research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two CuII compounds: catena-poly[[chlorido­copper(II)]-μ-N-[eth­­oxy(pyridin-2-yl)methyl­­idene]-N′-[oxido(pyridin-3-yl)methyl­­idene]hydrazine-κ4N,N′,O:N′′] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-di­chlorido-2κCl,4κCl-bis­[μ3-eth­­oxy(pyridin-2-yl)methano­lato-1:2:3κ3O:N,O:O;1:3:4κ3O:O:N,O]bis­­[μ2-eth­­oxy(pyridin-2-yl)methano­lato-1:2κ3N,O:O;3:4κ3N,O:O]tetracopper(II)

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Alioune Diop, Bambey, Senegal, cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania, and dInstituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13.560-970 – São Carlos, SP, Brazil
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 11 June 2019; accepted 21 June 2019; online 28 June 2019)

Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitro­gen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitro­gen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by inter­molecular C—H⋯O and C—H⋯Cl inter­actions, leading to a three-dimensional network structure. The tetra­nuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually inter­connected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the penta­coordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hy­droxy groups and one chloride anion to two other CuII ions. Each of the penta­coordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetra­nuclear monomeric unit, which is connected to four tetra­nuclear monomeric units by inter­molecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the ([\overline{1}]01) plane.

1. Chemical context

Picolinic acid esters (González-Duarte et al., 1996[González-Duarte, P., March, R., Pons, J., Clegg, W., Cucurull-Sànchez, L., Álvarez-Larena, A. & Piniella, J. F. (1996). Polyhedron, 15, 2747-2754.], 1998[Gonzàlez-Duarte, P., Leiva, À., March, R., Pons, J., Clegg, W., Solans, X., Álvarez-Larena, A. & Piniella, J. F. (1998). Polyhedron, 17, 1591-1600.]; Hay & Clark, 1979[Hay, R. W. & Clark, C. R. (1979). Transition Met. Chem. 4, 28-31.]; Luo et al., 2002[Luo, J. H., Hong, M. C., Shi, Q., Liang, Y. C., Zhao, Y. J., Wang, R. H., Cao, R. & Weng, J. B. (2002). Transition Met. Chem. 27, 311-315.]; Paul et al., 1974[Paul, R. C., Chopra, R. S., Bhambri, R. K. & Singh, G. (1974). J. Inorg. Nucl. Chem. 36, 3703-3707.]) as well as nicotinic acid hydrazide (Bharati et al., 2015[Bharati, P., Bharti, A., Bharty, M. K., Singh, N. K., Kashyap, S., Singh, U. P. & Butcher, R. J. (2015). Polyhedron, 97, 215-226.]; Galić et al., 2011[Galić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić, V. (2011). Inorg. Chim. Acta, 366, 98-104.]; Nakanishi & Sato, 2017[Nakanishi, T. & Sato, O. (2017). Acta Cryst. E73, 103-106.]) are widely used in coordination chemistry for their ability to bind metals through the amino and/or the ester functional groups (Hay & Clark, 1979[Hay, R. W. & Clark, C. R. (1979). Transition Met. Chem. 4, 28-31.]). Complexes formed by ethyl picolinate (EP) with various divalent metal thio­cyanates (Paul et al., 1975[Paul, R. C., Chopra, R. S. & Singh, G. (1975). Inorg. Chim. Acta, 14, 105-109.]), chlorides (González-Duarte et al., 1996[González-Duarte, P., March, R., Pons, J., Clegg, W., Cucurull-Sànchez, L., Álvarez-Larena, A. & Piniella, J. F. (1996). Polyhedron, 15, 2747-2754.]) and perchlorates (Natun et al., 1995[Natun, G., Joydip, C. & Samaresh, B. (1995). Transition Met. Chem. 20, 138-141.]) have been prepared and characterized. Several modes of coordination are observed, depending on the conformation of the mol­ecule. Ethyl picolinate acts as a bidentate ligand coordinating through the ring nitro­gen and the carbonyl oxygen. The carb­oxy­lic ester function can coordinate in several ways, while the pyridine nitro­gen atom can also coordinate in a unidentate fashion. The nicotinic acid hydrazide can coordinate through the hydrazino moiety as well as through the pyridine nitro­gen atom (Lumme et al., 1984[Lumme, P., Elo, H. & Jänne, J. (1984). Inorg. Chim. Acta, 92, 241-251.]; Shahverdizadeh et al., 2011a[Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011a). Acta Cryst. E67, m1727-m1728.],b[Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011b). Acta Cryst. E67, m1729-m1730.]). These facts make these ligands and their analogues very attractive and they have been used in several studies. Many polynuclear complexes of transition metals with various structures can be generated, depending on the disposition of the metal ions and the donor sites (N or O). Trimers (Zhang et al., 2009[Zhang, S.-H., Zhou, Y.-L., Sun, X.-J., Wei, L.-Q., Zeng, M.-H. & Liang, H. (2009). J. Solid State Chem. 182, 2991-2996.]), square shapes (Aouaidjia et al., 2017[Aouaidjia, F., Messai, A., Siab, R. & Ayesh, A. I. (2017). Polyhedron, 133, 257-263.]), cyclic forms (Acevedo-Chávez et al., 2002[Acevedo-Chávez, R., Costas, M. E., Bernès, S., Medina, G. & Gasque, L. (2002). J. Chem. Soc. Dalton Trans. pp. 2553-2558.]) and cubans (Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Borras Almenar, J. J. & Mitra, S. (2013). Polyhedron, 61, 73-79.]) have been reported that have potential applications in the field of magnetism (Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Borras Almenar, J. J. & Mitra, S. (2013). Polyhedron, 61, 73-79.]), catalysis (Okeke et al., 2018[Okeke, U. C., Gultneh, Y., Otchere, R. & Butcher, R. J. (2018). Inorg. Chem. Commun. 97, 1-6.]) and biomimetic synthesis (Wu et al., 2004[Wu, A. J., Penner-Hahn, J. E. & Pecoraro, V. L. (2004). Chem. Rev. 104, 903-938.]). By extension, the introduction of an eth­oxy-carbonyl group in the ortho position of the pyridine gives a ligand that can have a similar behavior to α-amino acid esters. It has been shown that the presence of metal ions promotes the hydrolysis of the ester function of the picolinic ester (Xue et al., 2016[Xue, S.-S., Zhao, M., Lan, J.-X., Ye, R.-R., Li, Y., Ji, L.-N. & Mao, Z.-W. (2016). J. Mol. Catal. A Chem. 424, 297-303.]). A condensation can then occur between nicotinic acid hydrazide and the hydrolysed picolinic ester, to generate two organic ligands with a large number of coordination sites in situ, in the presence of copper(II) ions. These ligands then coordinate to the copper(II) cations to yield the two complexes that are reported here.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The condensation reaction of pyridine-2-carbaldehyde and nicotinic acid hydrazide in ethanol in the presence of copper acetate yields two different complexes whose ligands are respectively a hemiacetal [eth­oxy(pyridine-2-yl)methanol] and a condensation product [({1-[1-eth­oxy-1-(pyridin-2-yl)methyl­ene]}-2-(oxonicotin­yl))hydrazine]. It has been shown (Papaefsta­thiou et al., 2000[Papaefstathiou, G. S., Raptopoulou, C. P., Tsohos, A., Terzis, A., Bakalbassis, E. G. & Perlepes, S. P. (2000). Inorg. Chem. 39, 4658-4662.]; Boudalis et al., 2008[Boudalis, A. K., Raptopoulou, C. P., Psycharis, V., Abarca, B. & Ballesteros, R. (2008). Eur. J. Inorg. Chem. pp. 3796-3801.]; Mautner et al., 2010[Mautner, F. A., El Fallah, M. S., Speed, S. & Vicente, R. (2010). Dalton Trans. 39, 4070-4079.]) that the presence of a metal can induce a nucleophilic attack of the ethanol mol­ecule on the carbonyl group to give a hemiacetal. This reaction can also occur when a fragment such as a pyridyl nitro­gen atom is present that is capable of inducing the polarization of the carbonyl function (Papaefsta­thiou et al., 2000[Papaefstathiou, G. S., Raptopoulou, C. P., Tsohos, A., Terzis, A., Bakalbassis, E. G. & Perlepes, S. P. (2000). Inorg. Chem. 39, 4658-4662.]). It is under these conditions that the complexes I and II were formed in situ.

In the crystal structure of the coordination polymer [CuCl(C14H13N4O2)]n, I, the repeat unit of which is shown in (Fig. 1[link]), the CuII center is penta­coordinated by one chloride atom, one enolate oxygen atom of the mono deprotonated organic ligand, one pyridine, one imino nitro­gen atom, and by a pyridine nitro­gen atom of a ligand from an adjacent complex mol­ecule. This latter contact bridges the CuII cations to form a one-dimensional coordination polymer along the b-axis direction (Fig. 2[link]). Inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, (Table 1[link]), link the polymers into a three-dimensional network (Fig. 3[link]). The coordination environment can be best described as strongly distorted square pyramidal. The basal plane around the CuII ion is formed by the Cl2 anion with a Cu1—Cl2 distance of 2.2707 (6) Å, an O16 atom with a Cu1—O16 distance of 1.9808 (15) Å and the N11 and N22 atoms from the same ligand with a Cu—N distances of 1.9437 (17) and 2.0444 (17) Å (Table 2[link]). These bond lengths are similar to the values found in related complexes (Datta et al., 2011a[Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011a). Acta Cryst. E67, m123.],b[Datta, A., Sheu, S.-C., Liu, P.-H. & Huang, J.-H. (2011b). Acta Cryst. E67, m1852.]; Da Silva et al., 2013[Da Silva, J. G., Recio Despaigne, A. A., Louro, S. R. W., Bandeira, C. C., Souza-Fagundes, E. M. & Beraldo, H. (2013). Eur. J. Med. Chem. 65, 415-426.]). The apical position of the distorted square pyramid is occupied by one pyridine N3 atom of a neighbouring unit with a Cu—N distance of 2.2009 (17) Å. This distance is shorter than that found in similar compound (Roztocki et al., 2015[Roztocki, K., Matoga, D. & Szklarzewicz, J. (2015). Inorg. Chem. Commun. 57, 22-25.]). The ligand, which acts in a tridentate fashion, forms two five-membered rings upon coordination with the CuII centre: OCNNCu and NCCNCu, with the N11 atom common to both. The five-membered chelate rings impose large distortions on the ideal angles of a regular square pyramid, with bite angles in the range 79.11 (7)–79.40 (7)°, which are slightly smaller than those found in similar compounds (Roztocki et al., 2015[Roztocki, K., Matoga, D. & Szklarzewicz, J. (2015). Inorg. Chem. Commun. 57, 22-25.]). The transoid angles in the basal plane O16—Cu1—N22 and N11—Cu1—Cl2 deviate severely from linearity with values of 158.51 (7)° and 146.17 (6)° (Table 2[link]). These two largest angles around the CuII ion give a τ parameter of 0.206, which is indicative of a distorted square-pyramidal environment around the CuII ion (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl2ii 0.93 2.71 3.354 (2) 128
C20—H20⋯Cl2iii 0.93 2.93 3.527 (3) 124
C14—H14B⋯Cl2iv 0.97 2.83 3.534 (3) 130
C14—H14B⋯O16iv 0.97 2.56 3.441 (3) 151
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1.

Table 2
Selected geometric parameters (Å, °) for I[link]

Cu1—N11 1.9437 (17) Cu1—N3i 2.2009 (17)
Cu1—O16 1.9808 (15) Cu1—Cl2 2.2707 (6)
Cu1—N22 2.0444 (17)    
       
N11—Cu1—O16 79.11 (7) O16—Cu1—N3i 96.39 (7)
N11—Cu1—N22 79.40 (7) N22—Cu1—N3i 92.70 (7)
O16—Cu1—N22 158.51 (7) N11—Cu1—Cl2 146.17 (6)
N11—Cu1—N3i 116.09 (7) O16—Cu1—Cl2 100.05 (5)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
An ORTEP view of the repeat unit of the coordination polymer I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) [3\over2] − x, −[1\over2] + y, [3\over2] − z; (ii) [3\over2] − x, [1\over2] + y, [3\over2] − z.
[Figure 2]
Figure 2
The polymer expansion of complex I, showing an infinite chain propagating along the b-axis direction. In this and subsequent figures, hydrogen bonds are drawn as dashed lines.
[Figure 3]
Figure 3
A view of the crystal packing of complex I.

In II, the tetra­nuclear open-cube complex lies about a crystallographic inversion centre, with each mono deprotonated eth­oxy(pyridin-2-yl)methano­late ligand coordinating to each Cu atom through its imine nitro­gen atom and its alcoholate oxygen atom, forming five-membered chelate rings (Fig. 4[link]). The mol­ecule also forms intra­molecular hydrogen bonds between a terminal chloride atom and an aromatic hydrogen atom (C20—H20⋯Cl4) and between a bridging chloride and both an aromatic and a methyl­ene hydrogen atom (C9—H9⋯Cl3 and C13—H13B⋯Cl3i). Intra­molecular C—H⋯O contacts are also found (Table 3[link], Fig. 5[link]). There are two discrete CuII environments, Cu1NO3Cl and Cu2NO2Cl2. Two mol­ecules of the ligand act as bridges between two neighbouring Cu atoms through their alcoholate atoms in a μ2 mode while the other two ligand mol­ecules bridge in a μ3 fashion. The structure consists of two Cu3O3Cl cores. The first core comprises Cu1, Cu1i, Cu2 atoms μ3-bridging atoms O26, O26i, a μ2-bridging O15 atom and a μ2-bridging Cl3i ion [symmetry code: (i) −x + [3\over2], y − [1\over2], −z + [3\over2])]. The second comprises Cu1, Cu1i, Cu2i atoms, μ3-bridging atoms O26, O26i, a μ2-bridging O15i atom and a μ2-bridging Cl3 ion. The result is a is a distorted open-cube, defined as a distorted cube missing one corner. This can be seen by considering that the range of Cu—O—Cu angles is [99.76 (6)–102.98 (6)°] and the Cu1—Cl3—Cu2i angle is 84.39 (2)°. These differ extensively from the 90° angles of an ideal cube. The two Cu3O3Cl open-cubes are joined by a perfectly rectangular side defined by the Cu1, O26, and Cui, O26i atoms. The values of the two different lengths of the edges of the rectangular sides are 2.4280 (14) and 1.9684 (13) Å. The other faces of the two open-cubes are irregular with different distances i.e. Cu1—O26i = 2.4280 (14) Å, Cu2—O26 = 1.9707 (14) Å, Cu1—Cl3 = 2.2181 (6) Å and Cu2—Cl3 = 2.8134 (6) Å. The Cu1 (Cu1i) atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from the deprotonated hydroxyl groups and one chloride ion to three other CuII cations. In the CuO2NCl2 units, the Cu2 (Cu2i) atoms are linked to one μ2-O and one μ3-O atoms from a deprotonated hydroxyl groups and one chloride ion to two other CuII cations with Cu1—Cu2 and Cu1—Cu2i distances of approximately 3.012 and 3.408 Å, respectively. These are in good agreement with literature values (Qin et al., 2014[Qin, X., Ding, S., Xu, X., Wang, R., Song, Y., Wang, Y., Du, C. & Liu, Z. (2014). Polyhedron, 83, 36-43.]). The distances of the oxygen atoms in the μ3- and μ2-bridging positions to the copper atoms are assymmetrical with Cu1—O26i, Cu1—O26 and Cu2—O26 distances of 2.4280 (14), 1.9684 (13), 1.9707 (14) Å, respectively, while Cu1—O15 and Cu2—O15 are 1.9170 (13) and 1.9324 (13) Å, respectively (Table 4[link]). These distances agree with those in related structures (Laza­rou et al., 2018[Lazarou, K. N., Savvidou, A., Raptopoulou, C. P. & Psycharis, V. (2018). Polyhedron, 152, 125-137.]; Tabassum et al., 2017[Tabassum, S., Afzal, M., Al-Lohedan, H., Zaki, M., Khan, R. A. & Ahmad, M. (2017). Inorg. Chim. Acta, 463, 142-155.]). The environment of both CuII cations is again best described as distorted square pyramidal. The largest angles around Cu1 and Cu2 are O15—Cu1—Cl3 [176.95 (5)°], O26—Cu1—N10 [156.02 (7)°], O26—Cu2—Cl4 [170.05 (5)°] and O15—Cu2—N21 [157.61 (7)°] (Table 2[link]). The Addison τ parameters are 0.348 for Cu1 and 0.207 for Cu2 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), indicating considerable distortion. The basal plane around each of the Cu1 and Cu2 atoms is formed by one chloride anion, one pyridine nitro­gen atom and two enolate oxygen atoms while the apical positions are occupied by an enolate oxygen atom for Cu1 and a chloride anion for Cu2. The copper–halogen distances Cu1—Cl3 and Cu2—Cl3 of 2.2181 (6) and 2.8134 (6) Å, respectively, agree with those for a chloride ion in bridging position (Choubey et al., 2015[Choubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. & Ghosh, B. K. (2015). Polyhedron, 89, 39-44.]). The Cu2—Cl4 distance of 2.1987 (7) Å is indicative of a unidentate terminal chloride ion (Kalinowska-Lis et al., 2011[Kalinowska-Lis, U., Żurowska, B., Ślepokura, K. & Ochocki, J. (2011). Inorg. Chim. Acta, 376, 18-22.]). The four copper atoms occupy the vertices of a parallelogram with angles Cu1—Cu2—Cu1i and Cu2—Cu1—Cu2i of approximately 63.59° and 116.41°. The sum of the angle in the parallelogram is 360° and the lengths of the two diagonals, Cu1—Cu1i and Cu2—Cu2i, are 3.399 and 5.461 Å respectively and are comparable to the values found in a similar complex reported in the literature (Monfared et al., 2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]). All the Cu—O—Cu angles in the open-cube are in the range 99.76 (6)—102.96 (6)° and the Cu1—Cl3—Cu2i angles of 84.39 (2)° are different from those of ideal cube. This bridging angle is also smaller than those reported for similar complexes (Banerjee et al., 2013[Banerjee, I., Samanta, P. N., Das, K. K., Ababei, R., Kalisz, M., Girard, A., Mathonière, C., Nethaji, M., Clérac, R. & Ali, M. (2013). Dalton Trans. 42, 1879-1892.]; Swank et al., 1979[Swank, D. D., Needham, G. F. & Willett, R. D. (1979). Inorg. Chem. 18, 761-765.]) but they are nearly equal to those in the complex [Cu2(qsalBr)2Cl2](DMF) where qsalBr = 8-amino­quinoline with 5-bromo-salicyl­aldehyde (Liu et al., 2009[Liu, H., Gao, F., Niu, D. & Tian, J. (2009). Inorg. Chim. Acta, 362, 4179-4184.]). An immediate consequence is a small Cu1⋯Cu2 separation [3.4082 (4) Å] compared to those found in another di­chlorido-bridged copper (II)[link] complex (Banerjee et al., 2013[Banerjee, I., Samanta, P. N., Das, K. K., Ababei, R., Kalisz, M., Girard, A., Mathonière, C., Nethaji, M., Clérac, R. & Ali, M. (2013). Dalton Trans. 42, 1879-1892.]).

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl3 0.93 2.78 3.333 (3) 119
C20—H20⋯Cl4 0.93 2.90 3.393 (3) 115
C13—H13B⋯Cl3i 0.97 2.82 3.787 (3) 173
C22—H22⋯O12i 0.98 2.66 3.578 (3) 156
C18—H18⋯O23ii 0.93 2.44 3.367 (3) 177
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Selected geometric parameters (Å, °) for II)[link]

Cu1—O15 1.9170 (13) Cu2—O15 1.9324 (13)
Cu1—O26 1.9684 (13) Cu2—O26 1.9707 (14)
Cu1—N10 1.9886 (17) Cu2—N21 1.9827 (17)
Cu1—Cl3 2.2181 (6) Cu2—Cl4 2.1987 (7)
Cu1—O26i 2.4280 (14)    
       
O26—Cu1—N10 156.02 (7) O15—Cu2—N21 157.61 (7)
O15—Cu1—Cl3 176.95 (5) O26—Cu2—Cl4 170.05 (5)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
The structure of II with ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation 1 − x, 1 − y, 1 − z.
[Figure 5]
Figure 5
Intra­molecular hydrogen bonds in the structure of II. Symmetry code: (i) 1 − x, 1 − y, 1 − z.

3. Supra­molecular features

The crystal structure of I is determined by a coordination synthon in which each ligand is coordinated to two metal centers, giving rise to infinite one-dimensional polymeric chains along the b-axis direction (Fig. 2[link]). Adjacent chains are linked to one another by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds (Table 1[link]), leading to a three-dimensional network structure (Fig. 3[link]). In the crystal structure of II, C18—H18⋯O23 hydrogen bonds link the complex mol­ecules into chains along the bc diagonal (Fig. 6[link]). Additional C18—H18⋯O23 contacts generate two-dimensional sheets of mol­ecules also along the bc diagonal (Fig. 7[link]). ππ-stacking inter­actions occur between the two unique N10/C5–C9 and N21/C16–C20 pyridine rings with a centroid-to-centroid separation of 3.6800 (16) Å (symmetry operation [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z). These contacts combine with the C—H⋯O hydrogen bonds to stack the mol­ecules in a three-dimensional network along the a-axis direction (Fig. 8[link]).

[Figure 6]
Figure 6
Chains of mol­ecules of II along the bc diagonal.
[Figure 7]
Figure 7
Two-dimensional sheet of mol­ecules of II along the bc diagonal.
[Figure 8]
Figure 8
A view along the a axis of the crystal packing of II.

4. Database survey

A search of the CSD database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the structures I and II using the fragment [1-eth­oxy-1-(pyridin-2­yl)]methyl­enehydrazine yielded no hits, indicating that compound I is reasonably unique. However, a search for eth­oxy(pyridin-2-yl)methano­late, the ligand found in II gave ten hits, although none of these was closely related to II. The matches included the CuII complexes HAXBEN (Baggio et al., 1993[Baggio, R., González, O., Garland, M. T., Manzur, J., Acuña, V., Atria, A. M., Spodine, E. & Peña, O. (1993). J. Crystallogr. Spectrosc. Res. 23, 749-753.]), HUXDOU (Mautner et al., 2010[Mautner, F. A., El Fallah, M. S., Speed, S. & Vicente, R. (2010). Dalton Trans. 39, 4070-4079.]), TOGLAC (Deveson et al., 1996[Deveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173.]) and VIMCAX (Efthymiou et al., 2013[Efthymiou, C. G., Raptopoulou, C. P., Psycharis, V., Tasiopoulos, A. J., Escuer, A., Perlepes, S. P. & Papatriantafyllopoulou, C. (2013). Polyhedron, 64, 30-37.]) that involve the eth­oxy­dipyridin-2-yl­methanol ligand, which differs from the ligand reported here by substitution of the hydrogen atom on the carbon of the alcohol unit by a pyridine ring. A similar substitution with phenyl or by a 2-hy­droxy­pyridine ring leads to the CuII complexes JUYYEJ (Kitos et al., 2016[Kitos, A. A., Efthymiou, C. G., Manos, M. J., Tasiopoulos, A. J., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2016). Dalton Trans. 45, 1063-1077.]) and COHQIA (Boudalis et al., 2008[Boudalis, A. K., Raptopoulou, C. P., Psycharis, V., Abarca, B. & Ballesteros, R. (2008). Eur. J. Inorg. Chem. pp. 3796-3801.]), respectively. The three related hits QANPUQ, QANQAX and QANQEB (Papaefsta­thiou et al., 2000[Papaefstathiou, G. S., Raptopoulou, C. P., Tsohos, A., Terzis, A., Bakalbassis, E. G. & Perlepes, S. P. (2000). Inorg. Chem. 39, 4658-4662.]) are complexes of the symmetrical ligand 1,2-dieth­oxy-1,2-di(pyridin-2-yl)ethane-1,2-diol, which is a dimer of the ligand found in II. KAJKAJ (Georgopoulou et al., 2010[Georgopoulou, A. N., Adam, R., Raptopoulou, C. P., Psycharis, V., Ballesteros, R., Abarca, B. & Boudalis, A. K. (2010). Dalton Trans. 39, 5020-5027.]) involves a Cu complex of a ligand that is the least similar to that found in II. The ligand used, 2,6-bis­[1-eth­oxy-1-hy­droxy-1-(pyridin-2-yl)meth­yl]pyridin, has a central pyridine ring that is substituted by 1-eth­oxy-1-hy­droxy-1-(pyridin-2-yl)methyl fragments in the 2- and 6-positions.

5. Synthesis and crystallization

To a solution of 2-pyridine carbaldehyde (0.1070 g, 1 mmol) in 30 ml of ethanol was added a solution of nicotinic hydrazide (0.1371 g, 1 mmol) in 10 ml of ethanol. The mixture was stirred for 5 min. A solution of Cu(OOCH3)2·H2O (0.1996 g, 1 mmol) in 5 ml of ethanol was added at room temperature. The initial yellow solution immediately turned deep blue and was stirred under reflux for 2 h. The mixture was filtered and the solution evaporated to near dryness. The solid was isolated by filtration and recrystallized from a minimum of ethanol. On standing for five days, two types of crystals suitable for X-ray analysis were formed, light-yellow blocks of I and light-green plates of II.

For I: analysis calculated: C14H13N4ClO2Cu: C, 45.46; H, 3.56; N, 15.21; Cl; 9.63. Found: C, 45.44; H, 3.53; N, 15.16; Cl; 9.60. IR (ν, cm−1): 2982, 1628, 1583, 1423, 1343, 1245, 941, 816, 630. For II: analysis calculated: C16H20N2Cl2O4Cu2: C, 38.26; H, 4.01; N, 5.58; Cl; 14.12. Found: C, 38.23; H, 3.98; N, 5.55; Cl; 14.08. IR (ν, cm−1): 2982, 1585, 1423, 1243, 1145, 940, 812.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms were refined using a riding model with d(C—H) = 0.93 Å for aromatic, d(C—H) = 0.97 Å for methyl­ene and d(C—H) = 0.98 Å for methine H atoms with Uiso(H) = 1.2Ueq(C) and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. One reflection with Fo <<< Fc that was likely to have been affected by the beamstop was omitted from the final refinement cycles.

Table 5
Experimental details

  I II
Crystal data
Chemical formula [Cu(C14H13N4O2)Cl] [Cu4(C8H10NO2)4Cl4]
Mr 368.27 1004.68
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 11.1472 (9), 9.9573 (6), 14.4904 (11) 11.5150 (4), 13.1051 (5), 12.8066 (6)
β (°) 111.595 (9) 100.066 (4)
V3) 1495.5 (2) 1902.83 (13)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.65 2.54
Crystal size (mm) 0.3 × 0.2 × 0.1 0.22 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Mini (ROW) Rigaku Oxford Diffraction XtaLAB Mini (ROW)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.967, 1.000 0.727, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8476, 5569, 3671 31609, 7541, 4946
Rint 0.021 0.035
(sin θ/λ)max−1) 0.797 0.797
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.02 0.035, 0.093, 1.02
No. of reflections 5569 7540
No. of parameters 200 237
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.42 0.46, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008) for (I); OLEX2 (Dolomanov et al., 2009) for (II). For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[chloridocopper(II)]-µ-N-[ethoxy(pyridin-2-yl)methylidene]-N'-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N',O:N''] (I) top
Crystal data top
[Cu(C14H13N4O2)Cl]F(000) = 748
Mr = 368.27Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1472 (9) ÅCell parameters from 2449 reflections
b = 9.9573 (6) Åθ = 3.5–28.8°
c = 14.4904 (11) ŵ = 1.65 mm1
β = 111.595 (9)°T = 293 K
V = 1495.5 (2) Å3Block, clear light yellow
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Mini (ROW)
diffractometer
5569 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source3671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 34.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 517
Tmin = 0.967, Tmax = 1.000k = 1412
8476 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1803P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5569 reflectionsΔρmax = 0.40 e Å3
200 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.47474 (2)0.32922 (3)0.65558 (2)0.03498 (9)
Cl20.34273 (6)0.44640 (6)0.71389 (4)0.04555 (14)
O160.61729 (15)0.46011 (15)0.68180 (11)0.0409 (3)
N110.52597 (16)0.29579 (17)0.54312 (13)0.0351 (4)
O130.47178 (19)0.17375 (17)0.39271 (13)0.0548 (5)
N30.93076 (16)0.70447 (17)0.71207 (13)0.0347 (4)
N220.34839 (17)0.17999 (17)0.58487 (13)0.0360 (4)
N100.62800 (18)0.3710 (2)0.53850 (14)0.0408 (4)
C50.77400 (18)0.5424 (2)0.62038 (14)0.0316 (4)
C90.66495 (18)0.4523 (2)0.61446 (14)0.0325 (4)
C170.3576 (2)0.1438 (2)0.49841 (15)0.0350 (4)
C40.82919 (19)0.6265 (2)0.70085 (15)0.0337 (4)
H40.7936160.6286820.7496810.040*
C120.4615 (2)0.2121 (2)0.47694 (15)0.0356 (4)
C60.8249 (2)0.5432 (2)0.54629 (16)0.0392 (4)
H60.7894740.4893980.4903470.047*
C80.9789 (2)0.7018 (2)0.64056 (16)0.0414 (5)
H81.0503950.7549010.6476460.050*
C70.9278 (2)0.6241 (3)0.55673 (17)0.0450 (5)
H70.9629470.6267430.5076700.054*
C180.2755 (2)0.0507 (2)0.43614 (18)0.0479 (6)
H180.2815990.0287940.3756220.057*
C210.2599 (2)0.1209 (3)0.61202 (17)0.0455 (5)
H210.2535540.1454430.6719700.055*
C200.1774 (3)0.0248 (3)0.5549 (2)0.0551 (6)
H200.1177110.0166190.5765190.066*
C140.5530 (3)0.2442 (3)0.34999 (18)0.0490 (6)
H14A0.6433860.2286480.3893880.059*
H14B0.5365750.3399980.3479220.059*
C190.1847 (3)0.0087 (3)0.4658 (2)0.0573 (7)
H190.1280970.0718080.4252640.069*
C150.5207 (3)0.1908 (3)0.2480 (2)0.0725 (9)
H15A0.4296430.1994480.2117060.109*
H15B0.5446800.0977580.2514110.109*
H15C0.5669030.2405230.2149540.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03827 (14)0.04034 (15)0.02896 (13)0.00397 (10)0.01546 (10)0.00355 (11)
Cl20.0534 (3)0.0477 (3)0.0432 (3)0.0115 (2)0.0267 (3)0.0022 (2)
O160.0442 (8)0.0487 (8)0.0340 (7)0.0114 (7)0.0194 (6)0.0095 (7)
N110.0368 (8)0.0381 (9)0.0340 (8)0.0065 (7)0.0173 (7)0.0053 (7)
O130.0726 (12)0.0579 (11)0.0474 (10)0.0254 (9)0.0381 (9)0.0184 (8)
N30.0373 (8)0.0373 (9)0.0298 (8)0.0047 (7)0.0126 (7)0.0014 (7)
N220.0375 (8)0.0412 (9)0.0303 (8)0.0038 (7)0.0138 (7)0.0020 (7)
N100.0422 (9)0.0468 (10)0.0380 (10)0.0118 (8)0.0201 (8)0.0099 (8)
C50.0321 (9)0.0334 (9)0.0275 (9)0.0014 (7)0.0089 (7)0.0013 (8)
C90.0333 (9)0.0349 (9)0.0283 (9)0.0006 (8)0.0103 (8)0.0011 (8)
C170.0403 (10)0.0331 (10)0.0324 (10)0.0021 (8)0.0142 (8)0.0012 (8)
C40.0369 (10)0.0363 (10)0.0294 (9)0.0006 (8)0.0139 (8)0.0004 (8)
C120.0410 (10)0.0380 (10)0.0319 (10)0.0045 (8)0.0182 (8)0.0034 (8)
C60.0435 (11)0.0439 (11)0.0297 (10)0.0041 (9)0.0129 (9)0.0045 (9)
C80.0451 (12)0.0464 (12)0.0367 (11)0.0099 (9)0.0197 (9)0.0042 (9)
C70.0526 (13)0.0542 (13)0.0357 (11)0.0082 (11)0.0250 (10)0.0049 (10)
C180.0556 (14)0.0505 (13)0.0389 (12)0.0151 (11)0.0189 (11)0.0105 (11)
C210.0471 (12)0.0583 (14)0.0352 (11)0.0097 (11)0.0198 (10)0.0025 (11)
C200.0527 (14)0.0652 (16)0.0499 (14)0.0203 (12)0.0219 (12)0.0025 (13)
C140.0583 (14)0.0520 (14)0.0460 (13)0.0135 (11)0.0299 (11)0.0080 (11)
C190.0589 (15)0.0622 (16)0.0515 (15)0.0280 (13)0.0212 (13)0.0107 (13)
C150.091 (2)0.087 (2)0.0555 (16)0.0389 (18)0.0467 (16)0.0246 (16)
Geometric parameters (Å, º) top
Cu1—N111.9437 (17)C4—H40.9300
Cu1—O161.9808 (15)C6—C71.363 (3)
Cu1—N222.0444 (17)C6—H60.9300
Cu1—N3i2.2009 (17)C8—C71.374 (3)
Cu1—Cl22.2707 (6)C8—H80.9300
O16—C91.274 (2)C7—H70.9300
N11—C121.274 (3)C18—C191.371 (3)
N11—N101.384 (2)C18—H180.9300
O13—C121.323 (3)C21—C201.374 (3)
O13—C141.452 (3)C21—H210.9300
N3—C81.331 (3)C20—C191.364 (4)
N3—C41.333 (3)C20—H200.9300
N22—C211.326 (3)C14—C151.485 (3)
N22—C171.344 (3)C14—H14A0.9700
N10—C91.305 (3)C14—H14B0.9700
C5—C41.382 (3)C19—H190.9300
C5—C61.387 (3)C15—H15A0.9600
C5—C91.488 (3)C15—H15B0.9600
C17—C181.380 (3)C15—H15C0.9600
C17—C121.472 (3)
N11—Cu1—O1679.11 (7)N11—C12—C17114.38 (18)
N11—Cu1—N2279.40 (7)O13—C12—C17113.79 (18)
O16—Cu1—N22158.51 (7)C7—C6—C5119.0 (2)
N11—Cu1—N3i116.09 (7)C7—C6—H6120.5
O16—Cu1—N3i96.39 (7)C5—C6—H6120.5
N22—Cu1—N3i92.70 (7)N3—C8—C7123.0 (2)
N11—Cu1—Cl2146.17 (6)N3—C8—H8118.5
O16—Cu1—Cl2100.05 (5)C7—C8—H8118.5
N22—Cu1—Cl297.97 (5)C6—C7—C8119.3 (2)
N3i—Cu1—Cl297.68 (5)C6—C7—H7120.4
C9—O16—Cu1110.13 (13)C8—C7—H7120.4
C12—N11—N10124.29 (17)C19—C18—C17118.3 (2)
C12—N11—Cu1119.01 (14)C19—C18—H18120.9
N10—N11—Cu1116.63 (13)C17—C18—H18120.9
C12—O13—C14122.21 (18)N22—C21—C20122.4 (2)
C8—N3—C4117.47 (18)N22—C21—H21118.8
C8—N3—Cu1ii119.26 (14)C20—C21—H21118.8
C4—N3—Cu1ii123.23 (14)C19—C20—C21118.7 (2)
C21—N22—C17118.57 (19)C19—C20—H20120.6
C21—N22—Cu1128.61 (16)C21—C20—H20120.6
C17—N22—Cu1112.78 (13)O13—C14—C15106.9 (2)
C9—N10—N11107.74 (17)O13—C14—H14A110.3
C4—C5—C6117.88 (19)C15—C14—H14A110.3
C4—C5—C9120.96 (18)O13—C14—H14B110.3
C6—C5—C9121.15 (18)C15—C14—H14B110.3
O16—C9—N10126.39 (19)H14A—C14—H14B108.6
O16—C9—C5118.76 (17)C20—C19—C18119.9 (2)
N10—C9—C5114.86 (18)C20—C19—H19120.0
N22—C17—C18122.0 (2)C18—C19—H19120.0
N22—C17—C12114.18 (18)C14—C15—H15A109.5
C18—C17—C12123.8 (2)C14—C15—H15B109.5
N3—C4—C5123.38 (19)H15A—C15—H15B109.5
N3—C4—H4118.3C14—C15—H15C109.5
C5—C4—H4118.3H15A—C15—H15C109.5
N11—C12—O13131.82 (19)H15B—C15—H15C109.5
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl2ii0.932.713.354 (2)128
C20—H20···Cl2iii0.932.933.527 (3)124
C14—H14B···Cl2iv0.972.833.534 (3)130
C14—H14B···O16iv0.972.563.441 (3)151
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+1.
Di-µ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κCl,4κCl-bis[µ3-ethoxy(pyridin-2-yl)methanolato-1:2:3κ3O:N,O:O;1:3:4κ3O:O:N,O]bis[µ2-ethoxy(pyridin-2-yl)methanolato-1:2κ3N,O:O;3:4κ3N,O:O]tetracopper(II) (II) top
Crystal data top
[Cu4(C8H10NO2)4Cl4]F(000) = 1016
Mr = 1004.68Dx = 1.753 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5150 (4) ÅCell parameters from 9290 reflections
b = 13.1051 (5) Åθ = 3.0–32.4°
c = 12.8066 (6) ŵ = 2.54 mm1
β = 100.066 (4)°T = 293 K
V = 1902.83 (13) Å3Plate, clear light green
Z = 20.22 × 0.2 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Mini (ROW)
diffractometer
7541 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source4946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 34.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 1718
Tmin = 0.727, Tmax = 1.000k = 2014
31609 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.4202P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7540 reflectionsΔρmax = 0.46 e Å3
237 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59802 (2)0.59673 (2)0.49846 (2)0.03411 (7)
Cu20.55029 (2)0.53449 (2)0.71340 (2)0.03564 (7)
Cl30.67941 (4)0.53396 (4)0.36744 (4)0.04527 (12)
Cl40.53662 (7)0.61216 (5)0.86295 (5)0.06187 (17)
O150.53512 (12)0.64894 (10)0.61683 (11)0.0386 (3)
O260.59121 (12)0.47291 (10)0.58419 (11)0.0370 (3)
O120.40663 (13)0.78727 (11)0.59492 (12)0.0454 (3)
O230.78892 (13)0.44737 (12)0.63858 (14)0.0503 (4)
N210.60042 (14)0.39764 (13)0.77014 (15)0.0418 (4)
N100.61957 (15)0.74464 (13)0.47288 (14)0.0410 (4)
C50.58862 (18)0.80472 (15)0.54740 (18)0.0409 (4)
C110.52350 (17)0.75255 (15)0.62500 (17)0.0381 (4)
H110.5552020.7748420.6974240.046*
C160.65162 (16)0.34167 (15)0.70334 (18)0.0423 (5)
C220.67794 (16)0.39909 (14)0.60830 (17)0.0385 (4)
H220.6786280.3530750.5480940.046*
C170.6800 (2)0.24007 (17)0.7229 (2)0.0581 (6)
H170.7148610.2020100.6754230.070*
C200.5775 (2)0.3558 (2)0.8600 (2)0.0551 (6)
H200.5430300.3950460.9067780.066*
C130.3299 (2)0.7534 (2)0.6640 (2)0.0521 (5)
H13A0.3609390.7735470.7364010.062*
H13B0.3233210.6796150.6615640.062*
C180.6556 (2)0.1970 (2)0.8141 (3)0.0747 (9)
H180.6732610.1286970.8289620.090*
C90.6739 (2)0.78622 (19)0.3992 (2)0.0555 (6)
H90.6958630.7443420.3473680.067*
C60.6124 (2)0.90782 (17)0.5516 (2)0.0579 (6)
H60.5915790.9481430.6052190.069*
C190.6050 (2)0.2547 (2)0.8833 (3)0.0725 (9)
H190.5892450.2260320.9457250.087*
C240.8820 (2)0.4028 (2)0.5958 (2)0.0584 (6)
H24A0.8664840.4090940.5191490.070*
H24B0.8881070.3308480.6136170.070*
C70.6680 (3)0.95004 (19)0.4743 (3)0.0725 (8)
H70.6843571.0195420.4747910.087*
C80.6984 (3)0.8886 (2)0.3974 (3)0.0692 (8)
H80.7352080.9156730.3445670.083*
C140.2125 (2)0.8005 (2)0.6285 (2)0.0666 (7)
H14A0.1860880.7858820.5547290.100*
H14B0.2182590.8730800.6385960.100*
H14C0.1572020.7731960.6691940.100*
C250.9948 (2)0.4557 (3)0.6401 (3)0.0798 (9)
H25A1.0590000.4229380.6147460.120*
H25B1.0075110.4524420.7161770.120*
H25C0.9902640.5258200.6180030.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03381 (11)0.03383 (12)0.03553 (13)0.00077 (8)0.00838 (9)0.00260 (9)
Cu20.03732 (12)0.03519 (12)0.03414 (13)0.00004 (9)0.00550 (9)0.00475 (9)
Cl30.0420 (2)0.0496 (3)0.0477 (3)0.0006 (2)0.0175 (2)0.0010 (2)
Cl40.0881 (5)0.0601 (4)0.0372 (3)0.0049 (3)0.0104 (3)0.0043 (3)
O150.0476 (7)0.0318 (6)0.0389 (7)0.0029 (5)0.0149 (6)0.0051 (5)
O260.0372 (6)0.0343 (6)0.0399 (7)0.0060 (5)0.0081 (6)0.0062 (5)
O120.0410 (7)0.0460 (8)0.0517 (9)0.0077 (6)0.0150 (7)0.0080 (7)
O230.0342 (7)0.0515 (9)0.0674 (11)0.0063 (6)0.0150 (7)0.0100 (8)
N210.0325 (8)0.0443 (9)0.0460 (10)0.0026 (7)0.0003 (7)0.0135 (8)
N100.0453 (9)0.0367 (8)0.0426 (10)0.0035 (7)0.0123 (7)0.0045 (7)
C50.0393 (9)0.0357 (9)0.0488 (12)0.0004 (7)0.0101 (8)0.0052 (8)
C110.0383 (9)0.0359 (9)0.0411 (11)0.0021 (7)0.0098 (8)0.0013 (8)
C160.0269 (8)0.0386 (10)0.0575 (13)0.0015 (7)0.0040 (8)0.0096 (9)
C220.0311 (8)0.0343 (9)0.0489 (12)0.0014 (7)0.0032 (8)0.0001 (8)
C170.0393 (11)0.0399 (11)0.093 (2)0.0034 (9)0.0047 (12)0.0143 (12)
C200.0395 (11)0.0660 (15)0.0574 (14)0.0040 (10)0.0022 (10)0.0271 (12)
C130.0453 (11)0.0615 (14)0.0524 (14)0.0019 (10)0.0167 (10)0.0075 (11)
C180.0442 (13)0.0533 (14)0.122 (3)0.0035 (11)0.0014 (15)0.0442 (17)
C90.0680 (15)0.0502 (13)0.0547 (14)0.0039 (11)0.0282 (12)0.0074 (11)
C60.0669 (15)0.0369 (11)0.0760 (18)0.0008 (10)0.0297 (14)0.0012 (11)
C190.0481 (13)0.0775 (19)0.089 (2)0.0041 (13)0.0039 (13)0.0503 (17)
C240.0408 (11)0.0664 (16)0.0699 (17)0.0078 (10)0.0151 (11)0.0060 (13)
C70.090 (2)0.0383 (12)0.099 (2)0.0064 (12)0.0429 (18)0.0112 (13)
C80.084 (2)0.0541 (15)0.078 (2)0.0072 (13)0.0398 (16)0.0180 (14)
C140.0495 (13)0.090 (2)0.0631 (17)0.0111 (13)0.0178 (12)0.0067 (15)
C250.0396 (13)0.094 (2)0.108 (3)0.0015 (13)0.0194 (15)0.0143 (19)
Geometric parameters (Å, º) top
Cu1—O151.9170 (13)C17—C181.369 (4)
Cu1—O261.9684 (13)C17—H170.9300
Cu1—N101.9886 (17)C20—C191.383 (4)
Cu1—Cl32.2181 (6)C20—H200.9300
Cu1—O26i2.4280 (14)C13—C141.484 (3)
Cu1—Cu23.0122 (4)C13—H13A0.9700
Cu2—O151.9324 (13)C13—H13B0.9700
Cu2—O261.9707 (14)C18—C191.370 (5)
Cu2—N211.9827 (17)C18—H180.9300
Cu2—Cl42.1987 (7)C9—C81.371 (3)
O15—C111.370 (2)C9—H90.9300
O26—C221.386 (2)C6—C71.385 (4)
O12—C111.409 (2)C6—H60.9300
O12—C131.426 (3)C19—H190.9300
O23—C241.413 (3)C24—C251.494 (4)
O23—C221.418 (2)C24—H24A0.9700
N21—C161.339 (3)C24—H24B0.9700
N21—C201.341 (3)C7—C81.365 (4)
N10—C51.333 (3)C7—H70.9300
N10—C91.336 (3)C8—H80.9300
C5—C61.378 (3)C14—H14A0.9600
C5—C111.509 (3)C14—H14B0.9600
C11—H110.9800C14—H14C0.9600
C16—C171.384 (3)C25—H25A0.9600
C16—C221.506 (3)C25—H25B0.9600
C22—H220.9800C25—H25C0.9600
O15—Cu1—O2678.21 (6)O26—C22—O23109.23 (15)
O15—Cu1—N1081.81 (6)O26—C22—C16106.85 (16)
O26—Cu1—N10156.02 (7)O23—C22—C16107.52 (17)
O15—Cu1—Cl3176.95 (5)O26—C22—H22111.0
O26—Cu1—Cl3100.34 (4)O23—C22—H22111.0
N10—Cu1—Cl398.95 (5)C16—C22—H22111.0
O15—Cu1—O26i92.55 (5)C18—C17—C16118.3 (3)
O26—Cu1—O26i79.23 (6)C18—C17—H17120.9
N10—Cu1—O26i115.02 (6)C16—C17—H17120.9
Cl3—Cu1—O26i89.80 (4)N21—C20—C19120.3 (3)
O15—Cu1—Cu238.69 (4)N21—C20—H20119.8
O26—Cu1—Cu240.15 (4)C19—C20—H20119.8
N10—Cu1—Cu2117.54 (5)O12—C13—C14108.1 (2)
Cl3—Cu1—Cu2139.425 (18)O12—C13—H13A110.1
O26i—Cu1—Cu290.19 (3)C14—C13—H13A110.1
O15—Cu2—O2677.80 (6)O12—C13—H13B110.1
O15—Cu2—N21157.61 (7)C14—C13—H13B110.1
O26—Cu2—N2180.81 (7)H13A—C13—H13B108.4
O15—Cu2—Cl4100.71 (5)C17—C18—C19119.8 (2)
O26—Cu2—Cl4170.05 (5)C17—C18—H18120.1
N21—Cu2—Cl499.21 (6)C19—C18—H18120.1
O15—Cu2—Cu138.33 (4)N10—C9—C8122.3 (2)
O26—Cu2—Cu140.09 (4)N10—C9—H9118.9
N21—Cu2—Cu1119.47 (6)C8—C9—H9118.9
Cl4—Cu2—Cu1136.30 (2)C5—C6—C7118.5 (2)
C11—O15—Cu1118.00 (12)C5—C6—H6120.8
C11—O15—Cu2136.01 (13)C7—C6—H6120.8
Cu1—O15—Cu2102.98 (6)C18—C19—C20119.8 (3)
C22—O26—Cu1127.03 (12)C18—C19—H19120.1
C22—O26—Cu2111.56 (12)C20—C19—H19120.1
Cu1—O26—Cu299.76 (6)O23—C24—C25109.2 (2)
C22—O26—Cu1i113.05 (11)O23—C24—H24A109.8
Cu1—O26—Cu1i100.77 (6)C25—C24—H24A109.8
Cu2—O26—Cu1i101.06 (5)O23—C24—H24B109.8
C11—O12—C13113.30 (16)C25—C24—H24B109.8
C24—O23—C22114.72 (18)H24A—C24—H24B108.3
C16—N21—C20119.9 (2)C8—C7—C6119.3 (2)
C16—N21—Cu2113.18 (14)C8—C7—H7120.4
C20—N21—Cu2126.56 (17)C6—C7—H7120.4
C5—N10—C9118.78 (19)C7—C8—C9119.1 (2)
C5—N10—Cu1113.66 (13)C7—C8—H8120.5
C9—N10—Cu1126.96 (16)C9—C8—H8120.5
N10—C5—C6122.1 (2)C13—C14—H14A109.5
N10—C5—C11115.44 (17)C13—C14—H14B109.5
C6—C5—C11122.4 (2)H14A—C14—H14B109.5
O15—C11—O12113.60 (16)C13—C14—H14C109.5
O15—C11—C5109.41 (16)H14A—C14—H14C109.5
O12—C11—C5103.56 (16)H14B—C14—H14C109.5
O15—C11—H11110.0C24—C25—H25A109.5
O12—C11—H11110.0C24—C25—H25B109.5
C5—C11—H11110.0H25A—C25—H25B109.5
N21—C16—C17121.9 (2)C24—C25—H25C109.5
N21—C16—C22114.57 (17)H25A—C25—H25C109.5
C17—C16—C22123.6 (2)H25B—C25—H25C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl30.932.783.333 (3)119
C20—H20···Cl40.932.903.393 (3)115
C13—H13B···Cl3i0.972.823.787 (3)173
C22—H22···O12i0.982.663.578 (3)156
C18—H18···O23ii0.932.443.367 (3)177
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAcevedo-Chávez, R., Costas, M. E., Bernès, S., Medina, G. & Gasque, L. (2002). J. Chem. Soc. Dalton Trans. pp. 2553–2558.  Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAouaidjia, F., Messai, A., Siab, R. & Ayesh, A. I. (2017). Polyhedron, 133, 257–263.  CrossRef CAS Google Scholar
First citationBaggio, R., González, O., Garland, M. T., Manzur, J., Acuña, V., Atria, A. M., Spodine, E. & Peña, O. (1993). J. Crystallogr. Spectrosc. Res. 23, 749–753.  CrossRef CAS Google Scholar
First citationBanerjee, I., Samanta, P. N., Das, K. K., Ababei, R., Kalisz, M., Girard, A., Mathonière, C., Nethaji, M., Clérac, R. & Ali, M. (2013). Dalton Trans. 42, 1879–1892.  CrossRef CAS PubMed Google Scholar
First citationBharati, P., Bharti, A., Bharty, M. K., Singh, N. K., Kashyap, S., Singh, U. P. & Butcher, R. J. (2015). Polyhedron, 97, 215–226.  CrossRef CAS Google Scholar
First citationBoudalis, A. K., Raptopoulou, C. P., Psycharis, V., Abarca, B. & Ballesteros, R. (2008). Eur. J. Inorg. Chem. pp. 3796–3801.  CrossRef Google Scholar
First citationChoubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. & Ghosh, B. K. (2015). Polyhedron, 89, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDa Silva, J. G., Recio Despaigne, A. A., Louro, S. R. W., Bandeira, C. C., Souza-Fagundes, E. M. & Beraldo, H. (2013). Eur. J. Med. Chem. 65, 415–426.  CrossRef CAS PubMed Google Scholar
First citationDatta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011a). Acta Cryst. E67, m123.  CrossRef IUCr Journals Google Scholar
First citationDatta, A., Sheu, S.-C., Liu, P.-H. & Huang, J.-H. (2011b). Acta Cryst. E67, m1852.  CrossRef IUCr Journals Google Scholar
First citationDeveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEfthymiou, C. G., Raptopoulou, C. P., Psycharis, V., Tasiopoulos, A. J., Escuer, A., Perlepes, S. P. & Papatriantafyllopoulou, C. (2013). Polyhedron, 64, 30–37.  CrossRef CAS Google Scholar
First citationGalić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić, V. (2011). Inorg. Chim. Acta, 366, 98–104.  Google Scholar
First citationGeorgopoulou, A. N., Adam, R., Raptopoulou, C. P., Psycharis, V., Ballesteros, R., Abarca, B. & Boudalis, A. K. (2010). Dalton Trans. 39, 5020–5027.  CrossRef CAS PubMed Google Scholar
First citationGonzàlez-Duarte, P., Leiva, À., March, R., Pons, J., Clegg, W., Solans, X., Álvarez-Larena, A. & Piniella, J. F. (1998). Polyhedron, 17, 1591–1600.  Google Scholar
First citationGonzález-Duarte, P., March, R., Pons, J., Clegg, W., Cucurull-Sànchez, L., Álvarez-Larena, A. & Piniella, J. F. (1996). Polyhedron, 15, 2747–2754.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHay, R. W. & Clark, C. R. (1979). Transition Met. Chem. 4, 28–31.  CrossRef CAS Google Scholar
First citationKalinowska-Lis, U., Żurowska, B., Ślepokura, K. & Ochocki, J. (2011). Inorg. Chim. Acta, 376, 18–22.  CAS Google Scholar
First citationKitos, A. A., Efthymiou, C. G., Manos, M. J., Tasiopoulos, A. J., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2016). Dalton Trans. 45, 1063–1077.  CrossRef CAS PubMed Google Scholar
First citationLazarou, K. N., Savvidou, A., Raptopoulou, C. P. & Psycharis, V. (2018). Polyhedron, 152, 125–137.  CrossRef CAS Google Scholar
First citationLiu, H., Gao, F., Niu, D. & Tian, J. (2009). Inorg. Chim. Acta, 362, 4179–4184.  CrossRef CAS Google Scholar
First citationLumme, P., Elo, H. & Jänne, J. (1984). Inorg. Chim. Acta, 92, 241–251.  CrossRef CAS Web of Science Google Scholar
First citationLuo, J. H., Hong, M. C., Shi, Q., Liang, Y. C., Zhao, Y. J., Wang, R. H., Cao, R. & Weng, J. B. (2002). Transition Met. Chem. 27, 311–315.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., El Fallah, M. S., Speed, S. & Vicente, R. (2010). Dalton Trans. 39, 4070–4079.  CrossRef CAS PubMed Google Scholar
First citationMonfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakanishi, T. & Sato, O. (2017). Acta Cryst. E73, 103–106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNatun, G., Joydip, C. & Samaresh, B. (1995). Transition Met. Chem. 20, 138–141.  Google Scholar
First citationOkeke, U. C., Gultneh, Y., Otchere, R. & Butcher, R. J. (2018). Inorg. Chem. Commun. 97, 1–6.  CrossRef CAS Google Scholar
First citationPapaefstathiou, G. S., Raptopoulou, C. P., Tsohos, A., Terzis, A., Bakalbassis, E. G. & Perlepes, S. P. (2000). Inorg. Chem. 39, 4658–4662.  CrossRef CAS Google Scholar
First citationPaul, R. C., Chopra, R. S., Bhambri, R. K. & Singh, G. (1974). J. Inorg. Nucl. Chem. 36, 3703–3707.  CrossRef CAS Google Scholar
First citationPaul, R. C., Chopra, R. S. & Singh, G. (1975). Inorg. Chim. Acta, 14, 105–109.  CAS Google Scholar
First citationQin, X., Ding, S., Xu, X., Wang, R., Song, Y., Wang, Y., Du, C. & Liu, Z. (2014). Polyhedron, 83, 36–43.  CrossRef CAS Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoztocki, K., Matoga, D. & Szklarzewicz, J. (2015). Inorg. Chem. Commun. 57, 22–25.  CrossRef CAS Google Scholar
First citationShahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011a). Acta Cryst. E67, m1727–m1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011b). Acta Cryst. E67, m1729–m1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Borras Almenar, J. J. & Mitra, S. (2013). Polyhedron, 61, 73–79.  CrossRef CAS Google Scholar
First citationSwank, D. D., Needham, G. F. & Willett, R. D. (1979). Inorg. Chem. 18, 761–765.  CrossRef CAS Google Scholar
First citationTabassum, S., Afzal, M., Al–Lohedan, H., Zaki, M., Khan, R. A. & Ahmad, M. (2017). Inorg. Chim. Acta, 463, 142–155.  CrossRef CAS Google Scholar
First citationWu, A. J., Penner-Hahn, J. E. & Pecoraro, V. L. (2004). Chem. Rev. 104, 903–938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, S.-S., Zhao, M., Lan, J.-X., Ye, R.-R., Li, Y., Ji, L.-N. & Mao, Z.-W. (2016). J. Mol. Catal. A Chem. 424, 297–303.  CrossRef CAS Google Scholar
First citationZhang, S.-H., Zhou, Y.-L., Sun, X.-J., Wei, L.-Q., Zeng, M.-H. & Liang, H. (2009). J. Solid State Chem. 182, 2991–2996.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds