research communications
Crystal structures of two CuII compounds: catena-poly[[chloridocopper(II)]-μ-N-[ethoxy(pyridin-2-yl)methylidene]-N′-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N′,O:N′′] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κCl,4κCl-bis[μ3-ethoxy(pyridin-2-yl)methanolato-1:2:3κ3O:N,O:O;1:3:4κ3O:O:N,O]bis[μ2-ethoxy(pyridin-2-yl)methanolato-1:2κ3N,O:O;3:4κ3N,O:O]tetracopper(II)
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Alioune Diop, Bambey, Senegal, cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania, and dInstituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13.560-970 – São Carlos, SP, Brazil
*Correspondence e-mail: mlgayeastou@yahoo.fr
Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitrogen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitrogen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by intermolecular C—H⋯O and C—H⋯Cl interactions, leading to a three-dimensional network structure. The tetranuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually interconnected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the pentacoordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hydroxy groups and one chloride anion to two other CuII ions. Each of the pentacoordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intramolecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetranuclear monomeric unit, which is connected to four tetranuclear monomeric units by intermolecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (01) plane.
1. Chemical context
Picolinic acid et al., 1996, 1998; Hay & Clark, 1979; Luo et al., 2002; Paul et al., 1974) as well as nicotinic acid hydrazide (Bharati et al., 2015; Galić et al., 2011; Nakanishi & Sato, 2017) are widely used in coordination chemistry for their ability to bind metals through the amino and/or the ester functional groups (Hay & Clark, 1979). Complexes formed by ethyl picolinate (EP) with various divalent metal thiocyanates (Paul et al., 1975), chlorides (González-Duarte et al., 1996) and perchlorates (Natun et al., 1995) have been prepared and characterized. Several modes of coordination are observed, depending on the conformation of the molecule. Ethyl picolinate acts as a bidentate ligand coordinating through the ring nitrogen and the carbonyl oxygen. The carboxylic ester function can coordinate in several ways, while the pyridine nitrogen atom can also coordinate in a unidentate fashion. The nicotinic acid hydrazide can coordinate through the hydrazino moiety as well as through the pyridine nitrogen atom (Lumme et al., 1984; Shahverdizadeh et al., 2011a,b). These facts make these ligands and their analogues very attractive and they have been used in several studies. Many polynuclear complexes of transition metals with various structures can be generated, depending on the disposition of the metal ions and the donor sites (N or O). Trimers (Zhang et al., 2009), square shapes (Aouaidjia et al., 2017), cyclic forms (Acevedo-Chávez et al., 2002) and cubans (Shit et al., 2013) have been reported that have potential applications in the field of magnetism (Shit et al., 2013), catalysis (Okeke et al., 2018) and biomimetic synthesis (Wu et al., 2004). By extension, the introduction of an ethoxy-carbonyl group in the ortho position of the pyridine gives a ligand that can have a similar behavior to α-amino acid It has been shown that the presence of metal ions promotes the hydrolysis of the ester function of the picolinic ester (Xue et al., 2016). A condensation can then occur between nicotinic acid hydrazide and the hydrolysed picolinic ester, to generate two organic ligands with a large number of coordination sites in situ, in the presence of copper(II) ions. These ligands then coordinate to the copper(II) cations to yield the two complexes that are reported here.
(González-Duarte2. Structural commentary
The condensation reaction of pyridine-2-carbaldehyde and nicotinic acid hydrazide in ethanol in the presence of copper acetate yields two different complexes whose ligands are respectively a hemiacetal [ethoxy(pyridine-2-yl)methanol] and a condensation product [({1-[1-ethoxy-1-(pyridin-2-yl)methylene]}-2-(oxonicotinyl))hydrazine]. It has been shown (Papaefstathiou et al., 2000; Boudalis et al., 2008; Mautner et al., 2010) that the presence of a metal can induce a nucleophilic attack of the ethanol molecule on the carbonyl group to give a hemiacetal. This reaction can also occur when a fragment such as a pyridyl nitrogen atom is present that is capable of inducing the polarization of the carbonyl function (Papaefstathiou et al., 2000). It is under these conditions that the complexes I and II were formed in situ.
In the 14H13N4O2)]n, I, the repeat unit of which is shown in (Fig. 1), the CuII center is pentacoordinated by one chloride atom, one enolate oxygen atom of the mono deprotonated organic ligand, one pyridine, one imino nitrogen atom, and by a pyridine nitrogen atom of a ligand from an adjacent complex molecule. This latter contact bridges the CuII cations to form a one-dimensional coordination polymer along the b-axis direction (Fig. 2). Intermolecular C—H⋯O and C—H⋯Cl hydrogen bonds, (Table 1), link the polymers into a three-dimensional network (Fig. 3). The coordination environment can be best described as strongly distorted square pyramidal. The basal plane around the CuII ion is formed by the Cl2 anion with a Cu1—Cl2 distance of 2.2707 (6) Å, an O16 atom with a Cu1—O16 distance of 1.9808 (15) Å and the N11 and N22 atoms from the same ligand with a Cu—N distances of 1.9437 (17) and 2.0444 (17) Å (Table 2). These bond lengths are similar to the values found in related complexes (Datta et al., 2011a,b; Da Silva et al., 2013). The apical position of the distorted square pyramid is occupied by one pyridine N3 atom of a neighbouring unit with a Cu—N distance of 2.2009 (17) Å. This distance is shorter than that found in similar compound (Roztocki et al., 2015). The ligand, which acts in a tridentate fashion, forms two five-membered rings upon coordination with the CuII centre: OCNNCu and NCCNCu, with the N11 atom common to both. The five-membered chelate rings impose large distortions on the ideal angles of a regular square pyramid, with bite angles in the range 79.11 (7)–79.40 (7)°, which are slightly smaller than those found in similar compounds (Roztocki et al., 2015). The transoid angles in the basal plane O16—Cu1—N22 and N11—Cu1—Cl2 deviate severely from linearity with values of 158.51 (7)° and 146.17 (6)° (Table 2). These two largest angles around the CuII ion give a τ parameter of 0.206, which is indicative of a distorted square-pyramidal environment around the CuII ion (Addison et al., 1984).
of the coordination polymer [CuCl(C
|
In II, the tetranuclear open-cube complex lies about a crystallographic inversion centre, with each mono deprotonated ethoxy(pyridin-2-yl)methanolate ligand coordinating to each Cu atom through its imine nitrogen atom and its alcoholate oxygen atom, forming five-membered chelate rings (Fig. 4). The molecule also forms intramolecular hydrogen bonds between a terminal chloride atom and an aromatic hydrogen atom (C20—H20⋯Cl4) and between a bridging chloride and both an aromatic and a methylene hydrogen atom (C9—H9⋯Cl3 and C13—H13B⋯Cl3i). Intramolecular C—H⋯O contacts are also found (Table 3, Fig. 5). There are two discrete CuII environments, Cu1NO3Cl and Cu2NO2Cl2. Two molecules of the ligand act as bridges between two neighbouring Cu atoms through their alcoholate atoms in a μ2 mode while the other two ligand molecules bridge in a μ3 fashion. The structure consists of two Cu3O3Cl cores. The first core comprises Cu1, Cu1i, Cu2 atoms μ3-bridging atoms O26, O26i, a μ2-bridging O15 atom and a μ2-bridging Cl3i ion [symmetry code: (i) −x + , y − , −z + )]. The second comprises Cu1, Cu1i, Cu2i atoms, μ3-bridging atoms O26, O26i, a μ2-bridging O15i atom and a μ2-bridging Cl3 ion. The result is a is a distorted open-cube, defined as a distorted cube missing one corner. This can be seen by considering that the range of Cu—O—Cu angles is [99.76 (6)–102.98 (6)°] and the Cu1—Cl3—Cu2i angle is 84.39 (2)°. These differ extensively from the 90° angles of an ideal cube. The two Cu3O3Cl open-cubes are joined by a perfectly rectangular side defined by the Cu1, O26, and Cui, O26i atoms. The values of the two different lengths of the edges of the rectangular sides are 2.4280 (14) and 1.9684 (13) Å. The other faces of the two open-cubes are irregular with different distances i.e. Cu1—O26i = 2.4280 (14) Å, Cu2—O26 = 1.9707 (14) Å, Cu1—Cl3 = 2.2181 (6) Å and Cu2—Cl3 = 2.8134 (6) Å. The Cu1 (Cu1i) atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from the deprotonated hydroxyl groups and one chloride ion to three other CuII cations. In the CuO2NCl2 units, the Cu2 (Cu2i) atoms are linked to one μ2-O and one μ3-O atoms from a deprotonated hydroxyl groups and one chloride ion to two other CuII cations with Cu1—Cu2 and Cu1—Cu2i distances of approximately 3.012 and 3.408 Å, respectively. These are in good agreement with literature values (Qin et al., 2014). The distances of the oxygen atoms in the μ3- and μ2-bridging positions to the copper atoms are assymmetrical with Cu1—O26i, Cu1—O26 and Cu2—O26 distances of 2.4280 (14), 1.9684 (13), 1.9707 (14) Å, respectively, while Cu1—O15 and Cu2—O15 are 1.9170 (13) and 1.9324 (13) Å, respectively (Table 4). These distances agree with those in related structures (Lazarou et al., 2018; Tabassum et al., 2017). The environment of both CuII cations is again best described as distorted square pyramidal. The largest angles around Cu1 and Cu2 are O15—Cu1—Cl3 [176.95 (5)°], O26—Cu1—N10 [156.02 (7)°], O26—Cu2—Cl4 [170.05 (5)°] and O15—Cu2—N21 [157.61 (7)°] (Table 2). The Addison τ parameters are 0.348 for Cu1 and 0.207 for Cu2 (Addison et al., 1984), indicating considerable distortion. The basal plane around each of the Cu1 and Cu2 atoms is formed by one chloride anion, one pyridine nitrogen atom and two enolate oxygen atoms while the apical positions are occupied by an enolate oxygen atom for Cu1 and a chloride anion for Cu2. The copper–halogen distances Cu1—Cl3 and Cu2—Cl3 of 2.2181 (6) and 2.8134 (6) Å, respectively, agree with those for a chloride ion in bridging position (Choubey et al., 2015). The Cu2—Cl4 distance of 2.1987 (7) Å is indicative of a unidentate terminal chloride ion (Kalinowska-Lis et al., 2011). The four copper atoms occupy the vertices of a parallelogram with angles Cu1—Cu2—Cu1i and Cu2—Cu1—Cu2i of approximately 63.59° and 116.41°. The sum of the angle in the parallelogram is 360° and the lengths of the two diagonals, Cu1—Cu1i and Cu2—Cu2i, are 3.399 and 5.461 Å respectively and are comparable to the values found in a similar complex reported in the literature (Monfared et al., 2009). All the Cu—O—Cu angles in the open-cube are in the range 99.76 (6)—102.96 (6)° and the Cu1—Cl3—Cu2i angles of 84.39 (2)° are different from those of ideal cube. This bridging angle is also smaller than those reported for similar complexes (Banerjee et al., 2013; Swank et al., 1979) but they are nearly equal to those in the complex [Cu2(qsalBr)2Cl2](DMF) where qsalBr = 8-aminoquinoline with 5-bromo-salicylaldehyde (Liu et al., 2009). An immediate consequence is a small Cu1⋯Cu2 separation [3.4082 (4) Å] compared to those found in another dichlorido-bridged copper (II) complex (Banerjee et al., 2013).
|
|
3. Supramolecular features
The I is determined by a coordination synthon in which each ligand is coordinated to two metal centers, giving rise to infinite one-dimensional polymeric chains along the b-axis direction (Fig. 2). Adjacent chains are linked to one another by intermolecular C—H⋯O and C—H⋯Cl hydrogen bonds (Table 1), leading to a three-dimensional network structure (Fig. 3). In the of II, C18—H18⋯O23 hydrogen bonds link the complex molecules into chains along the bc diagonal (Fig. 6). Additional C18—H18⋯O23 contacts generate two-dimensional sheets of molecules also along the bc diagonal (Fig. 7). π–π-stacking interactions occur between the two unique N10/C5–C9 and N21/C16–C20 pyridine rings with a centroid-to-centroid separation of 3.6800 (16) Å (symmetry operation − x, − + y, − z). These contacts combine with the C—H⋯O hydrogen bonds to stack the molecules in a three-dimensional network along the a-axis direction (Fig. 8).
of4. Database survey
A search of the CSD database (Version 5.38; Groom et al., 2016) for the structures I and II using the fragment [1-ethoxy-1-(pyridin-2yl)]methylenehydrazine yielded no hits, indicating that compound I is reasonably unique. However, a search for ethoxy(pyridin-2-yl)methanolate, the ligand found in II gave ten hits, although none of these was closely related to II. The matches included the CuII complexes HAXBEN (Baggio et al., 1993), HUXDOU (Mautner et al., 2010), TOGLAC (Deveson et al., 1996) and VIMCAX (Efthymiou et al., 2013) that involve the ethoxydipyridin-2-ylmethanol ligand, which differs from the ligand reported here by substitution of the hydrogen atom on the carbon of the alcohol unit by a pyridine ring. A similar substitution with phenyl or by a 2-hydroxypyridine ring leads to the CuII complexes JUYYEJ (Kitos et al., 2016) and COHQIA (Boudalis et al., 2008), respectively. The three related hits QANPUQ, QANQAX and QANQEB (Papaefstathiou et al., 2000) are complexes of the symmetrical ligand 1,2-diethoxy-1,2-di(pyridin-2-yl)ethane-1,2-diol, which is a dimer of the ligand found in II. KAJKAJ (Georgopoulou et al., 2010) involves a Cu complex of a ligand that is the least similar to that found in II. The ligand used, 2,6-bis[1-ethoxy-1-hydroxy-1-(pyridin-2-yl)methyl]pyridin, has a central pyridine ring that is substituted by 1-ethoxy-1-hydroxy-1-(pyridin-2-yl)methyl fragments in the 2- and 6-positions.
5. Synthesis and crystallization
To a solution of 2-pyridine carbaldehyde (0.1070 g, 1 mmol) in 30 ml of ethanol was added a solution of nicotinic hydrazide (0.1371 g, 1 mmol) in 10 ml of ethanol. The mixture was stirred for 5 min. A solution of Cu(OOCH3)2·H2O (0.1996 g, 1 mmol) in 5 ml of ethanol was added at room temperature. The initial yellow solution immediately turned deep blue and was stirred under reflux for 2 h. The mixture was filtered and the solution evaporated to near dryness. The solid was isolated by filtration and recrystallized from a minimum of ethanol. On standing for five days, two types of crystals suitable for X-ray analysis were formed, light-yellow blocks of I and light-green plates of II.
For I: analysis calculated: C14H13N4ClO2Cu: C, 45.46; H, 3.56; N, 15.21; Cl; 9.63. Found: C, 45.44; H, 3.53; N, 15.16; Cl; 9.60. IR (ν, cm−1): 2982, 1628, 1583, 1423, 1343, 1245, 941, 816, 630. For II: analysis calculated: C16H20N2Cl2O4Cu2: C, 38.26; H, 4.01; N, 5.58; Cl; 14.12. Found: C, 38.23; H, 3.98; N, 5.55; Cl; 14.08. IR (ν, cm−1): 2982, 1585, 1423, 1243, 1145, 940, 812.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.93 Å for aromatic, d(C—H) = 0.97 Å for methylene and d(C—H) = 0.98 Å for methine H atoms with Uiso(H) = 1.2Ueq(C) and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. One reflection with Fo <<< Fc that was likely to have been affected by the beamstop was omitted from the final cycles.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019008922/sj5575sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008922/sj5575Isup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019008922/sj5575IIsup5.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2017); cell
CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008) for (I); OLEX2 (Dolomanov et al., 2009) for (II). For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu(C14H13N4O2)Cl] | F(000) = 748 |
Mr = 368.27 | Dx = 1.636 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1472 (9) Å | Cell parameters from 2449 reflections |
b = 9.9573 (6) Å | θ = 3.5–28.8° |
c = 14.4904 (11) Å | µ = 1.65 mm−1 |
β = 111.595 (9)° | T = 293 K |
V = 1495.5 (2) Å3 | Block, clear light yellow |
Z = 4 | 0.3 × 0.2 × 0.1 mm |
Rigaku Oxford Diffraction XtaLAB Mini (ROW) diffractometer | 5569 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 3671 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 34.5°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) | h = −5→17 |
Tmin = 0.967, Tmax = 1.000 | k = −14→12 |
8476 measured reflections | l = −21→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1803P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5569 reflections | Δρmax = 0.40 e Å−3 |
200 parameters | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.47474 (2) | 0.32922 (3) | 0.65558 (2) | 0.03498 (9) | |
Cl2 | 0.34273 (6) | 0.44640 (6) | 0.71389 (4) | 0.04555 (14) | |
O16 | 0.61729 (15) | 0.46011 (15) | 0.68180 (11) | 0.0409 (3) | |
N11 | 0.52597 (16) | 0.29579 (17) | 0.54312 (13) | 0.0351 (4) | |
O13 | 0.47178 (19) | 0.17375 (17) | 0.39271 (13) | 0.0548 (5) | |
N3 | 0.93076 (16) | 0.70447 (17) | 0.71207 (13) | 0.0347 (4) | |
N22 | 0.34839 (17) | 0.17999 (17) | 0.58487 (13) | 0.0360 (4) | |
N10 | 0.62800 (18) | 0.3710 (2) | 0.53850 (14) | 0.0408 (4) | |
C5 | 0.77400 (18) | 0.5424 (2) | 0.62038 (14) | 0.0316 (4) | |
C9 | 0.66495 (18) | 0.4523 (2) | 0.61446 (14) | 0.0325 (4) | |
C17 | 0.3576 (2) | 0.1438 (2) | 0.49841 (15) | 0.0350 (4) | |
C4 | 0.82919 (19) | 0.6265 (2) | 0.70085 (15) | 0.0337 (4) | |
H4 | 0.793616 | 0.628682 | 0.749681 | 0.040* | |
C12 | 0.4615 (2) | 0.2121 (2) | 0.47694 (15) | 0.0356 (4) | |
C6 | 0.8249 (2) | 0.5432 (2) | 0.54629 (16) | 0.0392 (4) | |
H6 | 0.789474 | 0.489398 | 0.490347 | 0.047* | |
C8 | 0.9789 (2) | 0.7018 (2) | 0.64056 (16) | 0.0414 (5) | |
H8 | 1.050395 | 0.754901 | 0.647646 | 0.050* | |
C7 | 0.9278 (2) | 0.6241 (3) | 0.55673 (17) | 0.0450 (5) | |
H7 | 0.962947 | 0.626743 | 0.507670 | 0.054* | |
C18 | 0.2755 (2) | 0.0507 (2) | 0.43614 (18) | 0.0479 (6) | |
H18 | 0.281599 | 0.028794 | 0.375622 | 0.057* | |
C21 | 0.2599 (2) | 0.1209 (3) | 0.61202 (17) | 0.0455 (5) | |
H21 | 0.253554 | 0.145443 | 0.671970 | 0.055* | |
C20 | 0.1774 (3) | 0.0248 (3) | 0.5549 (2) | 0.0551 (6) | |
H20 | 0.117711 | −0.016619 | 0.576519 | 0.066* | |
C14 | 0.5530 (3) | 0.2442 (3) | 0.34999 (18) | 0.0490 (6) | |
H14A | 0.643386 | 0.228648 | 0.389388 | 0.059* | |
H14B | 0.536575 | 0.339998 | 0.347922 | 0.059* | |
C19 | 0.1847 (3) | −0.0087 (3) | 0.4658 (2) | 0.0573 (7) | |
H19 | 0.128097 | −0.071808 | 0.425264 | 0.069* | |
C15 | 0.5207 (3) | 0.1908 (3) | 0.2480 (2) | 0.0725 (9) | |
H15A | 0.429643 | 0.199448 | 0.211706 | 0.109* | |
H15B | 0.544680 | 0.097758 | 0.251411 | 0.109* | |
H15C | 0.566903 | 0.240523 | 0.214954 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03827 (14) | 0.04034 (15) | 0.02896 (13) | −0.00397 (10) | 0.01546 (10) | −0.00355 (11) |
Cl2 | 0.0534 (3) | 0.0477 (3) | 0.0432 (3) | 0.0115 (2) | 0.0267 (3) | 0.0022 (2) |
O16 | 0.0442 (8) | 0.0487 (8) | 0.0340 (7) | −0.0114 (7) | 0.0194 (6) | −0.0095 (7) |
N11 | 0.0368 (8) | 0.0381 (9) | 0.0340 (8) | −0.0065 (7) | 0.0173 (7) | −0.0053 (7) |
O13 | 0.0726 (12) | 0.0579 (11) | 0.0474 (10) | −0.0254 (9) | 0.0381 (9) | −0.0184 (8) |
N3 | 0.0373 (8) | 0.0373 (9) | 0.0298 (8) | −0.0047 (7) | 0.0126 (7) | −0.0014 (7) |
N22 | 0.0375 (8) | 0.0412 (9) | 0.0303 (8) | −0.0038 (7) | 0.0138 (7) | 0.0020 (7) |
N10 | 0.0422 (9) | 0.0468 (10) | 0.0380 (10) | −0.0118 (8) | 0.0201 (8) | −0.0099 (8) |
C5 | 0.0321 (9) | 0.0334 (9) | 0.0275 (9) | 0.0014 (7) | 0.0089 (7) | 0.0013 (8) |
C9 | 0.0333 (9) | 0.0349 (9) | 0.0283 (9) | 0.0006 (8) | 0.0103 (8) | 0.0011 (8) |
C17 | 0.0403 (10) | 0.0331 (10) | 0.0324 (10) | −0.0021 (8) | 0.0142 (8) | 0.0012 (8) |
C4 | 0.0369 (10) | 0.0363 (10) | 0.0294 (9) | −0.0006 (8) | 0.0139 (8) | 0.0004 (8) |
C12 | 0.0410 (10) | 0.0380 (10) | 0.0319 (10) | −0.0045 (8) | 0.0182 (8) | −0.0034 (8) |
C6 | 0.0435 (11) | 0.0439 (11) | 0.0297 (10) | −0.0041 (9) | 0.0129 (9) | −0.0045 (9) |
C8 | 0.0451 (12) | 0.0464 (12) | 0.0367 (11) | −0.0099 (9) | 0.0197 (9) | −0.0042 (9) |
C7 | 0.0526 (13) | 0.0542 (13) | 0.0357 (11) | −0.0082 (11) | 0.0250 (10) | −0.0049 (10) |
C18 | 0.0556 (14) | 0.0505 (13) | 0.0389 (12) | −0.0151 (11) | 0.0189 (11) | −0.0105 (11) |
C21 | 0.0471 (12) | 0.0583 (14) | 0.0352 (11) | −0.0097 (11) | 0.0198 (10) | 0.0025 (11) |
C20 | 0.0527 (14) | 0.0652 (16) | 0.0499 (14) | −0.0203 (12) | 0.0219 (12) | 0.0025 (13) |
C14 | 0.0583 (14) | 0.0520 (14) | 0.0460 (13) | −0.0135 (11) | 0.0299 (11) | −0.0080 (11) |
C19 | 0.0589 (15) | 0.0622 (16) | 0.0515 (15) | −0.0280 (13) | 0.0212 (13) | −0.0107 (13) |
C15 | 0.091 (2) | 0.087 (2) | 0.0555 (16) | −0.0389 (18) | 0.0467 (16) | −0.0246 (16) |
Cu1—N11 | 1.9437 (17) | C4—H4 | 0.9300 |
Cu1—O16 | 1.9808 (15) | C6—C7 | 1.363 (3) |
Cu1—N22 | 2.0444 (17) | C6—H6 | 0.9300 |
Cu1—N3i | 2.2009 (17) | C8—C7 | 1.374 (3) |
Cu1—Cl2 | 2.2707 (6) | C8—H8 | 0.9300 |
O16—C9 | 1.274 (2) | C7—H7 | 0.9300 |
N11—C12 | 1.274 (3) | C18—C19 | 1.371 (3) |
N11—N10 | 1.384 (2) | C18—H18 | 0.9300 |
O13—C12 | 1.323 (3) | C21—C20 | 1.374 (3) |
O13—C14 | 1.452 (3) | C21—H21 | 0.9300 |
N3—C8 | 1.331 (3) | C20—C19 | 1.364 (4) |
N3—C4 | 1.333 (3) | C20—H20 | 0.9300 |
N22—C21 | 1.326 (3) | C14—C15 | 1.485 (3) |
N22—C17 | 1.344 (3) | C14—H14A | 0.9700 |
N10—C9 | 1.305 (3) | C14—H14B | 0.9700 |
C5—C4 | 1.382 (3) | C19—H19 | 0.9300 |
C5—C6 | 1.387 (3) | C15—H15A | 0.9600 |
C5—C9 | 1.488 (3) | C15—H15B | 0.9600 |
C17—C18 | 1.380 (3) | C15—H15C | 0.9600 |
C17—C12 | 1.472 (3) | ||
N11—Cu1—O16 | 79.11 (7) | N11—C12—C17 | 114.38 (18) |
N11—Cu1—N22 | 79.40 (7) | O13—C12—C17 | 113.79 (18) |
O16—Cu1—N22 | 158.51 (7) | C7—C6—C5 | 119.0 (2) |
N11—Cu1—N3i | 116.09 (7) | C7—C6—H6 | 120.5 |
O16—Cu1—N3i | 96.39 (7) | C5—C6—H6 | 120.5 |
N22—Cu1—N3i | 92.70 (7) | N3—C8—C7 | 123.0 (2) |
N11—Cu1—Cl2 | 146.17 (6) | N3—C8—H8 | 118.5 |
O16—Cu1—Cl2 | 100.05 (5) | C7—C8—H8 | 118.5 |
N22—Cu1—Cl2 | 97.97 (5) | C6—C7—C8 | 119.3 (2) |
N3i—Cu1—Cl2 | 97.68 (5) | C6—C7—H7 | 120.4 |
C9—O16—Cu1 | 110.13 (13) | C8—C7—H7 | 120.4 |
C12—N11—N10 | 124.29 (17) | C19—C18—C17 | 118.3 (2) |
C12—N11—Cu1 | 119.01 (14) | C19—C18—H18 | 120.9 |
N10—N11—Cu1 | 116.63 (13) | C17—C18—H18 | 120.9 |
C12—O13—C14 | 122.21 (18) | N22—C21—C20 | 122.4 (2) |
C8—N3—C4 | 117.47 (18) | N22—C21—H21 | 118.8 |
C8—N3—Cu1ii | 119.26 (14) | C20—C21—H21 | 118.8 |
C4—N3—Cu1ii | 123.23 (14) | C19—C20—C21 | 118.7 (2) |
C21—N22—C17 | 118.57 (19) | C19—C20—H20 | 120.6 |
C21—N22—Cu1 | 128.61 (16) | C21—C20—H20 | 120.6 |
C17—N22—Cu1 | 112.78 (13) | O13—C14—C15 | 106.9 (2) |
C9—N10—N11 | 107.74 (17) | O13—C14—H14A | 110.3 |
C4—C5—C6 | 117.88 (19) | C15—C14—H14A | 110.3 |
C4—C5—C9 | 120.96 (18) | O13—C14—H14B | 110.3 |
C6—C5—C9 | 121.15 (18) | C15—C14—H14B | 110.3 |
O16—C9—N10 | 126.39 (19) | H14A—C14—H14B | 108.6 |
O16—C9—C5 | 118.76 (17) | C20—C19—C18 | 119.9 (2) |
N10—C9—C5 | 114.86 (18) | C20—C19—H19 | 120.0 |
N22—C17—C18 | 122.0 (2) | C18—C19—H19 | 120.0 |
N22—C17—C12 | 114.18 (18) | C14—C15—H15A | 109.5 |
C18—C17—C12 | 123.8 (2) | C14—C15—H15B | 109.5 |
N3—C4—C5 | 123.38 (19) | H15A—C15—H15B | 109.5 |
N3—C4—H4 | 118.3 | C14—C15—H15C | 109.5 |
C5—C4—H4 | 118.3 | H15A—C15—H15C | 109.5 |
N11—C12—O13 | 131.82 (19) | H15B—C15—H15C | 109.5 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Cl2ii | 0.93 | 2.71 | 3.354 (2) | 128 |
C20—H20···Cl2iii | 0.93 | 2.93 | 3.527 (3) | 124 |
C14—H14B···Cl2iv | 0.97 | 2.83 | 3.534 (3) | 130 |
C14—H14B···O16iv | 0.97 | 2.56 | 3.441 (3) | 151 |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1. |
[Cu4(C8H10NO2)4Cl4] | F(000) = 1016 |
Mr = 1004.68 | Dx = 1.753 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5150 (4) Å | Cell parameters from 9290 reflections |
b = 13.1051 (5) Å | θ = 3.0–32.4° |
c = 12.8066 (6) Å | µ = 2.54 mm−1 |
β = 100.066 (4)° | T = 293 K |
V = 1902.83 (13) Å3 | Plate, clear light green |
Z = 2 | 0.22 × 0.2 × 0.05 mm |
Rigaku Oxford Diffraction XtaLAB Mini (ROW) diffractometer | 7541 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 4946 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 34.5°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) | h = −17→18 |
Tmin = 0.727, Tmax = 1.000 | k = −20→14 |
31609 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.4202P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
7540 reflections | Δρmax = 0.46 e Å−3 |
237 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59802 (2) | 0.59673 (2) | 0.49846 (2) | 0.03411 (7) | |
Cu2 | 0.55029 (2) | 0.53449 (2) | 0.71340 (2) | 0.03564 (7) | |
Cl3 | 0.67941 (4) | 0.53396 (4) | 0.36744 (4) | 0.04527 (12) | |
Cl4 | 0.53662 (7) | 0.61216 (5) | 0.86295 (5) | 0.06187 (17) | |
O15 | 0.53512 (12) | 0.64894 (10) | 0.61683 (11) | 0.0386 (3) | |
O26 | 0.59121 (12) | 0.47291 (10) | 0.58419 (11) | 0.0370 (3) | |
O12 | 0.40663 (13) | 0.78727 (11) | 0.59492 (12) | 0.0454 (3) | |
O23 | 0.78892 (13) | 0.44737 (12) | 0.63858 (14) | 0.0503 (4) | |
N21 | 0.60042 (14) | 0.39764 (13) | 0.77014 (15) | 0.0418 (4) | |
N10 | 0.61957 (15) | 0.74464 (13) | 0.47288 (14) | 0.0410 (4) | |
C5 | 0.58862 (18) | 0.80472 (15) | 0.54740 (18) | 0.0409 (4) | |
C11 | 0.52350 (17) | 0.75255 (15) | 0.62500 (17) | 0.0381 (4) | |
H11 | 0.555202 | 0.774842 | 0.697424 | 0.046* | |
C16 | 0.65162 (16) | 0.34167 (15) | 0.70334 (18) | 0.0423 (5) | |
C22 | 0.67794 (16) | 0.39909 (14) | 0.60830 (17) | 0.0385 (4) | |
H22 | 0.678628 | 0.353075 | 0.548094 | 0.046* | |
C17 | 0.6800 (2) | 0.24007 (17) | 0.7229 (2) | 0.0581 (6) | |
H17 | 0.714861 | 0.202010 | 0.675423 | 0.070* | |
C20 | 0.5775 (2) | 0.3558 (2) | 0.8600 (2) | 0.0551 (6) | |
H20 | 0.543030 | 0.395046 | 0.906778 | 0.066* | |
C13 | 0.3299 (2) | 0.7534 (2) | 0.6640 (2) | 0.0521 (5) | |
H13A | 0.360939 | 0.773547 | 0.736401 | 0.062* | |
H13B | 0.323321 | 0.679615 | 0.661564 | 0.062* | |
C18 | 0.6556 (2) | 0.1970 (2) | 0.8141 (3) | 0.0747 (9) | |
H18 | 0.673261 | 0.128697 | 0.828962 | 0.090* | |
C9 | 0.6739 (2) | 0.78622 (19) | 0.3992 (2) | 0.0555 (6) | |
H9 | 0.695863 | 0.744342 | 0.347368 | 0.067* | |
C6 | 0.6124 (2) | 0.90782 (17) | 0.5516 (2) | 0.0579 (6) | |
H6 | 0.591579 | 0.948143 | 0.605219 | 0.069* | |
C19 | 0.6050 (2) | 0.2547 (2) | 0.8833 (3) | 0.0725 (9) | |
H19 | 0.589245 | 0.226032 | 0.945725 | 0.087* | |
C24 | 0.8820 (2) | 0.4028 (2) | 0.5958 (2) | 0.0584 (6) | |
H24A | 0.866484 | 0.409094 | 0.519149 | 0.070* | |
H24B | 0.888107 | 0.330848 | 0.613617 | 0.070* | |
C7 | 0.6680 (3) | 0.95004 (19) | 0.4743 (3) | 0.0725 (8) | |
H7 | 0.684357 | 1.019542 | 0.474791 | 0.087* | |
C8 | 0.6984 (3) | 0.8886 (2) | 0.3974 (3) | 0.0692 (8) | |
H8 | 0.735208 | 0.915673 | 0.344567 | 0.083* | |
C14 | 0.2125 (2) | 0.8005 (2) | 0.6285 (2) | 0.0666 (7) | |
H14A | 0.186088 | 0.785882 | 0.554729 | 0.100* | |
H14B | 0.218259 | 0.873080 | 0.638596 | 0.100* | |
H14C | 0.157202 | 0.773196 | 0.669194 | 0.100* | |
C25 | 0.9948 (2) | 0.4557 (3) | 0.6401 (3) | 0.0798 (9) | |
H25A | 1.059000 | 0.422938 | 0.614746 | 0.120* | |
H25B | 1.007511 | 0.452442 | 0.716177 | 0.120* | |
H25C | 0.990264 | 0.525820 | 0.618003 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03381 (11) | 0.03383 (12) | 0.03553 (13) | −0.00077 (8) | 0.00838 (9) | 0.00260 (9) |
Cu2 | 0.03732 (12) | 0.03519 (12) | 0.03414 (13) | −0.00004 (9) | 0.00550 (9) | 0.00475 (9) |
Cl3 | 0.0420 (2) | 0.0496 (3) | 0.0477 (3) | −0.0006 (2) | 0.0175 (2) | −0.0010 (2) |
Cl4 | 0.0881 (5) | 0.0601 (4) | 0.0372 (3) | −0.0049 (3) | 0.0104 (3) | −0.0043 (3) |
O15 | 0.0476 (7) | 0.0318 (6) | 0.0389 (7) | 0.0029 (5) | 0.0149 (6) | 0.0051 (5) |
O26 | 0.0372 (6) | 0.0343 (6) | 0.0399 (7) | 0.0060 (5) | 0.0081 (6) | 0.0062 (5) |
O12 | 0.0410 (7) | 0.0460 (8) | 0.0517 (9) | 0.0077 (6) | 0.0150 (7) | 0.0080 (7) |
O23 | 0.0342 (7) | 0.0515 (9) | 0.0674 (11) | −0.0063 (6) | 0.0150 (7) | −0.0100 (8) |
N21 | 0.0325 (8) | 0.0443 (9) | 0.0460 (10) | −0.0026 (7) | −0.0003 (7) | 0.0135 (8) |
N10 | 0.0453 (9) | 0.0367 (8) | 0.0426 (10) | −0.0035 (7) | 0.0123 (7) | 0.0045 (7) |
C5 | 0.0393 (9) | 0.0357 (9) | 0.0488 (12) | −0.0004 (7) | 0.0101 (8) | 0.0052 (8) |
C11 | 0.0383 (9) | 0.0359 (9) | 0.0411 (11) | 0.0021 (7) | 0.0098 (8) | 0.0013 (8) |
C16 | 0.0269 (8) | 0.0386 (10) | 0.0575 (13) | −0.0015 (7) | −0.0040 (8) | 0.0096 (9) |
C22 | 0.0311 (8) | 0.0343 (9) | 0.0489 (12) | 0.0014 (7) | 0.0032 (8) | −0.0001 (8) |
C17 | 0.0393 (11) | 0.0399 (11) | 0.093 (2) | 0.0034 (9) | 0.0047 (12) | 0.0143 (12) |
C20 | 0.0395 (11) | 0.0660 (15) | 0.0574 (14) | −0.0040 (10) | 0.0022 (10) | 0.0271 (12) |
C13 | 0.0453 (11) | 0.0615 (14) | 0.0524 (14) | 0.0019 (10) | 0.0167 (10) | 0.0075 (11) |
C18 | 0.0442 (13) | 0.0533 (14) | 0.122 (3) | 0.0035 (11) | 0.0014 (15) | 0.0442 (17) |
C9 | 0.0680 (15) | 0.0502 (13) | 0.0547 (14) | −0.0039 (11) | 0.0282 (12) | 0.0074 (11) |
C6 | 0.0669 (15) | 0.0369 (11) | 0.0760 (18) | −0.0008 (10) | 0.0297 (14) | 0.0012 (11) |
C19 | 0.0481 (13) | 0.0775 (19) | 0.089 (2) | −0.0041 (13) | 0.0039 (13) | 0.0503 (17) |
C24 | 0.0408 (11) | 0.0664 (16) | 0.0699 (17) | 0.0078 (10) | 0.0151 (11) | 0.0060 (13) |
C7 | 0.090 (2) | 0.0383 (12) | 0.099 (2) | −0.0064 (12) | 0.0429 (18) | 0.0112 (13) |
C8 | 0.084 (2) | 0.0541 (15) | 0.078 (2) | −0.0072 (13) | 0.0398 (16) | 0.0180 (14) |
C14 | 0.0495 (13) | 0.090 (2) | 0.0631 (17) | 0.0111 (13) | 0.0178 (12) | 0.0067 (15) |
C25 | 0.0396 (13) | 0.094 (2) | 0.108 (3) | −0.0015 (13) | 0.0194 (15) | 0.0143 (19) |
Cu1—O15 | 1.9170 (13) | C17—C18 | 1.369 (4) |
Cu1—O26 | 1.9684 (13) | C17—H17 | 0.9300 |
Cu1—N10 | 1.9886 (17) | C20—C19 | 1.383 (4) |
Cu1—Cl3 | 2.2181 (6) | C20—H20 | 0.9300 |
Cu1—O26i | 2.4280 (14) | C13—C14 | 1.484 (3) |
Cu1—Cu2 | 3.0122 (4) | C13—H13A | 0.9700 |
Cu2—O15 | 1.9324 (13) | C13—H13B | 0.9700 |
Cu2—O26 | 1.9707 (14) | C18—C19 | 1.370 (5) |
Cu2—N21 | 1.9827 (17) | C18—H18 | 0.9300 |
Cu2—Cl4 | 2.1987 (7) | C9—C8 | 1.371 (3) |
O15—C11 | 1.370 (2) | C9—H9 | 0.9300 |
O26—C22 | 1.386 (2) | C6—C7 | 1.385 (4) |
O12—C11 | 1.409 (2) | C6—H6 | 0.9300 |
O12—C13 | 1.426 (3) | C19—H19 | 0.9300 |
O23—C24 | 1.413 (3) | C24—C25 | 1.494 (4) |
O23—C22 | 1.418 (2) | C24—H24A | 0.9700 |
N21—C16 | 1.339 (3) | C24—H24B | 0.9700 |
N21—C20 | 1.341 (3) | C7—C8 | 1.365 (4) |
N10—C5 | 1.333 (3) | C7—H7 | 0.9300 |
N10—C9 | 1.336 (3) | C8—H8 | 0.9300 |
C5—C6 | 1.378 (3) | C14—H14A | 0.9600 |
C5—C11 | 1.509 (3) | C14—H14B | 0.9600 |
C11—H11 | 0.9800 | C14—H14C | 0.9600 |
C16—C17 | 1.384 (3) | C25—H25A | 0.9600 |
C16—C22 | 1.506 (3) | C25—H25B | 0.9600 |
C22—H22 | 0.9800 | C25—H25C | 0.9600 |
O15—Cu1—O26 | 78.21 (6) | O26—C22—O23 | 109.23 (15) |
O15—Cu1—N10 | 81.81 (6) | O26—C22—C16 | 106.85 (16) |
O26—Cu1—N10 | 156.02 (7) | O23—C22—C16 | 107.52 (17) |
O15—Cu1—Cl3 | 176.95 (5) | O26—C22—H22 | 111.0 |
O26—Cu1—Cl3 | 100.34 (4) | O23—C22—H22 | 111.0 |
N10—Cu1—Cl3 | 98.95 (5) | C16—C22—H22 | 111.0 |
O15—Cu1—O26i | 92.55 (5) | C18—C17—C16 | 118.3 (3) |
O26—Cu1—O26i | 79.23 (6) | C18—C17—H17 | 120.9 |
N10—Cu1—O26i | 115.02 (6) | C16—C17—H17 | 120.9 |
Cl3—Cu1—O26i | 89.80 (4) | N21—C20—C19 | 120.3 (3) |
O15—Cu1—Cu2 | 38.69 (4) | N21—C20—H20 | 119.8 |
O26—Cu1—Cu2 | 40.15 (4) | C19—C20—H20 | 119.8 |
N10—Cu1—Cu2 | 117.54 (5) | O12—C13—C14 | 108.1 (2) |
Cl3—Cu1—Cu2 | 139.425 (18) | O12—C13—H13A | 110.1 |
O26i—Cu1—Cu2 | 90.19 (3) | C14—C13—H13A | 110.1 |
O15—Cu2—O26 | 77.80 (6) | O12—C13—H13B | 110.1 |
O15—Cu2—N21 | 157.61 (7) | C14—C13—H13B | 110.1 |
O26—Cu2—N21 | 80.81 (7) | H13A—C13—H13B | 108.4 |
O15—Cu2—Cl4 | 100.71 (5) | C17—C18—C19 | 119.8 (2) |
O26—Cu2—Cl4 | 170.05 (5) | C17—C18—H18 | 120.1 |
N21—Cu2—Cl4 | 99.21 (6) | C19—C18—H18 | 120.1 |
O15—Cu2—Cu1 | 38.33 (4) | N10—C9—C8 | 122.3 (2) |
O26—Cu2—Cu1 | 40.09 (4) | N10—C9—H9 | 118.9 |
N21—Cu2—Cu1 | 119.47 (6) | C8—C9—H9 | 118.9 |
Cl4—Cu2—Cu1 | 136.30 (2) | C5—C6—C7 | 118.5 (2) |
C11—O15—Cu1 | 118.00 (12) | C5—C6—H6 | 120.8 |
C11—O15—Cu2 | 136.01 (13) | C7—C6—H6 | 120.8 |
Cu1—O15—Cu2 | 102.98 (6) | C18—C19—C20 | 119.8 (3) |
C22—O26—Cu1 | 127.03 (12) | C18—C19—H19 | 120.1 |
C22—O26—Cu2 | 111.56 (12) | C20—C19—H19 | 120.1 |
Cu1—O26—Cu2 | 99.76 (6) | O23—C24—C25 | 109.2 (2) |
C22—O26—Cu1i | 113.05 (11) | O23—C24—H24A | 109.8 |
Cu1—O26—Cu1i | 100.77 (6) | C25—C24—H24A | 109.8 |
Cu2—O26—Cu1i | 101.06 (5) | O23—C24—H24B | 109.8 |
C11—O12—C13 | 113.30 (16) | C25—C24—H24B | 109.8 |
C24—O23—C22 | 114.72 (18) | H24A—C24—H24B | 108.3 |
C16—N21—C20 | 119.9 (2) | C8—C7—C6 | 119.3 (2) |
C16—N21—Cu2 | 113.18 (14) | C8—C7—H7 | 120.4 |
C20—N21—Cu2 | 126.56 (17) | C6—C7—H7 | 120.4 |
C5—N10—C9 | 118.78 (19) | C7—C8—C9 | 119.1 (2) |
C5—N10—Cu1 | 113.66 (13) | C7—C8—H8 | 120.5 |
C9—N10—Cu1 | 126.96 (16) | C9—C8—H8 | 120.5 |
N10—C5—C6 | 122.1 (2) | C13—C14—H14A | 109.5 |
N10—C5—C11 | 115.44 (17) | C13—C14—H14B | 109.5 |
C6—C5—C11 | 122.4 (2) | H14A—C14—H14B | 109.5 |
O15—C11—O12 | 113.60 (16) | C13—C14—H14C | 109.5 |
O15—C11—C5 | 109.41 (16) | H14A—C14—H14C | 109.5 |
O12—C11—C5 | 103.56 (16) | H14B—C14—H14C | 109.5 |
O15—C11—H11 | 110.0 | C24—C25—H25A | 109.5 |
O12—C11—H11 | 110.0 | C24—C25—H25B | 109.5 |
C5—C11—H11 | 110.0 | H25A—C25—H25B | 109.5 |
N21—C16—C17 | 121.9 (2) | C24—C25—H25C | 109.5 |
N21—C16—C22 | 114.57 (17) | H25A—C25—H25C | 109.5 |
C17—C16—C22 | 123.6 (2) | H25B—C25—H25C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cl3 | 0.93 | 2.78 | 3.333 (3) | 119 |
C20—H20···Cl4 | 0.93 | 2.90 | 3.393 (3) | 115 |
C13—H13B···Cl3i | 0.97 | 2.82 | 3.787 (3) | 173 |
C22—H22···O12i | 0.98 | 2.66 | 3.578 (3) | 156 |
C18—H18···O23ii | 0.93 | 2.44 | 3.367 (3) | 177 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to the Sonatel Foundation for financial support.
References
Acevedo-Chávez, R., Costas, M. E., Bernès, S., Medina, G. & Gasque, L. (2002). J. Chem. Soc. Dalton Trans. pp. 2553–2558. Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Aouaidjia, F., Messai, A., Siab, R. & Ayesh, A. I. (2017). Polyhedron, 133, 257–263. CrossRef CAS Google Scholar
Baggio, R., González, O., Garland, M. T., Manzur, J., Acuña, V., Atria, A. M., Spodine, E. & Peña, O. (1993). J. Crystallogr. Spectrosc. Res. 23, 749–753. CrossRef CAS Google Scholar
Banerjee, I., Samanta, P. N., Das, K. K., Ababei, R., Kalisz, M., Girard, A., Mathonière, C., Nethaji, M., Clérac, R. & Ali, M. (2013). Dalton Trans. 42, 1879–1892. CrossRef CAS PubMed Google Scholar
Bharati, P., Bharti, A., Bharty, M. K., Singh, N. K., Kashyap, S., Singh, U. P. & Butcher, R. J. (2015). Polyhedron, 97, 215–226. CrossRef CAS Google Scholar
Boudalis, A. K., Raptopoulou, C. P., Psycharis, V., Abarca, B. & Ballesteros, R. (2008). Eur. J. Inorg. Chem. pp. 3796–3801. CrossRef Google Scholar
Choubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. & Ghosh, B. K. (2015). Polyhedron, 89, 39–44. Web of Science CSD CrossRef CAS Google Scholar
Da Silva, J. G., Recio Despaigne, A. A., Louro, S. R. W., Bandeira, C. C., Souza-Fagundes, E. M. & Beraldo, H. (2013). Eur. J. Med. Chem. 65, 415–426. CrossRef CAS PubMed Google Scholar
Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011a). Acta Cryst. E67, m123. CrossRef IUCr Journals Google Scholar
Datta, A., Sheu, S.-C., Liu, P.-H. & Huang, J.-H. (2011b). Acta Cryst. E67, m1852. CrossRef IUCr Journals Google Scholar
Deveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Efthymiou, C. G., Raptopoulou, C. P., Psycharis, V., Tasiopoulos, A. J., Escuer, A., Perlepes, S. P. & Papatriantafyllopoulou, C. (2013). Polyhedron, 64, 30–37. CrossRef CAS Google Scholar
Galić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić, V. (2011). Inorg. Chim. Acta, 366, 98–104. Google Scholar
Georgopoulou, A. N., Adam, R., Raptopoulou, C. P., Psycharis, V., Ballesteros, R., Abarca, B. & Boudalis, A. K. (2010). Dalton Trans. 39, 5020–5027. CrossRef CAS PubMed Google Scholar
Gonzàlez-Duarte, P., Leiva, À., March, R., Pons, J., Clegg, W., Solans, X., Álvarez-Larena, A. & Piniella, J. F. (1998). Polyhedron, 17, 1591–1600. Google Scholar
González-Duarte, P., March, R., Pons, J., Clegg, W., Cucurull-Sànchez, L., Álvarez-Larena, A. & Piniella, J. F. (1996). Polyhedron, 15, 2747–2754. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hay, R. W. & Clark, C. R. (1979). Transition Met. Chem. 4, 28–31. CrossRef CAS Google Scholar
Kalinowska-Lis, U., Żurowska, B., Ślepokura, K. & Ochocki, J. (2011). Inorg. Chim. Acta, 376, 18–22. CAS Google Scholar
Kitos, A. A., Efthymiou, C. G., Manos, M. J., Tasiopoulos, A. J., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2016). Dalton Trans. 45, 1063–1077. CrossRef CAS PubMed Google Scholar
Lazarou, K. N., Savvidou, A., Raptopoulou, C. P. & Psycharis, V. (2018). Polyhedron, 152, 125–137. CrossRef CAS Google Scholar
Liu, H., Gao, F., Niu, D. & Tian, J. (2009). Inorg. Chim. Acta, 362, 4179–4184. CrossRef CAS Google Scholar
Lumme, P., Elo, H. & Jänne, J. (1984). Inorg. Chim. Acta, 92, 241–251. CrossRef CAS Web of Science Google Scholar
Luo, J. H., Hong, M. C., Shi, Q., Liang, Y. C., Zhao, Y. J., Wang, R. H., Cao, R. & Weng, J. B. (2002). Transition Met. Chem. 27, 311–315. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mautner, F. A., El Fallah, M. S., Speed, S. & Vicente, R. (2010). Dalton Trans. 39, 4070–4079. CrossRef CAS PubMed Google Scholar
Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795. Web of Science CSD CrossRef CAS Google Scholar
Nakanishi, T. & Sato, O. (2017). Acta Cryst. E73, 103–106. Web of Science CSD CrossRef IUCr Journals Google Scholar
Natun, G., Joydip, C. & Samaresh, B. (1995). Transition Met. Chem. 20, 138–141. Google Scholar
Okeke, U. C., Gultneh, Y., Otchere, R. & Butcher, R. J. (2018). Inorg. Chem. Commun. 97, 1–6. CrossRef CAS Google Scholar
Papaefstathiou, G. S., Raptopoulou, C. P., Tsohos, A., Terzis, A., Bakalbassis, E. G. & Perlepes, S. P. (2000). Inorg. Chem. 39, 4658–4662. CrossRef CAS Google Scholar
Paul, R. C., Chopra, R. S., Bhambri, R. K. & Singh, G. (1974). J. Inorg. Nucl. Chem. 36, 3703–3707. CrossRef CAS Google Scholar
Paul, R. C., Chopra, R. S. & Singh, G. (1975). Inorg. Chim. Acta, 14, 105–109. CAS Google Scholar
Qin, X., Ding, S., Xu, X., Wang, R., Song, Y., Wang, Y., Du, C. & Liu, Z. (2014). Polyhedron, 83, 36–43. CrossRef CAS Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roztocki, K., Matoga, D. & Szklarzewicz, J. (2015). Inorg. Chem. Commun. 57, 22–25. CrossRef CAS Google Scholar
Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011a). Acta Cryst. E67, m1727–m1728. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011b). Acta Cryst. E67, m1729–m1730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Borras Almenar, J. J. & Mitra, S. (2013). Polyhedron, 61, 73–79. CrossRef CAS Google Scholar
Swank, D. D., Needham, G. F. & Willett, R. D. (1979). Inorg. Chem. 18, 761–765. CrossRef CAS Google Scholar
Tabassum, S., Afzal, M., Al–Lohedan, H., Zaki, M., Khan, R. A. & Ahmad, M. (2017). Inorg. Chim. Acta, 463, 142–155. CrossRef CAS Google Scholar
Wu, A. J., Penner-Hahn, J. E. & Pecoraro, V. L. (2004). Chem. Rev. 104, 903–938. Web of Science CrossRef PubMed CAS Google Scholar
Xue, S.-S., Zhao, M., Lan, J.-X., Ye, R.-R., Li, Y., Ji, L.-N. & Mao, Z.-W. (2016). J. Mol. Catal. A Chem. 424, 297–303. CrossRef CAS Google Scholar
Zhang, S.-H., Zhou, Y.-L., Sun, X.-J., Wei, L.-Q., Zeng, M.-H. & Liang, H. (2009). J. Solid State Chem. 182, 2991–2996. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.