research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­iodido­{N′-[(E)-(phen­yl)(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide-κ2N′,O}cadmium(II)

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa,Ürgüp, Nevşehir, Turkey, bDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dLaboratorio de Estudios Cristalograficos, IACT, CSIC-Universidad de Granada, Av. De las Palmeras 4, E-18100 Armilla, Granada, Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 May 2019; accepted 21 June 2019; online 25 June 2019)

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N′-tridentate N′-[(E)-(phen­yl)(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O penta­coordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both mol­ecules feature an intra­molecular N—H⋯N hydrogen bond. In the crystal, weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.830 (2) Å] link the mol­ecules into dimers.

1. Chemical context

Hydrazone ligands show high efficiency in chelating transition-metal ions (Afkhami et al., 2017a[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). CrystEngComm, 19, 1389-1399.]); such ligands obtained from pyridine carb­oxy­lic acids can act as ditopic ligands because of their two different donor sites, including an N-donor pyridine group and a tridentate coordination pocket, and have the potential to form mono-, di- and multinuclear structures (Afkhami et al., 2017b[Afkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). Inorg. Chim. Acta, 457, 150-159.]). In this work, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title CdII complex, (I)[link], containing the tridentate hydrazone ligand N′-[(E)-(pyridin-2-yl)methyl­idene]pyridine-2-carbohydrazide.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], which contains two [CdI2(C18H14N4O)] mol­ecules, A (with Cd1) and B (with Cd2), in the asymmetric unit is shown in Fig. 1[link]. In both mol­ecules, the Cd atom is penta­coordinated to two N, one O and two I atoms (Table 1[link]). The Addison τ parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) qu­anti­fies the distinction between trigonal–bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0) geometries. For the title complex, τ = 0.11 for A and 0.09 for B, indicating a distorted square-pyramidal geometry (Fig. 2[link]).

Table 1
Selected bond lengths (Å)

Cd1—N2 2.342 (3) Cd2—N6 2.344 (3)
Cd1—N1 2.380 (3) Cd2—N5 2.369 (3)
Cd1—O1 2.450 (2) Cd2—O2 2.481 (3)
Cd1—I2 2.6917 (4) Cd2—I4 2.6732 (4)
Cd1—I1 2.7509 (4) Cd2—I3 2.7530 (4)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
View of the coordination polyhedra about the Cd atoms in (I)[link], showing their distorted square-based pyramidal geometries.

The dihedral angles between the planes of the pyridine rings are 4.44 (17)° for A and and 15.63 (17)° for B. For A, the Cd1—I1 and Cd1—I2 bond lengths are 2.7509 (4) and 2.6917 (4) Å, respectively, and the Cd1—N2 bond length is 2.342 (3) Å. For B, the Cd2—I3 and Cd2—I4 bond lengths are 2.7530 (4) and 2.6732 (4) Å, respectively, and the Cd2—N6 bond length is 2.344 (3) Å. Both mol­ecules feature an intra­molecular N—H⋯N hydrogen bond with the pyridine-ring N atom as the acceptor (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N4 0.88 2.27 2.629 (4) 104
N7—H7⋯N8 0.88 2.28 2.640 (4) 104

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I)[link], mol­ecules are linked into dimeric A + B associations by aromatic ππ stacking inter­actions [Cg3⋯Cg4(−x, 1 − y, 1 − z) = 3.830 (2) Å, where Cg3 and Cg4 are the centroids of the pyridine rings (N1/C1–C5) and (N4/C14–C18), respectively] (Fig. 3[link]).

[Figure 3]
Figure 3
Partial packing diagram of (I)[link] showing the A and B mol­ecules linked by a pair of ππ stacking inter­actions. Symmetry operation: (iv) −x, 1 − y, 1 − z.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of (I)[link] was performed using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) to generate dnorm surface plots and two -dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Fig. 4[link]a shows the overall two-dimensional fingerprint plot for the contacts contributing to the Hirshfeld surface. The percentage contributions and Hirshfeld surfaces for H⋯I /I⋯H contacts (30.5%), H⋯H (29.5%), C⋯H / H⋯C (13.3%), H⋯O / O⋯H (5.6%) and C⋯I / I⋯C (4.9%) are shown in Figs. 4[link]bf, respectively. The full list of percentage surface contributions in given in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯I/I⋯H 30.5
H⋯H 29.5
C⋯H/H⋯C 13.3
H⋯O/O⋯H 5.6
C⋯I/I⋯C 4.9
C⋯C 3.3
N⋯H/H⋯N 2.9
C⋯N/N⋯C 2.8
H⋯Cd/Cd⋯H 2.1
N⋯I/I⋯N 1.7
N⋯O/O⋯N 1.5
I⋯I 0.6
N⋯N 0.4
C⋯O/O⋯C 0.4
C⋯Cd/Cd⋯C 0.3
N⋯Cd/Cd⋯N 0.2
[Figure 4]
Figure 4
Hirshfeld surface representations and the two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯I/I⋯H, (c) H⋯H, (d) C⋯H/H⋯C, (e) H⋯O/O⋯H and (f) C⋯I/I⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

All bond lengths and angles in (I)[link] fall within their expected ranges and are comparable with those reported for related structures, such as bis­{N′-[(E)-4-hy­droxy­benzyl­idene]-pyridine-4-carbohydrazide-κN1}di­iodido­cadmium methanol disolvate (CCDC refcode: DADHIC; Afkhami et al., 2017c[Afkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28-30.]), di­bromido­{N′-[1-(pyridin-2-yl)ethyl­idene]picolinohydrazide-κ2N′,O}cadmium (ACUDOT;Akkurt et al., 2012[Akkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). Acta Cryst. E68, m842.]), di-μ-chlorido-bis­(chlorido­{N′-[phen­yl(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide-κ2N′,O}cadmium) (JOBTEB; Akkurt et al., 2014[Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213-m214.]), bis­{2-[(2,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}bis­(thio­cyanato-κN)cadmium (GARTAW; Malekshahian et al., 2012[Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218-m219.]) and cis-di­aqua­bis-[(E)-4-(2-hy­droxy­benzyl­idene­amino)­benzoato-κ2O,O′]cadmium (WEH­SOS; Yao et al., 2006[Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183-m185.]) in which layers are built by strong O—H⋯O hydrogen bonds. In the crystal of di­iodido-{N-[(pyrid­in-2-yl-κN)methyl­idene]picolinohydrazide-κ2N′,O}cadmium (W­ASCEB; Khandar et al., 2017[Khandar, A. A., Afkhami, F. A., Krautscheid, H., Kristoffersen, K. A., Atioğlu, Z., Akkurt, M. & Görbitz, C. H. (2017). Acta Cryst. E73, 698-701.]), the mol­ecules are linked by N—H⋯I hydrogen bonds, forming chains propagating along [010].

5. Synthesis and crystallization

The N′-[(E)-(pyridin-2-yl)methyl­idene]pyridine-2-carbohydrazide ligand was synthesized according to the literature method (Abedi et al., 2016[Abedi, M., Yeşilel, O. Z., Mahmoudi, G., Bauzá, A., Lofland, S. E., Yerli, Y., Kaminsky, W., Garczarek, P., Zaręba, J. K., Ienco, A., Frontera, A. & Gargari, M. S. (2016). Inorg. Chim. Acta, 443, 101-109.]). To prepare single crystals of (I)[link], an equimolar mixture (1.0 mmol) of the hydrazone ligand and metal salt [CdI2] were placed in the main arm of a branched tube, and methanol was carefully added to fill the arms (Khandar et al., 2015[Khandar, A. A., Ghosh, B. K., Lampropoulos, C., Gargari, M. S., Yilmaz, V. T., Bhar, K., Hosseini-Yazdi, S. A., Cain, J. M. & Mahmoudi, G. (2015). Polyhedron, 85, 467-475.]). The tube was sealed and the mixture-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at room temperature. After a couple of days, yellow prisms of (I)[link] had been deposited in the cooler arm and these were isolated, filtered off, washed with diethyl ether and dried over P4O10 in vacuo.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were placed in calculated positions (C—H = 0.95 Å, N—H= 0.88 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(N,C).

Table 4
Experimental details

Crystal data
Chemical formula [CdI2(C18H14N4O)]
Mr 668.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 19.9158 (15), 11.7252 (9), 17.8349 (14)
β (°) 104.207 (1)
V3) 4037.4 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.16
Crystal size (mm) 0.34 × 0.33 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.600, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24216, 9018, 7948
Rint 0.020
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.03
No. of reflections 9018
No. of parameters 469
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.26, −0.56
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2015).

Diiodido{N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II) top
Crystal data top
[CdI2(C18H14N4O)]F(000) = 2496
Mr = 668.53Dx = 2.200 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.9158 (15) ÅCell parameters from 9930 reflections
b = 11.7252 (9) Åθ = 2.2–27.8°
c = 17.8349 (14) ŵ = 4.16 mm1
β = 104.207 (1)°T = 100 K
V = 4037.4 (5) Å3Hexagonal prism, yellow
Z = 80.34 × 0.33 × 0.17 mm
Data collection top
Bruker SMART APEX
diffractometer
7948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2625
Tmin = 0.600, Tmax = 0.746k = 1512
24216 measured reflectionsl = 2022
9018 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0306P)2 + 5.7109P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9018 reflectionsΔρmax = 1.26 e Å3
469 parametersΔρmin = 0.56 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15988 (18)0.7689 (3)0.5679 (2)0.0265 (8)
H10.2007970.7612450.5275290.032*
C20.1651 (2)0.8147 (3)0.6379 (2)0.0296 (8)
H20.2086030.8394060.6447200.036*
C30.1066 (2)0.8238 (3)0.6971 (2)0.0295 (8)
H3A0.1089580.8558730.7452770.035*
C40.04377 (18)0.7855 (3)0.6858 (2)0.0245 (7)
H40.0027090.7898690.7262500.029*
C50.04221 (17)0.7409 (3)0.6145 (2)0.0218 (7)
C60.02285 (17)0.6967 (3)0.59802 (19)0.0205 (7)
C70.08845 (17)0.6963 (3)0.65920 (19)0.0210 (7)
C80.09709 (19)0.6246 (3)0.7225 (2)0.0292 (8)
H80.0606050.5752620.7275620.035*
C90.1594 (2)0.6251 (4)0.7788 (2)0.0352 (9)
H90.1654190.5758420.8222300.042*
C100.2129 (2)0.6974 (4)0.7716 (2)0.0342 (9)
H100.2555850.6970810.8098280.041*
C110.2035 (2)0.7697 (4)0.7086 (2)0.0339 (9)
H110.2396900.8200400.7039630.041*
C120.1420 (2)0.7691 (3)0.6523 (2)0.0306 (8)
H120.1361620.8182660.6088640.037*
C130.06053 (17)0.5883 (3)0.4289 (2)0.0214 (7)
C140.12412 (17)0.5528 (3)0.4049 (2)0.0216 (7)
C150.11899 (18)0.5094 (3)0.3316 (2)0.0242 (7)
H150.0753110.5019500.2955620.029*
C160.17994 (19)0.4772 (3)0.3122 (2)0.0283 (8)
H160.1789040.4477170.2622610.034*
C170.24142 (18)0.4888 (3)0.3667 (2)0.0304 (8)
H170.2836760.4664040.3553160.036*
C180.24135 (18)0.5336 (3)0.4386 (2)0.0279 (8)
H180.2843910.5415290.4757190.033*
Cd10.08166 (2)0.70487 (2)0.42925 (2)0.02325 (6)
I10.02803 (2)0.89997 (2)0.38096 (2)0.02834 (6)
I20.20450 (2)0.60932 (2)0.36168 (2)0.03106 (7)
N10.09966 (14)0.7350 (3)0.55485 (17)0.0232 (6)
N20.01685 (14)0.6622 (2)0.52758 (16)0.0215 (6)
N30.07222 (14)0.6208 (3)0.50403 (16)0.0226 (6)
H30.1135030.6153140.5359510.027*
N40.18386 (15)0.5661 (3)0.45830 (18)0.0253 (6)
O10.00248 (12)0.5878 (2)0.38410 (14)0.0256 (5)
C190.47181 (19)0.5871 (3)0.5866 (2)0.0270 (8)
H190.5114520.5496140.5778060.032*
C200.4403 (2)0.5409 (3)0.6405 (2)0.0314 (8)
H200.4575500.4728290.6673230.038*
C210.3830 (2)0.5955 (3)0.6547 (2)0.0303 (8)
H210.3599450.5653920.6910810.036*
C220.36007 (19)0.6954 (3)0.6145 (2)0.0261 (7)
H220.3213260.7353720.6235820.031*
C230.39437 (17)0.7359 (3)0.5611 (2)0.0224 (7)
C240.37348 (17)0.8435 (3)0.5184 (2)0.0225 (7)
C250.30874 (18)0.9009 (3)0.5247 (2)0.0255 (8)
C260.3113 (2)0.9956 (4)0.5723 (3)0.0385 (10)
H260.3546321.0254690.5998970.046*
C270.2505 (3)1.0457 (4)0.5790 (3)0.0543 (13)
H270.2518231.1103960.6114060.065*
C280.1876 (3)1.0018 (4)0.5387 (3)0.0526 (14)
H280.1458411.0363470.5440220.063*
C290.1845 (2)0.9088 (4)0.4909 (3)0.0438 (11)
H290.1409780.8798410.4628790.053*
C300.2457 (2)0.8577 (4)0.4840 (3)0.0350 (9)
H300.2441730.7931350.4514130.042*
C310.43945 (18)1.0017 (3)0.3850 (2)0.0245 (7)
C320.41803 (18)1.1068 (3)0.3382 (2)0.0238 (7)
C330.4640 (2)1.1575 (3)0.3007 (2)0.0269 (8)
H330.5081511.1249170.3030510.032*
C340.4431 (2)1.2568 (3)0.2598 (2)0.0307 (8)
H340.4725421.2942720.2331310.037*
C350.3784 (2)1.3003 (3)0.2587 (2)0.0304 (8)
H350.3631691.3693760.2321950.036*
C360.3361 (2)1.2419 (3)0.2967 (2)0.0294 (8)
H360.2911601.2714130.2939480.035*
Cd20.49190 (2)0.75304 (2)0.44240 (2)0.02348 (6)
I30.39729 (2)0.65574 (2)0.32031 (2)0.02644 (6)
I40.62809 (2)0.71202 (2)0.47863 (2)0.03079 (7)
N50.44979 (15)0.6813 (3)0.54638 (17)0.0241 (6)
N60.41289 (15)0.8790 (2)0.47642 (17)0.0233 (6)
N70.39722 (15)0.9746 (2)0.43223 (17)0.0246 (6)
H70.3612991.0172890.4340380.030*
N80.35512 (15)1.1468 (3)0.33692 (18)0.0266 (6)
O20.49091 (13)0.9444 (2)0.38286 (15)0.0294 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (17)0.030 (2)0.0272 (19)0.0041 (15)0.0095 (15)0.0072 (15)
C20.0316 (19)0.033 (2)0.029 (2)0.0070 (16)0.0171 (16)0.0084 (16)
C30.041 (2)0.030 (2)0.0241 (19)0.0062 (16)0.0192 (17)0.0042 (15)
C40.0274 (17)0.0256 (19)0.0219 (18)0.0009 (14)0.0085 (14)0.0011 (14)
C50.0210 (16)0.0223 (17)0.0244 (18)0.0003 (13)0.0101 (14)0.0030 (14)
C60.0209 (16)0.0217 (17)0.0199 (17)0.0009 (13)0.0066 (13)0.0004 (13)
C70.0193 (15)0.0247 (18)0.0190 (16)0.0002 (13)0.0049 (13)0.0033 (13)
C80.0287 (18)0.029 (2)0.029 (2)0.0017 (15)0.0043 (15)0.0055 (15)
C90.035 (2)0.036 (2)0.030 (2)0.0039 (17)0.0013 (17)0.0058 (17)
C100.0255 (18)0.042 (2)0.032 (2)0.0019 (17)0.0016 (16)0.0077 (18)
C110.0280 (19)0.042 (2)0.035 (2)0.0105 (17)0.0130 (17)0.0033 (18)
C120.034 (2)0.036 (2)0.0242 (19)0.0050 (17)0.0111 (16)0.0030 (16)
C130.0248 (17)0.0197 (17)0.0212 (17)0.0010 (13)0.0084 (14)0.0022 (13)
C140.0220 (16)0.0196 (17)0.0241 (18)0.0013 (13)0.0075 (14)0.0027 (13)
C150.0246 (17)0.0250 (18)0.0234 (18)0.0014 (14)0.0069 (14)0.0001 (14)
C160.0298 (18)0.028 (2)0.031 (2)0.0020 (15)0.0164 (16)0.0002 (16)
C170.0232 (17)0.028 (2)0.043 (2)0.0032 (15)0.0142 (16)0.0020 (17)
C180.0197 (16)0.0265 (19)0.037 (2)0.0008 (14)0.0063 (15)0.0052 (16)
Cd10.01973 (12)0.03217 (15)0.01853 (13)0.00340 (10)0.00597 (10)0.00226 (10)
I10.02828 (12)0.03337 (14)0.02603 (13)0.00073 (10)0.01178 (10)0.00283 (10)
I20.02091 (11)0.04454 (16)0.02837 (13)0.00209 (10)0.00728 (9)0.00054 (11)
N10.0219 (14)0.0293 (16)0.0201 (15)0.0026 (12)0.0087 (12)0.0045 (12)
N20.0196 (13)0.0252 (15)0.0218 (15)0.0054 (11)0.0087 (11)0.0014 (12)
N30.0195 (13)0.0299 (16)0.0186 (14)0.0059 (12)0.0052 (11)0.0005 (12)
N40.0235 (14)0.0240 (15)0.0282 (16)0.0021 (12)0.0056 (12)0.0024 (12)
O10.0227 (12)0.0337 (14)0.0206 (12)0.0040 (10)0.0057 (10)0.0023 (10)
C190.0298 (18)0.0232 (18)0.0265 (19)0.0055 (15)0.0038 (15)0.0003 (14)
C200.044 (2)0.029 (2)0.0211 (18)0.0063 (17)0.0077 (16)0.0018 (15)
C210.041 (2)0.030 (2)0.0222 (19)0.0011 (16)0.0106 (16)0.0025 (15)
C220.0300 (18)0.0263 (19)0.0239 (18)0.0039 (15)0.0100 (15)0.0004 (15)
C230.0252 (17)0.0218 (17)0.0198 (17)0.0017 (14)0.0046 (14)0.0012 (13)
C240.0243 (16)0.0219 (17)0.0219 (17)0.0028 (14)0.0067 (14)0.0026 (14)
C250.0300 (18)0.0250 (19)0.0268 (19)0.0060 (14)0.0172 (15)0.0085 (14)
C260.047 (2)0.031 (2)0.042 (2)0.0089 (18)0.019 (2)0.0008 (18)
C270.073 (3)0.042 (3)0.061 (3)0.023 (3)0.042 (3)0.004 (2)
C280.052 (3)0.046 (3)0.075 (4)0.025 (2)0.045 (3)0.033 (3)
C290.027 (2)0.048 (3)0.059 (3)0.0041 (18)0.017 (2)0.027 (2)
C300.0312 (19)0.034 (2)0.044 (2)0.0024 (17)0.0165 (18)0.0093 (18)
C310.0306 (18)0.0219 (18)0.0230 (18)0.0023 (14)0.0102 (15)0.0020 (14)
C320.0310 (18)0.0215 (18)0.0196 (17)0.0063 (14)0.0076 (14)0.0062 (13)
C330.0352 (19)0.0255 (19)0.0213 (18)0.0065 (15)0.0098 (15)0.0066 (14)
C340.043 (2)0.027 (2)0.0218 (19)0.0086 (17)0.0082 (16)0.0013 (15)
C350.042 (2)0.0246 (19)0.0251 (19)0.0006 (16)0.0099 (17)0.0026 (15)
C360.0334 (19)0.0263 (19)0.029 (2)0.0031 (15)0.0077 (16)0.0028 (15)
Cd20.02161 (12)0.02587 (14)0.02434 (13)0.00368 (10)0.00830 (10)0.00026 (10)
I30.01929 (11)0.03300 (13)0.02632 (12)0.00173 (9)0.00425 (9)0.00129 (10)
I40.02047 (11)0.03842 (15)0.03207 (14)0.00249 (10)0.00375 (10)0.00371 (10)
N50.0261 (15)0.0262 (16)0.0203 (15)0.0034 (12)0.0061 (12)0.0000 (12)
N60.0266 (15)0.0211 (15)0.0233 (15)0.0016 (12)0.0086 (12)0.0016 (12)
N70.0315 (15)0.0195 (15)0.0266 (16)0.0056 (12)0.0143 (13)0.0052 (12)
N80.0280 (15)0.0262 (16)0.0277 (16)0.0005 (13)0.0107 (13)0.0019 (13)
O20.0292 (13)0.0266 (14)0.0361 (15)0.0038 (11)0.0152 (11)0.0024 (11)
Geometric parameters (Å, º) top
C1—N11.337 (4)C19—N51.331 (5)
C1—C21.385 (5)C19—C201.382 (5)
C1—H10.9500C19—H190.9500
C2—C31.371 (5)C20—C211.384 (5)
C2—H20.9500C20—H200.9500
C3—C41.389 (5)C21—C221.391 (5)
C3—H3A0.9500C21—H210.9500
C4—C51.381 (5)C22—C231.385 (5)
C4—H40.9500C22—H220.9500
C5—N11.360 (4)C23—N51.356 (4)
C5—C61.491 (5)C23—C241.480 (5)
C6—N21.297 (4)C24—N61.280 (5)
C6—C71.482 (4)C24—C251.483 (5)
C7—C81.385 (5)C25—C301.383 (5)
C7—C121.395 (5)C25—C261.391 (6)
C8—C91.391 (5)C26—C271.377 (6)
C8—H80.9500C26—H260.9500
C9—C101.392 (6)C27—C281.382 (8)
C9—H90.9500C27—H270.9500
C10—C111.385 (6)C28—C291.376 (7)
C10—H100.9500C28—H280.9500
C11—C121.380 (5)C29—C301.391 (6)
C11—H110.9500C29—H290.9500
C12—H120.9500C30—H300.9500
C13—O11.233 (4)C31—O21.234 (4)
C13—N31.357 (4)C31—N71.366 (4)
C13—C141.492 (5)C31—C321.491 (5)
C14—N41.338 (4)C32—N81.332 (5)
C14—C151.384 (5)C32—C331.393 (5)
C15—C161.394 (5)C33—C341.382 (5)
C15—H150.9500C33—H330.9500
C16—C171.371 (5)C34—C351.380 (6)
C16—H160.9500C34—H340.9500
C17—C181.387 (5)C35—C361.385 (5)
C17—H170.9500C35—H350.9500
C18—N41.333 (4)C36—N81.330 (5)
C18—H180.9500C36—H360.9500
Cd1—N22.342 (3)Cd2—N62.344 (3)
Cd1—N12.380 (3)Cd2—N52.369 (3)
Cd1—O12.450 (2)Cd2—O22.481 (3)
Cd1—I22.6917 (4)Cd2—I42.6732 (4)
Cd1—I12.7509 (4)Cd2—I32.7530 (4)
N2—N31.362 (4)N6—N71.362 (4)
N3—H30.8800N7—H70.8800
N1—C1—C2122.7 (3)N5—C19—C20123.7 (3)
N1—C1—H1118.6N5—C19—H19118.1
C2—C1—H1118.6C20—C19—H19118.1
C3—C2—C1119.1 (3)C19—C20—C21118.8 (4)
C3—C2—H2120.4C19—C20—H20120.6
C1—C2—H2120.4C21—C20—H20120.6
C2—C3—C4119.2 (3)C20—C21—C22118.5 (4)
C2—C3—H3A120.4C20—C21—H21120.8
C4—C3—H3A120.4C22—C21—H21120.8
C5—C4—C3118.7 (3)C23—C22—C21119.2 (3)
C5—C4—H4120.7C23—C22—H22120.4
C3—C4—H4120.7C21—C22—H22120.4
N1—C5—C4122.3 (3)N5—C23—C22122.3 (3)
N1—C5—C6115.6 (3)N5—C23—C24116.2 (3)
C4—C5—C6122.0 (3)C22—C23—C24121.5 (3)
N2—C6—C7124.6 (3)N6—C24—C23116.3 (3)
N2—C6—C5115.0 (3)N6—C24—C25124.4 (3)
C7—C6—C5120.5 (3)C23—C24—C25119.2 (3)
C8—C7—C12119.9 (3)C30—C25—C26120.3 (4)
C8—C7—C6120.8 (3)C30—C25—C24119.2 (3)
C12—C7—C6119.3 (3)C26—C25—C24120.4 (4)
C7—C8—C9119.7 (4)C27—C26—C25119.5 (4)
C7—C8—H8120.1C27—C26—H26120.2
C9—C8—H8120.1C25—C26—H26120.2
C8—C9—C10120.3 (4)C26—C27—C28120.0 (5)
C8—C9—H9119.9C26—C27—H27120.0
C10—C9—H9119.9C28—C27—H27120.0
C11—C10—C9119.6 (4)C29—C28—C27121.0 (4)
C11—C10—H10120.2C29—C28—H28119.5
C9—C10—H10120.2C27—C28—H28119.5
C12—C11—C10120.4 (4)C28—C29—C30119.3 (4)
C12—C11—H11119.8C28—C29—H29120.4
C10—C11—H11119.8C30—C29—H29120.4
C11—C12—C7120.1 (4)C25—C30—C29119.9 (4)
C11—C12—H12120.0C25—C30—H30120.1
C7—C12—H12120.0C29—C30—H30120.1
O1—C13—N3123.2 (3)O2—C31—N7122.3 (3)
O1—C13—C14122.7 (3)O2—C31—C32124.0 (3)
N3—C13—C14114.1 (3)N7—C31—C32113.7 (3)
N4—C14—C15124.2 (3)N8—C32—C33124.6 (3)
N4—C14—C13115.7 (3)N8—C32—C31116.0 (3)
C15—C14—C13120.2 (3)C33—C32—C31119.3 (3)
C14—C15—C16117.9 (3)C34—C33—C32117.6 (4)
C14—C15—H15121.1C34—C33—H33121.2
C16—C15—H15121.1C32—C33—H33121.2
C17—C16—C15118.5 (3)C35—C34—C33118.6 (4)
C17—C16—H16120.7C35—C34—H34120.7
C15—C16—H16120.7C33—C34—H34120.7
C16—C17—C18119.4 (3)C34—C35—C36119.2 (4)
C16—C17—H17120.3C34—C35—H35120.4
C18—C17—H17120.3C36—C35—H35120.4
N4—C18—C17123.2 (3)N8—C36—C35123.5 (4)
N4—C18—H18118.4N8—C36—H36118.3
C17—C18—H18118.4C35—C36—H36118.3
N2—Cd1—N167.60 (9)N6—Cd2—N568.41 (10)
N2—Cd1—O167.15 (9)N6—Cd2—O266.77 (9)
N1—Cd1—O1131.72 (9)N5—Cd2—O2133.56 (9)
N2—Cd1—I2138.47 (7)N6—Cd2—I4139.16 (7)
N1—Cd1—I298.79 (7)N5—Cd2—I4106.26 (7)
O1—Cd1—I2103.85 (6)O2—Cd2—I499.62 (6)
N2—Cd1—I195.38 (7)N6—Cd2—I395.35 (7)
N1—Cd1—I1109.34 (7)N5—Cd2—I399.61 (7)
O1—Cd1—I190.77 (6)O2—Cd2—I395.99 (6)
I2—Cd1—I1125.873 (12)I4—Cd2—I3124.998 (12)
C1—N1—C5117.8 (3)C19—N5—C23117.6 (3)
C1—N1—Cd1123.8 (2)C19—N5—Cd2125.7 (2)
C5—N1—Cd1116.9 (2)C23—N5—Cd2116.4 (2)
C6—N2—N3121.4 (3)C24—N6—N7121.4 (3)
C6—N2—Cd1121.3 (2)C24—N6—Cd2119.5 (2)
N3—N2—Cd1116.0 (2)N7—N6—Cd2116.2 (2)
C13—N3—N2116.7 (3)N6—N7—C31117.4 (3)
C13—N3—H3121.7N6—N7—H7121.3
N2—N3—H3121.7C31—N7—H7121.3
C18—N4—C14116.8 (3)C36—N8—C32116.5 (3)
C13—O1—Cd1113.1 (2)C31—O2—Cd2113.5 (2)
N1—C1—C2—C31.4 (6)N5—C19—C20—C210.9 (6)
C1—C2—C3—C40.9 (6)C19—C20—C21—C220.6 (6)
C2—C3—C4—C51.0 (5)C20—C21—C22—C230.9 (6)
C3—C4—C5—N11.1 (5)C21—C22—C23—N50.1 (5)
C3—C4—C5—C6179.2 (3)C21—C22—C23—C24178.2 (3)
N1—C5—C6—N22.6 (4)N5—C23—C24—N65.3 (5)
C4—C5—C6—N2177.1 (3)C22—C23—C24—N6173.1 (3)
N1—C5—C6—C7178.6 (3)N5—C23—C24—C25173.1 (3)
C4—C5—C6—C71.7 (5)C22—C23—C24—C258.5 (5)
N2—C6—C7—C8112.8 (4)N6—C24—C25—C30101.6 (4)
C5—C6—C7—C868.6 (5)C23—C24—C25—C3076.6 (4)
N2—C6—C7—C1267.0 (5)N6—C24—C25—C2679.8 (5)
C5—C6—C7—C12111.7 (4)C23—C24—C25—C26101.9 (4)
C12—C7—C8—C90.4 (6)C30—C25—C26—C270.4 (6)
C6—C7—C8—C9179.4 (4)C24—C25—C26—C27178.1 (4)
C7—C8—C9—C100.1 (6)C25—C26—C27—C280.0 (7)
C8—C9—C10—C110.6 (6)C26—C27—C28—C290.6 (7)
C9—C10—C11—C121.0 (6)C27—C28—C29—C300.8 (7)
C10—C11—C12—C70.8 (6)C26—C25—C30—C290.2 (6)
C8—C7—C12—C110.1 (6)C24—C25—C30—C29178.3 (4)
C6—C7—C12—C11179.8 (3)C28—C29—C30—C250.4 (6)
O1—C13—C14—N4175.1 (3)O2—C31—C32—N8168.5 (3)
N3—C13—C14—N45.0 (4)N7—C31—C32—N812.5 (5)
O1—C13—C14—C154.8 (5)O2—C31—C32—C3312.7 (5)
N3—C13—C14—C15175.1 (3)N7—C31—C32—C33166.3 (3)
N4—C14—C15—C160.3 (5)N8—C32—C33—C340.7 (5)
C13—C14—C15—C16179.8 (3)C31—C32—C33—C34178.0 (3)
C14—C15—C16—C170.7 (5)C32—C33—C34—C350.2 (5)
C15—C16—C17—C180.9 (6)C33—C34—C35—C361.6 (6)
C16—C17—C18—N40.3 (6)C34—C35—C36—N82.2 (6)
C2—C1—N1—C53.4 (5)C20—C19—N5—C231.9 (5)
C2—C1—N1—Cd1162.4 (3)C20—C19—N5—Cd2171.9 (3)
C4—C5—N1—C13.3 (5)C22—C23—N5—C191.5 (5)
C6—C5—N1—C1177.1 (3)C24—C23—N5—C19176.9 (3)
C4—C5—N1—Cd1163.5 (3)C22—C23—N5—Cd2172.8 (3)
C6—C5—N1—Cd116.2 (4)C24—C23—N5—Cd28.8 (4)
C7—C6—N2—N30.6 (5)C23—C24—N6—N7177.4 (3)
C5—C6—N2—N3179.3 (3)C25—C24—N6—N70.9 (5)
C7—C6—N2—Cd1165.7 (3)C23—C24—N6—Cd217.4 (4)
C5—C6—N2—Cd113.0 (4)C25—C24—N6—Cd2160.9 (3)
O1—C13—N3—N24.9 (5)C24—N6—N7—C31175.4 (3)
C14—C13—N3—N2175.2 (3)Cd2—N6—N7—C3114.7 (4)
C6—N2—N3—C13179.2 (3)O2—C31—N7—N61.6 (5)
Cd1—N2—N3—C1312.2 (4)C32—C31—N7—N6179.4 (3)
C17—C18—N4—C140.6 (5)C35—C36—N8—C321.3 (6)
C15—C14—N4—C180.9 (5)C33—C32—N8—C360.2 (5)
C13—C14—N4—C18179.1 (3)C31—C32—N8—C36178.6 (3)
N3—C13—O1—Cd118.3 (4)N7—C31—O2—Cd215.8 (4)
C14—C13—O1—Cd1161.9 (3)C32—C31—O2—Cd2165.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N40.882.272.629 (4)104
N7—H7···N80.882.282.640 (4)104
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···I/I···H30.5
H···H29.5
C···H/H···C13.3
H···O/O···H5.6
C···I/I···C4.9
C···C3.3
N···H/H···N2.9
C···N/N···C2.8
H···Cd/Cd···H2.1
N···I/I···N1.7
N···O/O···N1.5
I···I0.6
N···N0.4
C···O/O···C0.4
C···Cd/Cd···C0.3
N···Cd/Cd···N0.2
 

Acknowledgements

FAA and AAK thank the University of Tabriz for the financial support of this research.

References

First citationAbedi, M., Yeşilel, O. Z., Mahmoudi, G., Bauzá, A., Lofland, S. E., Yerli, Y., Kaminsky, W., Garczarek, P., Zaręba, J. K., Ienco, A., Frontera, A. & Gargari, M. S. (2016). Inorg. Chim. Acta, 443, 101–109.  CSD CrossRef CAS Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAfkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). Inorg. Chim. Acta, 457, 150–159.  Web of Science CrossRef CAS Google Scholar
First citationAfkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28–30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). Acta Cryst. E68, m842.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhandar, A. A., Afkhami, F. A., Krautscheid, H., Kristoffersen, K. A., Atioğlu, Z., Akkurt, M. & Görbitz, C. H. (2017). Acta Cryst. E73, 698–701.  CSD CrossRef IUCr Journals Google Scholar
First citationKhandar, A. A., Ghosh, B. K., Lampropoulos, C., Gargari, M. S., Yilmaz, V. T., Bhar, K., Hosseini-Yazdi, S. A., Cain, J. M. & Mahmoudi, G. (2015). Polyhedron, 85, 467–475.  CSD CrossRef CAS Google Scholar
First citationMalekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationYao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds