 (10)
N1—C4—C41110.5 (6)O5A—Cl1—O3A111.5 (12)
H4A—C4—H4B108.1O5A—Cl1—O4A111.0 (11)
C41—C4—H4A109.5O5A—Cl1—O6A115.6 (13)
C41—C4—H4B109.5O6A—Cl1—O3A108.9 (12)
N2—C21—C2118.7 (6)O6A—Cl1—O4A106.2 (11)
N2—C21—C22120.8 (6)N1S—C2S—C3S178.3 (12)
C22—C21—C2120.5 (6)C2S—C3S—H3SA109.5
C21—C22—H22120.1C2S—C3S—H3SB109.5
C23—C22—C21119.8 (7)C2S—C3S—H3SC109.5
C23—C22—H22120.1H3SA—C3S—H3SB109.5
C22—C23—H23120.3H3SA—C3S—H3SC109.5
C22—C23—C24119.3 (7)H3SB—C3S—H3SC109.5
C24—C23—H23120.3
Cu1ii—O1—C26—O26.7 (10)C2—C21—C22—C23178.8 (8)
Cu1ii—O1—C26—C25174.1 (4)C3—N1—C2—C21108.0 (7)
Cu1—O2—C26—O1167.3 (5)C3—N1—C4—C41150.8 (7)
Cu1—O2—C26—C2513.6 (7)C3—C31—C32—C33175.1 (8)
Cu1—N1—C2—C216.3 (8)C4—N1—C2—C21117.6 (7)
Cu1—N1—C3—C3138.8 (7)C4—N1—C3—C31147.3 (7)
Cu1—N1—C4—C4141.2 (7)C4—C41—C42—C43176.1 (9)
Cu1—N2—C21—C25.6 (8)C21—N2—C25—C241.7 (9)
Cu1—N2—C21—C22177.1 (5)C21—N2—C25—C26175.5 (6)
Cu1—N2—C25—C24175.7 (5)C21—C22—C23—C241.9 (12)
Cu1—N2—C25—C267.0 (7)C22—C23—C24—C250.5 (12)
Cu1—N3—C31—C312.9 (8)C23—C24—C25—N21.4 (11)
Cu1—N3—C31—C32168.2 (6)C23—C24—C25—C26175.7 (7)
Cu1—N3—C35—C34170.0 (6)C24—C25—C26—O111.0 (9)
Cu1—N4—C41—C410.8 (9)C24—C25—C26—O2168.3 (6)
Cu1—N4—C41—C42171.7 (7)C25—N2—C21—C2177.0 (6)
Cu1—N4—C45—C44170.9 (7)C25—N2—C21—C220.3 (9)
N1—C2—C21—N28.0 (10)C31—N3—C35—C341.3 (11)
N1—C2—C21—C22174.7 (7)C31—C32—C33—C341.5 (13)
N1—C3—C31—N338.2 (9)C32—C33—C34—C350.9 (13)
N1—C3—C31—C32143.0 (7)C33—C34—C35—N31.0 (12)
N1—C4—C41—N439.1 (10)C35—N3—C31—C3175.2 (7)
N1—C4—C41—C42143.5 (8)C35—N3—C31—C323.7 (10)
N2—C21—C22—C231.5 (11)C41—N4—C45—C442.0 (12)
N2—C25—C26—O1166.3 (6)C41—C42—C43—C440.6 (15)
N2—C25—C26—O214.5 (9)C42—C43—C44—C450.7 (15)
N3—C31—C32—C333.8 (12)C43—C44—C45—N41.4 (14)
N4—C41—C42—C431.2 (14)C45—N4—C41—C4175.7 (7)
C2—N1—C3—C3180.0 (8)C45—N4—C41—C421.8 (11)
C2—N1—C4—C4176.1 (8)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O5A0.972.213.167 (19)169
C3—H3A···O3iii0.972.543.484 (16)165
C3—H3B···O2i0.972.443.149 (10)130
C22—H22···N1Siii0.932.533.393 (14)154
C32—H32···O5iii0.932.493.386 (17)163
C32—H32···O3Aiii0.932.403.31 (2)165
C34—H34···O3Aiv0.932.413.23 (2)148
C42—H42···O6v0.932.613.43 (2)147
C42—H42···O6Av0.932.643.21 (2)121
C3S—H3SC···O4vi0.962.543.16 (2)123
C3S—H3SC···O60.962.463.11 (2)125
Symmetry codes: (i) x+1, y1/2, z; (iii) x+1, y1/2, z+1; (iv) x1, y, z1; (v) x+2, y1/2, z+1; (vi) x+2, y+1/2, z+1.
 

Acknowledgements

MDS thanks the Royal Society for a University Research Fellowship.

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (grant No. EP/L023652/1); Royal Society (award No. UF150104).

References

First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCioncoloni, G., Roger, I., Wheatley, P. S., Wilson, C., Morris, R. E., Sproules, S. & Symes, M. D. (2018). ACS Catal. 8, 5070–5084.  Web of Science CSD CrossRef CAS Google Scholar
First citationComba, P., Grimm, L., Orvig, C., Rück, K. & Wadepohl, H. (2016). Inorg. Chem. 55, 12531–12543.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationComba, P., Jakob, M., Rück, K. & Wadepohl, H. (2018). Inorg. Chim. Acta, 481, 98-105.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGodden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J. & LeGall, J. (1991). Science, 253, 438–442.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHayashi, H., Uozumi, K., Fujinami, S., Nagatomo, S., Shiren, K., Furutachi, H., Suzuki, M., Uehara, A. & Kitagawa, T. (2002). Chem. Lett. 31, 416–417.  Web of Science CSD CrossRef Google Scholar
First citationIzzet, G., Zeng, X., Akdas, H., Marrot, J. & Reinaud, O. (2007). Chem. Commun. pp. 810–812.  Web of Science CSD CrossRef Google Scholar
First citationKojima, T., Hirai, Y., Ishizuka, T., Shiota, Y., Yoshizawa, K., Ikemura, K., Ogura, T. & Fukuzumi, S. (2010). Angew. Chem. Int. Ed. 49, 8449–8453.  Web of Science CSD CrossRef CAS Google Scholar
First citationKomeda, N., Nagao, H., Kushi, Y., Adachi, G., Suzuki, M., Uehara, A. & Tanaka, K. (1995). Bull. Chem. Soc. Jpn, 68, 581–589.  CSD CrossRef CAS Web of Science Google Scholar
First citationKotani, H., Kaida, S., Ishizuka, T., Sakaguchi, M., Ogura, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2015). Chem. Sci. 6, 945–955.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLonnon, D. G., Craig, D. C. & Colbran, S. B. (2003). Inorg. Chem. Commun. 6, 1351–1353.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaia, L. B. & Moura, J. J. G. (2014). Chem. Rev. 114, 5273–5357.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMizuno, M., Honda, K., Cho, J., Furutachi, H., Tosha, T., Matsumoto, T., Fujinami, S., Kitagawa, T. & Suzuki, M. (2006). Angew. Chem. Int. Ed. 45, 6911–6914.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagao, H., Komeda, N., Mukaida, M., Suzuki, M. & Tanaka, K. (1996). Inorg. Chem. 35, 6809–6815.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationOrain, C., Porras-Gutiérrez, A. G., Evoung Evoung, F., Charles, C., Cosquer, N., Gomila, A., Conan, F., Le Mest, Y. & Le Poul, N. (2013). Electrochem. Commun. 34, 204–207.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiren, K., Ogo, S., Fujinami, S., Hayashi, H., Suzuki, M., Uehara, A., Watanabe, Y. & Moro-oka, Y. (2000). J. Am. Chem. Soc. 122, 254–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationSymes, M. D. & Wilson, C. (2018). Supramol. Chem. 30, 742–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationTimmons, A. J. & Symes, M. D. (2015). Chem. Soc. Rev. 44, 6708–6722.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWasser, I. M., de Vries, S., Moënne-Loccoz, P., Schröder, I. & Karlin, K. D. (2002). Chem. Rev. 102, 1201–1234.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds