research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]

aUniversidad Andrés Bello, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Quillota 980, Viña del Mar, Chile, and bLaboratorio de Análisis de Sólidos, Facultad de Ciencias Exactas, Salvador Sanfuentes 2357, Santiago, Chile
*Correspondence e-mail: andresvega@unab.cl

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 23 November 2018; accepted 5 June 2019; online 21 June 2019)

The coordination of the ligands with respect to the central atom in the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloro­form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa­hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di­phenyl­pyridyl­phosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H inter­actions contribute 26%, the distance of these inter­actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di­chloro­methane leads to the partial decoord­ination of the pyridyl­phosphine ligand, whose pyridyl group is replaced by a piperidine mol­ecule, and the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol­ecule has an intra­molecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine with DA = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro­form mol­ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl­phosphine. The contribution to the scattering from highly disordered solvent mol­ecules in II was removed with the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account.

1. Chemical context

Phosphine-type ligands having a second type of atom or coordinating function have been of great inter­est in many areas of chemistry. The existence of a second coordination atom with different properties, coordination capability or trans effect adds possibilities during a catalytic cycle (Guiry & Saunders, 2004[Guiry, P. J. & Saunders, C. P. (2004). Adv. Synth. Catal. 346, 497-537.]). In particular, much attention has been paid to one of the simplest mol­ecules of this kind, di­phenyl­pyridyl­phosphine P(C6H5)2(C5H5N) (PPh2Py). The mol­ecule is a rigid bidentate ligand (Abram et al., 1999[Abram, U., Alberto, R., Dilworth, J. R., Zheng, Y. & Ortner, K. (1999). Polyhedron, 18, 2995-3003.]; Knebel & Angelici, 1973[Knebel, W. J. & Angelici, R. J. (1973). Inorg. Chim. Acta, 7, 713-716.]).

The reaction of the di­phenyl­pyridyl­phosphine ligand with the rhenium dimer (Re(CO)3(OC4H8)Br)2 in chloro­form as solvent leads to the complex P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 (I·2CHCl3). It presents a similar structure to the widely studied [(N,N)Re(CO)3(L)] complexes, which have inter­esting photophysical and photochemical properties (Cannizzo et al., 2008[Cannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A. Jr & Chergui, M. (2008). J. Am. Chem. Soc. 130, 8967-8974.]). Complex I has been shown to be a dual emitter (Pizarro et al., 2015[Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929-3935.]). It is also inter­esting to note that the PPh2Py ligand can be partially decoordinated by reaction of the complex with a monodentate ligand, like piperidine (C5H11N), leading to the complex [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II).

[Scheme 1]

2. Structural commentary

The mononuclear ReI complex I with a bidentate P,N (chelating) ligand crystallized from a chloro­form solution in the monoclinic space P21/c. Selected geometrical data are summarized in Table 1[link], and the mol­ecular structure of complex I·2CHCl3 is given in Fig. 1[link]. The coordination environment of the central rhenium atom is defined for phos­phorus and nitro­gen atoms from PPh2Py, a bromide atom in an apical position and three carbonyl carbon atoms in a fac correlation, generating a distorted octa­hedral environment. Additionally, two chloro­form mol­ecules crystallize together with the complex mol­ecule.

Table 1
Selected geometric parameters (Å, °) for I·2CHCl3[link]

Re1—C2 1.892 (6) Re1—N1 2.173 (4)
Re1—C1 1.914 (5) Re1—P1 2.4687 (13)
Re1—C3 1.943 (5) Re1—Br1 2.6066 (8)
       
C2—Re1—C1 90.2 (2) C3—Re1—P1 163.62 (15)
C2—Re1—C3 88.3 (2) N1—Re1—P1 65.39 (9)
C1—Re1—C3 93.39 (19) C2—Re1—Br1 176.20 (14)
C2—Re1—N1 93.39 (17) C1—Re1—Br1 92.84 (14)
C1—Re1—N1 167.89 (15) C3—Re1—Br1 89.22 (15)
C3—Re1—N1 98.27 (17) N1—Re1—Br1 84.11 (10)
C2—Re1—P1 93.56 (13) P1—Re1—Br1 88.01 (3)
C1—Re1—P1 102.86 (12)    
[Figure 1]
Figure 1
Mol­ecular view of complex I·2CHCl3, showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms of I have been omitted.

The mononuclear ReI complex II, crystallized from a CH2Cl2/CH3CN (2:1) solution in the triclinic space group P[\overline{1}]. Selected geometrical data are given in Table 2[link], and the mol­ecular structure of the complex is illustrated in Fig. 2[link]. The central rhenium atom displays a non-regular octa­hedral coordination geometry, with three facial carbonyl groups, a monodentate PPh2Py ligand, a piperidine C5H11N mol­ecule and a bromide anion. The piperidine ring displays a chair-like conformation. An intra­molecular hydrogen bond is defined between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine, N2—H2N⋯N1, with DA = 2.992 (9) Å (Table 4[link]). There are also two C—H⋯Br intra­molecular contacts present involving atom Br1 and a phenyl H atom (H14) and a methyl­ene H atom (H22B) of the pypridine ring (Table 4[link]).

Table 2
Selected geometric parameters (Å, °) for II[link]

Re1—C1 1.870 (8) Re1—N2 2.246 (6)
Re1—C2 1.918 (7) Re1—P1 2.4915 (18)
Re1—C3 1.932 (8) Re1—Br1 2.6430 (9)
       
C1—Re1—C2 90.1 (3) C3—Re1—P1 89.0 (2)
C1—Re1—C3 89.4 (3) N2—Re1—P1 93.28 (16)
C2—Re1—C3 88.0 (3) C1—Re1—Br1 175.3 (2)
C1—Re1—N2 92.3 (3) C2—Re1—Br1 92.1 (2)
C2—Re1—N2 89.6 (3) C3—Re1—Br1 94.9 (2)
C3—Re1—N2 177.1 (3) N2—Re1—Br1 83.53 (17)
C1—Re1—P1 91.6 (2) P1—Re1—Br1 86.44 (5)
C2—Re1—P1 176.6 (2)    

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1 0.82 2.34 2.992 (9) 138
C14—H14⋯Br1 0.93 2.78 3.586 (8) 146
C22—H22B⋯Br1 0.97 2.83 3.499 (7) 127
[Figure 2]
Figure 2
Mol­ecular view of complex II showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms have been omitted.

3. Supra­molecular features

In the crystal of I·2CHCl3, the lattice has two solvating mol­ecules of chloro­form per complex mol­ecule. The cell has a larger volume than for the unsolvated one [2836.7 (15) vs 2119.2 (3) Å3 (Venegas et al., 2011[Venegas, F., Pizarro, N. & Vega, A. (2011). J. Chil. Chem. Soc. 56, 823-826.])] whose geometrical parameters are very similar to those of complex I. In the crystal, the chloro­form solvent mol­ecules are involved in weak C—H⋯Br hydrogen bonds and they link the complex mol­ecules to form layers lying parallel to the bc plane (Fig. 3[link] and Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for I·2CHCl3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯Br1i 0.98 2.66 3.490 (5) 143
C4—H4⋯Br1ii 0.93 2.80 3.552 (5) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of complex I·2CHCl3. The hydrogen bonds are shown as dashed lines (see Table 3[link]).

In the crystal of II, a region of highly disordered electron density was equated to the present of a disordered aceto­nitrile mol­ecule. The contribution to the scattering was removed with the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). A view of the crystal packing, showing the regions, or voids, occupied by this disordered solvent in given in Fig. 4[link].

[Figure 4]
Figure 4
A view along the b axis of the crystal packing of complex II. The voids occupied by the disordered solvent mol­ecules are shown in yellow–brown (calculated using Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

4. Hirshfeld surface analysis of complex I·2CHCl3

In order to visualize and qu­antify the inter­molecular inter­actions in the crystal packing of complex I·2CHCl3, in particular those involving the chloro­form solvent mol­ecules, an Hirshfeld surface analysis was performed and two-dimensional fingerprint plots generated. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surface mapped over dnorm = de + di, is given in Fig. 5[link]a (de represents the distance from the surface to the nearest nucleus external to the surface, and di is the distance from the surface to the nearest nucleus inter­nal to the surface). In this dnorm view (Fig. 5[link]a), blue represents the longest distances while the shortest distances are depicted as red spots (Dalal et al., 2015[Dalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735-57748.]).

[Figure 5]
Figure 5
(a) The Hirshfeld surface of complex I·2CHCl3, mapped over dnorm in the range −0.2767 to +1.3337 arbitrary units. (b) The two-dimensional fingerprint plot of complex I·2CHCl3.

The two-dimensional fingerprint plot for the whole complex is given in Fig. 5[link]b. Apart from the H⋯H inter­molecular contacts that contribute ca 15% the other most relevant inter­molecular inter­actions, as determined from the Hirshfeld surface analysis of complex I·2CHCl3, are shown in Fig. 6[link]. The Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯H/H⋯C inter­actions contribute 26.0, 15.4 and 9.8%, respectively, to the Hirshfeld surface. Some distances for these inter­actions are Cl1⋯H19 = 2.90 Å, H22⋯O2 = 2.69 Å and H21⋯Br1 = 2.66 Å.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the Cl⋯H/H⋯Cl (26.0%), O⋯H/H⋯O (15.4%), C⋯H/H⋯C (9.8%) and Br⋯H/H⋯Br (7.6%) contacts in the coordination complex I·2CHCl3.

5. Thermogravimetric analysis

Thermogravimetric analyses from 25 to 300°C were performed for both compounds under an N2 flux at a heating rate of 1°C min−1 (see Fig. 7[link]). Thermogravimetric analysis for compound I·2CHCl3 (Fig. 7[link], red line), shows that it loses 28% of its mass in a narrow range, between 45 and 60°C. This mass loss is completely consistent with the two solvating chloro­form mol­ecules detected by the crystal structure analysis. The boiling point of chloro­form, 61°C, is almost identical to the temperature where the mass loss stops, suggesting that the chloro­form mol­ecules are weakly bonded to the rhenium ones in the solid. From 60 to 300°C the remaining matrix is completely stable.

[Figure 7]
Figure 7
Weight loss for I·2CHCl3 (red line) and II (blue line) between room temperature and 300°C.

Compound II loses 12% of its initial mass between 154 and 190°C (Fig. 7[link], blue line). This loss of mass can be associated with the release of the aceto­nitrile and piperidine mol­ecules (14.7%). The relatively high temperature at which decomposition begins compared to the piperidine boiling point, 105°C, suggest that it is strongly bonded to II. From 190 to 300°C, another 33% of mass loss is registered, which can be associated with the release of the PPh2Py (36.6%, b.p.163°C).

6. Database survey

The di­phenyl­pyridyl­phosphine ligand has been extensively studied and used as a monodentate and bidentate ligand with different metals, including RuII (Ooyama & Sato, 2004[Ooyama, D. & Sato, M. (2004). Appl. Organomet. Chem. 18, 380-381.]) where the CO2-reducing properties of the complex were studied. Another RuII complex with PPh2Py (Kumar et al., 2011[Kumar, P., Singh, A. K., Pandey, R. & Pandey, D. S. (2011). J. Organomet. Chem. 696, 3454-3464.]) has been studied as an inhibitor of DNA-topoisomerases of the filarial parasite S. cervi. ReI–nitro­sil complexes with PPh2Py have been studied structurally and photophysically (Machura & Kruszynski, 2006[Machura, B. & Kruszynski, R. (2006). Polyhedron, 25, 1985-1993.]).

Piperidine is a ligand that has been widely used with various transition metals. It has been used as a ligand with tungsten and molybdenum to study the cistrans effect by using larger ligands and increasing the steric hindrance (Darensbourg et al., 2007[Darensbourg, D. J., Andreatta, J. R., Stranahan, S. M. & Reibenspies, J. H. (2007). Organometallics, 26, 6832-6838.]).

7. Synthesis and crystallization

The reagents, (Re(CO)3(OC4H8)Br)2 and (C6H5)2(C5H5N)P were used as provided from supplier (Aldrich), with no purification before use. Seccosolv™ solvents were used without any further purification. Standard Schlenck techniques under argon atmosphere were used for all manipulations.

Synthesis of I. 500 mg of (Re(CO)3(OC4H8)Br)2 (0.590 mmol) were dissolved in 5 ml of chloro­form. 312 mg of diphenyl-2-pyridyl­phosphine (1.18 mmol) was dissolved in 10 ml of chloro­form. The two solutions were mixed, changing from colourless to a translucent yellow after 10 minutes of reaction. The reaction was left to continue for a further 2 h. Addition of 2 ml of pentane to the mixture and standing by one day lead to yellow diffraction-quality crystals of I·2CHCl3 (601 mg, 82.8% yield).

[Scheme 2]

Synthesis of II. The compound was prepared by direct reaction between I and an excess of piperidine (C5H11N) at 313 K in CH2Cl2. 50.0 mg of [P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br] (0.082 mmol) were dissolved in 10 ml of CH2Cl2 giving rise to a yellow solution. Then, 40 µL of piperidine (0.51 mmol) was slowly added. The reaction was allowed to continue for six days with constant agitation at 313 K. After cooling, the reaction mixture was layered with aceto­nitrile. Small orange–yellow diffraction-quality crystals were obtained after one week.

[Scheme 3]

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both compounds, the hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C). For II, the amine hydrogen atom of the piperidine ring was located in a Fourier-difference map and then subsequently refined with a distant constraint of 0.82 Å. During the last stages of the refinement of II, a region of highly disordered electron density was detected within the crystal structure. As no meaningful model could be achieved, SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used to model the unresolved electron density resulting from the disordered solvent. 25 electrons per cell suggest, in addition to thermogravimetry, a half aceto­nitrile mol­ecule per complex mol­ecule of II. The contribution of this solvent was not included in the crystal data.

Table 5
Experimental details

  I·2CHCl3 II
Crystal data
Chemical formula [ReBr(C17H14NP)(CO)3]·2CHCl3 [ReBr(C5H11N)(C17H14NP)(CO)3]
Mr 852.14 698.55
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 150 150
a, b, c (Å) 14.194 (4), 12.314 (4), 16.249 (5) 9.1384 (17), 9.8348 (18), 15.671 (3)
α, β, γ (°) 90, 92.701 (4), 90 82.956 (2), 82.047 (2), 69.765 (2)
V3) 2836.7 (15) 1304.5 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.34 6.28
Crystal size (mm) 0.16 × 0.13 × 0.05 0.07 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Numerical (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.386, 0.746 0.560, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 19979, 5550, 4526 10214, 5113, 4493
Rint 0.048 0.042
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 0.99 0.042, 0.082, 1.11
No. of reflections 5550 5113
No. of parameters 317 303
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.35 1.96, −1.79
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) top
Crystal data top
[ReBr(C17H14NP)(CO)3]·2CHCl3F(000) = 1624
Mr = 852.14Dx = 1.995 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.194 (4) ÅCell parameters from 6313 reflections
b = 12.314 (4) Åθ = 2.5–28.5°
c = 16.249 (5) ŵ = 6.34 mm1
β = 92.701 (4)°T = 150 K
V = 2836.7 (15) Å3Block, yellow
Z = 40.16 × 0.13 × 0.05 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
4526 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
phi and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1717
Tmin = 0.386, Tmax = 0.746k = 1515
19979 measured reflectionsl = 1920
5550 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5550 reflectionsΔρmax = 0.39 e Å3
317 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00027 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.29082 (2)0.42455 (2)0.08046 (2)0.06954 (7)
Br10.45807 (3)0.36073 (4)0.13313 (3)0.07781 (13)
P10.25501 (8)0.23375 (8)0.04434 (7)0.0705 (3)
N10.3373 (3)0.3742 (3)0.0392 (2)0.0722 (9)
C10.2470 (3)0.4367 (3)0.1897 (3)0.0742 (11)
O10.2190 (3)0.4391 (3)0.2547 (2)0.0860 (9)
C20.1733 (4)0.4761 (3)0.0367 (3)0.0779 (11)
O20.1045 (3)0.5103 (3)0.0100 (2)0.0879 (9)
C30.3368 (4)0.5732 (4)0.0793 (3)0.0792 (11)
O30.3635 (3)0.6583 (3)0.0772 (2)0.0949 (10)
C40.3826 (3)0.4234 (4)0.0986 (3)0.0783 (11)
H40.39740.49670.09320.094*
C50.4076 (4)0.3694 (4)0.1669 (3)0.0861 (13)
H50.43820.40610.20790.103*
C60.3879 (4)0.2598 (4)0.1759 (3)0.0855 (13)
H60.40530.22220.22240.103*
C70.3422 (3)0.2081 (4)0.1148 (3)0.0792 (11)
H70.32830.13440.11890.095*
C80.3171 (3)0.2667 (3)0.0476 (3)0.0701 (10)
C90.3085 (3)0.1116 (3)0.0857 (3)0.0735 (11)
C100.4032 (4)0.0890 (3)0.0778 (3)0.0788 (12)
H100.44040.13620.04860.095*
C110.4429 (4)0.0041 (4)0.1134 (3)0.0860 (13)
H110.50660.01870.10800.103*
C120.3890 (4)0.0741 (4)0.1561 (3)0.0896 (14)
H120.41610.13650.17930.108*
C130.2950 (4)0.0530 (4)0.1651 (3)0.0873 (14)
H130.25860.10060.19460.105*
C140.2549 (4)0.0392 (4)0.1300 (3)0.0812 (12)
H140.19120.05320.13600.097*
C150.1366 (3)0.1951 (3)0.0108 (3)0.0723 (10)
C160.1182 (4)0.1207 (4)0.0506 (3)0.0830 (12)
H160.16800.08610.07500.100*
C170.0272 (4)0.0967 (4)0.0765 (3)0.0912 (14)
H170.01560.04650.11850.109*
C180.0466 (4)0.1470 (4)0.0402 (4)0.0987 (16)
H180.10840.13190.05830.118*
C190.0293 (4)0.2190 (4)0.0223 (4)0.1030 (17)
H190.07940.25120.04800.124*
C200.0622 (4)0.2446 (4)0.0478 (4)0.0910 (14)
H200.07360.29500.08970.109*
C210.3309 (4)0.7174 (4)0.3787 (3)0.0853 (13)
H210.39030.74680.40260.102*
Cl10.24667 (11)0.82254 (11)0.37214 (10)0.1001 (4)
Cl20.29219 (12)0.61431 (11)0.44304 (10)0.1061 (4)
Cl30.35045 (12)0.66739 (12)0.28107 (9)0.1034 (4)
C220.0251 (4)0.0957 (4)0.3284 (4)0.0959 (15)
H220.01550.10180.38760.115*
Cl40.02810 (13)0.04155 (12)0.30240 (11)0.1102 (4)
Cl50.13277 (12)0.15706 (16)0.30768 (12)0.1288 (6)
Cl60.06727 (13)0.16078 (13)0.27497 (13)0.1261 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.06848 (12)0.06853 (9)0.07162 (11)0.00019 (7)0.00347 (7)0.00016 (7)
Br10.0707 (3)0.0804 (2)0.0822 (3)0.00035 (19)0.0024 (2)0.0055 (2)
P10.0706 (7)0.0695 (5)0.0717 (7)0.0009 (5)0.0046 (5)0.0012 (5)
N10.069 (2)0.0740 (18)0.074 (2)0.0018 (16)0.0066 (17)0.0004 (16)
C10.071 (3)0.071 (2)0.079 (3)0.0012 (19)0.005 (2)0.000 (2)
O10.088 (2)0.097 (2)0.074 (2)0.0047 (17)0.0056 (17)0.0020 (16)
C20.088 (3)0.070 (2)0.077 (3)0.000 (2)0.012 (2)0.003 (2)
O20.078 (2)0.092 (2)0.092 (2)0.0048 (17)0.0031 (18)0.0046 (17)
C30.083 (3)0.079 (2)0.074 (3)0.005 (2)0.006 (2)0.005 (2)
O30.111 (3)0.0759 (18)0.097 (3)0.0122 (18)0.000 (2)0.0000 (16)
C40.073 (3)0.080 (2)0.083 (3)0.002 (2)0.009 (2)0.008 (2)
C50.076 (3)0.099 (3)0.083 (3)0.002 (2)0.013 (2)0.010 (2)
C60.080 (3)0.100 (3)0.077 (3)0.005 (2)0.007 (2)0.002 (2)
C70.074 (3)0.083 (2)0.081 (3)0.001 (2)0.002 (2)0.006 (2)
C80.064 (3)0.071 (2)0.074 (3)0.0006 (17)0.001 (2)0.0005 (18)
C90.080 (3)0.071 (2)0.069 (3)0.0015 (19)0.002 (2)0.0065 (18)
C100.080 (3)0.071 (2)0.085 (3)0.001 (2)0.003 (2)0.003 (2)
C110.083 (3)0.079 (2)0.095 (4)0.011 (2)0.005 (3)0.004 (2)
C120.101 (4)0.076 (2)0.090 (3)0.006 (3)0.010 (3)0.002 (2)
C130.104 (4)0.077 (2)0.079 (3)0.003 (2)0.005 (3)0.008 (2)
C140.081 (3)0.081 (2)0.082 (3)0.003 (2)0.003 (2)0.001 (2)
C150.072 (3)0.0675 (19)0.078 (3)0.0029 (18)0.004 (2)0.0041 (18)
C160.080 (3)0.087 (3)0.083 (3)0.010 (2)0.006 (2)0.000 (2)
C170.087 (4)0.100 (3)0.087 (4)0.015 (3)0.001 (3)0.000 (3)
C180.078 (4)0.093 (3)0.123 (5)0.014 (3)0.009 (3)0.010 (3)
C190.073 (4)0.090 (3)0.146 (5)0.003 (3)0.014 (3)0.006 (3)
C200.079 (3)0.081 (3)0.115 (4)0.003 (2)0.018 (3)0.013 (3)
C210.085 (3)0.088 (3)0.084 (3)0.008 (2)0.007 (3)0.006 (2)
Cl10.1005 (10)0.0898 (7)0.1106 (10)0.0026 (6)0.0119 (8)0.0115 (7)
Cl20.1271 (13)0.0897 (7)0.1023 (10)0.0028 (7)0.0146 (9)0.0158 (7)
Cl30.1147 (11)0.1028 (8)0.0938 (9)0.0140 (8)0.0153 (8)0.0114 (7)
C220.087 (4)0.108 (3)0.092 (4)0.008 (3)0.001 (3)0.006 (3)
Cl40.1192 (12)0.1039 (8)0.1067 (11)0.0020 (8)0.0035 (9)0.0022 (8)
Cl50.1014 (12)0.1516 (14)0.1350 (14)0.0353 (10)0.0217 (10)0.0418 (11)
Cl60.1167 (13)0.1064 (9)0.1519 (16)0.0004 (9)0.0286 (11)0.0013 (9)
Geometric parameters (Å, º) top
Re1—C21.892 (6)C11—C121.364 (7)
Re1—C11.914 (5)C11—H110.9300
Re1—C31.943 (5)C12—C131.373 (8)
Re1—N12.173 (4)C12—H120.9300
Re1—P12.4687 (13)C13—C141.382 (6)
Re1—Br12.6066 (8)C13—H130.9300
P1—C91.800 (5)C14—H140.9300
P1—C151.806 (5)C15—C161.370 (6)
P1—C81.815 (5)C15—C201.382 (6)
N1—C41.330 (5)C16—C171.371 (7)
N1—C81.360 (5)C16—H160.9300
C1—O11.147 (5)C17—C181.374 (8)
C2—O21.131 (6)C17—H170.9300
C3—O31.116 (5)C18—C191.362 (8)
C4—C51.355 (7)C18—H180.9300
C4—H40.9300C19—C201.381 (8)
C5—C61.384 (7)C19—H190.9300
C5—H50.9300C20—H200.9300
C6—C71.368 (7)C21—Cl31.737 (5)
C6—H60.9300C21—Cl21.749 (5)
C7—C81.370 (6)C21—Cl11.762 (5)
C7—H70.9300C21—H210.9800
C9—C101.385 (6)C22—Cl61.735 (6)
C9—C141.394 (6)C22—Cl41.743 (6)
C10—C111.392 (6)C22—Cl51.751 (6)
C10—H100.9300C22—H220.9800
C2—Re1—C190.2 (2)C9—C10—C11120.2 (5)
C2—Re1—C388.3 (2)C9—C10—H10119.9
C1—Re1—C393.39 (19)C11—C10—H10119.9
C2—Re1—N193.39 (17)C12—C11—C10120.5 (5)
C1—Re1—N1167.89 (15)C12—C11—H11119.8
C3—Re1—N198.27 (17)C10—C11—H11119.8
C2—Re1—P193.56 (13)C11—C12—C13120.3 (5)
C1—Re1—P1102.86 (12)C11—C12—H12119.9
C3—Re1—P1163.62 (15)C13—C12—H12119.9
N1—Re1—P165.39 (9)C12—C13—C14119.8 (5)
C2—Re1—Br1176.20 (14)C12—C13—H13120.1
C1—Re1—Br192.84 (14)C14—C13—H13120.1
C3—Re1—Br189.22 (15)C13—C14—C9120.9 (5)
N1—Re1—Br184.11 (10)C13—C14—H14119.5
P1—Re1—Br188.01 (3)C9—C14—H14119.5
C9—P1—C15105.2 (2)C16—C15—C20119.2 (5)
C9—P1—C8106.3 (2)C16—C15—P1122.6 (4)
C15—P1—C8106.9 (2)C20—C15—P1118.2 (4)
C9—P1—Re1128.88 (16)C15—C16—C17120.8 (5)
C15—P1—Re1120.04 (14)C15—C16—H16119.6
C8—P1—Re183.14 (13)C17—C16—H16119.6
C4—N1—C8118.5 (4)C16—C17—C18119.8 (5)
C4—N1—Re1134.2 (3)C16—C17—H17120.1
C8—N1—Re1107.2 (3)C18—C17—H17120.1
O1—C1—Re1176.7 (4)C19—C18—C17119.9 (5)
O2—C2—Re1177.7 (4)C19—C18—H18120.1
O3—C3—Re1178.8 (5)C17—C18—H18120.1
N1—C4—C5121.7 (4)C18—C19—C20120.5 (5)
N1—C4—H4119.2C18—C19—H19119.8
C5—C4—H4119.2C20—C19—H19119.8
C4—C5—C6120.3 (5)C19—C20—C15119.7 (5)
C4—C5—H5119.8C19—C20—H20120.1
C6—C5—H5119.8C15—C20—H20120.1
C7—C6—C5118.6 (5)Cl3—C21—Cl2110.9 (3)
C7—C6—H6120.7Cl3—C21—Cl1110.0 (3)
C5—C6—H6120.7Cl2—C21—Cl1109.8 (3)
C6—C7—C8118.9 (4)Cl3—C21—H21108.7
C6—C7—H7120.6Cl2—C21—H21108.7
C8—C7—H7120.6Cl1—C21—H21108.7
N1—C8—C7122.0 (4)Cl6—C22—Cl4110.7 (3)
N1—C8—P1104.1 (3)Cl6—C22—Cl5110.5 (3)
C7—C8—P1133.9 (3)Cl4—C22—Cl5109.9 (3)
C10—C9—C14118.4 (4)Cl6—C22—H22108.6
C10—C9—P1121.8 (3)Cl4—C22—H22108.6
C14—C9—P1119.7 (4)Cl5—C22—H22108.6
C8—N1—C4—C50.8 (7)C14—C9—C10—C110.1 (7)
Re1—N1—C4—C5176.3 (4)P1—C9—C10—C11177.4 (4)
N1—C4—C5—C61.2 (8)C9—C10—C11—C120.2 (8)
C4—C5—C6—C70.5 (8)C10—C11—C12—C130.5 (8)
C5—C6—C7—C80.4 (7)C11—C12—C13—C140.5 (8)
C4—N1—C8—C70.2 (7)C12—C13—C14—C90.2 (8)
Re1—N1—C8—C7176.4 (4)C10—C9—C14—C130.1 (7)
C4—N1—C8—P1179.2 (3)P1—C9—C14—C13177.5 (4)
Re1—N1—C8—P14.2 (3)C9—P1—C15—C1663.3 (4)
C6—C7—C8—N10.8 (7)C8—P1—C15—C1649.5 (4)
C6—C7—C8—P1178.3 (4)Re1—P1—C15—C16141.4 (3)
C9—P1—C8—N1132.1 (3)C9—P1—C15—C20118.0 (4)
C15—P1—C8—N1115.8 (3)C8—P1—C15—C20129.2 (4)
Re1—P1—C8—N13.5 (3)Re1—P1—C15—C2037.3 (4)
C9—P1—C8—C748.6 (5)C20—C15—C16—C171.3 (7)
C15—P1—C8—C763.4 (5)P1—C15—C16—C17177.4 (4)
Re1—P1—C8—C7177.2 (5)C15—C16—C17—C180.5 (8)
C15—P1—C9—C10145.3 (4)C16—C17—C18—C191.2 (9)
C8—P1—C9—C1032.1 (4)C17—C18—C19—C202.1 (9)
Re1—P1—C9—C1062.3 (4)C18—C19—C20—C151.3 (9)
C15—P1—C9—C1437.4 (4)C16—C15—C20—C190.3 (8)
C8—P1—C9—C14150.6 (4)P1—C15—C20—C19178.4 (4)
Re1—P1—C9—C14115.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Br1i0.982.663.490 (5)143
C4—H4···Br1ii0.932.803.552 (5)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) top
Crystal data top
[ReBr(C5H11N)(C17H14NP)(CO)3]·[+solvent]Z = 2
Mr = 698.55F(000) = 676.0
Triclinic, P1Dx = 1.778 Mg m3
a = 9.1384 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8348 (18) ÅCell parameters from 4721 reflections
c = 15.671 (3) Åθ = 2.4–22.8°
α = 82.956 (2)°µ = 6.28 mm1
β = 82.047 (2)°T = 150 K
γ = 69.765 (2)°Stick, orange
V = 1304.5 (4) Å30.07 × 0.04 × 0.03 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
4493 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.042
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.560, Tmax = 0.858k = 1212
10214 measured reflectionsl = 1919
5113 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + 9.4699P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
5113 reflectionsΔρmax = 1.96 e Å3
303 parametersΔρmin = 1.79 e Å3
1 restraintExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00125 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.83162 (3)0.70525 (3)0.70289 (2)0.01774 (10)
Br10.80946 (9)0.74617 (8)0.86842 (5)0.03004 (19)
P10.7341 (2)0.49823 (19)0.75160 (12)0.0202 (4)
O10.8277 (7)0.6670 (7)0.5117 (4)0.0422 (15)
O31.1681 (6)0.4948 (6)0.6944 (4)0.0390 (14)
C10.8293 (9)0.6804 (8)0.5867 (5)0.0311 (18)
C31.0438 (9)0.5701 (8)0.6993 (5)0.0262 (17)
O20.9776 (6)0.9453 (6)0.6454 (4)0.0403 (14)
C20.9177 (8)0.8584 (8)0.6688 (5)0.0272 (17)
N10.4375 (7)0.6604 (7)0.8008 (5)0.0404 (18)
C100.5477 (8)0.5329 (8)0.8209 (5)0.0258 (16)
C120.8652 (8)0.3427 (7)0.8099 (4)0.0212 (15)
C40.7011 (8)0.4161 (7)0.6619 (5)0.0226 (15)
C130.8598 (9)0.2025 (8)0.8069 (5)0.0294 (17)
H130.79240.18830.77220.035*
C50.5513 (8)0.4262 (8)0.6451 (5)0.0271 (17)
H50.46350.47410.68120.032*
C60.8295 (9)0.3428 (9)0.6070 (5)0.0329 (19)
H60.92980.33560.61750.039*
C140.9678 (8)0.3586 (8)0.8629 (5)0.0288 (17)
H140.97380.45020.86670.035*
C150.9527 (9)0.0861 (8)0.8545 (5)0.035 (2)
H150.94690.00580.85160.042*
C110.5179 (9)0.4359 (9)0.8863 (5)0.037 (2)
H110.59580.34870.90020.044*
C70.8101 (10)0.2809 (9)0.5372 (5)0.038 (2)
H70.89710.23220.50090.045*
C80.5355 (10)0.3635 (9)0.5731 (5)0.038 (2)
H80.43610.37160.56070.046*
N20.5893 (6)0.8705 (7)0.7094 (4)0.0267 (14)
C201.0531 (8)0.1025 (8)0.9058 (5)0.0312 (19)
H201.11580.02260.93750.037*
C220.5748 (8)1.0155 (7)0.7304 (5)0.0265 (17)
H22A0.62091.06300.68150.032*
H22B0.63331.00660.77910.032*
C211.0610 (9)0.2390 (9)0.9101 (5)0.0330 (19)
H211.12930.25090.94510.040*
C160.6639 (11)0.2905 (10)0.5211 (6)0.042 (2)
H160.65180.24700.47430.050*
C180.2572 (9)0.5974 (9)0.9089 (5)0.038 (2)
H180.15580.62030.93660.046*
C170.2958 (9)0.6904 (10)0.8455 (7)0.052 (3)
H170.21980.77940.83250.063*
C230.4992 (9)0.8828 (9)0.6357 (6)0.038 (2)
H23A0.50590.78620.62370.045*
H23B0.54630.92510.58480.045*
C190.3699 (10)0.4708 (10)0.9308 (6)0.046 (2)
H190.34770.40740.97560.056*
C240.4037 (9)1.1105 (9)0.7526 (6)0.037 (2)
H24A0.36001.06820.80470.045*
H24B0.39991.20670.76370.045*
C250.3279 (9)0.9750 (9)0.6520 (6)0.043 (2)
H25A0.27770.98720.59960.052*
H25B0.27630.92450.69660.052*
C270.3068 (9)1.1232 (9)0.6799 (6)0.042 (2)
H3A0.33771.18180.63120.051*
H3B0.19711.17170.69860.051*
H2N0.567 (8)0.828 (5)0.755 (2)0.08 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01153 (15)0.01837 (15)0.02204 (17)0.00440 (10)0.00090 (10)0.00044 (10)
Br10.0329 (4)0.0300 (4)0.0260 (4)0.0077 (3)0.0048 (3)0.0040 (3)
P10.0141 (9)0.0199 (9)0.0252 (10)0.0052 (7)0.0009 (7)0.0008 (8)
O10.042 (4)0.057 (4)0.028 (3)0.018 (3)0.009 (3)0.004 (3)
O30.013 (3)0.045 (3)0.051 (4)0.001 (3)0.000 (2)0.005 (3)
C10.023 (4)0.034 (4)0.033 (5)0.009 (3)0.003 (3)0.001 (4)
C30.031 (4)0.025 (4)0.025 (4)0.012 (4)0.003 (3)0.002 (3)
O20.031 (3)0.035 (3)0.061 (4)0.022 (3)0.001 (3)0.001 (3)
C20.023 (4)0.024 (4)0.032 (4)0.005 (3)0.000 (3)0.004 (3)
N10.018 (3)0.031 (4)0.060 (5)0.002 (3)0.013 (3)0.009 (3)
C100.018 (4)0.028 (4)0.030 (4)0.008 (3)0.002 (3)0.006 (3)
C120.017 (3)0.021 (4)0.023 (4)0.005 (3)0.002 (3)0.001 (3)
C40.019 (4)0.021 (4)0.028 (4)0.006 (3)0.005 (3)0.002 (3)
C130.027 (4)0.026 (4)0.032 (4)0.006 (3)0.002 (3)0.001 (3)
C50.023 (4)0.025 (4)0.032 (4)0.008 (3)0.006 (3)0.003 (3)
C60.032 (4)0.047 (5)0.023 (4)0.016 (4)0.003 (3)0.011 (4)
C140.026 (4)0.031 (4)0.025 (4)0.005 (3)0.001 (3)0.005 (3)
C150.030 (4)0.014 (4)0.050 (5)0.001 (3)0.002 (4)0.004 (3)
C110.026 (4)0.038 (5)0.040 (5)0.007 (4)0.006 (4)0.002 (4)
C70.042 (5)0.039 (5)0.032 (5)0.012 (4)0.002 (4)0.013 (4)
C80.037 (5)0.048 (5)0.039 (5)0.025 (4)0.018 (4)0.010 (4)
N20.011 (3)0.028 (3)0.039 (4)0.008 (3)0.002 (3)0.007 (3)
C200.021 (4)0.028 (4)0.029 (4)0.006 (3)0.002 (3)0.005 (3)
C220.024 (4)0.020 (4)0.036 (4)0.007 (3)0.006 (3)0.002 (3)
C210.027 (4)0.040 (5)0.026 (4)0.002 (4)0.005 (3)0.001 (4)
C160.058 (6)0.048 (5)0.031 (5)0.029 (5)0.021 (4)0.000 (4)
C180.024 (4)0.046 (5)0.043 (5)0.014 (4)0.014 (4)0.012 (4)
C170.021 (4)0.039 (5)0.076 (7)0.005 (4)0.019 (4)0.001 (5)
C230.022 (4)0.040 (5)0.051 (6)0.004 (4)0.014 (4)0.010 (4)
C190.033 (5)0.055 (6)0.042 (5)0.014 (4)0.013 (4)0.006 (4)
C240.022 (4)0.032 (4)0.048 (5)0.003 (3)0.001 (4)0.003 (4)
C250.032 (5)0.035 (5)0.063 (6)0.007 (4)0.021 (4)0.004 (4)
C270.023 (4)0.034 (5)0.061 (6)0.000 (4)0.008 (4)0.003 (4)
Geometric parameters (Å, º) top
Re1—C11.870 (8)C7—C161.363 (11)
Re1—C21.918 (7)C7—H70.9300
Re1—C31.932 (8)C8—C161.361 (12)
Re1—N22.246 (6)C8—H80.9300
Re1—P12.4915 (18)N2—C221.460 (9)
Re1—Br12.6430 (9)N2—C231.479 (10)
P1—C41.812 (7)N2—H2N0.8200 (10)
P1—C121.817 (7)C20—C211.379 (11)
P1—C101.837 (7)C20—H200.9300
O1—C11.202 (9)C22—C241.536 (10)
O3—C31.120 (8)C22—H22A0.9700
O2—C21.164 (8)C22—H22B0.9700
N1—C171.338 (9)C21—H210.9300
N1—C101.343 (9)C16—H160.9300
C10—C111.377 (10)C18—C191.354 (11)
C12—C141.394 (10)C18—C171.361 (12)
C12—C131.404 (10)C18—H180.9300
C4—C61.387 (10)C17—H170.9300
C4—C51.398 (9)C23—C251.517 (10)
C13—C151.371 (10)C23—H23A0.9700
C13—H130.9300C23—H23B0.9700
C5—C81.396 (11)C19—H190.9300
C5—H50.9300C24—C271.505 (12)
C6—C71.375 (10)C24—H24A0.9700
C6—H60.9300C24—H24B0.9700
C14—C211.387 (10)C25—C271.514 (11)
C14—H140.9300C25—H25A0.9700
C15—C201.362 (11)C25—H25B0.9700
C15—H150.9300C27—H3A0.9700
C11—C191.382 (10)C27—H3B0.9700
C11—H110.9300
C1—Re1—C290.1 (3)C16—C8—H8119.6
C1—Re1—C389.4 (3)C5—C8—H8119.6
C2—Re1—C388.0 (3)C22—N2—C23109.6 (6)
C1—Re1—N292.3 (3)C22—N2—Re1116.4 (4)
C2—Re1—N289.6 (3)C23—N2—Re1116.1 (5)
C3—Re1—N2177.1 (3)C22—N2—H2N106 (4)
C1—Re1—P191.6 (2)C23—N2—H2N118 (5)
C2—Re1—P1176.6 (2)Re1—N2—H2N89 (5)
C3—Re1—P189.0 (2)C15—C20—C21119.3 (7)
N2—Re1—P193.28 (16)C15—C20—H20120.4
C1—Re1—Br1175.3 (2)C21—C20—H20120.4
C2—Re1—Br192.1 (2)N2—C22—C24112.6 (6)
C3—Re1—Br194.9 (2)N2—C22—H22A109.1
N2—Re1—Br183.53 (17)C24—C22—H22A109.1
P1—Re1—Br186.44 (5)N2—C22—H22B109.1
C4—P1—C12102.0 (3)C24—C22—H22B109.1
C4—P1—C10102.6 (3)H22A—C22—H22B107.8
C12—P1—C10102.6 (3)C20—C21—C14120.6 (8)
C4—P1—Re1112.4 (2)C20—C21—H21119.7
C12—P1—Re1116.4 (2)C14—C21—H21119.7
C10—P1—Re1118.7 (2)C8—C16—C7120.3 (8)
O1—C1—Re1178.8 (7)C8—C16—H16119.8
O3—C3—Re1177.3 (7)C7—C16—H16119.8
O2—C2—Re1175.9 (6)C19—C18—C17118.4 (7)
C17—N1—C10118.0 (7)C19—C18—H18120.8
N1—C10—C11121.6 (7)C17—C18—H18120.8
N1—C10—P1114.4 (5)N1—C17—C18123.4 (8)
C11—C10—P1124.0 (6)N1—C17—H17118.3
C14—C12—C13117.5 (7)C18—C17—H17118.3
C14—C12—P1121.7 (5)N2—C23—C25113.0 (7)
C13—C12—P1120.7 (5)N2—C23—H23A109.0
C6—C4—C5118.9 (7)C25—C23—H23A109.0
C6—C4—P1118.6 (5)N2—C23—H23B109.0
C5—C4—P1122.5 (6)C25—C23—H23B109.0
C15—C13—C12120.9 (7)H23A—C23—H23B107.8
C15—C13—H13119.6C18—C19—C11119.9 (8)
C12—C13—H13119.6C18—C19—H19120.0
C8—C5—C4119.0 (7)C11—C19—H19120.0
C8—C5—H5120.5C27—C24—C22111.0 (7)
C4—C5—H5120.5C27—C24—H24A109.4
C7—C6—C4120.7 (7)C22—C24—H24A109.4
C7—C6—H6119.7C27—C24—H24B109.4
C4—C6—H6119.7C22—C24—H24B109.4
C21—C14—C12120.5 (7)H24A—C24—H24B108.0
C21—C14—H14119.7C27—C25—C23112.4 (7)
C12—C14—H14119.7C27—C25—H25A109.1
C20—C15—C13121.2 (8)C23—C25—H25A109.1
C20—C15—H15119.4C27—C25—H25B109.1
C13—C15—H15119.4C23—C25—H25B109.1
C10—C11—C19118.6 (8)H25A—C25—H25B107.8
C10—C11—H11120.7C24—C27—C25111.1 (7)
C19—C11—H11120.7C24—C27—H3A109.4
C16—C7—C6120.3 (8)C25—C27—H3A109.4
C16—C7—H7119.8C24—C27—H3B109.4
C6—C7—H7119.8C25—C27—H3B109.4
C16—C8—C5120.8 (7)H3A—C27—H3B108.0
C17—N1—C10—C110.9 (13)P1—C4—C6—C7178.9 (6)
C17—N1—C10—P1176.7 (7)C13—C12—C14—C210.4 (10)
C4—P1—C10—N186.6 (6)P1—C12—C14—C21176.7 (5)
C12—P1—C10—N1167.9 (6)C12—C13—C15—C200.2 (12)
Re1—P1—C10—N137.9 (7)N1—C10—C11—C191.1 (13)
C4—P1—C10—C1190.9 (7)P1—C10—C11—C19176.3 (7)
C12—P1—C10—C1114.6 (8)C4—C6—C7—C160.1 (13)
Re1—P1—C10—C11144.5 (6)C4—C5—C8—C161.5 (11)
C4—P1—C12—C14155.1 (6)C13—C15—C20—C210.3 (12)
C10—P1—C12—C1498.9 (6)C23—N2—C22—C2458.2 (8)
Re1—P1—C12—C1432.4 (7)Re1—N2—C22—C24167.6 (5)
C4—P1—C12—C1328.7 (6)C15—C20—C21—C140.0 (11)
C10—P1—C12—C1377.3 (6)C12—C14—C21—C200.3 (11)
Re1—P1—C12—C13151.4 (5)C5—C8—C16—C71.7 (13)
C12—P1—C4—C658.3 (6)C6—C7—C16—C81.0 (13)
C10—P1—C4—C6164.3 (6)C10—N1—C17—C181.2 (15)
Re1—P1—C4—C667.1 (6)C19—C18—C17—N13.1 (15)
C12—P1—C4—C5123.0 (6)C22—N2—C23—C2556.3 (8)
C10—P1—C4—C517.0 (7)Re1—N2—C23—C25169.3 (5)
Re1—P1—C4—C5111.6 (6)C17—C18—C19—C112.9 (14)
C14—C12—C13—C150.1 (11)C10—C11—C19—C180.8 (14)
P1—C12—C13—C15176.5 (6)N2—C22—C24—C2756.7 (9)
C6—C4—C5—C80.5 (11)N2—C23—C25—C2753.0 (10)
P1—C4—C5—C8178.2 (6)C22—C24—C27—C2551.0 (9)
C5—C4—C6—C70.2 (11)C23—C25—C27—C2449.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.822.342.992 (9)138
C14—H14···Br10.932.783.586 (8)146
C22—H22B···Br10.972.833.499 (7)127
 

Acknowledgements

The authors acknowledge the Laboratory Analysis of Solids (LAS-UNAB) for granting access to its instrumental facilities and software.

Funding information

Funding for this research was provided by: Fondo Nacional de Desarrollo Científico y Tecnológico (grant No. 1160546; grant No. 3170100; grant No. ACT1404).

References

First citationAbram, U., Alberto, R., Dilworth, J. R., Zheng, Y. & Ortner, K. (1999). Polyhedron, 18, 2995–3003.  CSD CrossRef CAS Google Scholar
First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A. Jr & Chergui, M. (2008). J. Am. Chem. Soc. 130, 8967–8974.  CrossRef PubMed CAS Google Scholar
First citationDalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735–57748.  Web of Science CSD CrossRef CAS Google Scholar
First citationDarensbourg, D. J., Andreatta, J. R., Stranahan, S. M. & Reibenspies, J. H. (2007). Organometallics, 26, 6832–6838.  CSD CrossRef CAS Google Scholar
First citationGuiry, P. J. & Saunders, C. P. (2004). Adv. Synth. Catal. 346, 497–537.  CrossRef CAS Google Scholar
First citationKnebel, W. J. & Angelici, R. J. (1973). Inorg. Chim. Acta, 7, 713–716.  CrossRef CAS Google Scholar
First citationKumar, P., Singh, A. K., Pandey, R. & Pandey, D. S. (2011). J. Organomet. Chem. 696, 3454–3464.  CSD CrossRef CAS Google Scholar
First citationMachura, B. & Kruszynski, R. (2006). Polyhedron, 25, 1985–1993.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOoyama, D. & Sato, M. (2004). Appl. Organomet. Chem. 18, 380–381.  CSD CrossRef Google Scholar
First citationPizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929–3935.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationVenegas, F., Pizarro, N. & Vega, A. (2011). J. Chil. Chem. Soc. 56, 823–826.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds