research communications
Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2
aLaboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement (CERNE2D), Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@yahoo.fr
The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive method, crystallize in the Pm1 with the glaserite structure type. VO4 tetrahedra are linked to DyO6 or GdO6 octahedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.
1. Chemical context
Many studies have been devoted to phosphates, vanadates and arsenates with the general formula (A,A′)3Ln(XO4)2 (A,A′ = alkaline elements, Ln = rare-earth element and X = P, V, As) because of their outstanding optical properties. This type of compound has numerous possible applications, such as their use in the production of low- and high-pressure mercury lamps or colour television screens (Hong & Chinn, 1976). It has been shown that these optical properties are enhanced by the presence of either a rare-earth element or an XO4 group and are determined by the fine details of the crystal structures of those materials (Benarafa et al., 2005; Rghioui et al., 1996, 1999, 2006). For instance, Parent et al. (1980) studied the luminescence phenomenon in Na3La1–xNdx(PO4)2 and Na3La1–xNdx(VO4)2 and measured the life time of the 4F3/2 as a function of the Nd3+ concentration. From a detailed examination of the emission and excitation spectra, Srivastava et al. (1990) highlighted an from Ce3+ to the Tb3+ ion in the K3La0.80Ce0.20(PO4)2, K3La0.80Tb0.20(PO4)2 and K3La1–x–yTbxCey(PO4)2 phosphates. In addition, the band gaps and the life times of Ce3+ and Tb3+ were determined by Finke et al. (1992, 1994). The optical properties of the La atom in K3La(PO4)2; K2RbLa(PO4)2; Rb2KLa(PO4)2 and Rb3La(PO4)2 phosphates, investigated by FTIR and VUV spectroscopy, have allowed the determination of the values of band-gap energies for K3La(PO4)2 prepared by two different methods (Sasum et al., 1997). In addition, Guzik et al. (2007) concluded that the emission phenomenon occurs from the charge transfer state in Na3Lu1–x–yYbx(PO4)2 and Na3Y1–x–yYbx(PO4)2 compounds. More recently, the optical properties of the Eu3+ ion were widely investigated in K3Eu(XO4)2 where X = P, As and V, K2YbHo1–x–yEux(PO4)2, K2CsLn(VO4)2 where Ln = La and Gd (Benarafa et al., 2009; Rghioui et al., 2015; Duke John David et al., 2016; Tao et al., 2014; Farmer et al., 2014, 2016). In the case of K3Eu(XO4)2, a mechanism was proposed to explain the process of europium emission observed under 647.1 nm excitation.
From a crystallographic point of view, the related (A,A′)3Ln(XO4)2 compounds with A,A′ = K, Rb and Cs adopt three structure types. The first is a monoclinic system, P21/m, represented by the phosphate K3Nd(PO4)2. The second one is trigonal, P, represented by K3Lu(PO4)2, while the third one is also trigonal but in Pm1 and represented by the glaserite K3Na(SO4)2. The present work is a continuation of our structural investigations by X-ray diffraction of the (A,A′)3Ln(XO4)2 system where A,A′ = K, Rb and Cs, Ln = rare earth and X = P, V, As (Rghioui et al., 1999, 2002, 2007). The present paper reports the synthesis and the determination of the title compounds by X-ray diffraction at room temperature and vibrational spectroscopy.
2. Structural commentary
Dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, both compounds crystallize in the Pm1 with the common glaserite, K3Na(SO4)2, structure type (Moonre, 1973; Okada & Ossaka, 1980). The formulae determined by X-ray diffraction are consistent with the results of chemical analysis. In both structures, all atoms are in special positions of the Pm1 namely Dy1 in 1a (m), Rb1 in 1b (m), K1/Rb2, V1 and O2 in 2d (3m) and O1 in 6i (m). The structures of the two vanadates are built up from two independent VO4 tetrahedra sharing an apex with DyO6 or GdO6 octahedra in such a way as to form a layer parallel to the ab plane, as shown in Fig. 1. Three of the six VO4 tetrahedra surrounding each DyO6 or GdO6 octahedron are oriented upwards and the other three down. The concatenation of these polyhedra delimits large tunnels and cavities of m and 3m in which are located rubidium and a statistical mixture of rubidium and potassium atoms (Fig. 2).
The 4 tetrahedra as shown in Fig. 3. The K/Rb—O distances range from 2.681 (8) to 3.312 (7) Å. The twelve oxygen atoms surrounding the rubidium atom form an irregular cuboctahedron with Rb—O distances varying between 3.133 (2) and 3.4649 (3) Å. The main interatomic distances and angles are compatible with the values quoted in the literature (Gagné & Hawthorne, 2016; Gagné, 2018).
of the mixed site is formed by ten oxygen atoms belonging to three edges, one face and one vertex of five VOThe three-dimensional structure consists of a basic tetrahedral–octahedral framework, forming layers that stack along the c-axis direction, as shown in Fig. 4. In glaserite-like structures, the large cations are located between the layers in channels running along the a- and b-axis directions and the average size cations are located in the cavities (see Fig. 5).
3. Vibrational spectroscopy
The Raman and infrared spectra for Rb2KDy(VO4)2 are shown in Figs. 6 and 7, respectively. Their band assignments given in Table 1 are based on previous works for homologous vanadates (Rghioui et al., 1999, 2012; Benarafa et al., 2009). The stretching modes of (VO4)3− anions are usually found in the region 950–700 cm−1. The peaks observed in the Raman spectrum at 935, 875 and 740 cm−1 as well as the corresponding bands in the infrared spectrum at 925, 830 and 755 cm−1 are all attributed to the symmetric (VO4)3− and the asymmetric (VO4)3− vibration. The bending vibrations of (VO4)3− are seen in the range 390–310 cm−1. As in previous works (Rghioui et al., 2012), the separation between the symmetric and asymmetric bending can not be identified in the vibrational spectra. The bands lying between 230 and 95 cm−1 in the spectra are assigned to the lattice vibrations. They are due to the VO4 rotation and to the VO4, K+, Rb+ and Dy3+ translation modes. A comparison of the Raman and infrared bands shows that they are not coincident. This fact confirms the centrosymmetric structure of Rb2KDy(VO4)2 vanadate.
|
4. Synthesis and crystallization
Single crystals of Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2 were synthesized by the method using a mixture of K2CO3, Rb2CO3 (or Cs2CO3 for the Gd compound), Dy2O3 (or Gd2O3) and V2O5 corresponding to 1 mol of K2RbDy(VO4)2 (or Cs1.52K1.48Gd(VO4)2 and 1 mol of Rb3VO4 (or Cs3VO4). The reagents were ground in an agate mortar and placed in a platinum crucible. The temperature was raised slowly to 873 K and maintained for 24 h, permitting the carbonates to decompose. A second treatment at the melting temperature of 1273 K was performed, followed by slow cooling at a rate of 4 K h−1 to 673 K and then quickly to ambient temperature. Each thermal treatment was interspersed with grinding. The obtained product was then washed with distilled water in order to eliminate the The resulting product contained single crystals of a suitable size for the X-ray diffraction study.
5. Refinement
Crystal data, data collection and structure . In the procedure, the substitutional occupation of the mixed sites was freely refined and restricted to the occupancy of one site for Cs1.52K1.48Gd(VO4)2 but restricted to 0.5:0.5 for Rb2KDy(VO4)2.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989019008685/vn2149sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008685/vn2149Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019008685/vn2149IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2009); cell
SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) for (I); SHELXL2018 (Sheldrick, 2015b) for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008) for (II). For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).Rb2KDy(VO4)2 | Dx = 4.163 Mg m−3 |
Mr = 602.42 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 647 reflections |
a = 5.9728 (1) Å | θ = 2.6–41.1° |
c = 7.7780 (1) Å | µ = 20.10 mm−1 |
V = 240.30 (1) Å3 | T = 296 K |
Z = 1 | Block, colourless |
F(000) = 269 | 0.35 × 0.28 × 0.25 mm |
Bruker X8 APEX diffractometer | 647 independent reflections |
Radiation source: fine-focus sealed tube | 631 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 41.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.357, Tmax = 0.749 | k = −11→10 |
10549 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0239P)2 + 0.1252P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.016 | (Δ/σ)max < 0.001 |
wR(F2) = 0.042 | Δρmax = 1.35 e Å−3 |
S = 1.11 | Δρmin = −1.35 e Å−3 |
647 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
24 parameters | Extinction coefficient: 0.0124 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1 | 0.000000 | 0.000000 | 0.500000 | 0.03556 (16) | |
Dy1 | 0.000000 | 0.000000 | 0.000000 | 0.00791 (6) | |
K1 | 0.333333 | 0.666667 | 0.8013 (9) | 0.0098 (8) | 0.5 |
Rb2 | 0.333333 | 0.666667 | 0.7969 (5) | 0.0191 (6) | 0.5 |
V1 | 0.333333 | 0.666667 | 0.24618 (6) | 0.00765 (8) | |
O1 | 0.17571 (17) | 0.82429 (17) | 0.1720 (3) | 0.0273 (4) | |
O2 | 0.333333 | 0.666667 | 0.4567 (4) | 0.0389 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0463 (3) | 0.0463 (3) | 0.0141 (2) | 0.02314 (13) | 0.000 | 0.000 |
Dy1 | 0.00565 (6) | 0.00565 (6) | 0.01243 (8) | 0.00282 (3) | 0.000 | 0.000 |
K1 | 0.0082 (10) | 0.0082 (10) | 0.0128 (18) | 0.0041 (5) | 0.000 | 0.000 |
Rb2 | 0.0194 (7) | 0.0194 (7) | 0.0185 (12) | 0.0097 (4) | 0.000 | 0.000 |
V1 | 0.00766 (10) | 0.00766 (10) | 0.00763 (16) | 0.00383 (5) | 0.000 | 0.000 |
O1 | 0.0219 (5) | 0.0219 (5) | 0.0424 (10) | 0.0141 (6) | −0.0081 (3) | 0.0081 (3) |
O2 | 0.0542 (15) | 0.0542 (15) | 0.0084 (10) | 0.0271 (8) | 0.000 | 0.000 |
Rb1—O1i | 3.133 (2) | K1—O1xvii | 2.9951 (5) |
Rb1—O1ii | 3.133 (2) | K1—O1xviii | 2.9951 (6) |
Rb1—O1iii | 3.133 (2) | K1—O1iii | 2.9951 (6) |
Rb1—O1iv | 3.133 (2) | K1—O1xix | 2.9951 (5) |
Rb1—O1v | 3.133 (2) | K1—O1i | 2.9951 (5) |
Rb1—O1vi | 3.133 (2) | K1—O1xx | 3.312 (7) |
Rb1—O2vii | 3.4648 (3) | K1—O1xxi | 3.312 (7) |
Rb1—O2viii | 3.4648 (3) | K1—O1xxii | 3.312 (7) |
Rb1—O2ix | 3.4648 (3) | K1—V1xx | 3.460 (7) |
Rb1—O2 | 3.4648 (3) | K1—V1vii | 3.4681 (8) |
Rb1—O2iii | 3.4649 (3) | Rb2—O2 | 2.647 (5) |
Rb1—O2iv | 3.4649 (3) | Rb2—O1xvi | 2.9976 (4) |
Dy1—O1x | 2.2569 (17) | Rb2—O1xvii | 2.9976 (4) |
Dy1—O1vi | 2.2569 (17) | Rb2—O1xviii | 2.9976 (4) |
Dy1—O1xi | 2.2569 (17) | Rb2—O1iii | 2.9976 (4) |
Dy1—O1iv | 2.2569 (17) | Rb2—O1xix | 2.9976 (4) |
Dy1—O1xii | 2.2569 (17) | Rb2—O1i | 2.9976 (4) |
Dy1—O1ii | 2.2569 (17) | Rb2—O1xx | 3.342 (4) |
Dy1—K1xiii | 3.779 (3) | Rb2—O1xxi | 3.342 (4) |
Dy1—K1vii | 3.779 (3) | Rb2—O1xxii | 3.342 (4) |
Dy1—K1xiv | 3.779 (3) | Rb2—V1vii | 3.4646 (4) |
Dy1—K1ix | 3.779 (3) | Rb2—V1iii | 3.4647 (4) |
Dy1—K1xv | 3.779 (3) | V1—O2 | 1.637 (3) |
Dy1—K1iii | 3.779 (3) | V1—O1 | 1.7297 (16) |
K1—O2 | 2.681 (8) | V1—O1vi | 1.7297 (16) |
K1—O1xvi | 2.9951 (5) | V1—O1xxiii | 1.7297 (16) |
O1i—Rb1—O1ii | 180.0 | O1xviii—K1—V1xx | 86.02 (15) |
O1i—Rb1—O1iii | 60.33 (5) | O1iii—K1—V1xx | 86.02 (15) |
O1ii—Rb1—O1iii | 119.67 (5) | O1xix—K1—V1xx | 86.02 (15) |
O1i—Rb1—O1iv | 119.67 (5) | O1i—K1—V1xx | 86.02 (15) |
O1ii—Rb1—O1iv | 60.33 (5) | O1xx—K1—V1xx | 29.49 (7) |
O1iii—Rb1—O1iv | 180.0 | O1xxi—K1—V1xx | 29.49 (7) |
O1i—Rb1—O1v | 60.33 (5) | O1xxii—K1—V1xx | 29.49 (7) |
O1ii—Rb1—O1v | 119.67 (5) | O2—K1—V1vii | 83.89 (12) |
O1iii—Rb1—O1v | 60.33 (5) | O1xvi—K1—V1vii | 148.26 (4) |
O1iv—Rb1—O1v | 119.67 (5) | O1xvii—K1—V1vii | 148.26 (4) |
O1i—Rb1—O1vi | 119.67 (5) | O1xviii—K1—V1vii | 92.20 (4) |
O1ii—Rb1—O1vi | 60.33 (5) | O1iii—K1—V1vii | 92.20 (4) |
O1iii—Rb1—O1vi | 119.67 (5) | O1xix—K1—V1vii | 29.92 (3) |
O1iv—Rb1—O1vi | 60.33 (5) | O1i—K1—V1vii | 29.92 (3) |
O1v—Rb1—O1vi | 180.0 | O1xx—K1—V1vii | 125.60 (19) |
O1i—Rb1—O2vii | 48.95 (6) | O1xxi—K1—V1vii | 81.25 (8) |
O1ii—Rb1—O2vii | 131.05 (6) | O1xxii—K1—V1vii | 81.25 (8) |
O1iii—Rb1—O2vii | 102.09 (5) | V1xx—K1—V1vii | 96.11 (12) |
O1iv—Rb1—O2vii | 77.91 (5) | O2—Rb2—O1xvi | 94.63 (9) |
O1v—Rb1—O2vii | 102.09 (5) | O2—Rb2—O1xvii | 94.63 (9) |
O1vi—Rb1—O2vii | 77.91 (5) | O1xvi—Rb2—O1xvii | 63.36 (7) |
O1i—Rb1—O2viii | 131.05 (6) | O2—Rb2—O1xviii | 94.63 (9) |
O1ii—Rb1—O2viii | 48.95 (6) | O1xvi—Rb2—O1xviii | 56.21 (7) |
O1iii—Rb1—O2viii | 77.91 (5) | O1xvii—Rb2—O1xviii | 119.36 (3) |
O1iv—Rb1—O2viii | 102.09 (5) | O2—Rb2—O1iii | 94.63 (9) |
O1v—Rb1—O2viii | 77.91 (5) | O1xvi—Rb2—O1iii | 119.36 (3) |
O1vi—Rb1—O2viii | 102.09 (5) | O1xvii—Rb2—O1iii | 56.21 (7) |
O2vii—Rb1—O2viii | 180.00 (11) | O1xviii—Rb2—O1iii | 170.08 (18) |
O1i—Rb1—O2ix | 102.09 (5) | O2—Rb2—O1xix | 94.63 (9) |
O1ii—Rb1—O2ix | 77.91 (5) | O1xvi—Rb2—O1xix | 119.36 (3) |
O1iii—Rb1—O2ix | 102.09 (5) | O1xvii—Rb2—O1xix | 170.08 (18) |
O1iv—Rb1—O2ix | 77.91 (5) | O1xviii—Rb2—O1xix | 63.36 (7) |
O1v—Rb1—O2ix | 48.95 (6) | O1iii—Rb2—O1xix | 119.36 (3) |
O1vi—Rb1—O2ix | 131.05 (6) | O2—Rb2—O1i | 94.63 (9) |
O2vii—Rb1—O2ix | 119.065 (18) | O1xvi—Rb2—O1i | 170.08 (18) |
O2viii—Rb1—O2ix | 60.935 (18) | O1xvii—Rb2—O1i | 119.36 (3) |
O1i—Rb1—O2 | 77.91 (5) | O1xviii—Rb2—O1i | 119.36 (3) |
O1ii—Rb1—O2 | 102.09 (5) | O1iii—Rb2—O1i | 63.36 (7) |
O1iii—Rb1—O2 | 77.91 (5) | O1xix—Rb2—O1i | 56.21 (7) |
O1iv—Rb1—O2 | 102.09 (5) | O2—Rb2—O1xx | 150.80 (5) |
O1v—Rb1—O2 | 131.05 (6) | O1xvi—Rb2—O1xx | 61.07 (8) |
O1vi—Rb1—O2 | 48.95 (6) | O1xvii—Rb2—O1xx | 61.07 (8) |
O2vii—Rb1—O2 | 60.935 (18) | O1xviii—Rb2—O1xx | 85.09 (8) |
O2viii—Rb1—O2 | 119.065 (18) | O1iii—Rb2—O1xx | 85.09 (8) |
O2ix—Rb1—O2 | 180.0 | O1xix—Rb2—O1xx | 110.99 (11) |
O1i—Rb1—O2iii | 102.09 (5) | O1i—Rb2—O1xx | 110.99 (11) |
O1ii—Rb1—O2iii | 77.91 (5) | O2—Rb2—O1xxi | 150.80 (5) |
O1iii—Rb1—O2iii | 48.95 (6) | O1xvi—Rb2—O1xxi | 85.09 (8) |
O1iv—Rb1—O2iii | 131.05 (6) | O1xvii—Rb2—O1xxi | 110.99 (11) |
O1v—Rb1—O2iii | 102.09 (5) | O1xviii—Rb2—O1xxi | 61.07 (8) |
O1vi—Rb1—O2iii | 77.91 (5) | O1iii—Rb2—O1xxi | 110.99 (11) |
O2vii—Rb1—O2iii | 119.064 (18) | O1xix—Rb2—O1xxi | 61.07 (8) |
O2viii—Rb1—O2iii | 60.936 (18) | O1i—Rb2—O1xxi | 85.09 (8) |
O2ix—Rb1—O2iii | 119.064 (18) | O1xx—Rb2—O1xxi | 49.99 (8) |
O2—Rb1—O2iii | 60.935 (18) | O2—Rb2—O1xxii | 150.80 (5) |
O1i—Rb1—O2iv | 77.91 (5) | O1xvi—Rb2—O1xxii | 110.99 (11) |
O1ii—Rb1—O2iv | 102.09 (5) | O1xvii—Rb2—O1xxii | 85.09 (8) |
O1iii—Rb1—O2iv | 131.05 (6) | O1xviii—Rb2—O1xxii | 110.99 (11) |
O1iv—Rb1—O2iv | 48.95 (6) | O1iii—Rb2—O1xxii | 61.07 (8) |
O1v—Rb1—O2iv | 77.91 (5) | O1xix—Rb2—O1xxii | 85.09 (8) |
O1vi—Rb1—O2iv | 102.09 (5) | O1i—Rb2—O1xxii | 61.07 (8) |
O2vii—Rb1—O2iv | 60.936 (18) | O1xx—Rb2—O1xxii | 49.99 (8) |
O2viii—Rb1—O2iv | 119.064 (18) | O1xxi—Rb2—O1xxii | 49.99 (8) |
O2ix—Rb1—O2iv | 60.936 (18) | O2—Rb2—V1vii | 84.45 (7) |
O2—Rb1—O2iv | 119.065 (18) | O1xvi—Rb2—V1vii | 148.32 (3) |
O2iii—Rb1—O2iv | 180.0 | O1xvii—Rb2—V1vii | 148.32 (3) |
O1x—Dy1—O1vi | 180.00 (12) | O1xviii—Rb2—V1vii | 92.23 (3) |
O1x—Dy1—O1xi | 88.46 (9) | O1iii—Rb2—V1vii | 92.23 (3) |
O1vi—Dy1—O1xi | 91.54 (9) | O1xix—Rb2—V1vii | 29.95 (3) |
O1x—Dy1—O1iv | 91.54 (9) | O1i—Rb2—V1vii | 29.95 (3) |
O1vi—Dy1—O1iv | 88.46 (9) | O1xx—Rb2—V1vii | 124.76 (11) |
O1xi—Dy1—O1iv | 180.00 (9) | O1xxi—Rb2—V1vii | 80.89 (5) |
O1x—Dy1—O1xii | 88.46 (9) | O1xxii—Rb2—V1vii | 80.89 (5) |
O1vi—Dy1—O1xii | 91.54 (9) | O2—Rb2—V1iii | 84.45 (7) |
O1xi—Dy1—O1xii | 88.46 (9) | O1xvi—Rb2—V1iii | 92.23 (3) |
O1iv—Dy1—O1xii | 91.54 (9) | O1xvii—Rb2—V1iii | 29.95 (3) |
O1x—Dy1—O1ii | 91.54 (9) | O1xviii—Rb2—V1iii | 148.32 (3) |
O1vi—Dy1—O1ii | 88.46 (9) | O1iii—Rb2—V1iii | 29.95 (3) |
O1xi—Dy1—O1ii | 91.54 (9) | O1xix—Rb2—V1iii | 148.32 (3) |
O1iv—Dy1—O1ii | 88.46 (9) | O1i—Rb2—V1iii | 92.23 (3) |
O1xii—Dy1—O1ii | 180.00 (10) | O1xx—Rb2—V1iii | 80.89 (5) |
O1x—Dy1—K1xiii | 52.42 (5) | O1xxi—Rb2—V1iii | 124.76 (11) |
O1vi—Dy1—K1xiii | 127.58 (5) | O1xxii—Rb2—V1iii | 80.89 (5) |
O1xi—Dy1—K1xiii | 52.42 (5) | V1vii—Rb2—V1iii | 119.07 (2) |
O1iv—Dy1—K1xiii | 127.58 (5) | O2—V1—O1 | 109.49 (8) |
O1xii—Dy1—K1xiii | 119.51 (12) | O2—V1—O1vi | 109.49 (8) |
O1ii—Dy1—K1xiii | 60.49 (12) | O1—V1—O1vi | 109.45 (8) |
O1x—Dy1—K1vii | 127.58 (5) | O2—V1—O1xxiii | 109.49 (8) |
O1vi—Dy1—K1vii | 52.42 (5) | O1—V1—O1xxiii | 109.45 (8) |
O1xi—Dy1—K1vii | 127.58 (5) | O1vi—V1—O1xxiii | 109.45 (8) |
O1iv—Dy1—K1vii | 52.42 (5) | O2—V1—K1xiv | 180.0 |
O1xii—Dy1—K1vii | 60.49 (12) | O1—V1—K1xiv | 70.51 (8) |
O1ii—Dy1—K1vii | 119.51 (12) | O1vi—V1—K1xiv | 70.51 (8) |
K1xiii—Dy1—K1vii | 180.0 | O1xxiii—V1—K1xiv | 70.51 (8) |
O1x—Dy1—K1xiv | 119.51 (12) | O2—V1—K1vii | 96.11 (12) |
O1vi—Dy1—K1xiv | 60.49 (12) | O1—V1—K1vii | 154.40 (15) |
O1xi—Dy1—K1xiv | 52.42 (5) | O1vi—V1—K1vii | 59.72 (4) |
O1iv—Dy1—K1xiv | 127.58 (5) | O1xxiii—V1—K1vii | 59.72 (4) |
O1xii—Dy1—K1xiv | 52.42 (5) | K1xiv—V1—K1vii | 83.89 (12) |
O1ii—Dy1—K1xiv | 127.58 (5) | O2—V1—K1iii | 96.11 (12) |
K1xiii—Dy1—K1xiv | 104.42 (12) | O1—V1—K1iii | 59.72 (4) |
K1vii—Dy1—K1xiv | 75.58 (12) | O1vi—V1—K1iii | 59.72 (4) |
O1x—Dy1—K1ix | 60.49 (12) | O1xxiii—V1—K1iii | 154.40 (15) |
O1vi—Dy1—K1ix | 119.51 (12) | K1xiv—V1—K1iii | 83.89 (12) |
O1xi—Dy1—K1ix | 127.58 (5) | K1vii—V1—K1iii | 118.88 (4) |
O1iv—Dy1—K1ix | 52.42 (5) | O2—V1—K1xviii | 96.11 (12) |
O1xii—Dy1—K1ix | 127.58 (5) | O1—V1—K1xviii | 59.72 (4) |
O1ii—Dy1—K1ix | 52.42 (5) | O1vi—V1—K1xviii | 154.40 (15) |
K1xiii—Dy1—K1ix | 75.58 (12) | O1xxiii—V1—K1xviii | 59.72 (4) |
K1vii—Dy1—K1ix | 104.42 (12) | K1xiv—V1—K1xviii | 83.89 (12) |
K1xiv—Dy1—K1ix | 180.0 | K1vii—V1—K1xviii | 118.88 (5) |
O1x—Dy1—K1xv | 52.42 (5) | K1iii—V1—K1xviii | 118.88 (4) |
O1vi—Dy1—K1xv | 127.58 (5) | O2—V1—Rb1xxiv | 60.209 (6) |
O1xi—Dy1—K1xv | 119.51 (12) | O1—V1—Rb1xxiv | 49.28 (8) |
O1iv—Dy1—K1xv | 60.49 (12) | O1vi—V1—Rb1xxiv | 125.09 (3) |
O1xii—Dy1—K1xv | 52.42 (5) | O1xxiii—V1—Rb1xxiv | 125.09 (3) |
O1ii—Dy1—K1xv | 127.58 (5) | K1xiv—V1—Rb1xxiv | 119.792 (6) |
K1xiii—Dy1—K1xv | 104.42 (12) | K1vii—V1—Rb1xxiv | 156.32 (12) |
K1vii—Dy1—K1xv | 75.58 (12) | K1iii—V1—Rb1xxiv | 67.75 (7) |
K1xiv—Dy1—K1xv | 104.42 (12) | K1xviii—V1—Rb1xxiv | 67.75 (7) |
K1ix—Dy1—K1xv | 75.58 (12) | O2—V1—Rb1xxv | 60.209 (6) |
O1x—Dy1—K1iii | 127.58 (5) | O1—V1—Rb1xxv | 125.09 (3) |
O1vi—Dy1—K1iii | 52.42 (5) | O1vi—V1—Rb1xxv | 125.09 (3) |
O1xi—Dy1—K1iii | 60.49 (12) | O1xxiii—V1—Rb1xxv | 49.28 (8) |
O1iv—Dy1—K1iii | 119.51 (12) | K1xiv—V1—Rb1xxv | 119.791 (6) |
O1xii—Dy1—K1iii | 127.58 (5) | K1vii—V1—Rb1xxv | 67.76 (7) |
O1ii—Dy1—K1iii | 52.42 (5) | K1iii—V1—Rb1xxv | 156.32 (12) |
K1xiii—Dy1—K1iii | 75.58 (12) | K1xviii—V1—Rb1xxv | 67.76 (7) |
K1vii—Dy1—K1iii | 104.42 (12) | Rb1xxiv—V1—Rb1xxv | 97.454 (8) |
K1xiv—Dy1—K1iii | 75.58 (12) | O2—V1—Rb1 | 60.209 (6) |
K1ix—Dy1—K1iii | 104.42 (12) | O1—V1—Rb1 | 125.09 (3) |
K1xv—Dy1—K1iii | 180.0 | O1vi—V1—Rb1 | 49.28 (8) |
O2—K1—O1xvi | 93.98 (15) | O1xxiii—V1—Rb1 | 125.09 (3) |
O2—K1—O1xvii | 93.98 (15) | K1xiv—V1—Rb1 | 119.791 (6) |
O1xvi—K1—O1xvii | 63.42 (7) | K1vii—V1—Rb1 | 67.76 (7) |
O2—K1—O1xviii | 93.98 (15) | K1iii—V1—Rb1 | 67.76 (7) |
O1xvi—K1—O1xviii | 56.26 (7) | K1xviii—V1—Rb1 | 156.32 (12) |
O1xvii—K1—O1xviii | 119.52 (4) | Rb1xxiv—V1—Rb1 | 97.454 (8) |
O2—K1—O1iii | 93.98 (15) | Rb1xxv—V1—Rb1 | 97.454 (8) |
O1xvi—K1—O1iii | 119.52 (4) | O2—V1—Rb2 | 0.000 (1) |
O1xvii—K1—O1iii | 56.26 (7) | O1—V1—Rb2 | 109.49 (8) |
O1xviii—K1—O1iii | 171.3 (3) | O1vi—V1—Rb2 | 109.49 (8) |
O2—K1—O1xix | 93.98 (15) | O1xxiii—V1—Rb2 | 109.49 (8) |
O1xvi—K1—O1xix | 119.52 (4) | K1xiv—V1—Rb2 | 180.0 |
O1xvii—K1—O1xix | 171.3 (3) | K1vii—V1—Rb2 | 96.11 (12) |
O1xviii—K1—O1xix | 63.42 (7) | K1iii—V1—Rb2 | 96.11 (12) |
O1iii—K1—O1xix | 119.52 (4) | K1xviii—V1—Rb2 | 96.11 (12) |
O2—K1—O1i | 93.98 (15) | Rb1xxiv—V1—Rb2 | 60.209 (6) |
O1xvi—K1—O1i | 171.3 (3) | Rb1xxv—V1—Rb2 | 60.209 (6) |
O1xvii—K1—O1i | 119.52 (4) | Rb1—V1—Rb2 | 60.209 (6) |
O1xviii—K1—O1i | 119.52 (4) | V1—O1—Dy1xxiv | 163.14 (14) |
O1iii—K1—O1i | 63.42 (7) | V1—O1—K1xviii | 90.36 (6) |
O1xix—K1—O1i | 56.26 (7) | Dy1xxiv—O1—K1xviii | 90.91 (9) |
O2—K1—O1xx | 150.51 (7) | V1—O1—K1iii | 90.36 (6) |
O1xvi—K1—O1xx | 61.46 (10) | Dy1xxiv—O1—K1iii | 90.91 (9) |
O1xvii—K1—O1xx | 61.46 (10) | K1xviii—O1—K1iii | 171.3 (3) |
O1xviii—K1—O1xx | 85.65 (13) | V1—O1—Rb1xxiv | 105.98 (10) |
O1iii—K1—O1xx | 85.65 (13) | Dy1xxiv—O1—Rb1xxiv | 90.88 (6) |
O1xix—K1—O1xx | 111.86 (19) | K1xviii—O1—Rb1xxiv | 85.72 (12) |
O1i—K1—O1xx | 111.86 (19) | K1iii—O1—Rb1xxiv | 85.72 (12) |
O2—K1—O1xxi | 150.51 (7) | V1—O1—K1xiv | 80.00 (10) |
O1xvi—K1—O1xxi | 85.65 (13) | Dy1xxiv—O1—K1xiv | 83.14 (9) |
O1xvii—K1—O1xxi | 111.86 (19) | K1xviii—O1—K1xiv | 94.35 (13) |
O1xviii—K1—O1xxi | 61.46 (10) | K1iii—O1—K1xiv | 94.35 (13) |
O1iii—K1—O1xxi | 111.86 (19) | Rb1xxiv—O1—K1xiv | 174.02 (9) |
O1xix—K1—O1xxi | 61.46 (10) | V1—O2—Rb2 | 180.0 |
O1i—K1—O1xxi | 85.65 (13) | V1—O2—K1 | 180.0 |
O1xx—K1—O1xxi | 50.47 (12) | Rb2—O2—K1 | 0.000 (1) |
O2—K1—O1xxii | 150.51 (7) | V1—O2—Rb1xxiv | 95.58 (5) |
O1xvi—K1—O1xxii | 111.86 (19) | Rb2—O2—Rb1xxiv | 84.42 (5) |
O1xvii—K1—O1xxii | 85.65 (13) | K1—O2—Rb1xxiv | 84.42 (5) |
O1xviii—K1—O1xxii | 111.86 (19) | V1—O2—Rb1xxv | 95.58 (5) |
O1iii—K1—O1xxii | 61.46 (10) | Rb2—O2—Rb1xxv | 84.42 (5) |
O1xix—K1—O1xxii | 85.65 (13) | K1—O2—Rb1xxv | 84.42 (5) |
O1i—K1—O1xxii | 61.46 (10) | Rb1xxiv—O2—Rb1xxv | 119.065 (18) |
O1xx—K1—O1xxii | 50.47 (12) | V1—O2—Rb1 | 95.58 (5) |
O1xxi—K1—O1xxii | 50.47 (12) | Rb2—O2—Rb1 | 84.42 (5) |
O2—K1—V1xx | 180.0 | K1—O2—Rb1 | 84.42 (5) |
O1xvi—K1—V1xx | 86.02 (15) | Rb1xxiv—O2—Rb1 | 119.065 (18) |
O1xvii—K1—V1xx | 86.02 (15) | Rb1xxv—O2—Rb1 | 119.065 (18) |
Symmetry codes: (i) x−y+1, x, −z+1; (ii) −x+y−1, −x, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) y−1, −x+y−1, −z+1; (vi) −y+1, x−y+1, z; (vii) −x+1, −y+1, −z+1; (viii) x−1, y−1, z; (ix) −x, −y, −z+1; (x) y−1, −x+y−1, −z; (xi) −x, −y+1, −z; (xii) x−y+1, x, −z; (xiii) x−1, y−1, z−1; (xiv) x, y, z−1; (xv) x, y−1, z−1; (xvi) x−y+1, x+1, −z+1; (xvii) y−1, −x+y, −z+1; (xviii) −x+1, −y+2, −z+1; (xix) y, −x+y, −z+1; (xx) x, y, z+1; (xxi) −x+y, −x+1, z+1; (xxii) −y+1, x−y+1, z+1; (xxiii) −x+y, −x+1, z; (xxiv) x, y+1, z; (xxv) x+1, y+1, z. |
Cs1.52K1.48Gd(VO4)2 | Dx = 4.270 Mg m−3 |
Mr = 646.74 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 678 reflections |
a = 6.0321 (1) Å | θ = 3.9–41.1° |
c = 7.9821 (2) Å | µ = 14.37 mm−1 |
V = 251.53 (1) Å3 | T = 296 K |
Z = 1 | Block, colourless |
F(000) = 286 | 0.34 × 0.26 × 0.22 mm |
Bruker X8 APEX diffractometer | 678 independent reflections |
Radiation source: fine-focus sealed tube | 666 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
φ and ω scans | θmax = 41.1°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.639, Tmax = 0.747 | k = −9→11 |
14472 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.014P)2 + 0.0871P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.010 | (Δ/σ)max < 0.001 |
wR(F2) = 0.028 | Δρmax = 0.63 e Å−3 |
S = 1.09 | Δρmin = −0.94 e Å−3 |
678 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
25 parameters | Extinction coefficient: 0.0022 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cs1 | 0.000000 | 0.000000 | 0.500000 | 0.02453 (5) | |
Gd1 | 0.000000 | 0.000000 | 0.000000 | 0.00899 (4) | |
K1 | 0.333333 | 0.666667 | 0.7877 (3) | 0.0113 (5) | 0.7404 (18) |
Cs2 | 0.333333 | 0.666667 | 0.7867 (4) | 0.0230 (8) | 0.2597 (18) |
V1 | 0.333333 | 0.666667 | 0.23977 (4) | 0.00899 (5) | |
O1 | 0.17704 (10) | 0.82296 (10) | 0.16910 (16) | 0.0265 (2) | |
O2 | 0.333333 | 0.666667 | 0.4470 (3) | 0.0317 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.02979 (7) | 0.02979 (7) | 0.01402 (8) | 0.01489 (3) | 0.000 | 0.000 |
Gd1 | 0.00627 (4) | 0.00627 (4) | 0.01444 (6) | 0.00313 (2) | 0.000 | 0.000 |
K1 | 0.0091 (6) | 0.0091 (6) | 0.0156 (9) | 0.0046 (3) | 0.000 | 0.000 |
Cs2 | 0.0200 (9) | 0.0200 (9) | 0.0288 (14) | 0.0100 (5) | 0.000 | 0.000 |
V1 | 0.00756 (7) | 0.00756 (7) | 0.01186 (11) | 0.00378 (3) | 0.000 | 0.000 |
O1 | 0.0244 (4) | 0.0244 (4) | 0.0379 (6) | 0.0177 (4) | −0.00613 (19) | 0.00613 (19) |
O2 | 0.0404 (7) | 0.0404 (7) | 0.0144 (7) | 0.0202 (4) | 0.000 | 0.000 |
Cs1—O1i | 3.2245 (13) | K1—O1xvii | 3.0377 (4) |
Cs1—O1ii | 3.2245 (13) | K1—O1xviii | 3.0377 (4) |
Cs1—O1iii | 3.2245 (13) | K1—O1iii | 3.0377 (4) |
Cs1—O1iv | 3.2245 (13) | K1—O1xix | 3.0377 (4) |
Cs1—O1v | 3.2245 (13) | K1—O1i | 3.0377 (4) |
Cs1—O1vi | 3.2245 (13) | K1—V1vii | 3.4895 (2) |
Cs1—O2vii | 3.5082 (3) | K1—V1iii | 3.4895 (2) |
Cs1—O2viii | 3.5082 (3) | K1—V1xviii | 3.4895 (2) |
Cs1—O2ix | 3.5082 (3) | K1—V1xx | 3.609 (3) |
Cs1—O2 | 3.5083 (3) | Cs2—O2 | 2.712 (4) |
Cs1—O2iii | 3.5083 (3) | Cs2—O1xvi | 3.0386 (4) |
Cs1—O2iv | 3.5083 (2) | Cs2—O1xvii | 3.0386 (4) |
Gd1—O1x | 2.2898 (10) | Cs2—O1xviii | 3.0386 (4) |
Gd1—O1vi | 2.2898 (10) | Cs2—O1iii | 3.0386 (4) |
Gd1—O1xi | 2.2898 (10) | Cs2—O1xix | 3.0386 (4) |
Gd1—O1iv | 2.2898 (10) | Cs2—O1i | 3.0386 (4) |
Gd1—O1xii | 2.2898 (10) | Cs2—O1xx | 3.462 (3) |
Gd1—O1ii | 2.2898 (10) | Cs2—O1xxi | 3.462 (3) |
Gd1—K1xiii | 3.8732 (12) | Cs2—O1xxii | 3.462 (3) |
Gd1—K1vii | 3.8732 (12) | Cs2—V1vii | 3.4890 (2) |
Gd1—K1xiv | 3.8731 (12) | Cs2—V1iii | 3.4890 (2) |
Gd1—K1ix | 3.8731 (12) | V1—O2 | 1.654 (2) |
Gd1—K1xv | 3.8732 (12) | V1—O1 | 1.7276 (10) |
Gd1—K1iii | 3.8732 (12) | V1—O1vi | 1.7276 (10) |
K1—O2 | 2.719 (3) | V1—O1xxiii | 1.7276 (10) |
K1—O1xvi | 3.0377 (4) | ||
O1i—Cs1—O1ii | 180.0 | O1xvi—K1—V1xx | 83.48 (6) |
O1i—Cs1—O1iii | 59.57 (3) | O1xvii—K1—V1xx | 83.48 (6) |
O1ii—Cs1—O1iii | 120.43 (3) | O1xviii—K1—V1xx | 83.48 (6) |
O1i—Cs1—O1iv | 120.43 (3) | O1iii—K1—V1xx | 83.48 (6) |
O1ii—Cs1—O1iv | 59.57 (3) | O1xix—K1—V1xx | 83.48 (6) |
O1iii—Cs1—O1iv | 180.0 | O1i—K1—V1xx | 83.48 (6) |
O1i—Cs1—O1v | 59.57 (3) | V1vii—K1—V1xx | 93.60 (4) |
O1ii—Cs1—O1v | 120.43 (3) | V1iii—K1—V1xx | 93.60 (4) |
O1iii—Cs1—O1v | 59.57 (3) | V1xviii—K1—V1xx | 93.60 (4) |
O1iv—Cs1—O1v | 120.43 (3) | O2—K1—Gd1xxiv | 115.95 (4) |
O1i—Cs1—O1vi | 120.43 (3) | O1xvi—K1—Gd1xxiv | 36.21 (2) |
O1ii—Cs1—O1vi | 59.57 (3) | O1xvii—K1—Gd1xxiv | 36.21 (2) |
O1iii—Cs1—O1vi | 120.43 (3) | O1xviii—K1—Gd1xxiv | 85.31 (3) |
O1iv—Cs1—O1vi | 59.57 (3) | O1iii—K1—Gd1xxiv | 85.31 (3) |
O1v—Cs1—O1vi | 180.0 | O1xix—K1—Gd1xxiv | 137.69 (7) |
O1i—Cs1—O2vii | 48.07 (4) | O1i—K1—Gd1xxiv | 137.69 (7) |
O1ii—Cs1—O2vii | 131.93 (4) | V1vii—K1—Gd1xxiv | 157.65 (8) |
O1iii—Cs1—O2vii | 100.71 (3) | V1iii—K1—Gd1xxiv | 65.087 (12) |
O1iv—Cs1—O2vii | 79.29 (3) | V1xviii—K1—Gd1xxiv | 65.087 (12) |
O1v—Cs1—O2vii | 100.71 (3) | V1xx—K1—Gd1xxiv | 64.05 (4) |
O1vi—Cs1—O2vii | 79.29 (3) | O2—Cs2—O1xvi | 96.67 (7) |
O1i—Cs1—O2viii | 131.93 (4) | O2—Cs2—O1xvii | 96.67 (7) |
O1ii—Cs1—O2viii | 48.07 (4) | O1xvi—Cs2—O1xvii | 63.63 (4) |
O1iii—Cs1—O2viii | 79.29 (3) | O2—Cs2—O1xviii | 96.67 (7) |
O1iv—Cs1—O2viii | 100.71 (3) | O1xvi—Cs2—O1xviii | 55.47 (4) |
O1v—Cs1—O2viii | 79.29 (3) | O1xvii—Cs2—O1xviii | 118.67 (3) |
O1vi—Cs1—O2viii | 100.71 (3) | O2—Cs2—O1iii | 96.67 (7) |
O2vii—Cs1—O2viii | 180.0 | O1xvi—Cs2—O1iii | 118.67 (3) |
O1i—Cs1—O2ix | 100.71 (3) | O1xvii—Cs2—O1iii | 55.47 (4) |
O1ii—Cs1—O2ix | 79.29 (3) | O1xviii—Cs2—O1iii | 166.04 (13) |
O1iii—Cs1—O2ix | 100.71 (3) | O2—Cs2—O1xix | 96.67 (7) |
O1iv—Cs1—O2ix | 79.29 (3) | O1xvi—Cs2—O1xix | 118.67 (3) |
O1v—Cs1—O2ix | 48.07 (4) | O1xvii—Cs2—O1xix | 166.04 (13) |
O1vi—Cs1—O2ix | 131.93 (4) | O1xviii—Cs2—O1xix | 63.63 (4) |
O2vii—Cs1—O2ix | 118.567 (13) | O1iii—Cs2—O1xix | 118.67 (3) |
O2viii—Cs1—O2ix | 61.433 (14) | O2—Cs2—O1i | 96.67 (7) |
O1i—Cs1—O2 | 79.29 (3) | O1xvi—Cs2—O1i | 166.04 (13) |
O1ii—Cs1—O2 | 100.71 (3) | O1xvii—Cs2—O1i | 118.67 (3) |
O1iii—Cs1—O2 | 79.29 (3) | O1xviii—Cs2—O1i | 118.67 (3) |
O1iv—Cs1—O2 | 100.71 (3) | O1iii—Cs2—O1i | 63.63 (4) |
O1v—Cs1—O2 | 131.93 (4) | O1xix—Cs2—O1i | 55.47 (4) |
O1vi—Cs1—O2 | 48.07 (4) | O2—Cs2—O1xx | 151.86 (3) |
O2vii—Cs1—O2 | 61.434 (13) | O1xvi—Cs2—O1xx | 60.03 (5) |
O2viii—Cs1—O2 | 118.566 (13) | O1xvii—Cs2—O1xx | 60.03 (5) |
O2ix—Cs1—O2 | 180.0 | O1xviii—Cs2—O1xx | 83.15 (6) |
O1i—Cs1—O2iii | 100.71 (3) | O1iii—Cs2—O1xx | 83.15 (6) |
O1ii—Cs1—O2iii | 79.29 (3) | O1xix—Cs2—O1xx | 108.15 (8) |
O1iii—Cs1—O2iii | 48.07 (4) | O1i—Cs2—O1xx | 108.15 (8) |
O1iv—Cs1—O2iii | 131.93 (4) | O2—Cs2—O1xxi | 151.86 (3) |
O1v—Cs1—O2iii | 100.71 (3) | O1xvi—Cs2—O1xxi | 83.15 (6) |
O1vi—Cs1—O2iii | 79.29 (3) | O1xvii—Cs2—O1xxi | 108.15 (8) |
O2vii—Cs1—O2iii | 118.565 (14) | O1xviii—Cs2—O1xxi | 60.03 (5) |
O2viii—Cs1—O2iii | 61.435 (13) | O1iii—Cs2—O1xxi | 108.15 (8) |
O2ix—Cs1—O2iii | 118.565 (14) | O1xix—Cs2—O1xxi | 60.03 (5) |
O2—Cs1—O2iii | 61.434 (13) | O1i—Cs2—O1xxi | 83.15 (6) |
O1i—Cs1—O2iv | 79.29 (3) | O1xx—Cs2—O1xxi | 48.22 (5) |
O1ii—Cs1—O2iv | 100.71 (3) | O2—Cs2—O1xxii | 151.86 (3) |
O1iii—Cs1—O2iv | 131.93 (4) | O1xvi—Cs2—O1xxii | 108.15 (8) |
O1iv—Cs1—O2iv | 48.07 (4) | O1xvii—Cs2—O1xxii | 83.15 (6) |
O1v—Cs1—O2iv | 79.29 (3) | O1xviii—Cs2—O1xxii | 108.15 (8) |
O1vi—Cs1—O2iv | 100.71 (3) | O1iii—Cs2—O1xxii | 60.03 (5) |
O2vii—Cs1—O2iv | 61.435 (13) | O1xix—Cs2—O1xxii | 83.15 (6) |
O2viii—Cs1—O2iv | 118.565 (14) | O1i—Cs2—O1xxii | 60.03 (5) |
O2ix—Cs1—O2iv | 61.435 (13) | O1xx—Cs2—O1xxii | 48.22 (5) |
O2—Cs1—O2iv | 118.566 (14) | O1xxi—Cs2—O1xxii | 48.22 (5) |
O2iii—Cs1—O2iv | 180.0 | O2—Cs2—V1vii | 86.53 (5) |
O1x—Gd1—O1vi | 180.00 (5) | O1xvi—Cs2—V1vii | 147.92 (2) |
O1x—Gd1—O1xi | 88.78 (5) | O1xvii—Cs2—V1vii | 147.92 (2) |
O1vi—Gd1—O1xi | 91.22 (5) | O1xviii—Cs2—V1vii | 92.44 (2) |
O1x—Gd1—O1iv | 91.22 (5) | O1iii—Cs2—V1vii | 92.44 (2) |
O1vi—Gd1—O1iv | 88.78 (5) | O1xix—Cs2—V1vii | 29.680 (19) |
O1xi—Gd1—O1iv | 180.00 (6) | O1i—Cs2—V1vii | 29.680 (19) |
O1x—Gd1—O1xii | 88.78 (5) | O1xx—Cs2—V1vii | 121.61 (8) |
O1vi—Gd1—O1xii | 91.22 (5) | O1xxi—Cs2—V1vii | 79.51 (4) |
O1xi—Gd1—O1xii | 88.78 (5) | O1xxii—Cs2—V1vii | 79.51 (4) |
O1iv—Gd1—O1xii | 91.22 (5) | O2—Cs2—V1iii | 86.53 (5) |
O1x—Gd1—O1ii | 91.22 (5) | O1xvi—Cs2—V1iii | 92.44 (2) |
O1vi—Gd1—O1ii | 88.78 (5) | O1xvii—Cs2—V1iii | 29.680 (19) |
O1xi—Gd1—O1ii | 91.22 (5) | O1xviii—Cs2—V1iii | 147.91 (2) |
O1iv—Gd1—O1ii | 88.78 (5) | O1iii—Cs2—V1iii | 29.681 (19) |
O1xii—Gd1—O1ii | 180.00 (6) | O1xix—Cs2—V1iii | 147.92 (2) |
O1x—Gd1—K1xiii | 51.601 (16) | O1i—Cs2—V1iii | 92.44 (2) |
O1vi—Gd1—K1xiii | 128.399 (17) | O1xx—Cs2—V1iii | 79.51 (4) |
O1xi—Gd1—K1xiii | 51.602 (16) | O1xxi—Cs2—V1iii | 121.61 (8) |
O1iv—Gd1—K1xiii | 128.398 (16) | O1xxii—Cs2—V1iii | 79.51 (4) |
O1xii—Gd1—K1xiii | 117.93 (5) | V1vii—Cs2—V1iii | 119.638 (11) |
O1ii—Gd1—K1xiii | 62.07 (5) | O2—V1—O1 | 109.06 (5) |
O1x—Gd1—K1vii | 128.399 (17) | O2—V1—O1vi | 109.06 (5) |
O1vi—Gd1—K1vii | 51.601 (16) | O1—V1—O1vi | 109.88 (5) |
O1xi—Gd1—K1vii | 128.398 (16) | O2—V1—O1xxiii | 109.06 (5) |
O1iv—Gd1—K1vii | 51.602 (16) | O1—V1—O1xxiii | 109.88 (5) |
O1xii—Gd1—K1vii | 62.07 (5) | O1vi—V1—O1xxiii | 109.88 (5) |
O1ii—Gd1—K1vii | 117.93 (5) | O2—V1—K1vii | 93.60 (4) |
K1xiii—Gd1—K1vii | 180.0 | O1—V1—K1vii | 157.34 (6) |
O1x—Gd1—K1xiv | 117.93 (5) | O1vi—V1—K1vii | 60.518 (16) |
O1vi—Gd1—K1xiv | 62.07 (5) | O1xxiii—V1—K1vii | 60.518 (16) |
O1xi—Gd1—K1xiv | 51.602 (16) | O2—V1—K1iii | 93.60 (4) |
O1iv—Gd1—K1xiv | 128.398 (16) | O1—V1—K1iii | 60.517 (16) |
O1xii—Gd1—K1xiv | 51.602 (16) | O1vi—V1—K1iii | 60.518 (16) |
O1ii—Gd1—K1xiv | 128.398 (16) | O1xxiii—V1—K1iii | 157.34 (6) |
K1xiii—Gd1—K1xiv | 102.28 (4) | K1vii—V1—K1iii | 119.610 (10) |
K1vii—Gd1—K1xiv | 77.72 (4) | O2—V1—K1xviii | 93.60 (4) |
O1x—Gd1—K1ix | 62.07 (5) | O1—V1—K1xviii | 60.517 (16) |
O1vi—Gd1—K1ix | 117.93 (5) | O1vi—V1—K1xviii | 157.34 (6) |
O1xi—Gd1—K1ix | 128.398 (16) | O1xxiii—V1—K1xviii | 60.518 (16) |
O1iv—Gd1—K1ix | 51.602 (16) | K1vii—V1—K1xviii | 119.610 (10) |
O1xii—Gd1—K1ix | 128.398 (16) | K1iii—V1—K1xviii | 119.609 (10) |
O1ii—Gd1—K1ix | 51.602 (16) | O2—V1—K1xiv | 180.0 |
K1xiii—Gd1—K1ix | 77.72 (4) | O1—V1—K1xiv | 70.94 (5) |
K1vii—Gd1—K1ix | 102.28 (4) | O1vi—V1—K1xiv | 70.94 (5) |
K1xiv—Gd1—K1ix | 180.0 | O1xxiii—V1—K1xiv | 70.94 (5) |
O1x—Gd1—K1xv | 51.602 (16) | K1vii—V1—K1xiv | 86.40 (4) |
O1vi—Gd1—K1xv | 128.398 (16) | K1iii—V1—K1xiv | 86.40 (4) |
O1xi—Gd1—K1xv | 117.93 (5) | K1xviii—V1—K1xiv | 86.40 (4) |
O1iv—Gd1—K1xv | 62.07 (5) | O2—V1—Cs1xxv | 59.187 (4) |
O1xii—Gd1—K1xv | 51.602 (16) | O1—V1—Cs1xxv | 49.87 (5) |
O1ii—Gd1—K1xv | 128.398 (16) | O1vi—V1—Cs1xxv | 124.970 (19) |
K1xiii—Gd1—K1xv | 102.28 (4) | O1xxiii—V1—Cs1xxv | 124.970 (19) |
K1vii—Gd1—K1xv | 77.72 (4) | K1vii—V1—Cs1xxv | 152.79 (5) |
K1xiv—Gd1—K1xv | 102.28 (4) | K1iii—V1—Cs1xxv | 66.64 (3) |
K1ix—Gd1—K1xv | 77.72 (4) | K1xviii—V1—Cs1xxv | 66.64 (3) |
O1x—Gd1—K1iii | 128.398 (16) | K1xiv—V1—Cs1xxv | 120.814 (4) |
O1vi—Gd1—K1iii | 51.602 (16) | O2—V1—Cs1xxvi | 59.187 (4) |
O1xi—Gd1—K1iii | 62.07 (5) | O1—V1—Cs1xxvi | 124.969 (19) |
O1iv—Gd1—K1iii | 117.93 (5) | O1vi—V1—Cs1xxvi | 124.970 (19) |
O1xii—Gd1—K1iii | 128.398 (16) | O1xxiii—V1—Cs1xxvi | 49.87 (5) |
O1ii—Gd1—K1iii | 51.602 (16) | K1vii—V1—Cs1xxvi | 66.65 (3) |
K1xiii—Gd1—K1iii | 77.72 (4) | K1iii—V1—Cs1xxvi | 152.78 (5) |
K1vii—Gd1—K1iii | 102.28 (4) | K1xviii—V1—Cs1xxvi | 66.65 (3) |
K1xiv—Gd1—K1iii | 77.72 (4) | K1xiv—V1—Cs1xxvi | 120.813 (4) |
K1ix—Gd1—K1iii | 102.28 (4) | Cs1xxv—V1—Cs1xxvi | 96.109 (5) |
K1xv—Gd1—K1iii | 180.0 | O2—V1—Cs1 | 59.187 (4) |
O2—K1—O1xvi | 96.52 (6) | O1—V1—Cs1 | 124.969 (19) |
O2—K1—O1xvii | 96.52 (6) | O1vi—V1—Cs1 | 49.87 (5) |
O1xvi—K1—O1xvii | 63.65 (4) | O1xxiii—V1—Cs1 | 124.970 (19) |
O2—K1—O1xviii | 96.52 (6) | K1vii—V1—Cs1 | 66.65 (3) |
O1xvi—K1—O1xviii | 55.49 (4) | K1iii—V1—Cs1 | 66.65 (3) |
O1xvii—K1—O1xviii | 118.73 (2) | K1xviii—V1—Cs1 | 152.78 (5) |
O2—K1—O1iii | 96.52 (6) | K1xiv—V1—Cs1 | 120.813 (4) |
O1xvi—K1—O1iii | 118.73 (2) | Cs1xxv—V1—Cs1 | 96.109 (5) |
O1xvii—K1—O1iii | 55.49 (4) | Cs1xxvi—V1—Cs1 | 96.109 (5) |
O1xviii—K1—O1iii | 166.32 (11) | O2—V1—Cs2 | 0.0 |
O2—K1—O1xix | 96.52 (6) | O1—V1—Cs2 | 109.06 (5) |
O1xvi—K1—O1xix | 118.73 (2) | O1vi—V1—Cs2 | 109.06 (5) |
O1xvii—K1—O1xix | 166.32 (11) | O1xxiii—V1—Cs2 | 109.06 (5) |
O1xviii—K1—O1xix | 63.65 (4) | K1vii—V1—Cs2 | 93.60 (4) |
O1iii—K1—O1xix | 118.73 (2) | K1iii—V1—Cs2 | 93.60 (4) |
O2—K1—O1i | 96.52 (6) | K1xviii—V1—Cs2 | 93.60 (4) |
O1xvi—K1—O1i | 166.32 (11) | K1xiv—V1—Cs2 | 180.0 |
O1xvii—K1—O1i | 118.73 (2) | Cs1xxv—V1—Cs2 | 59.187 (4) |
O1xviii—K1—O1i | 118.73 (2) | Cs1xxvi—V1—Cs2 | 59.187 (4) |
O1iii—K1—O1i | 63.65 (4) | Cs1—V1—Cs2 | 59.187 (4) |
O1xix—K1—O1i | 55.49 (4) | V1—O1—Gd1xxv | 162.94 (8) |
O2—K1—V1vii | 86.40 (4) | V1—O1—K1xviii | 89.81 (3) |
O1xvi—K1—V1vii | 147.94 (2) | Gd1xxv—O1—K1xviii | 92.19 (4) |
O1xvii—K1—V1vii | 147.94 (2) | V1—O1—K1iii | 89.81 (3) |
O1xviii—K1—V1vii | 92.45 (2) | Gd1xxv—O1—K1iii | 92.19 (4) |
O1iii—K1—V1vii | 92.45 (2) | K1xviii—O1—K1iii | 166.32 (11) |
O1xix—K1—V1vii | 29.676 (19) | V1—O1—Cs1xxv | 105.95 (5) |
O1i—K1—V1vii | 29.676 (19) | Gd1xxv—O1—Cs1xxv | 91.12 (4) |
O2—K1—V1iii | 86.40 (4) | K1xviii—O1—Cs1xxv | 83.48 (5) |
O1xvi—K1—V1iii | 92.45 (2) | K1iii—O1—Cs1xxv | 83.48 (5) |
O1xvii—K1—V1iii | 29.675 (19) | V1—O2—Cs2 | 180.0 |
O1xviii—K1—V1iii | 147.94 (2) | V1—O2—K1 | 180.0 |
O1iii—K1—V1iii | 29.676 (19) | Cs2—O2—K1 | 0.0 |
O1xix—K1—V1iii | 147.94 (2) | V1—O2—Cs1xxv | 96.93 (3) |
O1i—K1—V1iii | 92.45 (2) | Cs2—O2—Cs1xxv | 83.07 (3) |
V1vii—K1—V1iii | 119.610 (10) | K1—O2—Cs1xxv | 83.07 (3) |
O2—K1—V1xviii | 86.40 (4) | V1—O2—Cs1xxvi | 96.93 (3) |
O1xvi—K1—V1xviii | 29.675 (19) | Cs2—O2—Cs1xxvi | 83.07 (3) |
O1xvii—K1—V1xviii | 92.45 (2) | K1—O2—Cs1xxvi | 83.07 (3) |
O1xviii—K1—V1xviii | 29.676 (19) | Cs1xxv—O2—Cs1xxvi | 118.566 (13) |
O1iii—K1—V1xviii | 147.94 (2) | V1—O2—Cs1 | 96.93 (3) |
O1xix—K1—V1xviii | 92.45 (2) | Cs2—O2—Cs1 | 83.07 (3) |
O1i—K1—V1xviii | 147.94 (2) | K1—O2—Cs1 | 83.07 (3) |
V1vii—K1—V1xviii | 119.610 (10) | Cs1xxv—O2—Cs1 | 118.566 (13) |
V1iii—K1—V1xviii | 119.609 (10) | Cs1xxvi—O2—Cs1 | 118.566 (13) |
O2—K1—V1xx | 180.0 |
Symmetry codes: (i) x−y+1, x, −z+1; (ii) −x+y−1, −x, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) y−1, −x+y−1, −z+1; (vi) −y+1, x−y+1, z; (vii) −x+1, −y+1, −z+1; (viii) x−1, y−1, z; (ix) −x, −y, −z+1; (x) y−1, −x+y−1, −z; (xi) −x, −y+1, −z; (xii) x−y+1, x, −z; (xiii) x−1, y−1, z−1; (xiv) x, y, z−1; (xv) x, y−1, z−1; (xvi) x−y+1, x+1, −z+1; (xvii) y−1, −x+y, −z+1; (xviii) −x+1, −y+2, −z+1; (xix) y, −x+y, −z+1; (xx) x, y, z+1; (xxi) −x+y, −x+1, z+1; (xxii) −y+1, x−y+1, z+1; (xxiii) −x+y, −x+1, z; (xxiv) x, y+1, z+1; (xxv) x, y+1, z; (xxvi) x+1, y+1, z. |
Raman | Infrared | Attribution |
935 | 925 | Stretching |
875 | 830 | vibrations of |
740 | 755 | VO4 groups |
385 | 377 | Deformation |
370 | 365 | modes of |
340 | 311 | VO4 groups |
200 | 230 | External |
160 | 177 | modes |
125 | 130 | |
95 | 120 |
Acknowledgements
The authors thank the Faculty of Science at the Mohammed V University in Rabat, Morocco, for the X-ray measurements.
References
Benarafa, L., Rghioui, L., Nejjar, R., Saidi Idrissi, M., Knidiri, M., Lorriaux, A. & Wallart, F. (2005). Spectrochim. Acta Part A, 61, 419–430. CAS Google Scholar
Benarafa, L., Rghioui, L., Zaydoun, S., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (2009). Phys. Chem. News, 46, 111–119. CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duke John David, A., Muhammad, G. S. & Sivakumar, V. (2016). J. Lumin. 177, 104–110. CrossRef CAS Google Scholar
Farmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J., Mandrus, D., Jin, R. & Bryan, J. C. (2014). J. Alloys Compd. 588, 182–189. CrossRef ICSD CAS Google Scholar
Farmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J. & Richardson, J. (2016). J. Alloys Compd, 655, 253–265. CrossRef ICSD CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finke, B., Schwarz, L., Gürther, P., Kraas, M., Joppien, M. & Becker, J. (1994). J. Lumin. 60–61, 975–978. CrossRef CAS Google Scholar
Finke, B., Schwarz, L., Gürtler, P. & Kraas, M. (1992). Phys. Status Solidi A, 130, K125–K130. CrossRef CAS Google Scholar
Gagné, O. C. (2018). Acta Cryst. B74, 49–62. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Guzik, M., Legendziewicz, J., Szuszkiewicz, W. & Walasek, A. (2007). Opt. Mater. 29, 1225–1230. CrossRef CAS Google Scholar
Hong, H. Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 461–468. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moonre, P. B. (1973). American Mineralogist, Volume, 58, 32–42. Google Scholar
Okada, K. & Ossaka, J. (1980). Acta Cryst. B36, 919–921. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Parent, C., Fouassier, C. & Le Flem, G. (1980). J. Electrochem. Soc. Solid-State Sci. Technol. 127, 2049–2053. CAS Google Scholar
Rghioui, L., Benarafa, L., El Jastimi, J., El Hajji, A., Lorriaux, A. & Wallart, F. (2012). J. Mater. Environ. Sci. 3, 58–65. CAS Google Scholar
Rghioui, L., Benarafa, L., Guédira, F., Zaydoun, S., Lorriaux, A. & Wallart, F. (2015). J. Mater. Environ. Sci. 6, 3015–3021. CAS Google Scholar
Rghioui, L., Benarafa, L., Saidi Idrissi, M., Lorriaux, A. & Wallart, F. (1996). Spectrochim. Acta A, 52, 419–427. CrossRef Google Scholar
Rghioui, L., Benarafa, L., Zaydoun, S. & El Ammari, L. (2007). Acta Cryst. A63, s292–s293. CrossRef IUCr Journals Google Scholar
Rghioui, L., Benarafa, L., Zaydoun, S., Lorriaux, A. & Wallart, F. (2006). Phys. Chem. News, 31, 70–79. CAS Google Scholar
Rghioui, L., El Ammari, L., Benarafa, L., Knidiri, M., Lorriaux, A., Wallart, F. & Krautscheid, H. (1999). Can. J. Anal. Sci. Spectrosc., 44, 98–105. Google Scholar
Rghioui, L., El Ammari, L., Benarafa, L. & Wignacourt, J. P. (2002). Acta Cryst. C58, i90–i91. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Sasum, U., Kloss, M., Rohmann, A., Schwarz, L. & Haberland, D. (1997). J. Lumin. 72–74, 255–256. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srivastava, A. M., Sobieraj, M. T., Valossis, A., Ruan, K. & Banks, E. (1990). J. Electrochem. Soc. 137, 2959–2962. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tao, Z., Tsuboi, T., Huang, Y., Huang, W., Cai, P. & Seo, H. J. (2014). Inorg. Chem. 53, 4161–4168. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.