research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2

aLaboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement (CERNE2D), Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@yahoo.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 12 June 2019; accepted 18 June 2019; online 21 June 2019)

The crystal structures of dirubidium potassium dysprosium bis­(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis­(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group P[\overline{3}]m1 with the glaserite structure type. VO4 tetra­hedra are linked to DyO6 or GdO6 octa­hedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.

1. Chemical context

Many studies have been devoted to phosphates, vanadates and arsenates with the general formula (A,A′)3Ln(XO4)2 (A,A′ = alkaline elements, Ln = rare-earth element and X = P, V, As) because of their outstanding optical properties. This type of compound has numerous possible applications, such as their use in the production of low- and high-pressure mercury lamps or colour television screens (Hong & Chinn, 1976[Hong, H. Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 461-468.]). It has been shown that these optical properties are enhanced by the presence of either a rare-earth element or an XO4 group and are determined by the fine details of the crystal structures of those materials (Benarafa et al., 2005[Benarafa, L., Rghioui, L., Nejjar, R., Saidi Idrissi, M., Knidiri, M., Lorriaux, A. & Wallart, F. (2005). Spectrochim. Acta Part A, 61, 419-430.]; Rghioui et al., 1996[Rghioui, L., Benarafa, L., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (1996). Spectrochim. Acta A, 52, 419-427.], 1999[Rghioui, L., El Ammari, L., Benarafa, L., Knidiri, M., Lorriaux, A., Wallart, F. & Krautscheid, H. (1999). Can. J. Anal. Sci. Spectrosc., 44, 98-105.], 2006[Rghioui, L., Benarafa, L., Zaydoun, S., Lorriaux, A. & Wallart, F. (2006). Phys. Chem. News, 31, 70-79.]). For instance, Parent et al. (1980[Parent, C., Fouassier, C. & Le Flem, G. (1980). J. Electrochem. Soc. Solid-State Sci. Technol. 127, 2049-2053.]) studied the luminescence phenomenon in Na3La1–xNdx(PO4)2 and Na3La1–xNdx(VO4)2 and measured the life time of the excited state 4F3/2 as a function of the Nd3+ concentration. From a detailed examination of the emission and excitation spectra, Srivastava et al. (1990[Srivastava, A. M., Sobieraj, M. T., Valossis, A., Ruan, K. & Banks, E. (1990). J. Electrochem. Soc. 137, 2959-2962.]) highlighted an energy transfer from Ce3+ to the Tb3+ ion in the K3La0.80Ce0.20(PO4)2, K3La0.80Tb0.20(PO4)2 and K3La1–xyTbxCey(PO4)2 phosphates. In addition, the band gaps and the life times of Ce3+ and Tb3+ were determined by Finke et al. (1992[Finke, B., Schwarz, L., Gürtler, P. & Kraas, M. (1992). Phys. Status Solidi A, 130, K125-K130.], 1994[Finke, B., Schwarz, L., Gürther, P., Kraas, M., Joppien, M. & Becker, J. (1994). J. Lumin. 60-61, 975-978.]). The optical properties of the La atom in K3La(PO4)2; K2RbLa(PO4)2; Rb2KLa(PO4)2 and Rb3La(PO4)2 phosphates, investigated by FTIR and VUV spectroscopy, have allowed the determination of the values of band-gap energies for K3La(PO4)2 prepared by two different methods (Sasum et al., 1997[Sasum, U., Kloss, M., Rohmann, A., Schwarz, L. & Haberland, D. (1997). J. Lumin. 72-74, 255-256.]). In addition, Guzik et al. (2007[Guzik, M., Legendziewicz, J., Szuszkiewicz, W. & Walasek, A. (2007). Opt. Mater. 29, 1225-1230.]) concluded that the emission phenomenon occurs from the charge transfer state in Na3Lu1–xyYbx(PO4)2 and Na3Y1–xyYbx(PO4)2 compounds. More recently, the optical properties of the Eu3+ ion were widely investigated in K3Eu(XO4)2 where X = P, As and V, K2YbHo1–xyEux(PO4)2, K2CsLn(VO4)2 where Ln = La and Gd (Benarafa et al., 2009[Benarafa, L., Rghioui, L., Zaydoun, S., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (2009). Phys. Chem. News, 46, 111-119.]; Rghioui et al., 2015[Rghioui, L., Benarafa, L., Guédira, F., Zaydoun, S., Lorriaux, A. & Wallart, F. (2015). J. Mater. Environ. Sci. 6, 3015-3021.]; Duke John David et al., 2016[Duke John David, A., Muhammad, G. S. & Sivakumar, V. (2016). J. Lumin. 177, 104-110.]; Tao et al., 2014[Tao, Z., Tsuboi, T., Huang, Y., Huang, W., Cai, P. & Seo, H. J. (2014). Inorg. Chem. 53, 4161-4168.]; Farmer et al., 2014[Farmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J., Mandrus, D., Jin, R. & Bryan, J. C. (2014). J. Alloys Compd. 588, 182-189.], 2016[Farmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J. & Richardson, J. (2016). J. Alloys Compd, 655, 253-265.]). In the case of K3Eu(XO4)2, a vibronic coupling mechanism was proposed to explain the process of europium emission observed under 647.1 nm excitation.

From a crystallographic point of view, the related (A,A′)3Ln(XO4)2 compounds with A,A′ = K, Rb and Cs adopt three structure types. The first is a monoclinic system, space group P21/m, represented by the phosphate K3Nd(PO4)2. The second one is trigonal, space group P[\overline{3}], represented by K3Lu(PO4)2, while the third one is also trigonal but in space group P[\overline{3}]m1 and represented by the glaserite K3Na(SO4)2. The present work is a continuation of our structural investigations by X-ray diffraction of the (A,A′)3Ln(XO4)2 system where A,A′ = K, Rb and Cs, Ln = rare earth and X = P, V, As (Rghioui et al., 1999[Rghioui, L., El Ammari, L., Benarafa, L., Knidiri, M., Lorriaux, A., Wallart, F. & Krautscheid, H. (1999). Can. J. Anal. Sci. Spectrosc., 44, 98-105.], 2002[Rghioui, L., El Ammari, L., Benarafa, L. & Wignacourt, J. P. (2002). Acta Cryst. C58, i90-i91.], 2007[Rghioui, L., Benarafa, L., Zaydoun, S. & El Ammari, L. (2007). Acta Cryst. A63, s292-s293.]). The present paper reports the synthesis and the crystal structure determination of the title compounds by X-ray diffraction at room temperature and vibrational spectroscopy.

2. Structural commentary

Dirubidium potassium dysprosium bis­(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis­(vanadate), Cs1.52K1.48Gd(VO4)2, both compounds crystallize in the space group P[\overline{3}]m1 with the common glaserite, K3Na(SO4)2, structure type (Moonre, 1973[Moonre, P. B. (1973). American Mineralogist, Volume, 58, 32-42.]; Okada & Ossaka, 1980[Okada, K. & Ossaka, J. (1980). Acta Cryst. B36, 919-921.]). The formulae determined by X-ray diffraction are consistent with the results of chemical analysis. In both structures, all atoms are in special positions of the P[\overline{3}]m1 space group, namely Dy1 in Wyckoff position 1a ([\overline{3}]m), Rb1 in 1b ([\overline{3}]m), K1/Rb2, V1 and O2 in 2d (3m) and O1 in 6i (m). The structures of the two vanadates are built up from two independent VO4 tetra­hedra sharing an apex with DyO6 or GdO6 octa­hedra in such a way as to form a layer parallel to the ab plane, as shown in Fig. 1[link]. Three of the six VO4 tetra­hedra surrounding each DyO6 or GdO6 octa­hedron are oriented upwards and the other three down. The concatenation of these polyhedra delimits large tunnels and cavities of site symmetry [\overline{3}]m and 3m in which are located rubidium and a statistical mixture of rubidium and potassium atoms (Fig. 2[link]).

[Figure 1]
Figure 1
Layer of VO4 tetra­hedra linked to DyO6 octa­hedra by vertex sharing in the structure of Rb2KDy(VO4)2.
[Figure 2]
Figure 2
Three-dimensional view along the a axis of the crystal structure showing Rb+ (or Cs+) in the channels.

The coordination polyhedron of the mixed site is formed by ten oxygen atoms belonging to three edges, one face and one vertex of five VO4 tetra­hedra as shown in Fig. 3[link]. The K/Rb—O distances range from 2.681 (8) to 3.312 (7) Å. The twelve oxygen atoms surrounding the rubidium atom form an irregular cubocta­hedron with Rb—O distances varying between 3.133 (2) and 3.4649 (3) Å. The main inter­atomic distances and angles are compatible with the values quoted in the literature (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]; Gagné, 2018[Gagné, O. C. (2018). Acta Cryst. B74, 49-62.]).

[Figure 3]
Figure 3
View along the c axis of a layer in the structure of the title compounds, showing the cavities in which the K/Rb+ (or K/Cs+) cations are located.

The three-dimensional structure consists of a basic tetra­hedral–octa­hedral framework, forming layers that stack along the c-axis direction, as shown in Fig. 4[link]. In glaserite-like structures, the large cations are located between the layers in channels running along the a- and b-axis directions and the average size cations are located in the cavities (see Fig. 5[link]).

[Figure 4]
Figure 4
Three-dimensional view of the crystal structure showing Rb+ (or Cs+) cations between the layers stacked along the c axis.
[Figure 5]
Figure 5
Three-dimensional perspective view along c axis of the crystal structure of Rb2KDy(VO4)2.

3. Vibrational spectroscopy

The Raman and infrared spectra for Rb2KDy(VO4)2 are shown in Figs. 6[link] and 7[link], respectively. Their band assignments given in Table 1[link] are based on previous works for homologous vanadates (Rghioui et al., 1999[Rghioui, L., El Ammari, L., Benarafa, L., Knidiri, M., Lorriaux, A., Wallart, F. & Krautscheid, H. (1999). Can. J. Anal. Sci. Spectrosc., 44, 98-105.], 2012[Rghioui, L., Benarafa, L., El Jastimi, J., El Hajji, A., Lorriaux, A. & Wallart, F. (2012). J. Mater. Environ. Sci. 3, 58-65.]; Benarafa et al., 2009[Benarafa, L., Rghioui, L., Zaydoun, S., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (2009). Phys. Chem. News, 46, 111-119.]). The stretching modes of (VO4)3− anions are usually found in the region 950–700 cm−1. The peaks observed in the Raman spectrum at 935, 875 and 740 cm−1 as well as the corres­ponding bands in the infrared spectrum at 925, 830 and 755 cm−1 are all attributed to the symmetric (VO4)3− and the asymmetric (VO4)3− vibration. The bending vibrations of (VO4)3− are seen in the range 390–310 cm−1. As in previous works (Rghioui et al., 2012[Rghioui, L., Benarafa, L., El Jastimi, J., El Hajji, A., Lorriaux, A. & Wallart, F. (2012). J. Mater. Environ. Sci. 3, 58-65.]), the separation between the symmetric and asymmetric bending can not be identified in the vibrational spectra. The bands lying between 230 and 95 cm−1 in the spectra are assigned to the lattice vibrations. They are due to the VO4 rotation and to the VO4, K+, Rb+ and Dy3+ translation modes. A comparison of the Raman and infrared bands shows that they are not coincident. This fact confirms the centrosymmetric structure of Rb2KDy(VO4)2 vanadate.

Table 1
Raman and Infrared band assignments (cm−1) for Rb2KDy(VO4)2

Raman Infrared Attribution
935 925 Stretching vibrations of VO4 groups
875 830
740 755
     
385 377 Deformation modes of VO4 groups
370 365
340 311
     
200 230 External modes
160 177
125 130
95 120
[Figure 6]
Figure 6
Raman spectrum of Rb2KDy(VO4)2.
[Figure 7]
Figure 7
Infrared spectrum of Rb2KDy(VO4)2.

4. Synthesis and crystallization

Single crystals of Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2 were synthesized by the flux method using a mixture of K2CO3, Rb2CO3 (or Cs2CO3 for the Gd compound), Dy2O3 (or Gd2O3) and V2O5 corresponding to 1 mol of K2RbDy(VO4)2 (or Cs1.52K1.48Gd(VO4)2 and 1 mol of Rb3VO4 (or Cs3VO4). The reagents were ground in an agate mortar and placed in a platinum crucible. The temperature was raised slowly to 873 K and maintained for 24 h, permitting the carbonates to decompose. A second treatment at the melting temperature of 1273 K was performed, followed by slow cooling at a rate of 4 K h−1 to 673 K and then quickly to ambient temperature. Each thermal treatment was inter­spersed with grinding. The obtained product was then washed with distilled water in order to eliminate the flux. The resulting product contained single crystals of a suitable size for the X-ray diffraction study.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the refinement procedure, the substitutional occupation of the mixed sites was freely refined and restricted to the occupancy of one site for Cs1.52K1.48Gd(VO4)2 but restricted to 0.5:0.5 for Rb2KDy(VO4)2.

Table 2
Experimental details

  Rb2KDy(VO4)2 Cs1.52K1.48Gd(VO4)2
Crystal data
Mr 602.42 646.74
Crystal system, space group Trigonal, P[\overline{3}]m1 Trigonal, P[\overline{3}]m1
Temperature (K) 296 296
a, c (Å) 5.9728 (1), 7.7780 (1) 6.0321 (1), 7.9821 (2)
V3) 240.30 (1) 251.53 (1)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 20.10 14.37
Crystal size (mm) 0.35 × 0.28 × 0.25 0.34 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.357, 0.749 0.639, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 10549, 647, 631 14472, 678, 666
Rint 0.049 0.038
(sin θ/λ)max−1) 0.926 0.925
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.11 0.010, 0.028, 1.09
No. of reflections 647 678
No. of parameters 24 25
Δρmax, Δρmin (e Å−3) 1.35, −1.35 0.63, −0.94
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) for (I); SHELXL2018 (Sheldrick, 2015b) for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008) for (II). For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).

Dirubidium potassium dysprosium bis(vanadate) (I) top
Crystal data top
Rb2KDy(VO4)2Dx = 4.163 Mg m3
Mr = 602.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 647 reflections
a = 5.9728 (1) Åθ = 2.6–41.1°
c = 7.7780 (1) ŵ = 20.10 mm1
V = 240.30 (1) Å3T = 296 K
Z = 1Block, colourless
F(000) = 2690.35 × 0.28 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
647 independent reflections
Radiation source: fine-focus sealed tube631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 41.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.357, Tmax = 0.749k = 1110
10549 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0239P)2 + 0.1252P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 1.35 e Å3
S = 1.11Δρmin = 1.35 e Å3
647 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
24 parametersExtinction coefficient: 0.0124 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.0000000.0000000.5000000.03556 (16)
Dy10.0000000.0000000.0000000.00791 (6)
K10.3333330.6666670.8013 (9)0.0098 (8)0.5
Rb20.3333330.6666670.7969 (5)0.0191 (6)0.5
V10.3333330.6666670.24618 (6)0.00765 (8)
O10.17571 (17)0.82429 (17)0.1720 (3)0.0273 (4)
O20.3333330.6666670.4567 (4)0.0389 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0463 (3)0.0463 (3)0.0141 (2)0.02314 (13)0.0000.000
Dy10.00565 (6)0.00565 (6)0.01243 (8)0.00282 (3)0.0000.000
K10.0082 (10)0.0082 (10)0.0128 (18)0.0041 (5)0.0000.000
Rb20.0194 (7)0.0194 (7)0.0185 (12)0.0097 (4)0.0000.000
V10.00766 (10)0.00766 (10)0.00763 (16)0.00383 (5)0.0000.000
O10.0219 (5)0.0219 (5)0.0424 (10)0.0141 (6)0.0081 (3)0.0081 (3)
O20.0542 (15)0.0542 (15)0.0084 (10)0.0271 (8)0.0000.000
Geometric parameters (Å, º) top
Rb1—O1i3.133 (2)K1—O1xvii2.9951 (5)
Rb1—O1ii3.133 (2)K1—O1xviii2.9951 (6)
Rb1—O1iii3.133 (2)K1—O1iii2.9951 (6)
Rb1—O1iv3.133 (2)K1—O1xix2.9951 (5)
Rb1—O1v3.133 (2)K1—O1i2.9951 (5)
Rb1—O1vi3.133 (2)K1—O1xx3.312 (7)
Rb1—O2vii3.4648 (3)K1—O1xxi3.312 (7)
Rb1—O2viii3.4648 (3)K1—O1xxii3.312 (7)
Rb1—O2ix3.4648 (3)K1—V1xx3.460 (7)
Rb1—O23.4648 (3)K1—V1vii3.4681 (8)
Rb1—O2iii3.4649 (3)Rb2—O22.647 (5)
Rb1—O2iv3.4649 (3)Rb2—O1xvi2.9976 (4)
Dy1—O1x2.2569 (17)Rb2—O1xvii2.9976 (4)
Dy1—O1vi2.2569 (17)Rb2—O1xviii2.9976 (4)
Dy1—O1xi2.2569 (17)Rb2—O1iii2.9976 (4)
Dy1—O1iv2.2569 (17)Rb2—O1xix2.9976 (4)
Dy1—O1xii2.2569 (17)Rb2—O1i2.9976 (4)
Dy1—O1ii2.2569 (17)Rb2—O1xx3.342 (4)
Dy1—K1xiii3.779 (3)Rb2—O1xxi3.342 (4)
Dy1—K1vii3.779 (3)Rb2—O1xxii3.342 (4)
Dy1—K1xiv3.779 (3)Rb2—V1vii3.4646 (4)
Dy1—K1ix3.779 (3)Rb2—V1iii3.4647 (4)
Dy1—K1xv3.779 (3)V1—O21.637 (3)
Dy1—K1iii3.779 (3)V1—O11.7297 (16)
K1—O22.681 (8)V1—O1vi1.7297 (16)
K1—O1xvi2.9951 (5)V1—O1xxiii1.7297 (16)
O1i—Rb1—O1ii180.0O1xviii—K1—V1xx86.02 (15)
O1i—Rb1—O1iii60.33 (5)O1iii—K1—V1xx86.02 (15)
O1ii—Rb1—O1iii119.67 (5)O1xix—K1—V1xx86.02 (15)
O1i—Rb1—O1iv119.67 (5)O1i—K1—V1xx86.02 (15)
O1ii—Rb1—O1iv60.33 (5)O1xx—K1—V1xx29.49 (7)
O1iii—Rb1—O1iv180.0O1xxi—K1—V1xx29.49 (7)
O1i—Rb1—O1v60.33 (5)O1xxii—K1—V1xx29.49 (7)
O1ii—Rb1—O1v119.67 (5)O2—K1—V1vii83.89 (12)
O1iii—Rb1—O1v60.33 (5)O1xvi—K1—V1vii148.26 (4)
O1iv—Rb1—O1v119.67 (5)O1xvii—K1—V1vii148.26 (4)
O1i—Rb1—O1vi119.67 (5)O1xviii—K1—V1vii92.20 (4)
O1ii—Rb1—O1vi60.33 (5)O1iii—K1—V1vii92.20 (4)
O1iii—Rb1—O1vi119.67 (5)O1xix—K1—V1vii29.92 (3)
O1iv—Rb1—O1vi60.33 (5)O1i—K1—V1vii29.92 (3)
O1v—Rb1—O1vi180.0O1xx—K1—V1vii125.60 (19)
O1i—Rb1—O2vii48.95 (6)O1xxi—K1—V1vii81.25 (8)
O1ii—Rb1—O2vii131.05 (6)O1xxii—K1—V1vii81.25 (8)
O1iii—Rb1—O2vii102.09 (5)V1xx—K1—V1vii96.11 (12)
O1iv—Rb1—O2vii77.91 (5)O2—Rb2—O1xvi94.63 (9)
O1v—Rb1—O2vii102.09 (5)O2—Rb2—O1xvii94.63 (9)
O1vi—Rb1—O2vii77.91 (5)O1xvi—Rb2—O1xvii63.36 (7)
O1i—Rb1—O2viii131.05 (6)O2—Rb2—O1xviii94.63 (9)
O1ii—Rb1—O2viii48.95 (6)O1xvi—Rb2—O1xviii56.21 (7)
O1iii—Rb1—O2viii77.91 (5)O1xvii—Rb2—O1xviii119.36 (3)
O1iv—Rb1—O2viii102.09 (5)O2—Rb2—O1iii94.63 (9)
O1v—Rb1—O2viii77.91 (5)O1xvi—Rb2—O1iii119.36 (3)
O1vi—Rb1—O2viii102.09 (5)O1xvii—Rb2—O1iii56.21 (7)
O2vii—Rb1—O2viii180.00 (11)O1xviii—Rb2—O1iii170.08 (18)
O1i—Rb1—O2ix102.09 (5)O2—Rb2—O1xix94.63 (9)
O1ii—Rb1—O2ix77.91 (5)O1xvi—Rb2—O1xix119.36 (3)
O1iii—Rb1—O2ix102.09 (5)O1xvii—Rb2—O1xix170.08 (18)
O1iv—Rb1—O2ix77.91 (5)O1xviii—Rb2—O1xix63.36 (7)
O1v—Rb1—O2ix48.95 (6)O1iii—Rb2—O1xix119.36 (3)
O1vi—Rb1—O2ix131.05 (6)O2—Rb2—O1i94.63 (9)
O2vii—Rb1—O2ix119.065 (18)O1xvi—Rb2—O1i170.08 (18)
O2viii—Rb1—O2ix60.935 (18)O1xvii—Rb2—O1i119.36 (3)
O1i—Rb1—O277.91 (5)O1xviii—Rb2—O1i119.36 (3)
O1ii—Rb1—O2102.09 (5)O1iii—Rb2—O1i63.36 (7)
O1iii—Rb1—O277.91 (5)O1xix—Rb2—O1i56.21 (7)
O1iv—Rb1—O2102.09 (5)O2—Rb2—O1xx150.80 (5)
O1v—Rb1—O2131.05 (6)O1xvi—Rb2—O1xx61.07 (8)
O1vi—Rb1—O248.95 (6)O1xvii—Rb2—O1xx61.07 (8)
O2vii—Rb1—O260.935 (18)O1xviii—Rb2—O1xx85.09 (8)
O2viii—Rb1—O2119.065 (18)O1iii—Rb2—O1xx85.09 (8)
O2ix—Rb1—O2180.0O1xix—Rb2—O1xx110.99 (11)
O1i—Rb1—O2iii102.09 (5)O1i—Rb2—O1xx110.99 (11)
O1ii—Rb1—O2iii77.91 (5)O2—Rb2—O1xxi150.80 (5)
O1iii—Rb1—O2iii48.95 (6)O1xvi—Rb2—O1xxi85.09 (8)
O1iv—Rb1—O2iii131.05 (6)O1xvii—Rb2—O1xxi110.99 (11)
O1v—Rb1—O2iii102.09 (5)O1xviii—Rb2—O1xxi61.07 (8)
O1vi—Rb1—O2iii77.91 (5)O1iii—Rb2—O1xxi110.99 (11)
O2vii—Rb1—O2iii119.064 (18)O1xix—Rb2—O1xxi61.07 (8)
O2viii—Rb1—O2iii60.936 (18)O1i—Rb2—O1xxi85.09 (8)
O2ix—Rb1—O2iii119.064 (18)O1xx—Rb2—O1xxi49.99 (8)
O2—Rb1—O2iii60.935 (18)O2—Rb2—O1xxii150.80 (5)
O1i—Rb1—O2iv77.91 (5)O1xvi—Rb2—O1xxii110.99 (11)
O1ii—Rb1—O2iv102.09 (5)O1xvii—Rb2—O1xxii85.09 (8)
O1iii—Rb1—O2iv131.05 (6)O1xviii—Rb2—O1xxii110.99 (11)
O1iv—Rb1—O2iv48.95 (6)O1iii—Rb2—O1xxii61.07 (8)
O1v—Rb1—O2iv77.91 (5)O1xix—Rb2—O1xxii85.09 (8)
O1vi—Rb1—O2iv102.09 (5)O1i—Rb2—O1xxii61.07 (8)
O2vii—Rb1—O2iv60.936 (18)O1xx—Rb2—O1xxii49.99 (8)
O2viii—Rb1—O2iv119.064 (18)O1xxi—Rb2—O1xxii49.99 (8)
O2ix—Rb1—O2iv60.936 (18)O2—Rb2—V1vii84.45 (7)
O2—Rb1—O2iv119.065 (18)O1xvi—Rb2—V1vii148.32 (3)
O2iii—Rb1—O2iv180.0O1xvii—Rb2—V1vii148.32 (3)
O1x—Dy1—O1vi180.00 (12)O1xviii—Rb2—V1vii92.23 (3)
O1x—Dy1—O1xi88.46 (9)O1iii—Rb2—V1vii92.23 (3)
O1vi—Dy1—O1xi91.54 (9)O1xix—Rb2—V1vii29.95 (3)
O1x—Dy1—O1iv91.54 (9)O1i—Rb2—V1vii29.95 (3)
O1vi—Dy1—O1iv88.46 (9)O1xx—Rb2—V1vii124.76 (11)
O1xi—Dy1—O1iv180.00 (9)O1xxi—Rb2—V1vii80.89 (5)
O1x—Dy1—O1xii88.46 (9)O1xxii—Rb2—V1vii80.89 (5)
O1vi—Dy1—O1xii91.54 (9)O2—Rb2—V1iii84.45 (7)
O1xi—Dy1—O1xii88.46 (9)O1xvi—Rb2—V1iii92.23 (3)
O1iv—Dy1—O1xii91.54 (9)O1xvii—Rb2—V1iii29.95 (3)
O1x—Dy1—O1ii91.54 (9)O1xviii—Rb2—V1iii148.32 (3)
O1vi—Dy1—O1ii88.46 (9)O1iii—Rb2—V1iii29.95 (3)
O1xi—Dy1—O1ii91.54 (9)O1xix—Rb2—V1iii148.32 (3)
O1iv—Dy1—O1ii88.46 (9)O1i—Rb2—V1iii92.23 (3)
O1xii—Dy1—O1ii180.00 (10)O1xx—Rb2—V1iii80.89 (5)
O1x—Dy1—K1xiii52.42 (5)O1xxi—Rb2—V1iii124.76 (11)
O1vi—Dy1—K1xiii127.58 (5)O1xxii—Rb2—V1iii80.89 (5)
O1xi—Dy1—K1xiii52.42 (5)V1vii—Rb2—V1iii119.07 (2)
O1iv—Dy1—K1xiii127.58 (5)O2—V1—O1109.49 (8)
O1xii—Dy1—K1xiii119.51 (12)O2—V1—O1vi109.49 (8)
O1ii—Dy1—K1xiii60.49 (12)O1—V1—O1vi109.45 (8)
O1x—Dy1—K1vii127.58 (5)O2—V1—O1xxiii109.49 (8)
O1vi—Dy1—K1vii52.42 (5)O1—V1—O1xxiii109.45 (8)
O1xi—Dy1—K1vii127.58 (5)O1vi—V1—O1xxiii109.45 (8)
O1iv—Dy1—K1vii52.42 (5)O2—V1—K1xiv180.0
O1xii—Dy1—K1vii60.49 (12)O1—V1—K1xiv70.51 (8)
O1ii—Dy1—K1vii119.51 (12)O1vi—V1—K1xiv70.51 (8)
K1xiii—Dy1—K1vii180.0O1xxiii—V1—K1xiv70.51 (8)
O1x—Dy1—K1xiv119.51 (12)O2—V1—K1vii96.11 (12)
O1vi—Dy1—K1xiv60.49 (12)O1—V1—K1vii154.40 (15)
O1xi—Dy1—K1xiv52.42 (5)O1vi—V1—K1vii59.72 (4)
O1iv—Dy1—K1xiv127.58 (5)O1xxiii—V1—K1vii59.72 (4)
O1xii—Dy1—K1xiv52.42 (5)K1xiv—V1—K1vii83.89 (12)
O1ii—Dy1—K1xiv127.58 (5)O2—V1—K1iii96.11 (12)
K1xiii—Dy1—K1xiv104.42 (12)O1—V1—K1iii59.72 (4)
K1vii—Dy1—K1xiv75.58 (12)O1vi—V1—K1iii59.72 (4)
O1x—Dy1—K1ix60.49 (12)O1xxiii—V1—K1iii154.40 (15)
O1vi—Dy1—K1ix119.51 (12)K1xiv—V1—K1iii83.89 (12)
O1xi—Dy1—K1ix127.58 (5)K1vii—V1—K1iii118.88 (4)
O1iv—Dy1—K1ix52.42 (5)O2—V1—K1xviii96.11 (12)
O1xii—Dy1—K1ix127.58 (5)O1—V1—K1xviii59.72 (4)
O1ii—Dy1—K1ix52.42 (5)O1vi—V1—K1xviii154.40 (15)
K1xiii—Dy1—K1ix75.58 (12)O1xxiii—V1—K1xviii59.72 (4)
K1vii—Dy1—K1ix104.42 (12)K1xiv—V1—K1xviii83.89 (12)
K1xiv—Dy1—K1ix180.0K1vii—V1—K1xviii118.88 (5)
O1x—Dy1—K1xv52.42 (5)K1iii—V1—K1xviii118.88 (4)
O1vi—Dy1—K1xv127.58 (5)O2—V1—Rb1xxiv60.209 (6)
O1xi—Dy1—K1xv119.51 (12)O1—V1—Rb1xxiv49.28 (8)
O1iv—Dy1—K1xv60.49 (12)O1vi—V1—Rb1xxiv125.09 (3)
O1xii—Dy1—K1xv52.42 (5)O1xxiii—V1—Rb1xxiv125.09 (3)
O1ii—Dy1—K1xv127.58 (5)K1xiv—V1—Rb1xxiv119.792 (6)
K1xiii—Dy1—K1xv104.42 (12)K1vii—V1—Rb1xxiv156.32 (12)
K1vii—Dy1—K1xv75.58 (12)K1iii—V1—Rb1xxiv67.75 (7)
K1xiv—Dy1—K1xv104.42 (12)K1xviii—V1—Rb1xxiv67.75 (7)
K1ix—Dy1—K1xv75.58 (12)O2—V1—Rb1xxv60.209 (6)
O1x—Dy1—K1iii127.58 (5)O1—V1—Rb1xxv125.09 (3)
O1vi—Dy1—K1iii52.42 (5)O1vi—V1—Rb1xxv125.09 (3)
O1xi—Dy1—K1iii60.49 (12)O1xxiii—V1—Rb1xxv49.28 (8)
O1iv—Dy1—K1iii119.51 (12)K1xiv—V1—Rb1xxv119.791 (6)
O1xii—Dy1—K1iii127.58 (5)K1vii—V1—Rb1xxv67.76 (7)
O1ii—Dy1—K1iii52.42 (5)K1iii—V1—Rb1xxv156.32 (12)
K1xiii—Dy1—K1iii75.58 (12)K1xviii—V1—Rb1xxv67.76 (7)
K1vii—Dy1—K1iii104.42 (12)Rb1xxiv—V1—Rb1xxv97.454 (8)
K1xiv—Dy1—K1iii75.58 (12)O2—V1—Rb160.209 (6)
K1ix—Dy1—K1iii104.42 (12)O1—V1—Rb1125.09 (3)
K1xv—Dy1—K1iii180.0O1vi—V1—Rb149.28 (8)
O2—K1—O1xvi93.98 (15)O1xxiii—V1—Rb1125.09 (3)
O2—K1—O1xvii93.98 (15)K1xiv—V1—Rb1119.791 (6)
O1xvi—K1—O1xvii63.42 (7)K1vii—V1—Rb167.76 (7)
O2—K1—O1xviii93.98 (15)K1iii—V1—Rb167.76 (7)
O1xvi—K1—O1xviii56.26 (7)K1xviii—V1—Rb1156.32 (12)
O1xvii—K1—O1xviii119.52 (4)Rb1xxiv—V1—Rb197.454 (8)
O2—K1—O1iii93.98 (15)Rb1xxv—V1—Rb197.454 (8)
O1xvi—K1—O1iii119.52 (4)O2—V1—Rb20.000 (1)
O1xvii—K1—O1iii56.26 (7)O1—V1—Rb2109.49 (8)
O1xviii—K1—O1iii171.3 (3)O1vi—V1—Rb2109.49 (8)
O2—K1—O1xix93.98 (15)O1xxiii—V1—Rb2109.49 (8)
O1xvi—K1—O1xix119.52 (4)K1xiv—V1—Rb2180.0
O1xvii—K1—O1xix171.3 (3)K1vii—V1—Rb296.11 (12)
O1xviii—K1—O1xix63.42 (7)K1iii—V1—Rb296.11 (12)
O1iii—K1—O1xix119.52 (4)K1xviii—V1—Rb296.11 (12)
O2—K1—O1i93.98 (15)Rb1xxiv—V1—Rb260.209 (6)
O1xvi—K1—O1i171.3 (3)Rb1xxv—V1—Rb260.209 (6)
O1xvii—K1—O1i119.52 (4)Rb1—V1—Rb260.209 (6)
O1xviii—K1—O1i119.52 (4)V1—O1—Dy1xxiv163.14 (14)
O1iii—K1—O1i63.42 (7)V1—O1—K1xviii90.36 (6)
O1xix—K1—O1i56.26 (7)Dy1xxiv—O1—K1xviii90.91 (9)
O2—K1—O1xx150.51 (7)V1—O1—K1iii90.36 (6)
O1xvi—K1—O1xx61.46 (10)Dy1xxiv—O1—K1iii90.91 (9)
O1xvii—K1—O1xx61.46 (10)K1xviii—O1—K1iii171.3 (3)
O1xviii—K1—O1xx85.65 (13)V1—O1—Rb1xxiv105.98 (10)
O1iii—K1—O1xx85.65 (13)Dy1xxiv—O1—Rb1xxiv90.88 (6)
O1xix—K1—O1xx111.86 (19)K1xviii—O1—Rb1xxiv85.72 (12)
O1i—K1—O1xx111.86 (19)K1iii—O1—Rb1xxiv85.72 (12)
O2—K1—O1xxi150.51 (7)V1—O1—K1xiv80.00 (10)
O1xvi—K1—O1xxi85.65 (13)Dy1xxiv—O1—K1xiv83.14 (9)
O1xvii—K1—O1xxi111.86 (19)K1xviii—O1—K1xiv94.35 (13)
O1xviii—K1—O1xxi61.46 (10)K1iii—O1—K1xiv94.35 (13)
O1iii—K1—O1xxi111.86 (19)Rb1xxiv—O1—K1xiv174.02 (9)
O1xix—K1—O1xxi61.46 (10)V1—O2—Rb2180.0
O1i—K1—O1xxi85.65 (13)V1—O2—K1180.0
O1xx—K1—O1xxi50.47 (12)Rb2—O2—K10.000 (1)
O2—K1—O1xxii150.51 (7)V1—O2—Rb1xxiv95.58 (5)
O1xvi—K1—O1xxii111.86 (19)Rb2—O2—Rb1xxiv84.42 (5)
O1xvii—K1—O1xxii85.65 (13)K1—O2—Rb1xxiv84.42 (5)
O1xviii—K1—O1xxii111.86 (19)V1—O2—Rb1xxv95.58 (5)
O1iii—K1—O1xxii61.46 (10)Rb2—O2—Rb1xxv84.42 (5)
O1xix—K1—O1xxii85.65 (13)K1—O2—Rb1xxv84.42 (5)
O1i—K1—O1xxii61.46 (10)Rb1xxiv—O2—Rb1xxv119.065 (18)
O1xx—K1—O1xxii50.47 (12)V1—O2—Rb195.58 (5)
O1xxi—K1—O1xxii50.47 (12)Rb2—O2—Rb184.42 (5)
O2—K1—V1xx180.0K1—O2—Rb184.42 (5)
O1xvi—K1—V1xx86.02 (15)Rb1xxiv—O2—Rb1119.065 (18)
O1xvii—K1—V1xx86.02 (15)Rb1xxv—O2—Rb1119.065 (18)
Symmetry codes: (i) xy+1, x, z+1; (ii) x+y1, x, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) y1, x+y1, z+1; (vi) y+1, xy+1, z; (vii) x+1, y+1, z+1; (viii) x1, y1, z; (ix) x, y, z+1; (x) y1, x+y1, z; (xi) x, y+1, z; (xii) xy+1, x, z; (xiii) x1, y1, z1; (xiv) x, y, z1; (xv) x, y1, z1; (xvi) xy+1, x+1, z+1; (xvii) y1, x+y, z+1; (xviii) x+1, y+2, z+1; (xix) y, x+y, z+1; (xx) x, y, z+1; (xxi) x+y, x+1, z+1; (xxii) y+1, xy+1, z+1; (xxiii) x+y, x+1, z; (xxiv) x, y+1, z; (xxv) x+1, y+1, z.
Caesium potassium gadolinium bis(vanadate) (II) top
Crystal data top
Cs1.52K1.48Gd(VO4)2Dx = 4.270 Mg m3
Mr = 646.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 678 reflections
a = 6.0321 (1) Åθ = 3.9–41.1°
c = 7.9821 (2) ŵ = 14.37 mm1
V = 251.53 (1) Å3T = 296 K
Z = 1Block, colourless
F(000) = 2860.34 × 0.26 × 0.22 mm
Data collection top
Bruker X8 APEX
diffractometer
678 independent reflections
Radiation source: fine-focus sealed tube666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 41.1°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.639, Tmax = 0.747k = 911
14472 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.014P)2 + 0.0871P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.010(Δ/σ)max < 0.001
wR(F2) = 0.028Δρmax = 0.63 e Å3
S = 1.09Δρmin = 0.94 e Å3
678 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
25 parametersExtinction coefficient: 0.0022 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.0000000.0000000.5000000.02453 (5)
Gd10.0000000.0000000.0000000.00899 (4)
K10.3333330.6666670.7877 (3)0.0113 (5)0.7404 (18)
Cs20.3333330.6666670.7867 (4)0.0230 (8)0.2597 (18)
V10.3333330.6666670.23977 (4)0.00899 (5)
O10.17704 (10)0.82296 (10)0.16910 (16)0.0265 (2)
O20.3333330.6666670.4470 (3)0.0317 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02979 (7)0.02979 (7)0.01402 (8)0.01489 (3)0.0000.000
Gd10.00627 (4)0.00627 (4)0.01444 (6)0.00313 (2)0.0000.000
K10.0091 (6)0.0091 (6)0.0156 (9)0.0046 (3)0.0000.000
Cs20.0200 (9)0.0200 (9)0.0288 (14)0.0100 (5)0.0000.000
V10.00756 (7)0.00756 (7)0.01186 (11)0.00378 (3)0.0000.000
O10.0244 (4)0.0244 (4)0.0379 (6)0.0177 (4)0.00613 (19)0.00613 (19)
O20.0404 (7)0.0404 (7)0.0144 (7)0.0202 (4)0.0000.000
Geometric parameters (Å, º) top
Cs1—O1i3.2245 (13)K1—O1xvii3.0377 (4)
Cs1—O1ii3.2245 (13)K1—O1xviii3.0377 (4)
Cs1—O1iii3.2245 (13)K1—O1iii3.0377 (4)
Cs1—O1iv3.2245 (13)K1—O1xix3.0377 (4)
Cs1—O1v3.2245 (13)K1—O1i3.0377 (4)
Cs1—O1vi3.2245 (13)K1—V1vii3.4895 (2)
Cs1—O2vii3.5082 (3)K1—V1iii3.4895 (2)
Cs1—O2viii3.5082 (3)K1—V1xviii3.4895 (2)
Cs1—O2ix3.5082 (3)K1—V1xx3.609 (3)
Cs1—O23.5083 (3)Cs2—O22.712 (4)
Cs1—O2iii3.5083 (3)Cs2—O1xvi3.0386 (4)
Cs1—O2iv3.5083 (2)Cs2—O1xvii3.0386 (4)
Gd1—O1x2.2898 (10)Cs2—O1xviii3.0386 (4)
Gd1—O1vi2.2898 (10)Cs2—O1iii3.0386 (4)
Gd1—O1xi2.2898 (10)Cs2—O1xix3.0386 (4)
Gd1—O1iv2.2898 (10)Cs2—O1i3.0386 (4)
Gd1—O1xii2.2898 (10)Cs2—O1xx3.462 (3)
Gd1—O1ii2.2898 (10)Cs2—O1xxi3.462 (3)
Gd1—K1xiii3.8732 (12)Cs2—O1xxii3.462 (3)
Gd1—K1vii3.8732 (12)Cs2—V1vii3.4890 (2)
Gd1—K1xiv3.8731 (12)Cs2—V1iii3.4890 (2)
Gd1—K1ix3.8731 (12)V1—O21.654 (2)
Gd1—K1xv3.8732 (12)V1—O11.7276 (10)
Gd1—K1iii3.8732 (12)V1—O1vi1.7276 (10)
K1—O22.719 (3)V1—O1xxiii1.7276 (10)
K1—O1xvi3.0377 (4)
O1i—Cs1—O1ii180.0O1xvi—K1—V1xx83.48 (6)
O1i—Cs1—O1iii59.57 (3)O1xvii—K1—V1xx83.48 (6)
O1ii—Cs1—O1iii120.43 (3)O1xviii—K1—V1xx83.48 (6)
O1i—Cs1—O1iv120.43 (3)O1iii—K1—V1xx83.48 (6)
O1ii—Cs1—O1iv59.57 (3)O1xix—K1—V1xx83.48 (6)
O1iii—Cs1—O1iv180.0O1i—K1—V1xx83.48 (6)
O1i—Cs1—O1v59.57 (3)V1vii—K1—V1xx93.60 (4)
O1ii—Cs1—O1v120.43 (3)V1iii—K1—V1xx93.60 (4)
O1iii—Cs1—O1v59.57 (3)V1xviii—K1—V1xx93.60 (4)
O1iv—Cs1—O1v120.43 (3)O2—K1—Gd1xxiv115.95 (4)
O1i—Cs1—O1vi120.43 (3)O1xvi—K1—Gd1xxiv36.21 (2)
O1ii—Cs1—O1vi59.57 (3)O1xvii—K1—Gd1xxiv36.21 (2)
O1iii—Cs1—O1vi120.43 (3)O1xviii—K1—Gd1xxiv85.31 (3)
O1iv—Cs1—O1vi59.57 (3)O1iii—K1—Gd1xxiv85.31 (3)
O1v—Cs1—O1vi180.0O1xix—K1—Gd1xxiv137.69 (7)
O1i—Cs1—O2vii48.07 (4)O1i—K1—Gd1xxiv137.69 (7)
O1ii—Cs1—O2vii131.93 (4)V1vii—K1—Gd1xxiv157.65 (8)
O1iii—Cs1—O2vii100.71 (3)V1iii—K1—Gd1xxiv65.087 (12)
O1iv—Cs1—O2vii79.29 (3)V1xviii—K1—Gd1xxiv65.087 (12)
O1v—Cs1—O2vii100.71 (3)V1xx—K1—Gd1xxiv64.05 (4)
O1vi—Cs1—O2vii79.29 (3)O2—Cs2—O1xvi96.67 (7)
O1i—Cs1—O2viii131.93 (4)O2—Cs2—O1xvii96.67 (7)
O1ii—Cs1—O2viii48.07 (4)O1xvi—Cs2—O1xvii63.63 (4)
O1iii—Cs1—O2viii79.29 (3)O2—Cs2—O1xviii96.67 (7)
O1iv—Cs1—O2viii100.71 (3)O1xvi—Cs2—O1xviii55.47 (4)
O1v—Cs1—O2viii79.29 (3)O1xvii—Cs2—O1xviii118.67 (3)
O1vi—Cs1—O2viii100.71 (3)O2—Cs2—O1iii96.67 (7)
O2vii—Cs1—O2viii180.0O1xvi—Cs2—O1iii118.67 (3)
O1i—Cs1—O2ix100.71 (3)O1xvii—Cs2—O1iii55.47 (4)
O1ii—Cs1—O2ix79.29 (3)O1xviii—Cs2—O1iii166.04 (13)
O1iii—Cs1—O2ix100.71 (3)O2—Cs2—O1xix96.67 (7)
O1iv—Cs1—O2ix79.29 (3)O1xvi—Cs2—O1xix118.67 (3)
O1v—Cs1—O2ix48.07 (4)O1xvii—Cs2—O1xix166.04 (13)
O1vi—Cs1—O2ix131.93 (4)O1xviii—Cs2—O1xix63.63 (4)
O2vii—Cs1—O2ix118.567 (13)O1iii—Cs2—O1xix118.67 (3)
O2viii—Cs1—O2ix61.433 (14)O2—Cs2—O1i96.67 (7)
O1i—Cs1—O279.29 (3)O1xvi—Cs2—O1i166.04 (13)
O1ii—Cs1—O2100.71 (3)O1xvii—Cs2—O1i118.67 (3)
O1iii—Cs1—O279.29 (3)O1xviii—Cs2—O1i118.67 (3)
O1iv—Cs1—O2100.71 (3)O1iii—Cs2—O1i63.63 (4)
O1v—Cs1—O2131.93 (4)O1xix—Cs2—O1i55.47 (4)
O1vi—Cs1—O248.07 (4)O2—Cs2—O1xx151.86 (3)
O2vii—Cs1—O261.434 (13)O1xvi—Cs2—O1xx60.03 (5)
O2viii—Cs1—O2118.566 (13)O1xvii—Cs2—O1xx60.03 (5)
O2ix—Cs1—O2180.0O1xviii—Cs2—O1xx83.15 (6)
O1i—Cs1—O2iii100.71 (3)O1iii—Cs2—O1xx83.15 (6)
O1ii—Cs1—O2iii79.29 (3)O1xix—Cs2—O1xx108.15 (8)
O1iii—Cs1—O2iii48.07 (4)O1i—Cs2—O1xx108.15 (8)
O1iv—Cs1—O2iii131.93 (4)O2—Cs2—O1xxi151.86 (3)
O1v—Cs1—O2iii100.71 (3)O1xvi—Cs2—O1xxi83.15 (6)
O1vi—Cs1—O2iii79.29 (3)O1xvii—Cs2—O1xxi108.15 (8)
O2vii—Cs1—O2iii118.565 (14)O1xviii—Cs2—O1xxi60.03 (5)
O2viii—Cs1—O2iii61.435 (13)O1iii—Cs2—O1xxi108.15 (8)
O2ix—Cs1—O2iii118.565 (14)O1xix—Cs2—O1xxi60.03 (5)
O2—Cs1—O2iii61.434 (13)O1i—Cs2—O1xxi83.15 (6)
O1i—Cs1—O2iv79.29 (3)O1xx—Cs2—O1xxi48.22 (5)
O1ii—Cs1—O2iv100.71 (3)O2—Cs2—O1xxii151.86 (3)
O1iii—Cs1—O2iv131.93 (4)O1xvi—Cs2—O1xxii108.15 (8)
O1iv—Cs1—O2iv48.07 (4)O1xvii—Cs2—O1xxii83.15 (6)
O1v—Cs1—O2iv79.29 (3)O1xviii—Cs2—O1xxii108.15 (8)
O1vi—Cs1—O2iv100.71 (3)O1iii—Cs2—O1xxii60.03 (5)
O2vii—Cs1—O2iv61.435 (13)O1xix—Cs2—O1xxii83.15 (6)
O2viii—Cs1—O2iv118.565 (14)O1i—Cs2—O1xxii60.03 (5)
O2ix—Cs1—O2iv61.435 (13)O1xx—Cs2—O1xxii48.22 (5)
O2—Cs1—O2iv118.566 (14)O1xxi—Cs2—O1xxii48.22 (5)
O2iii—Cs1—O2iv180.0O2—Cs2—V1vii86.53 (5)
O1x—Gd1—O1vi180.00 (5)O1xvi—Cs2—V1vii147.92 (2)
O1x—Gd1—O1xi88.78 (5)O1xvii—Cs2—V1vii147.92 (2)
O1vi—Gd1—O1xi91.22 (5)O1xviii—Cs2—V1vii92.44 (2)
O1x—Gd1—O1iv91.22 (5)O1iii—Cs2—V1vii92.44 (2)
O1vi—Gd1—O1iv88.78 (5)O1xix—Cs2—V1vii29.680 (19)
O1xi—Gd1—O1iv180.00 (6)O1i—Cs2—V1vii29.680 (19)
O1x—Gd1—O1xii88.78 (5)O1xx—Cs2—V1vii121.61 (8)
O1vi—Gd1—O1xii91.22 (5)O1xxi—Cs2—V1vii79.51 (4)
O1xi—Gd1—O1xii88.78 (5)O1xxii—Cs2—V1vii79.51 (4)
O1iv—Gd1—O1xii91.22 (5)O2—Cs2—V1iii86.53 (5)
O1x—Gd1—O1ii91.22 (5)O1xvi—Cs2—V1iii92.44 (2)
O1vi—Gd1—O1ii88.78 (5)O1xvii—Cs2—V1iii29.680 (19)
O1xi—Gd1—O1ii91.22 (5)O1xviii—Cs2—V1iii147.91 (2)
O1iv—Gd1—O1ii88.78 (5)O1iii—Cs2—V1iii29.681 (19)
O1xii—Gd1—O1ii180.00 (6)O1xix—Cs2—V1iii147.92 (2)
O1x—Gd1—K1xiii51.601 (16)O1i—Cs2—V1iii92.44 (2)
O1vi—Gd1—K1xiii128.399 (17)O1xx—Cs2—V1iii79.51 (4)
O1xi—Gd1—K1xiii51.602 (16)O1xxi—Cs2—V1iii121.61 (8)
O1iv—Gd1—K1xiii128.398 (16)O1xxii—Cs2—V1iii79.51 (4)
O1xii—Gd1—K1xiii117.93 (5)V1vii—Cs2—V1iii119.638 (11)
O1ii—Gd1—K1xiii62.07 (5)O2—V1—O1109.06 (5)
O1x—Gd1—K1vii128.399 (17)O2—V1—O1vi109.06 (5)
O1vi—Gd1—K1vii51.601 (16)O1—V1—O1vi109.88 (5)
O1xi—Gd1—K1vii128.398 (16)O2—V1—O1xxiii109.06 (5)
O1iv—Gd1—K1vii51.602 (16)O1—V1—O1xxiii109.88 (5)
O1xii—Gd1—K1vii62.07 (5)O1vi—V1—O1xxiii109.88 (5)
O1ii—Gd1—K1vii117.93 (5)O2—V1—K1vii93.60 (4)
K1xiii—Gd1—K1vii180.0O1—V1—K1vii157.34 (6)
O1x—Gd1—K1xiv117.93 (5)O1vi—V1—K1vii60.518 (16)
O1vi—Gd1—K1xiv62.07 (5)O1xxiii—V1—K1vii60.518 (16)
O1xi—Gd1—K1xiv51.602 (16)O2—V1—K1iii93.60 (4)
O1iv—Gd1—K1xiv128.398 (16)O1—V1—K1iii60.517 (16)
O1xii—Gd1—K1xiv51.602 (16)O1vi—V1—K1iii60.518 (16)
O1ii—Gd1—K1xiv128.398 (16)O1xxiii—V1—K1iii157.34 (6)
K1xiii—Gd1—K1xiv102.28 (4)K1vii—V1—K1iii119.610 (10)
K1vii—Gd1—K1xiv77.72 (4)O2—V1—K1xviii93.60 (4)
O1x—Gd1—K1ix62.07 (5)O1—V1—K1xviii60.517 (16)
O1vi—Gd1—K1ix117.93 (5)O1vi—V1—K1xviii157.34 (6)
O1xi—Gd1—K1ix128.398 (16)O1xxiii—V1—K1xviii60.518 (16)
O1iv—Gd1—K1ix51.602 (16)K1vii—V1—K1xviii119.610 (10)
O1xii—Gd1—K1ix128.398 (16)K1iii—V1—K1xviii119.609 (10)
O1ii—Gd1—K1ix51.602 (16)O2—V1—K1xiv180.0
K1xiii—Gd1—K1ix77.72 (4)O1—V1—K1xiv70.94 (5)
K1vii—Gd1—K1ix102.28 (4)O1vi—V1—K1xiv70.94 (5)
K1xiv—Gd1—K1ix180.0O1xxiii—V1—K1xiv70.94 (5)
O1x—Gd1—K1xv51.602 (16)K1vii—V1—K1xiv86.40 (4)
O1vi—Gd1—K1xv128.398 (16)K1iii—V1—K1xiv86.40 (4)
O1xi—Gd1—K1xv117.93 (5)K1xviii—V1—K1xiv86.40 (4)
O1iv—Gd1—K1xv62.07 (5)O2—V1—Cs1xxv59.187 (4)
O1xii—Gd1—K1xv51.602 (16)O1—V1—Cs1xxv49.87 (5)
O1ii—Gd1—K1xv128.398 (16)O1vi—V1—Cs1xxv124.970 (19)
K1xiii—Gd1—K1xv102.28 (4)O1xxiii—V1—Cs1xxv124.970 (19)
K1vii—Gd1—K1xv77.72 (4)K1vii—V1—Cs1xxv152.79 (5)
K1xiv—Gd1—K1xv102.28 (4)K1iii—V1—Cs1xxv66.64 (3)
K1ix—Gd1—K1xv77.72 (4)K1xviii—V1—Cs1xxv66.64 (3)
O1x—Gd1—K1iii128.398 (16)K1xiv—V1—Cs1xxv120.814 (4)
O1vi—Gd1—K1iii51.602 (16)O2—V1—Cs1xxvi59.187 (4)
O1xi—Gd1—K1iii62.07 (5)O1—V1—Cs1xxvi124.969 (19)
O1iv—Gd1—K1iii117.93 (5)O1vi—V1—Cs1xxvi124.970 (19)
O1xii—Gd1—K1iii128.398 (16)O1xxiii—V1—Cs1xxvi49.87 (5)
O1ii—Gd1—K1iii51.602 (16)K1vii—V1—Cs1xxvi66.65 (3)
K1xiii—Gd1—K1iii77.72 (4)K1iii—V1—Cs1xxvi152.78 (5)
K1vii—Gd1—K1iii102.28 (4)K1xviii—V1—Cs1xxvi66.65 (3)
K1xiv—Gd1—K1iii77.72 (4)K1xiv—V1—Cs1xxvi120.813 (4)
K1ix—Gd1—K1iii102.28 (4)Cs1xxv—V1—Cs1xxvi96.109 (5)
K1xv—Gd1—K1iii180.0O2—V1—Cs159.187 (4)
O2—K1—O1xvi96.52 (6)O1—V1—Cs1124.969 (19)
O2—K1—O1xvii96.52 (6)O1vi—V1—Cs149.87 (5)
O1xvi—K1—O1xvii63.65 (4)O1xxiii—V1—Cs1124.970 (19)
O2—K1—O1xviii96.52 (6)K1vii—V1—Cs166.65 (3)
O1xvi—K1—O1xviii55.49 (4)K1iii—V1—Cs166.65 (3)
O1xvii—K1—O1xviii118.73 (2)K1xviii—V1—Cs1152.78 (5)
O2—K1—O1iii96.52 (6)K1xiv—V1—Cs1120.813 (4)
O1xvi—K1—O1iii118.73 (2)Cs1xxv—V1—Cs196.109 (5)
O1xvii—K1—O1iii55.49 (4)Cs1xxvi—V1—Cs196.109 (5)
O1xviii—K1—O1iii166.32 (11)O2—V1—Cs20.0
O2—K1—O1xix96.52 (6)O1—V1—Cs2109.06 (5)
O1xvi—K1—O1xix118.73 (2)O1vi—V1—Cs2109.06 (5)
O1xvii—K1—O1xix166.32 (11)O1xxiii—V1—Cs2109.06 (5)
O1xviii—K1—O1xix63.65 (4)K1vii—V1—Cs293.60 (4)
O1iii—K1—O1xix118.73 (2)K1iii—V1—Cs293.60 (4)
O2—K1—O1i96.52 (6)K1xviii—V1—Cs293.60 (4)
O1xvi—K1—O1i166.32 (11)K1xiv—V1—Cs2180.0
O1xvii—K1—O1i118.73 (2)Cs1xxv—V1—Cs259.187 (4)
O1xviii—K1—O1i118.73 (2)Cs1xxvi—V1—Cs259.187 (4)
O1iii—K1—O1i63.65 (4)Cs1—V1—Cs259.187 (4)
O1xix—K1—O1i55.49 (4)V1—O1—Gd1xxv162.94 (8)
O2—K1—V1vii86.40 (4)V1—O1—K1xviii89.81 (3)
O1xvi—K1—V1vii147.94 (2)Gd1xxv—O1—K1xviii92.19 (4)
O1xvii—K1—V1vii147.94 (2)V1—O1—K1iii89.81 (3)
O1xviii—K1—V1vii92.45 (2)Gd1xxv—O1—K1iii92.19 (4)
O1iii—K1—V1vii92.45 (2)K1xviii—O1—K1iii166.32 (11)
O1xix—K1—V1vii29.676 (19)V1—O1—Cs1xxv105.95 (5)
O1i—K1—V1vii29.676 (19)Gd1xxv—O1—Cs1xxv91.12 (4)
O2—K1—V1iii86.40 (4)K1xviii—O1—Cs1xxv83.48 (5)
O1xvi—K1—V1iii92.45 (2)K1iii—O1—Cs1xxv83.48 (5)
O1xvii—K1—V1iii29.675 (19)V1—O2—Cs2180.0
O1xviii—K1—V1iii147.94 (2)V1—O2—K1180.0
O1iii—K1—V1iii29.676 (19)Cs2—O2—K10.0
O1xix—K1—V1iii147.94 (2)V1—O2—Cs1xxv96.93 (3)
O1i—K1—V1iii92.45 (2)Cs2—O2—Cs1xxv83.07 (3)
V1vii—K1—V1iii119.610 (10)K1—O2—Cs1xxv83.07 (3)
O2—K1—V1xviii86.40 (4)V1—O2—Cs1xxvi96.93 (3)
O1xvi—K1—V1xviii29.675 (19)Cs2—O2—Cs1xxvi83.07 (3)
O1xvii—K1—V1xviii92.45 (2)K1—O2—Cs1xxvi83.07 (3)
O1xviii—K1—V1xviii29.676 (19)Cs1xxv—O2—Cs1xxvi118.566 (13)
O1iii—K1—V1xviii147.94 (2)V1—O2—Cs196.93 (3)
O1xix—K1—V1xviii92.45 (2)Cs2—O2—Cs183.07 (3)
O1i—K1—V1xviii147.94 (2)K1—O2—Cs183.07 (3)
V1vii—K1—V1xviii119.610 (10)Cs1xxv—O2—Cs1118.566 (13)
V1iii—K1—V1xviii119.609 (10)Cs1xxvi—O2—Cs1118.566 (13)
O2—K1—V1xx180.0
Symmetry codes: (i) xy+1, x, z+1; (ii) x+y1, x, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) y1, x+y1, z+1; (vi) y+1, xy+1, z; (vii) x+1, y+1, z+1; (viii) x1, y1, z; (ix) x, y, z+1; (x) y1, x+y1, z; (xi) x, y+1, z; (xii) xy+1, x, z; (xiii) x1, y1, z1; (xiv) x, y, z1; (xv) x, y1, z1; (xvi) xy+1, x+1, z+1; (xvii) y1, x+y, z+1; (xviii) x+1, y+2, z+1; (xix) y, x+y, z+1; (xx) x, y, z+1; (xxi) x+y, x+1, z+1; (xxii) y+1, xy+1, z+1; (xxiii) x+y, x+1, z; (xxiv) x, y+1, z+1; (xxv) x, y+1, z; (xxvi) x+1, y+1, z.
Raman and Infrared band assignments (cm-1) for Rb2KDy(VO4)2 top
RamanInfraredAttribution
935925Stretching
875830vibrations of
740755VO4 groups
385377Deformation
370365modes of
340311VO4 groups
200230External
160177modes
125130
95120
 

Acknowledgements

The authors thank the Faculty of Science at the Mohammed V University in Rabat, Morocco, for the X-ray measurements.

References

First citationBenarafa, L., Rghioui, L., Nejjar, R., Saidi Idrissi, M., Knidiri, M., Lorriaux, A. & Wallart, F. (2005). Spectrochim. Acta Part A, 61, 419–430.  CAS Google Scholar
First citationBenarafa, L., Rghioui, L., Zaydoun, S., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (2009). Phys. Chem. News, 46, 111–119.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuke John David, A., Muhammad, G. S. & Sivakumar, V. (2016). J. Lumin. 177, 104–110.  CrossRef CAS Google Scholar
First citationFarmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J., Mandrus, D., Jin, R. & Bryan, J. C. (2014). J. Alloys Compd. 588, 182–189.  CrossRef ICSD CAS Google Scholar
First citationFarmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J. & Richardson, J. (2016). J. Alloys Compd, 655, 253–265.  CrossRef ICSD CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinke, B., Schwarz, L., Gürther, P., Kraas, M., Joppien, M. & Becker, J. (1994). J. Lumin. 60–61, 975–978.  CrossRef CAS Google Scholar
First citationFinke, B., Schwarz, L., Gürtler, P. & Kraas, M. (1992). Phys. Status Solidi A, 130, K125–K130.  CrossRef CAS Google Scholar
First citationGagné, O. C. (2018). Acta Cryst. B74, 49–62.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuzik, M., Legendziewicz, J., Szuszkiewicz, W. & Walasek, A. (2007). Opt. Mater. 29, 1225–1230.  CrossRef CAS Google Scholar
First citationHong, H. Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 461–468.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoonre, P. B. (1973). American Mineralogist, Volume, 58, 32–42.  Google Scholar
First citationOkada, K. & Ossaka, J. (1980). Acta Cryst. B36, 919–921.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationParent, C., Fouassier, C. & Le Flem, G. (1980). J. Electrochem. Soc. Solid-State Sci. Technol. 127, 2049–2053.  CAS Google Scholar
First citationRghioui, L., Benarafa, L., El Jastimi, J., El Hajji, A., Lorriaux, A. & Wallart, F. (2012). J. Mater. Environ. Sci. 3, 58–65.  CAS Google Scholar
First citationRghioui, L., Benarafa, L., Guédira, F., Zaydoun, S., Lorriaux, A. & Wallart, F. (2015). J. Mater. Environ. Sci. 6, 3015–3021.  CAS Google Scholar
First citationRghioui, L., Benarafa, L., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (1996). Spectrochim. Acta A, 52, 419–427.  CrossRef Google Scholar
First citationRghioui, L., Benarafa, L., Zaydoun, S. & El Ammari, L. (2007). Acta Cryst. A63, s292–s293.  CrossRef IUCr Journals Google Scholar
First citationRghioui, L., Benarafa, L., Zaydoun, S., Lorriaux, A. & Wallart, F. (2006). Phys. Chem. News, 31, 70–79.  CAS Google Scholar
First citationRghioui, L., El Ammari, L., Benarafa, L., Knidiri, M., Lorriaux, A., Wallart, F. & Krautscheid, H. (1999). Can. J. Anal. Sci. Spectrosc., 44, 98–105.  Google Scholar
First citationRghioui, L., El Ammari, L., Benarafa, L. & Wignacourt, J. P. (2002). Acta Cryst. C58, i90–i91.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSasum, U., Kloss, M., Rohmann, A., Schwarz, L. & Haberland, D. (1997). J. Lumin. 72–74, 255–256.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, A. M., Sobieraj, M. T., Valossis, A., Ruan, K. & Banks, E. (1990). J. Electrochem. Soc. 137, 2959–2962.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Z., Tsuboi, T., Huang, Y., Huang, W., Cai, P. & Seo, H. J. (2014). Inorg. Chem. 53, 4161–4168.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds