research communications
Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]
aUniversidad Andrés Bello, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Quillota 980, Viña del Mar, Chile, and bLaboratorio de Análisis de Sólidos, Facultad de Ciencias Exactas, Salvador Sanfuentes 2357, Santiago, Chile
*Correspondence e-mail: andresvega@unab.cl
The coordination of the ligands with respect to the central atom in the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octahedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-diphenylpyridylphosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H interactions contribute 26%, the distance of these interactions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in dichloromethane leads to the partial decoordination of the pyridylphosphine ligand, whose pyridyl group is replaced by a piperidine molecule, and the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The molecule has an intramolecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloroform molecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridylphosphine. The contribution to the scattering from highly disordered solvent molecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account.
1. Chemical context
Phosphine-type ligands having a second type of atom or coordinating function have been of great interest in many areas of chemistry. The existence of a second coordination atom with different properties, coordination capability or trans effect adds possibilities during a catalytic cycle (Guiry & Saunders, 2004). In particular, much attention has been paid to one of the simplest molecules of this kind, diphenylpyridylphosphine P(C6H5)2(C5H5N) (PPh2Py). The molecule is a rigid bidentate ligand (Abram et al., 1999; Knebel & Angelici, 1973).
The reaction of the diphenylpyridylphosphine ligand with the rhenium dimer (Re(CO)3(OC4H8)Br)2 in chloroform as solvent leads to the complex P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 (I·2CHCl3). It presents a similar structure to the widely studied [(N,N)Re(CO)3(L)] complexes, which have interesting photophysical and photochemical properties (Cannizzo et al., 2008). Complex I has been shown to be a dual emitter (Pizarro et al., 2015). It is also interesting to note that the PPh2Py ligand can be partially decoordinated by reaction of the complex with a monodentate ligand, like piperidine (C5H11N), leading to the complex [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II).
2. Structural commentary
The mononuclear ReI complex I with a bidentate P,N (chelating) ligand crystallized from a chloroform solution in the monoclinic space P21/c. Selected geometrical data are summarized in Table 1, and the molecular structure of complex I·2CHCl3 is given in Fig. 1. The coordination environment of the central rhenium atom is defined for phosphorus and nitrogen atoms from PPh2Py, a bromide atom in an apical position and three carbonyl carbon atoms in a fac correlation, generating a distorted octahedral environment. Additionally, two chloroform molecules crystallize together with the complex molecule.
|
The mononuclear ReI complex II, crystallized from a CH2Cl2/CH3CN (2:1) solution in the triclinic P. Selected geometrical data are given in Table 2, and the molecular structure of the complex is illustrated in Fig. 2. The central rhenium atom displays a non-regular octahedral coordination geometry, with three facial carbonyl groups, a monodentate PPh2Py ligand, a piperidine C5H11N molecule and a bromide anion. The piperidine ring displays a chair-like conformation. An intramolecular hydrogen bond is defined between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine, N2—H2N⋯N1, with D⋯A = 2.992 (9) Å (Table 4). There are also two C—H⋯Br intramolecular contacts present involving atom Br1 and a phenyl H atom (H14) and a methylene H atom (H22B) of the pypridine ring (Table 4).
|
|
3. Supramolecular features
In the crystal of I·2CHCl3, the lattice has two solvating molecules of chloroform per complex molecule. The cell has a larger volume than for the unsolvated one [2836.7 (15) vs 2119.2 (3) Å3 (Venegas et al., 2011)] whose geometrical parameters are very similar to those of complex I. In the crystal, the chloroform solvent molecules are involved in weak C—H⋯Br hydrogen bonds and they link the complex molecules to form layers lying parallel to the bc plane (Fig. 3 and Table 3).
|
In the crystal of II, a region of highly disordered electron density was equated to the present of a disordered acetonitrile molecule. The contribution to the scattering was removed with the SQUEEZE routine in PLATON (Spek, 2015). A view of the crystal packing, showing the regions, or voids, occupied by this disordered solvent in given in Fig. 4.
4. Hirshfeld surface analysis of complex I·2CHCl3
In order to visualize and quantify the intermolecular interactions in the crystal packing of complex I·2CHCl3, in particular those involving the chloroform solvent molecules, an Hirshfeld surface analysis was performed and two-dimensional fingerprint plots generated. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm = de + di, is given in Fig. 5a (de represents the distance from the surface to the nearest nucleus external to the surface, and di is the distance from the surface to the nearest nucleus internal to the surface). In this dnorm view (Fig. 5a), blue represents the longest distances while the shortest distances are depicted as red spots (Dalal et al., 2015).
The two-dimensional fingerprint plot for the whole complex is given in Fig. 5b. Apart from the H⋯H intermolecular contacts that contribute ca 15% the other most relevant intermolecular interactions, as determined from the Hirshfeld surface analysis of complex I·2CHCl3, are shown in Fig. 6. The Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯H/H⋯C interactions contribute 26.0, 15.4 and 9.8%, respectively, to the Hirshfeld surface. Some distances for these interactions are Cl1⋯H19 = 2.90 Å, H22⋯O2 = 2.69 Å and H21⋯Br1 = 2.66 Å.
5. Thermogravimetric analysis
Thermogravimetric analyses from 25 to 300°C were performed for both compounds under an N2 at a heating rate of 1°C min−1 (see Fig. 7). Thermogravimetric analysis for compound I·2CHCl3 (Fig. 7, red line), shows that it loses 28% of its mass in a narrow range, between 45 and 60°C. This mass loss is completely consistent with the two solvating chloroform molecules detected by the analysis. The boiling point of chloroform, 61°C, is almost identical to the temperature where the mass loss stops, suggesting that the chloroform molecules are weakly bonded to the rhenium ones in the solid. From 60 to 300°C the remaining matrix is completely stable.
Compound II loses 12% of its initial mass between 154 and 190°C (Fig. 7, blue line). This loss of mass can be associated with the release of the acetonitrile and piperidine molecules (14.7%). The relatively high temperature at which decomposition begins compared to the piperidine boiling point, 105°C, suggest that it is strongly bonded to II. From 190 to 300°C, another 33% of mass loss is registered, which can be associated with the release of the PPh2Py (36.6%, b.p.163°C).
6. Database survey
The diphenylpyridylphosphine ligand has been extensively studied and used as a monodentate and bidentate ligand with different metals, including RuII (Ooyama & Sato, 2004) where the CO2-reducing properties of the complex were studied. Another RuII complex with PPh2Py (Kumar et al., 2011) has been studied as an inhibitor of DNA-topoisomerases of the filarial parasite S. cervi. ReI–nitrosil complexes with PPh2Py have been studied structurally and photophysically (Machura & Kruszynski, 2006).
Piperidine is a ligand that has been widely used with various transition metals. It has been used as a ligand with tungsten and molybdenum to study the cis–trans effect by using larger ligands and increasing the (Darensbourg et al., 2007).
7. Synthesis and crystallization
The reagents, (Re(CO)3(OC4H8)Br)2 and (C6H5)2(C5H5N)P were used as provided from supplier (Aldrich), with no purification before use. Seccosolv™ solvents were used without any further purification. Standard Schlenck techniques under argon atmosphere were used for all manipulations.
Synthesis of I. 500 mg of (Re(CO)3(OC4H8)Br)2 (0.590 mmol) were dissolved in 5 ml of chloroform. 312 mg of diphenyl-2-pyridylphosphine (1.18 mmol) was dissolved in 10 ml of chloroform. The two solutions were mixed, changing from colourless to a translucent yellow after 10 minutes of reaction. The reaction was left to continue for a further 2 h. Addition of 2 ml of pentane to the mixture and standing by one day lead to yellow diffraction-quality crystals of I·2CHCl3 (601 mg, 82.8% yield).
Synthesis of II. The compound was prepared by direct reaction between I and an excess of piperidine (C5H11N) at 313 K in CH2Cl2. 50.0 mg of [P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br] (0.082 mmol) were dissolved in 10 ml of CH2Cl2 giving rise to a yellow solution. Then, 40 µL of piperidine (0.51 mmol) was slowly added. The reaction was allowed to continue for six days with constant agitation at 313 K. After cooling, the reaction mixture was layered with acetonitrile. Small orange–yellow diffraction-quality crystals were obtained after one week.
8. Refinement
Crystal data, data collection and structure . For both compounds, the hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C). For II, the amine hydrogen atom of the piperidine ring was located in a Fourier-difference map and then subsequently refined with a distant constraint of 0.82 Å. During the last stages of the of II, a region of highly disordered electron density was detected within the As no meaningful model could be achieved, SQUEEZE (Spek, 2015) was used to model the unresolved electron density resulting from the disordered solvent. 25 electrons per cell suggest, in addition to thermogravimetry, a half acetonitrile molecule per complex molecule of II. The contribution of this solvent was not included in the crystal data.
details are summarized in Table 5Supporting information
https://doi.org/10.1107/S2056989019008089/nk2249sup1.cif
contains datablocks I-2CHCl3, II, Global. DOI:Structure factors: contains datablock I-2CHCl3. DOI: https://doi.org/10.1107/S2056989019008089/nk2249I-2CHCl3sup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019008089/nk2249IIsup3.hkl
For both structures, data collection: SMART (Bruker, 2012); cell
SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[ReBr(C17H14NP)(CO)3]·2CHCl3 | F(000) = 1624 |
Mr = 852.14 | Dx = 1.995 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.194 (4) Å | Cell parameters from 6313 reflections |
b = 12.314 (4) Å | θ = 2.5–28.5° |
c = 16.249 (5) Å | µ = 6.34 mm−1 |
β = 92.701 (4)° | T = 150 K |
V = 2836.7 (15) Å3 | Block, yellow |
Z = 4 | 0.16 × 0.13 × 0.05 mm |
Bruker SMART CCD area detector diffractometer | 4526 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.048 |
phi and ω scans | θmax = 26.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −17→17 |
Tmin = 0.386, Tmax = 0.746 | k = −15→15 |
19979 measured reflections | l = −19→20 |
5550 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
5550 reflections | Δρmax = 0.39 e Å−3 |
317 parameters | Δρmin = −0.35 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00027 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.29082 (2) | 0.42455 (2) | 0.08046 (2) | 0.06954 (7) | |
Br1 | 0.45807 (3) | 0.36073 (4) | 0.13313 (3) | 0.07781 (13) | |
P1 | 0.25501 (8) | 0.23375 (8) | 0.04434 (7) | 0.0705 (3) | |
N1 | 0.3373 (3) | 0.3742 (3) | −0.0392 (2) | 0.0722 (9) | |
C1 | 0.2470 (3) | 0.4367 (3) | 0.1897 (3) | 0.0742 (11) | |
O1 | 0.2190 (3) | 0.4391 (3) | 0.2547 (2) | 0.0860 (9) | |
C2 | 0.1733 (4) | 0.4761 (3) | 0.0367 (3) | 0.0779 (11) | |
O2 | 0.1045 (3) | 0.5103 (3) | 0.0100 (2) | 0.0879 (9) | |
C3 | 0.3368 (4) | 0.5732 (4) | 0.0793 (3) | 0.0792 (11) | |
O3 | 0.3635 (3) | 0.6583 (3) | 0.0772 (2) | 0.0949 (10) | |
C4 | 0.3826 (3) | 0.4234 (4) | −0.0986 (3) | 0.0783 (11) | |
H4 | 0.3974 | 0.4967 | −0.0932 | 0.094* | |
C5 | 0.4076 (4) | 0.3694 (4) | −0.1669 (3) | 0.0861 (13) | |
H5 | 0.4382 | 0.4061 | −0.2079 | 0.103* | |
C6 | 0.3879 (4) | 0.2598 (4) | −0.1759 (3) | 0.0855 (13) | |
H6 | 0.4053 | 0.2222 | −0.2224 | 0.103* | |
C7 | 0.3422 (3) | 0.2081 (4) | −0.1148 (3) | 0.0792 (11) | |
H7 | 0.3283 | 0.1344 | −0.1189 | 0.095* | |
C8 | 0.3171 (3) | 0.2667 (3) | −0.0476 (3) | 0.0701 (10) | |
C9 | 0.3085 (3) | 0.1116 (3) | 0.0857 (3) | 0.0735 (11) | |
C10 | 0.4032 (4) | 0.0890 (3) | 0.0778 (3) | 0.0788 (12) | |
H10 | 0.4404 | 0.1362 | 0.0486 | 0.095* | |
C11 | 0.4429 (4) | −0.0041 (4) | 0.1134 (3) | 0.0860 (13) | |
H11 | 0.5066 | −0.0187 | 0.1080 | 0.103* | |
C12 | 0.3890 (4) | −0.0741 (4) | 0.1561 (3) | 0.0896 (14) | |
H12 | 0.4161 | −0.1365 | 0.1793 | 0.108* | |
C13 | 0.2950 (4) | −0.0530 (4) | 0.1651 (3) | 0.0873 (14) | |
H13 | 0.2586 | −0.1006 | 0.1946 | 0.105* | |
C14 | 0.2549 (4) | 0.0392 (4) | 0.1300 (3) | 0.0812 (12) | |
H14 | 0.1912 | 0.0532 | 0.1360 | 0.097* | |
C15 | 0.1366 (3) | 0.1951 (3) | 0.0108 (3) | 0.0723 (10) | |
C16 | 0.1182 (4) | 0.1207 (4) | −0.0506 (3) | 0.0830 (12) | |
H16 | 0.1680 | 0.0861 | −0.0750 | 0.100* | |
C17 | 0.0272 (4) | 0.0967 (4) | −0.0765 (3) | 0.0912 (14) | |
H17 | 0.0156 | 0.0465 | −0.1185 | 0.109* | |
C18 | −0.0466 (4) | 0.1470 (4) | −0.0402 (4) | 0.0987 (16) | |
H18 | −0.1084 | 0.1319 | −0.0583 | 0.118* | |
C19 | −0.0293 (4) | 0.2190 (4) | 0.0223 (4) | 0.1030 (17) | |
H19 | −0.0794 | 0.2512 | 0.0480 | 0.124* | |
C20 | 0.0622 (4) | 0.2446 (4) | 0.0478 (4) | 0.0910 (14) | |
H20 | 0.0736 | 0.2950 | 0.0897 | 0.109* | |
C21 | 0.3309 (4) | 0.7174 (4) | 0.3787 (3) | 0.0853 (13) | |
H21 | 0.3903 | 0.7468 | 0.4026 | 0.102* | |
Cl1 | 0.24667 (11) | 0.82254 (11) | 0.37214 (10) | 0.1001 (4) | |
Cl2 | 0.29219 (12) | 0.61431 (11) | 0.44304 (10) | 0.1061 (4) | |
Cl3 | 0.35045 (12) | 0.66739 (12) | 0.28107 (9) | 0.1034 (4) | |
C22 | 0.0251 (4) | 0.0957 (4) | 0.3284 (4) | 0.0959 (15) | |
H22 | 0.0155 | 0.1018 | 0.3876 | 0.115* | |
Cl4 | 0.02810 (13) | −0.04155 (12) | 0.30240 (11) | 0.1102 (4) | |
Cl5 | 0.13277 (12) | 0.15706 (16) | 0.30768 (12) | 0.1288 (6) | |
Cl6 | −0.06727 (13) | 0.16078 (13) | 0.27497 (13) | 0.1261 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.06848 (12) | 0.06853 (9) | 0.07162 (11) | 0.00019 (7) | 0.00347 (7) | 0.00016 (7) |
Br1 | 0.0707 (3) | 0.0804 (2) | 0.0822 (3) | −0.00035 (19) | 0.0024 (2) | 0.0055 (2) |
P1 | 0.0706 (7) | 0.0695 (5) | 0.0717 (7) | 0.0009 (5) | 0.0046 (5) | −0.0012 (5) |
N1 | 0.069 (2) | 0.0740 (18) | 0.074 (2) | 0.0018 (16) | 0.0066 (17) | 0.0004 (16) |
C1 | 0.071 (3) | 0.071 (2) | 0.079 (3) | −0.0012 (19) | −0.005 (2) | 0.000 (2) |
O1 | 0.088 (2) | 0.097 (2) | 0.074 (2) | 0.0047 (17) | 0.0056 (17) | −0.0020 (16) |
C2 | 0.088 (3) | 0.070 (2) | 0.077 (3) | 0.000 (2) | 0.012 (2) | −0.003 (2) |
O2 | 0.078 (2) | 0.092 (2) | 0.092 (2) | 0.0048 (17) | −0.0031 (18) | 0.0046 (17) |
C3 | 0.083 (3) | 0.079 (2) | 0.074 (3) | 0.005 (2) | −0.006 (2) | −0.005 (2) |
O3 | 0.111 (3) | 0.0759 (18) | 0.097 (3) | −0.0122 (18) | 0.000 (2) | 0.0000 (16) |
C4 | 0.073 (3) | 0.080 (2) | 0.083 (3) | 0.002 (2) | 0.009 (2) | 0.008 (2) |
C5 | 0.076 (3) | 0.099 (3) | 0.083 (3) | 0.002 (2) | 0.013 (2) | 0.010 (2) |
C6 | 0.080 (3) | 0.100 (3) | 0.077 (3) | 0.005 (2) | 0.007 (2) | −0.002 (2) |
C7 | 0.074 (3) | 0.083 (2) | 0.081 (3) | −0.001 (2) | 0.002 (2) | −0.006 (2) |
C8 | 0.064 (3) | 0.071 (2) | 0.074 (3) | 0.0006 (17) | 0.001 (2) | 0.0005 (18) |
C9 | 0.080 (3) | 0.071 (2) | 0.069 (3) | −0.0015 (19) | 0.002 (2) | −0.0065 (18) |
C10 | 0.080 (3) | 0.071 (2) | 0.085 (3) | 0.001 (2) | −0.003 (2) | −0.003 (2) |
C11 | 0.083 (3) | 0.079 (2) | 0.095 (4) | 0.011 (2) | −0.005 (3) | −0.004 (2) |
C12 | 0.101 (4) | 0.076 (2) | 0.090 (3) | 0.006 (3) | −0.010 (3) | −0.002 (2) |
C13 | 0.104 (4) | 0.077 (2) | 0.079 (3) | −0.003 (2) | −0.005 (3) | 0.008 (2) |
C14 | 0.081 (3) | 0.081 (2) | 0.082 (3) | 0.003 (2) | 0.003 (2) | −0.001 (2) |
C15 | 0.072 (3) | 0.0675 (19) | 0.078 (3) | −0.0029 (18) | 0.004 (2) | 0.0041 (18) |
C16 | 0.080 (3) | 0.087 (3) | 0.083 (3) | −0.010 (2) | 0.006 (2) | 0.000 (2) |
C17 | 0.087 (4) | 0.100 (3) | 0.087 (4) | −0.015 (3) | 0.001 (3) | 0.000 (3) |
C18 | 0.078 (4) | 0.093 (3) | 0.123 (5) | −0.014 (3) | −0.009 (3) | 0.010 (3) |
C19 | 0.073 (4) | 0.090 (3) | 0.146 (5) | −0.003 (3) | 0.014 (3) | −0.006 (3) |
C20 | 0.079 (3) | 0.081 (3) | 0.115 (4) | −0.003 (2) | 0.018 (3) | −0.013 (3) |
C21 | 0.085 (3) | 0.088 (3) | 0.084 (3) | −0.008 (2) | 0.007 (3) | 0.006 (2) |
Cl1 | 0.1005 (10) | 0.0898 (7) | 0.1106 (10) | 0.0026 (6) | 0.0119 (8) | 0.0115 (7) |
Cl2 | 0.1271 (13) | 0.0897 (7) | 0.1023 (10) | −0.0028 (7) | 0.0146 (9) | 0.0158 (7) |
Cl3 | 0.1147 (11) | 0.1028 (8) | 0.0938 (9) | −0.0140 (8) | 0.0153 (8) | −0.0114 (7) |
C22 | 0.087 (4) | 0.108 (3) | 0.092 (4) | −0.008 (3) | −0.001 (3) | −0.006 (3) |
Cl4 | 0.1192 (12) | 0.1039 (8) | 0.1067 (11) | 0.0020 (8) | −0.0035 (9) | 0.0022 (8) |
Cl5 | 0.1014 (12) | 0.1516 (14) | 0.1350 (14) | −0.0353 (10) | 0.0217 (10) | −0.0418 (11) |
Cl6 | 0.1167 (13) | 0.1064 (9) | 0.1519 (16) | −0.0004 (9) | −0.0286 (11) | 0.0013 (9) |
Re1—C2 | 1.892 (6) | C11—C12 | 1.364 (7) |
Re1—C1 | 1.914 (5) | C11—H11 | 0.9300 |
Re1—C3 | 1.943 (5) | C12—C13 | 1.373 (8) |
Re1—N1 | 2.173 (4) | C12—H12 | 0.9300 |
Re1—P1 | 2.4687 (13) | C13—C14 | 1.382 (6) |
Re1—Br1 | 2.6066 (8) | C13—H13 | 0.9300 |
P1—C9 | 1.800 (5) | C14—H14 | 0.9300 |
P1—C15 | 1.806 (5) | C15—C16 | 1.370 (6) |
P1—C8 | 1.815 (5) | C15—C20 | 1.382 (6) |
N1—C4 | 1.330 (5) | C16—C17 | 1.371 (7) |
N1—C8 | 1.360 (5) | C16—H16 | 0.9300 |
C1—O1 | 1.147 (5) | C17—C18 | 1.374 (8) |
C2—O2 | 1.131 (6) | C17—H17 | 0.9300 |
C3—O3 | 1.116 (5) | C18—C19 | 1.362 (8) |
C4—C5 | 1.355 (7) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C20 | 1.381 (8) |
C5—C6 | 1.384 (7) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.368 (7) | C21—Cl3 | 1.737 (5) |
C6—H6 | 0.9300 | C21—Cl2 | 1.749 (5) |
C7—C8 | 1.370 (6) | C21—Cl1 | 1.762 (5) |
C7—H7 | 0.9300 | C21—H21 | 0.9800 |
C9—C10 | 1.385 (6) | C22—Cl6 | 1.735 (6) |
C9—C14 | 1.394 (6) | C22—Cl4 | 1.743 (6) |
C10—C11 | 1.392 (6) | C22—Cl5 | 1.751 (6) |
C10—H10 | 0.9300 | C22—H22 | 0.9800 |
C2—Re1—C1 | 90.2 (2) | C9—C10—C11 | 120.2 (5) |
C2—Re1—C3 | 88.3 (2) | C9—C10—H10 | 119.9 |
C1—Re1—C3 | 93.39 (19) | C11—C10—H10 | 119.9 |
C2—Re1—N1 | 93.39 (17) | C12—C11—C10 | 120.5 (5) |
C1—Re1—N1 | 167.89 (15) | C12—C11—H11 | 119.8 |
C3—Re1—N1 | 98.27 (17) | C10—C11—H11 | 119.8 |
C2—Re1—P1 | 93.56 (13) | C11—C12—C13 | 120.3 (5) |
C1—Re1—P1 | 102.86 (12) | C11—C12—H12 | 119.9 |
C3—Re1—P1 | 163.62 (15) | C13—C12—H12 | 119.9 |
N1—Re1—P1 | 65.39 (9) | C12—C13—C14 | 119.8 (5) |
C2—Re1—Br1 | 176.20 (14) | C12—C13—H13 | 120.1 |
C1—Re1—Br1 | 92.84 (14) | C14—C13—H13 | 120.1 |
C3—Re1—Br1 | 89.22 (15) | C13—C14—C9 | 120.9 (5) |
N1—Re1—Br1 | 84.11 (10) | C13—C14—H14 | 119.5 |
P1—Re1—Br1 | 88.01 (3) | C9—C14—H14 | 119.5 |
C9—P1—C15 | 105.2 (2) | C16—C15—C20 | 119.2 (5) |
C9—P1—C8 | 106.3 (2) | C16—C15—P1 | 122.6 (4) |
C15—P1—C8 | 106.9 (2) | C20—C15—P1 | 118.2 (4) |
C9—P1—Re1 | 128.88 (16) | C15—C16—C17 | 120.8 (5) |
C15—P1—Re1 | 120.04 (14) | C15—C16—H16 | 119.6 |
C8—P1—Re1 | 83.14 (13) | C17—C16—H16 | 119.6 |
C4—N1—C8 | 118.5 (4) | C16—C17—C18 | 119.8 (5) |
C4—N1—Re1 | 134.2 (3) | C16—C17—H17 | 120.1 |
C8—N1—Re1 | 107.2 (3) | C18—C17—H17 | 120.1 |
O1—C1—Re1 | 176.7 (4) | C19—C18—C17 | 119.9 (5) |
O2—C2—Re1 | 177.7 (4) | C19—C18—H18 | 120.1 |
O3—C3—Re1 | 178.8 (5) | C17—C18—H18 | 120.1 |
N1—C4—C5 | 121.7 (4) | C18—C19—C20 | 120.5 (5) |
N1—C4—H4 | 119.2 | C18—C19—H19 | 119.8 |
C5—C4—H4 | 119.2 | C20—C19—H19 | 119.8 |
C4—C5—C6 | 120.3 (5) | C19—C20—C15 | 119.7 (5) |
C4—C5—H5 | 119.8 | C19—C20—H20 | 120.1 |
C6—C5—H5 | 119.8 | C15—C20—H20 | 120.1 |
C7—C6—C5 | 118.6 (5) | Cl3—C21—Cl2 | 110.9 (3) |
C7—C6—H6 | 120.7 | Cl3—C21—Cl1 | 110.0 (3) |
C5—C6—H6 | 120.7 | Cl2—C21—Cl1 | 109.8 (3) |
C6—C7—C8 | 118.9 (4) | Cl3—C21—H21 | 108.7 |
C6—C7—H7 | 120.6 | Cl2—C21—H21 | 108.7 |
C8—C7—H7 | 120.6 | Cl1—C21—H21 | 108.7 |
N1—C8—C7 | 122.0 (4) | Cl6—C22—Cl4 | 110.7 (3) |
N1—C8—P1 | 104.1 (3) | Cl6—C22—Cl5 | 110.5 (3) |
C7—C8—P1 | 133.9 (3) | Cl4—C22—Cl5 | 109.9 (3) |
C10—C9—C14 | 118.4 (4) | Cl6—C22—H22 | 108.6 |
C10—C9—P1 | 121.8 (3) | Cl4—C22—H22 | 108.6 |
C14—C9—P1 | 119.7 (4) | Cl5—C22—H22 | 108.6 |
C8—N1—C4—C5 | 0.8 (7) | C14—C9—C10—C11 | 0.1 (7) |
Re1—N1—C4—C5 | 176.3 (4) | P1—C9—C10—C11 | 177.4 (4) |
N1—C4—C5—C6 | −1.2 (8) | C9—C10—C11—C12 | 0.2 (8) |
C4—C5—C6—C7 | 0.5 (8) | C10—C11—C12—C13 | −0.5 (8) |
C5—C6—C7—C8 | 0.4 (7) | C11—C12—C13—C14 | 0.5 (8) |
C4—N1—C8—C7 | 0.2 (7) | C12—C13—C14—C9 | −0.2 (8) |
Re1—N1—C8—C7 | −176.4 (4) | C10—C9—C14—C13 | −0.1 (7) |
C4—N1—C8—P1 | −179.2 (3) | P1—C9—C14—C13 | −177.5 (4) |
Re1—N1—C8—P1 | 4.2 (3) | C9—P1—C15—C16 | −63.3 (4) |
C6—C7—C8—N1 | −0.8 (7) | C8—P1—C15—C16 | 49.5 (4) |
C6—C7—C8—P1 | 178.3 (4) | Re1—P1—C15—C16 | 141.4 (3) |
C9—P1—C8—N1 | −132.1 (3) | C9—P1—C15—C20 | 118.0 (4) |
C15—P1—C8—N1 | 115.8 (3) | C8—P1—C15—C20 | −129.2 (4) |
Re1—P1—C8—N1 | −3.5 (3) | Re1—P1—C15—C20 | −37.3 (4) |
C9—P1—C8—C7 | 48.6 (5) | C20—C15—C16—C17 | 1.3 (7) |
C15—P1—C8—C7 | −63.4 (5) | P1—C15—C16—C17 | −177.4 (4) |
Re1—P1—C8—C7 | 177.2 (5) | C15—C16—C17—C18 | −0.5 (8) |
C15—P1—C9—C10 | 145.3 (4) | C16—C17—C18—C19 | −1.2 (9) |
C8—P1—C9—C10 | 32.1 (4) | C17—C18—C19—C20 | 2.1 (9) |
Re1—P1—C9—C10 | −62.3 (4) | C18—C19—C20—C15 | −1.3 (9) |
C15—P1—C9—C14 | −37.4 (4) | C16—C15—C20—C19 | −0.3 (8) |
C8—P1—C9—C14 | −150.6 (4) | P1—C15—C20—C19 | 178.4 (4) |
Re1—P1—C9—C14 | 115.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···Br1i | 0.98 | 2.66 | 3.490 (5) | 143 |
C4—H4···Br1ii | 0.93 | 2.80 | 3.552 (5) | 139 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z. |
[ReBr(C5H11N)(C17H14NP)(CO)3]·[+solvent] | Z = 2 |
Mr = 698.55 | F(000) = 676.0 |
Triclinic, P1 | Dx = 1.778 Mg m−3 |
a = 9.1384 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8348 (18) Å | Cell parameters from 4721 reflections |
c = 15.671 (3) Å | θ = 2.4–22.8° |
α = 82.956 (2)° | µ = 6.28 mm−1 |
β = 82.047 (2)° | T = 150 K |
γ = 69.765 (2)° | Stick, orange |
V = 1304.5 (4) Å3 | 0.07 × 0.04 × 0.03 mm |
Bruker SMART CCD area detector diffractometer | 4493 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.042 |
phi and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Bruker, 2012) | h = −11→11 |
Tmin = 0.560, Tmax = 0.858 | k = −12→12 |
10214 measured reflections | l = −19→19 |
5113 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + 9.4699P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
5113 reflections | Δρmax = 1.96 e Å−3 |
303 parameters | Δρmin = −1.79 e Å−3 |
1 restraint | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00125 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.83162 (3) | 0.70525 (3) | 0.70289 (2) | 0.01774 (10) | |
Br1 | 0.80946 (9) | 0.74617 (8) | 0.86842 (5) | 0.03004 (19) | |
P1 | 0.7341 (2) | 0.49823 (19) | 0.75160 (12) | 0.0202 (4) | |
O1 | 0.8277 (7) | 0.6670 (7) | 0.5117 (4) | 0.0422 (15) | |
O3 | 1.1681 (6) | 0.4948 (6) | 0.6944 (4) | 0.0390 (14) | |
C1 | 0.8293 (9) | 0.6804 (8) | 0.5867 (5) | 0.0311 (18) | |
C3 | 1.0438 (9) | 0.5701 (8) | 0.6993 (5) | 0.0262 (17) | |
O2 | 0.9776 (6) | 0.9453 (6) | 0.6454 (4) | 0.0403 (14) | |
C2 | 0.9177 (8) | 0.8584 (8) | 0.6688 (5) | 0.0272 (17) | |
N1 | 0.4375 (7) | 0.6604 (7) | 0.8008 (5) | 0.0404 (18) | |
C10 | 0.5477 (8) | 0.5329 (8) | 0.8209 (5) | 0.0258 (16) | |
C12 | 0.8652 (8) | 0.3427 (7) | 0.8099 (4) | 0.0212 (15) | |
C4 | 0.7011 (8) | 0.4161 (7) | 0.6619 (5) | 0.0226 (15) | |
C13 | 0.8598 (9) | 0.2025 (8) | 0.8069 (5) | 0.0294 (17) | |
H13 | 0.7924 | 0.1883 | 0.7722 | 0.035* | |
C5 | 0.5513 (8) | 0.4262 (8) | 0.6451 (5) | 0.0271 (17) | |
H5 | 0.4635 | 0.4741 | 0.6812 | 0.032* | |
C6 | 0.8295 (9) | 0.3428 (9) | 0.6070 (5) | 0.0329 (19) | |
H6 | 0.9298 | 0.3356 | 0.6175 | 0.039* | |
C14 | 0.9678 (8) | 0.3586 (8) | 0.8629 (5) | 0.0288 (17) | |
H14 | 0.9738 | 0.4502 | 0.8667 | 0.035* | |
C15 | 0.9527 (9) | 0.0861 (8) | 0.8545 (5) | 0.035 (2) | |
H15 | 0.9469 | −0.0058 | 0.8516 | 0.042* | |
C11 | 0.5179 (9) | 0.4359 (9) | 0.8863 (5) | 0.037 (2) | |
H11 | 0.5958 | 0.3487 | 0.9002 | 0.044* | |
C7 | 0.8101 (10) | 0.2809 (9) | 0.5372 (5) | 0.038 (2) | |
H7 | 0.8971 | 0.2322 | 0.5009 | 0.045* | |
C8 | 0.5355 (10) | 0.3635 (9) | 0.5731 (5) | 0.038 (2) | |
H8 | 0.4361 | 0.3716 | 0.5607 | 0.046* | |
N2 | 0.5893 (6) | 0.8705 (7) | 0.7094 (4) | 0.0267 (14) | |
C20 | 1.0531 (8) | 0.1025 (8) | 0.9058 (5) | 0.0312 (19) | |
H20 | 1.1158 | 0.0226 | 0.9375 | 0.037* | |
C22 | 0.5748 (8) | 1.0155 (7) | 0.7304 (5) | 0.0265 (17) | |
H22A | 0.6209 | 1.0630 | 0.6815 | 0.032* | |
H22B | 0.6333 | 1.0066 | 0.7791 | 0.032* | |
C21 | 1.0610 (9) | 0.2390 (9) | 0.9101 (5) | 0.0330 (19) | |
H21 | 1.1293 | 0.2509 | 0.9451 | 0.040* | |
C16 | 0.6639 (11) | 0.2905 (10) | 0.5211 (6) | 0.042 (2) | |
H16 | 0.6518 | 0.2470 | 0.4743 | 0.050* | |
C18 | 0.2572 (9) | 0.5974 (9) | 0.9089 (5) | 0.038 (2) | |
H18 | 0.1558 | 0.6203 | 0.9366 | 0.046* | |
C17 | 0.2958 (9) | 0.6904 (10) | 0.8455 (7) | 0.052 (3) | |
H17 | 0.2198 | 0.7794 | 0.8325 | 0.063* | |
C23 | 0.4992 (9) | 0.8828 (9) | 0.6357 (6) | 0.038 (2) | |
H23A | 0.5059 | 0.7862 | 0.6237 | 0.045* | |
H23B | 0.5463 | 0.9251 | 0.5848 | 0.045* | |
C19 | 0.3699 (10) | 0.4708 (10) | 0.9308 (6) | 0.046 (2) | |
H19 | 0.3477 | 0.4074 | 0.9756 | 0.056* | |
C24 | 0.4037 (9) | 1.1105 (9) | 0.7526 (6) | 0.037 (2) | |
H24A | 0.3600 | 1.0682 | 0.8047 | 0.045* | |
H24B | 0.3999 | 1.2067 | 0.7637 | 0.045* | |
C25 | 0.3279 (9) | 0.9750 (9) | 0.6520 (6) | 0.043 (2) | |
H25A | 0.2777 | 0.9872 | 0.5996 | 0.052* | |
H25B | 0.2763 | 0.9245 | 0.6966 | 0.052* | |
C27 | 0.3068 (9) | 1.1232 (9) | 0.6799 (6) | 0.042 (2) | |
H3A | 0.3377 | 1.1818 | 0.6312 | 0.051* | |
H3B | 0.1971 | 1.1717 | 0.6986 | 0.051* | |
H2N | 0.567 (8) | 0.828 (5) | 0.755 (2) | 0.08 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01153 (15) | 0.01837 (15) | 0.02204 (17) | −0.00440 (10) | −0.00090 (10) | 0.00044 (10) |
Br1 | 0.0329 (4) | 0.0300 (4) | 0.0260 (4) | −0.0077 (3) | −0.0048 (3) | −0.0040 (3) |
P1 | 0.0141 (9) | 0.0199 (9) | 0.0252 (10) | −0.0052 (7) | −0.0009 (7) | 0.0008 (8) |
O1 | 0.042 (4) | 0.057 (4) | 0.028 (3) | −0.018 (3) | −0.009 (3) | 0.004 (3) |
O3 | 0.013 (3) | 0.045 (3) | 0.051 (4) | −0.001 (3) | 0.000 (2) | −0.005 (3) |
C1 | 0.023 (4) | 0.034 (4) | 0.033 (5) | −0.009 (3) | 0.003 (3) | 0.001 (4) |
C3 | 0.031 (4) | 0.025 (4) | 0.025 (4) | −0.012 (4) | −0.003 (3) | −0.002 (3) |
O2 | 0.031 (3) | 0.035 (3) | 0.061 (4) | −0.022 (3) | 0.001 (3) | −0.001 (3) |
C2 | 0.023 (4) | 0.024 (4) | 0.032 (4) | −0.005 (3) | 0.000 (3) | −0.004 (3) |
N1 | 0.018 (3) | 0.031 (4) | 0.060 (5) | −0.002 (3) | 0.013 (3) | 0.009 (3) |
C10 | 0.018 (4) | 0.028 (4) | 0.030 (4) | −0.008 (3) | 0.002 (3) | −0.006 (3) |
C12 | 0.017 (3) | 0.021 (4) | 0.023 (4) | −0.005 (3) | 0.002 (3) | 0.001 (3) |
C4 | 0.019 (4) | 0.021 (4) | 0.028 (4) | −0.006 (3) | −0.005 (3) | 0.002 (3) |
C13 | 0.027 (4) | 0.026 (4) | 0.032 (4) | −0.006 (3) | −0.002 (3) | −0.001 (3) |
C5 | 0.023 (4) | 0.025 (4) | 0.032 (4) | −0.008 (3) | −0.006 (3) | 0.003 (3) |
C6 | 0.032 (4) | 0.047 (5) | 0.023 (4) | −0.016 (4) | 0.003 (3) | −0.011 (4) |
C14 | 0.026 (4) | 0.031 (4) | 0.025 (4) | −0.005 (3) | 0.001 (3) | −0.005 (3) |
C15 | 0.030 (4) | 0.014 (4) | 0.050 (5) | 0.001 (3) | 0.002 (4) | 0.004 (3) |
C11 | 0.026 (4) | 0.038 (5) | 0.040 (5) | −0.007 (4) | 0.006 (4) | 0.002 (4) |
C7 | 0.042 (5) | 0.039 (5) | 0.032 (5) | −0.012 (4) | 0.002 (4) | −0.013 (4) |
C8 | 0.037 (5) | 0.048 (5) | 0.039 (5) | −0.025 (4) | −0.018 (4) | 0.010 (4) |
N2 | 0.011 (3) | 0.028 (3) | 0.039 (4) | −0.008 (3) | −0.002 (3) | 0.007 (3) |
C20 | 0.021 (4) | 0.028 (4) | 0.029 (4) | 0.006 (3) | 0.002 (3) | 0.005 (3) |
C22 | 0.024 (4) | 0.020 (4) | 0.036 (4) | −0.007 (3) | −0.006 (3) | −0.002 (3) |
C21 | 0.027 (4) | 0.040 (5) | 0.026 (4) | −0.002 (4) | −0.005 (3) | −0.001 (4) |
C16 | 0.058 (6) | 0.048 (5) | 0.031 (5) | −0.029 (5) | −0.021 (4) | 0.000 (4) |
C18 | 0.024 (4) | 0.046 (5) | 0.043 (5) | −0.014 (4) | 0.014 (4) | −0.012 (4) |
C17 | 0.021 (4) | 0.039 (5) | 0.076 (7) | 0.005 (4) | 0.019 (4) | −0.001 (5) |
C23 | 0.022 (4) | 0.040 (5) | 0.051 (6) | −0.004 (4) | −0.014 (4) | −0.010 (4) |
C19 | 0.033 (5) | 0.055 (6) | 0.042 (5) | −0.014 (4) | 0.013 (4) | 0.006 (4) |
C24 | 0.022 (4) | 0.032 (4) | 0.048 (5) | 0.003 (3) | −0.001 (4) | −0.003 (4) |
C25 | 0.032 (5) | 0.035 (5) | 0.063 (6) | −0.007 (4) | −0.021 (4) | 0.004 (4) |
C27 | 0.023 (4) | 0.034 (5) | 0.061 (6) | 0.000 (4) | −0.008 (4) | 0.003 (4) |
Re1—C1 | 1.870 (8) | C7—C16 | 1.363 (11) |
Re1—C2 | 1.918 (7) | C7—H7 | 0.9300 |
Re1—C3 | 1.932 (8) | C8—C16 | 1.361 (12) |
Re1—N2 | 2.246 (6) | C8—H8 | 0.9300 |
Re1—P1 | 2.4915 (18) | N2—C22 | 1.460 (9) |
Re1—Br1 | 2.6430 (9) | N2—C23 | 1.479 (10) |
P1—C4 | 1.812 (7) | N2—H2N | 0.8200 (10) |
P1—C12 | 1.817 (7) | C20—C21 | 1.379 (11) |
P1—C10 | 1.837 (7) | C20—H20 | 0.9300 |
O1—C1 | 1.202 (9) | C22—C24 | 1.536 (10) |
O3—C3 | 1.120 (8) | C22—H22A | 0.9700 |
O2—C2 | 1.164 (8) | C22—H22B | 0.9700 |
N1—C17 | 1.338 (9) | C21—H21 | 0.9300 |
N1—C10 | 1.343 (9) | C16—H16 | 0.9300 |
C10—C11 | 1.377 (10) | C18—C19 | 1.354 (11) |
C12—C14 | 1.394 (10) | C18—C17 | 1.361 (12) |
C12—C13 | 1.404 (10) | C18—H18 | 0.9300 |
C4—C6 | 1.387 (10) | C17—H17 | 0.9300 |
C4—C5 | 1.398 (9) | C23—C25 | 1.517 (10) |
C13—C15 | 1.371 (10) | C23—H23A | 0.9700 |
C13—H13 | 0.9300 | C23—H23B | 0.9700 |
C5—C8 | 1.396 (11) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C24—C27 | 1.505 (12) |
C6—C7 | 1.375 (10) | C24—H24A | 0.9700 |
C6—H6 | 0.9300 | C24—H24B | 0.9700 |
C14—C21 | 1.387 (10) | C25—C27 | 1.514 (11) |
C14—H14 | 0.9300 | C25—H25A | 0.9700 |
C15—C20 | 1.362 (11) | C25—H25B | 0.9700 |
C15—H15 | 0.9300 | C27—H3A | 0.9700 |
C11—C19 | 1.382 (10) | C27—H3B | 0.9700 |
C11—H11 | 0.9300 | ||
C1—Re1—C2 | 90.1 (3) | C16—C8—H8 | 119.6 |
C1—Re1—C3 | 89.4 (3) | C5—C8—H8 | 119.6 |
C2—Re1—C3 | 88.0 (3) | C22—N2—C23 | 109.6 (6) |
C1—Re1—N2 | 92.3 (3) | C22—N2—Re1 | 116.4 (4) |
C2—Re1—N2 | 89.6 (3) | C23—N2—Re1 | 116.1 (5) |
C3—Re1—N2 | 177.1 (3) | C22—N2—H2N | 106 (4) |
C1—Re1—P1 | 91.6 (2) | C23—N2—H2N | 118 (5) |
C2—Re1—P1 | 176.6 (2) | Re1—N2—H2N | 89 (5) |
C3—Re1—P1 | 89.0 (2) | C15—C20—C21 | 119.3 (7) |
N2—Re1—P1 | 93.28 (16) | C15—C20—H20 | 120.4 |
C1—Re1—Br1 | 175.3 (2) | C21—C20—H20 | 120.4 |
C2—Re1—Br1 | 92.1 (2) | N2—C22—C24 | 112.6 (6) |
C3—Re1—Br1 | 94.9 (2) | N2—C22—H22A | 109.1 |
N2—Re1—Br1 | 83.53 (17) | C24—C22—H22A | 109.1 |
P1—Re1—Br1 | 86.44 (5) | N2—C22—H22B | 109.1 |
C4—P1—C12 | 102.0 (3) | C24—C22—H22B | 109.1 |
C4—P1—C10 | 102.6 (3) | H22A—C22—H22B | 107.8 |
C12—P1—C10 | 102.6 (3) | C20—C21—C14 | 120.6 (8) |
C4—P1—Re1 | 112.4 (2) | C20—C21—H21 | 119.7 |
C12—P1—Re1 | 116.4 (2) | C14—C21—H21 | 119.7 |
C10—P1—Re1 | 118.7 (2) | C8—C16—C7 | 120.3 (8) |
O1—C1—Re1 | 178.8 (7) | C8—C16—H16 | 119.8 |
O3—C3—Re1 | 177.3 (7) | C7—C16—H16 | 119.8 |
O2—C2—Re1 | 175.9 (6) | C19—C18—C17 | 118.4 (7) |
C17—N1—C10 | 118.0 (7) | C19—C18—H18 | 120.8 |
N1—C10—C11 | 121.6 (7) | C17—C18—H18 | 120.8 |
N1—C10—P1 | 114.4 (5) | N1—C17—C18 | 123.4 (8) |
C11—C10—P1 | 124.0 (6) | N1—C17—H17 | 118.3 |
C14—C12—C13 | 117.5 (7) | C18—C17—H17 | 118.3 |
C14—C12—P1 | 121.7 (5) | N2—C23—C25 | 113.0 (7) |
C13—C12—P1 | 120.7 (5) | N2—C23—H23A | 109.0 |
C6—C4—C5 | 118.9 (7) | C25—C23—H23A | 109.0 |
C6—C4—P1 | 118.6 (5) | N2—C23—H23B | 109.0 |
C5—C4—P1 | 122.5 (6) | C25—C23—H23B | 109.0 |
C15—C13—C12 | 120.9 (7) | H23A—C23—H23B | 107.8 |
C15—C13—H13 | 119.6 | C18—C19—C11 | 119.9 (8) |
C12—C13—H13 | 119.6 | C18—C19—H19 | 120.0 |
C8—C5—C4 | 119.0 (7) | C11—C19—H19 | 120.0 |
C8—C5—H5 | 120.5 | C27—C24—C22 | 111.0 (7) |
C4—C5—H5 | 120.5 | C27—C24—H24A | 109.4 |
C7—C6—C4 | 120.7 (7) | C22—C24—H24A | 109.4 |
C7—C6—H6 | 119.7 | C27—C24—H24B | 109.4 |
C4—C6—H6 | 119.7 | C22—C24—H24B | 109.4 |
C21—C14—C12 | 120.5 (7) | H24A—C24—H24B | 108.0 |
C21—C14—H14 | 119.7 | C27—C25—C23 | 112.4 (7) |
C12—C14—H14 | 119.7 | C27—C25—H25A | 109.1 |
C20—C15—C13 | 121.2 (8) | C23—C25—H25A | 109.1 |
C20—C15—H15 | 119.4 | C27—C25—H25B | 109.1 |
C13—C15—H15 | 119.4 | C23—C25—H25B | 109.1 |
C10—C11—C19 | 118.6 (8) | H25A—C25—H25B | 107.8 |
C10—C11—H11 | 120.7 | C24—C27—C25 | 111.1 (7) |
C19—C11—H11 | 120.7 | C24—C27—H3A | 109.4 |
C16—C7—C6 | 120.3 (8) | C25—C27—H3A | 109.4 |
C16—C7—H7 | 119.8 | C24—C27—H3B | 109.4 |
C6—C7—H7 | 119.8 | C25—C27—H3B | 109.4 |
C16—C8—C5 | 120.8 (7) | H3A—C27—H3B | 108.0 |
C17—N1—C10—C11 | −0.9 (13) | P1—C4—C6—C7 | −178.9 (6) |
C17—N1—C10—P1 | 176.7 (7) | C13—C12—C14—C21 | 0.4 (10) |
C4—P1—C10—N1 | −86.6 (6) | P1—C12—C14—C21 | 176.7 (5) |
C12—P1—C10—N1 | 167.9 (6) | C12—C13—C15—C20 | −0.2 (12) |
Re1—P1—C10—N1 | 37.9 (7) | N1—C10—C11—C19 | 1.1 (13) |
C4—P1—C10—C11 | 90.9 (7) | P1—C10—C11—C19 | −176.3 (7) |
C12—P1—C10—C11 | −14.6 (8) | C4—C6—C7—C16 | −0.1 (13) |
Re1—P1—C10—C11 | −144.5 (6) | C4—C5—C8—C16 | 1.5 (11) |
C4—P1—C12—C14 | 155.1 (6) | C13—C15—C20—C21 | 0.3 (12) |
C10—P1—C12—C14 | −98.9 (6) | C23—N2—C22—C24 | 58.2 (8) |
Re1—P1—C12—C14 | 32.4 (7) | Re1—N2—C22—C24 | −167.6 (5) |
C4—P1—C12—C13 | −28.7 (6) | C15—C20—C21—C14 | 0.0 (11) |
C10—P1—C12—C13 | 77.3 (6) | C12—C14—C21—C20 | −0.3 (11) |
Re1—P1—C12—C13 | −151.4 (5) | C5—C8—C16—C7 | −1.7 (13) |
C12—P1—C4—C6 | −58.3 (6) | C6—C7—C16—C8 | 1.0 (13) |
C10—P1—C4—C6 | −164.3 (6) | C10—N1—C17—C18 | −1.2 (15) |
Re1—P1—C4—C6 | 67.1 (6) | C19—C18—C17—N1 | 3.1 (15) |
C12—P1—C4—C5 | 123.0 (6) | C22—N2—C23—C25 | −56.3 (8) |
C10—P1—C4—C5 | 17.0 (7) | Re1—N2—C23—C25 | 169.3 (5) |
Re1—P1—C4—C5 | −111.6 (6) | C17—C18—C19—C11 | −2.9 (14) |
C14—C12—C13—C15 | −0.1 (11) | C10—C11—C19—C18 | 0.8 (14) |
P1—C12—C13—C15 | −176.5 (6) | N2—C22—C24—C27 | −56.7 (9) |
C6—C4—C5—C8 | −0.5 (11) | N2—C23—C25—C27 | 53.0 (10) |
P1—C4—C5—C8 | 178.2 (6) | C22—C24—C27—C25 | 51.0 (9) |
C5—C4—C6—C7 | −0.2 (11) | C23—C25—C27—C24 | −49.9 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···N1 | 0.82 | 2.34 | 2.992 (9) | 138 |
C14—H14···Br1 | 0.93 | 2.78 | 3.586 (8) | 146 |
C22—H22B···Br1 | 0.97 | 2.83 | 3.499 (7) | 127 |
Acknowledgements
The authors acknowledge the Laboratory Analysis of Solids (LAS-UNAB) for granting access to its instrumental facilities and software.
Funding information
Funding for this research was provided by: Fondo Nacional de Desarrollo Científico y Tecnológico (grant No. 1160546; grant No. 3170100; grant No. ACT1404).
References
Abram, U., Alberto, R., Dilworth, J. R., Zheng, Y. & Ortner, K. (1999). Polyhedron, 18, 2995–3003. CSD CrossRef CAS Google Scholar
Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A. Jr & Chergui, M. (2008). J. Am. Chem. Soc. 130, 8967–8974. CrossRef PubMed CAS Google Scholar
Dalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735–57748. Web of Science CSD CrossRef CAS Google Scholar
Darensbourg, D. J., Andreatta, J. R., Stranahan, S. M. & Reibenspies, J. H. (2007). Organometallics, 26, 6832–6838. CSD CrossRef CAS Google Scholar
Guiry, P. J. & Saunders, C. P. (2004). Adv. Synth. Catal. 346, 497–537. CrossRef CAS Google Scholar
Knebel, W. J. & Angelici, R. J. (1973). Inorg. Chim. Acta, 7, 713–716. CrossRef CAS Google Scholar
Kumar, P., Singh, A. K., Pandey, R. & Pandey, D. S. (2011). J. Organomet. Chem. 696, 3454–3464. CSD CrossRef CAS Google Scholar
Machura, B. & Kruszynski, R. (2006). Polyhedron, 25, 1985–1993. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ooyama, D. & Sato, M. (2004). Appl. Organomet. Chem. 18, 380–381. CSD CrossRef Google Scholar
Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929–3935. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Venegas, F., Pizarro, N. & Vega, A. (2011). J. Chil. Chem. Soc. 56, 823–826. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.