research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 May 2019; accepted 14 June 2019; online 25 June 2019)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnIIπ-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4′:1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1′κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4′:1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1′κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry [\overline{1}]) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4] is the slightly weaker coordinating anion as compared to [GaCl4].

1. Chemical context

Compounds that are known today to have arene (= benzen­oid) mol­ecules π-bonded to main-group metal central atoms have been studied since the late 19th century (Smith, 1879[Smith, W. (1879). J. Chem. Soc. Trans. 35, 309-311.]; Smith & Davis, 1882[Smith, W. & Davis, G. W. (1882). J. Chem. Soc. Trans. 41, 411-412.]; Lecoq de Boisbaudran, 1881[Lecoq de Boisbaudran, P. E. (1881). C. R. Hebd. Seances Acad. Sci. 93, 294-297.]). The best recognized work of the early period seems to be the series of investigations by Menshutkin, exploring the composition of compounds in systems of the type EX3/arene (E = As, Sb; X = Cl, Br), subsequently often referred to as `Menshutkin complexes' (e.g. Menshutkin, 1911[Menshutkin, B. N. (1911). J. Russ. Phys. Chem. Soc. 43, 1275-1302. [(1912). Chem. Zentralblatt 83, 408-409].]). However, the nature of bonding in such compounds remained unclear until the first structure determinations of p-block-metal–arene complexes were published in the late 1960s (Lüth & Amma, 1969[Lüth, H. & Amma, E. L. (1969). J. Am. Chem. Soc. 91, 7515-7516.]; Hulme & Szymanski, 1969[Hulme, R. & Szymanski, J. T. (1969). Acta Cryst. B25, 753-761.]). Although a significant number of cationic main-group metal–π-arene complexes have been synthesized and structurally characterized since then (see review by Schmidbaur & Schier, 2008[Schmidbaur, H. & Schier, A. (2008). Organometallics, 27, 2361-2395.]), the knowledge of isotypic pairs containing the same cation but different anions is so far limited to two couples of bis­(arene) complexes, viz. {[(C6H6)2Ga][GaX4]}2 [X = Cl (Schmidbaur et al. 1983[Schmidbaur, H., Thewalt, U. & Zafiropoulos, T. (1983). Organometallics, 2, 1550-1554.]), Br (Uson-Finkenzeller et al., 1986[Uson-Finkenzeller, M., Bublak, W., Huber, B., Müller, G. & Schmidbaur, H. (1986). Z. Naturforsch. Teil B, 41, 346-350.])] and {[(1,2,4-(CH3)3C6H3)2Tl][MCl4]}2 (M = Al, Ga; Frank et al., 1996[Frank, W., Korrell, G. & Reiss, G. J. (1996). J. Organomet. Chem. 506, 293-300.]). Only the latter pair was compared in detail.

[Scheme 1]

We herein describe the synthesis and structural investigation of {[{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2}x [M = Al (1), Ga (2)], the first couple of isotypic mono(arene) complexes. In relation to previous work on structurally related compounds within the class [(arene)2Sn2Cl2][AlCl4]2 (Weininger et al., 1979[Weininger, M. S., Rodesiler, P. F. & Amma, E. L. (1979). Inorg. Chem. 18, 751-755.]; Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]; Schmidbaur et al., 1990[Schmidbaur, H., Probst, T., Steigelmann, O. & Müller, G. (1990). Heteroat. Chem. 1, 161-165.]; for further information see Section 4), a detailed analysis of the structural parameters of the isotypic cationic tin(II)–π-arene title complexes allows for: (i) identification of the intrinsic features of the π-bonding geometry of mono(arene) complexation in this class; (ii) investigation of the impact of anion change on the π-bonding situation unaffected by more principal structural differences; (iii) the indirect estimation of an empirical bond valence for the π-arene bonding as introduced to organometallic chemistry by one of us in the early 1990s (Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.],b[Frank, W. (1990b). Chem. Ber. 123, 1233-1237.],c[Frank, W. (1990c). J. Organomet. Chem. 386, 177-186.]). The title compounds are the first main-group metal–prehnitene π complexes. Strictly anhydrous conditions are needed for successful syntheses from the ternary halides SnMCl5 (= (SnCl)[MCl4]; M = Al, Ga; Schloots & Frank, 2016[Schloots, S. & Frank, W. (2016). Z. Krist. Suppl. 36, 88-88.]) and prehnitene (1,2,3,4-tetra­methyl­benzene) in the inert solvent chloro­benzene and for the subsequent crystallization.

2. Structural commentary

The asymmetric units of the isotypic compounds 1 and 2 consist of one half of a Sn2Cl22+ moiety close to a centre of inversion, one [MCl4] moiety and one prehnitene mol­ecule, all in general positions. As shown in Fig. 1[link], these components define one half of the centrosymmetric building block that represents the crystallographic repeating unit of a coordination-polymeric chain in which [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2]2+ cations are connected by two [MCl4] anions in a 1κ2Cl,Cl2:3κCl3-bridging mode. Bond lengths within the dimeric chlorido­stannylene cation (in direct comparison, Sn—Cl bond lengths and selected further geometric details of the bonding situation at the tin central atoms of 1 and 2 are given in Table 1[link]) and the chlorido­metallate anions [M—Cl = 2.1058 (10)–2.1715 (9) Å (1) and 2.1439 (10)–2.2159 (10) Å (2); for almost undistorted anions see ortho­rhom­bic Li[AlCl4] (Prömper & Frank, 2017[Prömper, S. W. & Frank, W. (2017). Acta Cryst. E73, 1426-1429.]) and Ga[GaCl4] (Schmidbaur et al., 1987[Schmidbaur, H., Nowak, R., Bublak, W., Burkert, P., Huber, B. & Müller, G. (1987). Z. Naturforsch. Teil B, 42, 553-556.])] are as expected, taking into account the mode of association of these species in the polymeric chains. For 1, a section of this chain involving three repeating units is displayed in Fig. 2[link]. Considering the dimensions of the repeating unit along the chain concatenation direction [010] and the orientation of the Sn⋯Sni connection line with respect to this direction, the secondary structure of 1 and 2 established by the mode of concatenation differs principally from all other related structures apart from that of the mesitylene derivative. However, for this derivative the tertiary structure established by the arrangement of columns is entirely different. A more detailed discussion of the packing is given in Section 3.

Table 1
Selected bond lengths and contact distances (Å) in 1 and 2 and corresponding ring slippage values and bond valences, calculated using the Brown formalism (Brown, 2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]) with r0 = 2.42 and B = 0.39 (Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]). Cntarene = arene centre; Lsqplarene = arene plane.

C C bond lengths were calculated on the B3LYP/6–311++G(d,p) level of theory using the GAUSSIAN09 program package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09 Revision D.01. Gaussian Inc., Wallingford, CT, USA.]).

  1 2     1 2
Sn1—C1 2.881 (2) 2.891 (3)   Sn1—Cl1 2.6316 (6) 2.6299 (8)
Sn1—C2 2.915 (2) 2.921 (3)   Sn1—Cl1i 2.6425 (6) 2.6481 (7)
Sn1—C3 3.097 (2) 3.104 (3)   Sn1—Cl2 3.0340 (7) 3.0155 (9)
Sn1—C4 3.216 (2) 3.214 (3)   Sn1—Cl3 3.2432 (8) 3.2597 (11)
Sn1—C5 3.181 (2) 3.185 (3)   Sn1—Cl4ii 3.1722 (7) 3.1499 (9)
Sn1—C6 3.028 (2) 3.043 (3)        
             
  1 2 calculated   1 2
C1—C2 1.386 (4) 1.379 (5) 1.3888 d(Sn—Cntarene) 2.716 (2) 2.725 (3)
C2—C3 1.394 (3) 1.396 (4) 1.3957 d(Sn—Lsqplarene) 2.6898 (11) 2.6997 (14)
C3—C4 1.405 (3) 1.408 (4) 1.4082 Ring slippage 0.37 0.37
C4—C5 1.411 (3) 1.408 (5) 1.4112      
C5—C6 1.404 (4) 1.404 (5) 1.4082 Σs(Sn—Cl) 1.62 1.63
C6—C1 1.393 (4) 1.388 (5) 1.3957 s(Sn—arene) 0.38 0.37
Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z.
[Figure 1]
Figure 1
Asymmetric units of the crystal structures of 1 (top) and 2 (bottom) displaying the atom-labelling schemes, and in transparent mode the symmetry-related second half completing the dimeric building block that defines the repeating units of the coordination polymeric, secondary structure of the compounds[(symmetry code (i) 1 − x, −y, 1 − z]. The direction of secondary bonding to atoms of the neighbouring moieties is indicated by thin sticks. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are drawn with an arbitrary radius.
[Figure 2]
Figure 2
Coordination polymeric chain in the crystal of 1 [view direction [100]; symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, −1 + y, z; (iv) x, 1 + y, z; (v) 1 − x, −1 − y, 1 − z; (vi) 1 − x, 2 − y, 1 − z; (vii) x, − 2 + y, z]. Features indicative of the mode of concatenation of the characteristic building blocks are: (i) the parallel orientation of the Sn1⋯Sn1i connecting line with respect to the chain building direction; (ii) the exclusively translational character of chain growth.

Two primary and three secondary bonded chlorine atoms of the dimeric cation and the metallate anions, respectively, as well as one π-coordinating prehnitene mol­ecule establish the coordination sphere around the SnII central atom (Fig. 3[link]). Considering the arene π-ligand as occupying one coordination site only, the coordination number is six. The range of cis-Cl—Sn—Cl angles [1: 66.360 (18)–120.01 (2)°; 2: 67.82 (2)–121.37 (3)°] is far from allowing the coordination to be described as octa­hedral, and in our feeling a description as ψ-penta­gonal bipyramidal with the arene ligand and Cl2 in axial position [Cntarene—Sn—Cl 160.856 (15)° (1) and 161.137 (18)° (2)] and with the probable equatorial position of the stereochemically active 5s2 lone pair between Cl3 and Cl4ii [Cl3—Sn—Cl4ii 120.01 (2)° (1) and 121.37 (3)° (2)] is much more appropriate. This fits to the observation that the best plane of the arene atoms C1 to C6 at this side of the coordination sphere is more tilted away from this probable lone pair position in the plane defined by Sn1, Cl3 and Cl4ii [27.50 (8)° (1) and 26.98 (8)° (2)] than from the equatorial ligands Cl1 and Cl1i at the opposite side [1: 15.59 (11)°, 2: 15.69 (9)°]. As documented in the two sections of Fig. 3[link], the tin–π-prehnitene bonding is characterized by the non-methyl-substituted arene C atoms positioned closest to the SnII central atom, by a significant ring slippage (1 and 2: 0.37 Å) also indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å], and by the tilt of the plane of the arene ligand against the plane of the central planar (Sn2Cl2)2+ four-membered ring species as mentioned above. Finally, in the absence of – the transition-metal-specific – π-arene backbonding, it is not unexpected that no significant influence of the SnII coordination on the prehnitene six-membered ring geometry is found in comparison with the results of DFT calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) for non-coordinating prehnitene (Table 1[link]).

[Figure 3]
Figure 3
SnII coordination environment of 1 illustrating the ring slippage (left) and the arene tilt angle (right; displacement ellipsoids drawn at 50% probability level). Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z.

The π-bonding inter­action in 1 and 2 is of medium strength on the overall scale including all types of arene π-bonding, but strong on the scale of non-covalent main-group metal–arene bonding, as easily illustrated by the application of the bond-valence method according to the formalism of Brown (2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]) in an indirect manner: defining the bond valence of the π-arene bonding to the SnII central atom as s(SnII—arene) = 2 − Σs(SnII—Cl) (Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]), which gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively. These values are in line with the expectation that [AlCl4] is the slightly weaker coordinating anion as compared to [GaCl4]. A more detailed analysis of M—Cl, Sn—Cl and Sn—Cntarene distances shows that the anion change does not have impact on the bonding within the (Sn2Cl2)2+ moiety, but a small but significant influence can be traced along a path of bonding from the central atom M1 of the anion to the arene ligand [Al1(Ga1)—Cl2—Sn1—Lsqplarene [1: 2.1715 (9), 3.0340 (7), 2.6898 (11) Å; 2: 2.2159 (9), 3.0155 (9), 2.6997 (14) Å)]. Fully consistent with the observation that the SnII— arene distance is shorter in the aluminate, the distance to the trans-ligand Cl2 is longer and Al1—Cl2 (= Al1—Clmean + 1.8%) is relatively shorter than Ga1—Cl2 (= Ga1—Clmean + 1.95%). In both 1 and 2, the tin–arene bonding is remarkably stronger than the bonding to the Cl2 ligand in the trans-position [s(Sn—Cl2) = 0.21 (1) and 0.22 (2) valence units]. Inter­estingly, as documented by the dispersion of Bi—C distances [2.753 (9)–3.214 (9) Å] and the arene tilt angle against the plane defined by the Bi and the two primarily bonded Cl atoms in the BiCl2+ moiety (20.6°), the BiIII coordination geometry in the monocationic (mono)hexa­methyl­benzene bis­muth complex {[((CH3)6C6)BiCl2][AlCl4]}2 (Frank et al., 1987[Frank, W., Weber, J. & Fuchs, E. (1987). Angew. Chem. Int. Ed. Engl. 26, 74-75.]) is closely related to the SnII coordination sphere of 1 and 2.

3. Supra­molecular features

As in all {[(arene)2Sn2Cl2][AlCl4]2}x structures described before [arene = benzene, toluene (two polymorphs), p-xylene, mesitylene (see Section 4 and for a detailed comparison; Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]), in both 1 and 2 the chains (propagating along [010]) are aligned parallel to each other, resulting in a distorted hexa­gonal packing of rods. However, taking into account primary, secondary and tertiary bonding, the crystal structure of 1 and 2 is unique. Exemplarily, Fig. 4[link] shows the packing of 1, mainly characterized by the face-to-face orientation of the prehnitene ligands of neighbouring columns in direction [001]. The orientation of the arene mol­ecules arranged parallel to each other suggests the presence of ππ inter­actions. However, the distance between the best planes of the prehnitene ligands in discussion is greater than 3.6 Å and only `conventional' van der Waals inter­actions have to be assumed in this direction. A Hirshfeld analysis of the [(1,2,3,4-tetra­methyl­benzene)2Sn2Cl2]2+ moiety (Fig. 5[link]) clearly shows three contact points between (Sn2Cl2)2+ cations and [MCl­4] anions as described above. Additionally, it reveals a weak C—H⋯Cl inter­action between the methyl groups in the 1- and 4-positions of the prehnitene ligand and chlorine atoms of the [MCl­4] anions (Tables 2[link] and 3[link]), as shown in the corres­ponding fingerprint plot.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H103⋯Cl3 0.97 2.79 3.633 (3) 146
C7—H71⋯Cl4i 0.97 2.80 3.622 (3) 144
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H103⋯Cl3 0.97 2.74 3.605 (4) 149
C7—H71⋯Cl4i 0.97 2.78 3.612 (4) 144
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Distorted hexa­gonal packing of chains in the crystal of 1 (view direction [0[\overline{1}]0]). The most characteristic feature is the parallel orientation of the planes of neighbouring prehnitene ligands in the [001] direction.
[Figure 5]
Figure 5
Three-dimensional Hirshfeld (dnorm) surface for the [(1,2,3,4-tetra­methyl­benzene)2Sn2Cl2]2+ moiety of 1 (left) and two-dimensional fingerprint plot for the H⋯Cl contacts (right); prepared using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mc Kinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia, Perth.]). The characteristic feature in the fingerprint plot mainly corresponds to the contacts C10—H103⋯Cl3 {C—H 0.97 Å, H⋯Cl 2.79 [2.74] Å, C—H⋯Cl 146.3 [149.4]°, C⋯Cl 3.633 (3) [3.605 (4)] Å} and C7—H71⋯Cl4ii {C—H 0.97 Å, H⋯Cl 2.80 [2.78] Å, C—H⋯Cl 143.6 [144.1]°, C⋯Cl 3.622 (3) [3.612 (4)] Å}; values for 2 given in square brackets.

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tin(II) complexes with arene (benzenoid) ligands, displaying at least three bonds of type `any' between the tin central atom and carbon atoms of the arene moiety, resulted in 15 hits, including SPHOSN (Lefferts et al., 1980[Lefferts, J. L., Hossain, M. B., Molloy, K. C., van der Helm, D. & Zuckerman, J. J. (1980). Angew. Chem. Int. Ed. Engl. 19, 309-310.]) with η6 but extremely weak intra­molecular bonding to the phenyl group of a di­thio­phosphate ligand. Because some of the π complexes known to the authors are missed by this search strategy, in addition a search for structures displaying at least three Sn⋯C non-bonded contacts shorter than 3.67 Å (equal to the sum of van der Waals radii (3.87 Å) minus 0.2 Å) was performed and gave an additional 26 hits. However, all but six of these are associated with very weak and/or strongly distorted intra- or inter­molecular contacts to phenyl or phenyl­ene groups within one mol­ecule or between same mol­ecules in the solid. Of the 15 + 6 structures identified by this dual search strategy, six (BENZSN10, Rodesiler et al., 1975[Rodesiler, P. F., Amma, E. L. & Auel, T. (1975). J. Am. Chem. Soc. 97, 7405-7410.]; IZUXAD, Schäfer et al., 2011[Schäfer, A., Winter, F., Saak, W., Haase, D., Pöttgen, R. & Müller, T. (2011). Chem. Eur. J. 17, 10979-10984.]; JAVJIZ, Schmidbaur et al.,1989c[Schmidbaur, H., Probst, T., Steigelmann, O. & Müller, G. (1989c). Z. Naturforsch. Teil B, 44, 1175-1178.]; KIKDIR, Probst et al., 1990[Probst, T., Steigelmann, O., Riede, J. & Schmidbaur, H. (1990). Angew. Chem. Int. Ed. Engl. 29, 1397-1398.]; ZEMFAB and ZEMFEF, Schleep et al., 2017a[Schleep, M., Ludwig, T., Hettich, C., Leone, S. & Krossing, I. (2017a). Z. Anorg. Allg. Chem. 643, 1374-1378.]) have `dicationic' SnII central species. Comparatively weak bonding of benzene mol­ecules to the SnII central atoms is given in the benzene-solvated mixed-valence SnII/SnIV oxido-tri­fluoro­acetate OFACSO (Birchall & Johnson, 1981[Birchall, T. & Johnson, J. P. (1981). J. Chem. Soc. Dalton Trans. pp. 69-73.]). HOQYIX (Beckmann et al., 2012[Beckmann, J., Duthie, A. & Wiecko, M. (2012). Main Group Met. Chem. 35, 179-182.]) is a bis­(arene) complex of Cp*Sn+ involving two phenyl groups of the [BPh4] counter-ion, while YAWNOC is a perfluoro­alk­oxy­aluminate containing the [CpSn(C6H5Me)]+ cation (Schleep et al., 2017b[Schleep, M., Hettich, C., Velázquez Rojas, J., Kratzert, D., Ludwig, T., Lieberth, K. & Krossing, I. (2017b). Angew. Chem. Int. Ed. 56, 2880-2884.]). ZEMFIJ contains the mesitylene-complexed dimeric bromido­stannylene cation (Sn2Br2)2+ (Schleep et al., 2017a[Schleep, M., Ludwig, T., Hettich, C., Leone, S. & Krossing, I. (2017a). Z. Anorg. Allg. Chem. 643, 1374-1378.]). Of the remaining ten structures, all containing the dimeric chlorido­stannylene cation (Sn2Cl2)2+, one is a bis­(arene)chlorido­tin(II) tetra­chlorido­aluminate (VAWCAX Schmidbaur et al., 1989b[Schmidbaur, H., Probst, T., Huber, B., Steigelmann, O. & Müller, G. (1989b). Organometallics, 8, 1567-1569.]), one a mono(arene)chlorido­tin(II) tetra­chlorido­gallate (JENMEU; Frank, 1990b[Frank, W. (1990b). Chem. Ber. 123, 1233-1237.]) and eight are mono(arene)chlorido­tin(II) tetra­chlorido­aluminates, including the triptycene complex VOGXEU (Schmidbaur et al., 1991[Schmidbaur, H., Probst, T. & Steigelmann, O. (1991). Organometallics, 10, 3176-3179.]), the benzene complex CBZSNA10 (Weininger et al., 1979[Weininger, M. S., Rodesiler, P. F. & Amma, E. L. (1979). Inorg. Chem. 18, 751-755.]), the polymorphic toluene complexes VEXHOV and VEXHOV01 (Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]), the p-xylene complex CPXSNA10 (Weininger et al., 1979[Weininger, M. S., Rodesiler, P. F. & Amma, E. L. (1979). Inorg. Chem. 18, 751-755.]), the mesitylene complex SESSOY (Schmidbaur et al., 1990[Schmidbaur, H., Probst, T., Steigelmann, O. & Müller, G. (1990). Heteroat. Chem. 1, 161-165.]) and SESSOY01 (Frank, 1990a[Frank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121-141.]) and the hexa­methyl­benzene complex SANMUP (Schmidbaur et al., 1989a[Schmidbaur, H., Probst, T., Huber, B., Müller, G. & Krüger, C. (1989a). J. Organomet. Chem. 365, 53-60.]). Like the title structures, the benzene, toluene, p-xylene and mesitylene complexes are coordination polymers with bridging [AlCl4] anions; however, none of these is in a homotypic relationship to the title structures or to one of the others. Considering arene complexes of p-block elements in general, there is only one AlCl4/GaCl4-isotypic pair of compounds known, viz. the bis­(arene)thallium tetra­halogenidometallates ZOFGEG and ZOFGAC (Frank et al., 1996[Frank, W., Korrell, G. & Reiss, G. J. (1996). J. Organomet. Chem. 506, 293-300.]). Finally, 1 and 2 are the first main-group metal–prehnitene complexes.

5. Synthesis and crystallization

Synthesis and crystallization of 1 and 2 were carried out under an argon atmosphere applying strictly anhydrous conditions using a glass vacuum line equipped with J. Young high-vacuum PTFE valves. Gallium trichloride was used as purchased (Sigma Aldrich, 99.999%), aluminum trichloride (Sigma Aldrich, 99.99%) was purified by repeated sublimation, SnCl2 (Acros Organics, 98%) was dried with acetic anhydride, the prehnitene/chloro­benzene (Alfa Aesar, 95%; Acros Organics, 99+ %) mixture purified and dried through an alumina packed column. Both 1 and 2 can be obtained using the ternary halide [SnCl][MCl4] (M = Al, Ga) directly (Schloots & Frank, 2016[Schloots, S. & Frank, W. (2016). Z. Krist. Suppl. 36, 88-88.]) or using a SnCl2/MCl3 mixture instead.

40 mg; 0.12 mmol (160 mg; 0.44 mmol) of [SnCl][AlCl4] ([SnCl][GaCl4]) were dissolved in 4 ml of a prehnitene-chloro­benzene mixture (1.3 mmol to 37.6 mmol) at 343 K. Colourless needles of 1 and 2 were obtained by slowly cooling the solution to room temperature in qu­anti­tative yield.

[{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][AlCl4]2 (1): Raman (cm−1): 3060 ν(Car—H), 2933 ν(CH3), 1581 ν(C C), 1388 δ(CH3), 1247 and 640 δ(C C—H), 347 ν(AlCl4), 242 δ(Sn2Cl2­2+), 121 δ(AlCl4). Elemental analysis (calculated): C, 25.93 (26.25); H, 3.06 (3.06) %. M.p. (decomp.) 432 K.

[{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][GaCl4]2 (2): Raman (cm−1): 3057 ν(Car—H), 2930 ν(CH3), 1580 ν(C C), 1388 δ(CH3), 1247 and 640 δ(C C—H), 348 ν(GaCl4), 241 δ(Sn2Cl2­2+), 115 δ(GaCl4). Elemental analysis (calculated): C, 24.03 (24.00); H, 2.84 (2.80) %. M.p. (decomp.) 425 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The positions of all hydrogen atoms were identified via subsequent difference-Fourier syntheses. In the refinement a riding model was applied using idealized C—H bond lengths [0.94 (CH) and 0.97 (CH3) Å] as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighbouring C—C bonds. The Uiso values were set to 1.5Ueq(Cmeth­yl) and 1.2Ueq(Car).

Table 4
Experimental details

  1 2
Crystal data
Chemical formula [Al2Sn2Cl10(C10H14)2] [Ga2Sn2Cl10(C10H14)2]
Mr 914.30 999.78
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 213 213
a, b, c (Å) 8.7512 (5), 9.1357 (6), 11.2803 (7) 8.7572 (4), 9.1310 (4), 11.2966 (5)
α, β, γ (°) 85.524 (5), 72.769 (5), 86.926 (5) 85.424 (3), 72.805 (3), 86.886 (4)
V3) 858.30 (9) 859.73 (7)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.30 3.77
Crystal size (mm) 0.27 × 0.17 × 0.13 0.61 × 0.13 × 0.03
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.476, 0.697 0.376, 0.656
No. of measured, independent and observed [I > 2σ(I)] reflections 17750, 4585, 4326 17522, 4638, 4242
Rint 0.040 0.048
(sin θ/λ)max−1) 0.686 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 1.24 0.033, 0.069, 1.22
No. of reflections 4585 4638
No. of parameters 158 158
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.46 0.71, −0.50
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[chloridoaluminate(III)]-tri-µ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-µ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-µ-chlorido-3:4κ4Cl-[chloridoaluminate(III)]-µ-chlorido-4:1'κ2Cl] (I) top
Crystal data top
[Al2Sn2Cl10(C10H14)2]Z = 1
Mr = 914.30F(000) = 444
Triclinic, P1Dx = 1.769 Mg m3
a = 8.7512 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1357 (6) ÅCell parameters from 24404 reflections
c = 11.2803 (7) Åθ = 4.5–59.3°
α = 85.524 (5)°µ = 2.30 mm1
β = 72.769 (5)°T = 213 K
γ = 86.926 (5)°Needle, colorless
V = 858.30 (9) Å30.27 × 0.17 × 0.13 mm
Data collection top
Stoe IPDS 2T
diffractometer
4326 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.476, Tmax = 0.697k = 1212
17750 measured reflectionsl = 1515
4585 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0163P)2 + 0.5546P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
4585 reflectionsΔρmax = 0.59 e Å3
158 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.52308 (2)0.16549 (2)0.60211 (2)0.02833 (5)
Cl10.29871 (6)0.01611 (6)0.55845 (5)0.03375 (12)
Cl20.52884 (7)0.36374 (7)0.37225 (6)0.03974 (13)
Cl30.85918 (10)0.32842 (9)0.47942 (8)0.05591 (19)
Cl40.80050 (8)0.64593 (6)0.30806 (7)0.04703 (16)
Cl50.90510 (11)0.32035 (10)0.15790 (8)0.0646 (2)
Al10.78043 (9)0.41345 (7)0.32595 (7)0.03229 (15)
C10.6234 (3)0.0503 (3)0.7664 (2)0.0366 (5)
H10.6715680.1331610.7239250.044*
C20.4588 (3)0.0430 (3)0.8189 (2)0.0335 (5)
H20.3970400.1207330.8111110.040*
C30.3833 (3)0.0780 (3)0.8831 (2)0.0305 (4)
C40.4771 (3)0.1937 (3)0.8931 (2)0.0330 (5)
C50.6446 (3)0.1861 (3)0.8393 (2)0.0349 (5)
C60.7188 (3)0.0631 (3)0.7757 (2)0.0358 (5)
C70.2040 (3)0.0788 (3)0.9401 (3)0.0434 (6)
H710.1557330.1616040.9036070.065*
H720.1783090.0870891.0291580.065*
H730.1626840.0118280.9243430.065*
C80.3978 (4)0.3254 (3)0.9619 (3)0.0501 (7)
H810.4185260.4128530.9058390.075*
H820.4404830.3360651.0308440.075*
H830.2832930.3119560.9934710.075*
C90.7448 (4)0.3112 (4)0.8510 (3)0.0588 (8)
H910.8557250.2921260.8048840.088*
H920.7363070.3194070.9379730.088*
H930.7064110.4021870.8177290.088*
C100.8978 (3)0.0490 (4)0.7171 (3)0.0501 (7)
H1010.9239390.0419560.6754200.075*
H1020.9512240.0485010.7812490.075*
H1030.9331840.1313650.6571920.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02904 (8)0.02763 (8)0.02706 (7)0.00218 (5)0.00572 (5)0.00324 (5)
Cl10.0225 (2)0.0373 (3)0.0385 (3)0.00117 (19)0.0019 (2)0.0127 (2)
Cl20.0330 (3)0.0419 (3)0.0428 (3)0.0057 (2)0.0084 (2)0.0019 (2)
Cl30.0568 (4)0.0534 (4)0.0656 (5)0.0169 (3)0.0332 (4)0.0179 (3)
Cl40.0361 (3)0.0256 (3)0.0687 (4)0.0010 (2)0.0004 (3)0.0026 (3)
Cl50.0581 (5)0.0649 (5)0.0572 (5)0.0054 (4)0.0080 (4)0.0241 (4)
Al10.0307 (3)0.0257 (3)0.0363 (4)0.0004 (3)0.0037 (3)0.0012 (3)
C10.0403 (13)0.0347 (12)0.0313 (11)0.0071 (10)0.0066 (10)0.0016 (9)
C20.0368 (12)0.0333 (11)0.0307 (11)0.0060 (9)0.0102 (9)0.0015 (9)
C30.0265 (10)0.0389 (12)0.0241 (10)0.0032 (9)0.0045 (8)0.0007 (8)
C40.0337 (12)0.0373 (12)0.0279 (10)0.0004 (9)0.0079 (9)0.0066 (9)
C50.0300 (11)0.0446 (13)0.0318 (11)0.0072 (9)0.0103 (9)0.0030 (9)
C60.0261 (11)0.0484 (14)0.0308 (11)0.0017 (9)0.0071 (9)0.0034 (9)
C70.0281 (12)0.0562 (16)0.0408 (13)0.0037 (11)0.0039 (10)0.0051 (11)
C80.0533 (17)0.0464 (15)0.0481 (16)0.0030 (12)0.0075 (13)0.0196 (12)
C90.0485 (17)0.067 (2)0.065 (2)0.0225 (15)0.0179 (15)0.0148 (16)
C100.0274 (12)0.0668 (19)0.0498 (16)0.0056 (12)0.0063 (11)0.0099 (13)
Geometric parameters (Å, º) top
Sn1—Cl12.6316 (6)C2—H20.9400
Sn1—Cl1i2.6425 (6)C3—C41.405 (3)
Sn1—Cl23.0340 (7)C3—C71.509 (3)
Sn1—Cl33.2432 (8)C4—C51.411 (3)
Sn1—Cl4ii3.1722 (7)C4—C81.506 (3)
Sn1—C12.881 (2)C5—C61.404 (4)
Sn1—C22.915 (2)C5—C91.513 (4)
Sn1—C33.097 (2)C6—C101.512 (3)
Sn1—C43.216 (2)C7—H710.9700
Sn1—C53.181 (2)C7—H720.9700
Sn1—C63.028 (2)C7—H730.9700
Sn1—Al13.8983 (8)C8—H810.9700
Sn1—Sn1i4.0476 (4)C8—H820.9700
Al1—Cl22.1715 (9)C8—H830.9700
Al1—Cl32.1249 (11)C9—H910.9700
Al1—Cl42.1294 (9)C9—H920.9700
Al1—Cl52.1058 (10)C9—H930.9700
C1—C21.386 (4)C10—H1010.9700
C1—C61.393 (4)C10—H1020.9700
C1—H10.9400C10—H1030.9700
C2—C31.394 (3)
Cl1—Sn1—Cl1i79.753 (18)Al1—Cl4—Sn1ii116.50 (3)
Cl1—Sn1—Cl288.426 (19)Cl5—Al1—Cl3113.35 (5)
Cl1—Sn1—Cl3145.46 (2)Cl5—Al1—Cl4110.64 (5)
Cl1—Sn1—Cl4ii73.398 (18)Cl3—Al1—Cl4108.81 (5)
Cl1i—Sn1—Cl284.476 (19)Cl5—Al1—Cl2109.07 (5)
Cl1i—Sn1—Cl374.86 (2)Cl3—Al1—Cl2106.38 (4)
Cl1i—Sn1—Cl4ii147.90 (2)Cl4—Al1—Cl2108.40 (4)
Cl2—Sn1—Cl366.360 (18)C2—C1—C6121.1 (2)
Cl2—Sn1—Cl4ii77.616 (19)C2—C1—H1119.4
Cl3—Sn1—Cl4ii120.01 (2)C6—C1—H1119.4
Cl1—Sn1—C198.59 (6)C1—C2—C3121.0 (2)
Cl1—Sn1—C280.90 (5)C1—C2—H2119.5
Cl1—Sn1—C389.06 (4)C3—C2—H2119.5
Cl1—Sn1—C4113.59 (5)C2—C3—C4118.8 (2)
Cl1—Sn1—C5133.54 (5)C2—C3—C7118.7 (2)
Cl1—Sn1—C6125.60 (5)C4—C3—C7122.5 (2)
Cl1i—Sn1—C178.92 (5)C3—C4—C5120.1 (2)
Cl1i—Sn1—C296.51 (5)C3—C4—C8119.6 (2)
Cl1i—Sn1—C3122.99 (5)C5—C4—C8120.4 (2)
Cl1i—Sn1—C4131.87 (5)C6—C5—C4120.4 (2)
Cl1i—Sn1—C5113.02 (5)C6—C5—C9119.9 (2)
Cl1i—Sn1—C687.77 (5)C4—C5—C9119.7 (2)
Cl2—Sn1—C1160.46 (5)C1—C6—C5118.6 (2)
Cl2—Sn1—C2168.90 (5)C1—C6—C10118.9 (3)
Cl2—Sn1—C3151.42 (5)C5—C6—C10122.5 (3)
Cl2—Sn1—C4138.73 (5)C3—C7—H71109.5
Cl2—Sn1—C5135.45 (5)C3—C7—H72109.5
Cl2—Sn1—C6143.03 (5)H71—C7—H72109.5
Cl3—Sn1—C199.07 (6)C3—C7—H73109.5
Cl3—Sn1—C2124.60 (5)H71—C7—H73109.5
Cl3—Sn1—C3124.44 (4)H72—C7—H73109.5
Cl3—Sn1—C4100.80 (5)C4—C8—H81109.5
Cl3—Sn1—C578.78 (5)C4—C8—H82109.5
Cl3—Sn1—C676.71 (5)H81—C8—H82109.5
Cl4ii—Sn1—C1121.84 (5)C4—C8—H83109.5
Cl4ii—Sn1—C296.29 (5)H81—C8—H83109.5
Cl4ii—Sn1—C374.39 (5)H82—C8—H83109.5
Cl4ii—Sn1—C476.28 (5)C5—C9—H91109.5
Cl4ii—Sn1—C598.30 (5)C5—C9—H92109.5
Cl4ii—Sn1—C6122.18 (5)H91—C9—H92109.5
Sn1—Cl1—Sn1i100.247 (18)C5—C9—H93109.5
Sn1—C1—H1110.9H91—C9—H93109.5
Sn1—C2—H2111.8H92—C9—H93109.5
Sn1—C3—C7119.14 (16)C6—C10—H101109.5
Sn1—C4—C8123.29 (18)C6—C10—H102109.5
Sn1—C5—C9122.01 (19)H101—C10—H102109.5
Sn1—C6—C10116.23 (17)C6—C10—H103109.5
Al1—Cl2—Sn195.56 (3)H101—C10—H103109.5
Al1—Cl3—Sn190.68 (3)H102—C10—H103109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H103···Cl30.972.793.633 (3)146
C7—H71···Cl4ii0.972.803.622 (3)144
Symmetry code: (ii) x+1, y+1, z+1.
catena-Poly[[chloridogallate(III)]-tri-µ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-µ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-µ-chlorido-3:4κ4Cl-[chloridogallate(III)]-µ-chlorido-4:1'κ2Cl] (II) top
Crystal data top
[Ga2Sn2Cl10(C10H14)2]Z = 1
Mr = 999.78F(000) = 480
Triclinic, P1Dx = 1.931 Mg m3
a = 8.7572 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1310 (4) ÅCell parameters from 21911 reflections
c = 11.2966 (5) Åθ = 4.5–59.3°
α = 85.424 (3)°µ = 3.77 mm1
β = 72.805 (3)°T = 213 K
γ = 86.886 (4)°Needle, colourless
V = 859.73 (7) Å30.61 × 0.13 × 0.03 mm
Data collection top
Stoe IPDS 2
diffractometer
4242 reflections with I > 2σ(I)
ω scansRint = 0.048
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 29.2°, θmin = 2.2°
Tmin = 0.376, Tmax = 0.656h = 1111
17522 measured reflectionsk = 1211
4638 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.9105P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
4638 reflectionsΔρmax = 0.71 e Å3
158 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.52200 (3)0.16597 (2)0.60194 (2)0.02838 (6)
Ga10.78103 (4)0.41311 (3)0.32615 (3)0.03202 (8)
Cl10.29875 (9)0.01494 (8)0.55911 (7)0.03389 (15)
Cl20.52418 (10)0.36331 (9)0.37434 (8)0.03987 (17)
Cl30.86231 (14)0.32600 (11)0.48157 (11)0.0565 (3)
Cl40.80145 (11)0.65004 (8)0.30948 (10)0.0477 (2)
Cl50.90567 (15)0.31991 (13)0.15424 (11)0.0646 (3)
C10.6226 (4)0.0506 (4)0.7670 (3)0.0372 (7)
H10.6705050.1333970.7244950.045*
C20.4589 (4)0.0435 (3)0.8188 (3)0.0332 (6)
H20.3974440.1213080.8107440.040*
C30.3829 (4)0.0773 (3)0.8831 (3)0.0301 (6)
C40.4772 (4)0.1935 (4)0.8922 (3)0.0331 (6)
C50.6443 (4)0.1853 (4)0.8391 (3)0.0345 (6)
C60.7182 (4)0.0618 (4)0.7763 (3)0.0358 (7)
C70.2046 (4)0.0785 (4)0.9400 (3)0.0431 (8)
H710.1562740.1602510.9021620.065*
H720.1791890.0890921.0285780.065*
H730.1632750.0129490.9261090.065*
C80.3983 (5)0.3255 (4)0.9602 (4)0.0503 (9)
H810.4260660.4137650.9057250.075*
H820.4347450.3320001.0327320.075*
H830.2831450.3159150.9860780.075*
C90.7449 (5)0.3105 (5)0.8505 (4)0.0570 (11)
H910.8571920.2851820.8143680.085*
H920.7251550.3275960.9375380.085*
H930.7165850.3989260.8070670.085*
C100.8972 (4)0.0473 (5)0.7176 (4)0.0492 (9)
H1010.9237510.0469290.6813880.074*
H1020.9510870.0539460.7805980.074*
H1030.9313530.1257180.6533770.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03005 (11)0.02753 (10)0.02689 (10)0.00228 (7)0.00647 (8)0.00417 (7)
Ga10.03199 (18)0.02486 (15)0.03540 (18)0.00005 (13)0.00417 (14)0.00194 (13)
Cl10.0231 (3)0.0373 (4)0.0388 (4)0.0013 (3)0.0023 (3)0.0140 (3)
Cl20.0340 (4)0.0420 (4)0.0427 (4)0.0057 (3)0.0091 (3)0.0031 (3)
Cl30.0597 (6)0.0533 (5)0.0652 (6)0.0163 (5)0.0344 (5)0.0165 (5)
Cl40.0363 (4)0.0250 (3)0.0707 (6)0.0008 (3)0.0001 (4)0.0021 (3)
Cl50.0596 (6)0.0660 (6)0.0553 (6)0.0052 (5)0.0073 (5)0.0248 (5)
C10.0423 (18)0.0354 (16)0.0311 (15)0.0067 (14)0.0080 (14)0.0029 (12)
C20.0396 (17)0.0321 (14)0.0291 (14)0.0074 (12)0.0116 (13)0.0016 (11)
C30.0278 (14)0.0381 (15)0.0240 (13)0.0017 (12)0.0076 (11)0.0011 (11)
C40.0346 (16)0.0394 (15)0.0254 (13)0.0001 (12)0.0081 (12)0.0072 (11)
C50.0317 (15)0.0440 (17)0.0309 (14)0.0068 (13)0.0128 (13)0.0033 (12)
C60.0279 (15)0.0471 (17)0.0307 (14)0.0038 (13)0.0076 (12)0.0016 (13)
C70.0293 (16)0.058 (2)0.0371 (17)0.0052 (15)0.0031 (14)0.0044 (15)
C80.052 (2)0.048 (2)0.050 (2)0.0029 (17)0.0109 (18)0.0217 (17)
C90.047 (2)0.065 (3)0.064 (3)0.0206 (19)0.018 (2)0.013 (2)
C100.0277 (17)0.066 (2)0.049 (2)0.0050 (16)0.0084 (15)0.0106 (18)
Geometric parameters (Å, º) top
Sn1—Cl12.6299 (8)C2—H20.9400
Sn1—Cl1i2.6481 (7)C3—C41.408 (4)
Sn1—Cl23.0155 (9)C3—C71.503 (4)
Sn1—Cl33.2597 (11)C4—C51.408 (5)
Sn1—Cl4ii3.1499 (9)C4—C81.505 (5)
Sn1—C12.891 (3)C5—C61.404 (5)
Sn1—C22.921 (3)C5—C91.517 (5)
Sn1—C33.104 (3)C6—C101.513 (5)
Sn1—C43.214 (3)C7—H710.9700
Sn1—C53.185 (3)C7—H720.9700
Sn1—C63.043 (3)C7—H730.9700
Sn1—Ga13.8987 (4)C8—H810.9700
Sn1—Sn1i4.0503 (4)C8—H820.9700
Ga1—Cl22.2159 (9)C8—H830.9700
Ga1—Cl32.1625 (10)C9—H910.9700
Ga1—Cl42.1691 (8)C9—H920.9700
Ga1—Cl52.1439 (10)C9—H930.9700
C1—C21.379 (5)C10—H1010.9700
C1—C61.388 (5)C10—H1020.9700
C1—H10.9400C10—H1030.9700
C2—C31.395 (4)
Cl1—Sn1—Cl1i79.76 (2)Cl5—Ga1—Cl2109.01 (4)
Cl1—Sn1—Cl288.37 (3)Cl3—Ga1—Cl2106.43 (4)
Cl1i—Sn1—Cl284.56 (3)Cl4—Ga1—Cl2108.21 (4)
Cl1—Sn1—Cl4ii73.00 (2)Sn1—Cl1—Sn1i100.24 (2)
Cl1i—Sn1—Cl4ii147.47 (3)Ga1—Cl2—Sn195.14 (3)
Cl1—Sn1—Cl3146.02 (3)Ga1—Cl3—Sn189.58 (3)
Cl1i—Sn1—Cl374.35 (3)Ga1—Cl4—Sn1ii115.87 (3)
Cl2—Sn1—Cl367.82 (2)C2—C1—C6121.5 (3)
Cl2—Sn1—Cl4ii77.33 (2)C2—C1—H1119.2
Cl4ii—Sn1—Cl3121.37 (3)C6—C1—H1119.2
Cl1—Sn1—C198.21 (7)C1—C2—C3121.1 (3)
Cl1i—Sn1—C179.15 (7)C1—C2—H2119.5
Cl1—Sn1—C280.68 (7)C3—C2—H2119.5
Cl1i—Sn1—C296.61 (7)C2—C3—C4118.4 (3)
Cl1—Sn1—C388.88 (6)C2—C3—C7119.1 (3)
Cl1i—Sn1—C3123.05 (6)C4—C3—C7122.5 (3)
Cl1—Sn1—C4113.52 (6)C3—C4—C5120.1 (3)
Cl1i—Sn1—C4131.84 (6)C3—C4—C8119.5 (3)
Cl1—Sn1—C5133.20 (6)C5—C4—C8120.4 (3)
Cl1i—Sn1—C5112.86 (6)C6—C5—C4120.4 (3)
Cl1—Sn1—C6125.01 (7)C6—C5—C9119.9 (3)
Cl1i—Sn1—C687.73 (7)C4—C5—C9119.7 (3)
Cl2—Sn1—C1161.00 (7)C1—C6—C5118.4 (3)
Cl2—Sn1—C2168.57 (7)C1—C6—C10119.0 (3)
Cl2—Sn1—C3151.20 (6)C5—C6—C10122.6 (3)
Cl2—Sn1—C4138.75 (6)C3—C7—H71109.5
Cl2—Sn1—C5135.87 (6)C3—C7—H72109.5
Cl2—Sn1—C6143.69 (7)H71—C7—H72109.5
C1—Sn1—Cl398.11 (7)C3—C7—H73109.5
C2—Sn1—Cl3123.48 (7)H71—C7—H73109.5
C3—Sn1—Cl3123.69 (6)H72—C7—H73109.5
C4—Sn1—Cl3100.17 (6)C4—C8—H81109.5
C5—Sn1—Cl378.09 (6)C4—C8—H82109.5
C6—Sn1—Cl375.93 (7)H81—C8—H82109.5
C1—Sn1—Cl4ii121.62 (7)C4—C8—H83109.5
C2—Sn1—Cl4ii96.19 (7)H81—C8—H83109.5
C3—Sn1—Cl4ii74.45 (6)H82—C8—H83109.5
Cl4ii—Sn1—C476.64 (6)C5—C9—H91109.5
Cl4ii—Sn1—C598.82 (7)C5—C9—H92109.5
C6—Sn1—Cl4ii122.46 (6)H91—C9—H92109.5
Sn1—C1—H1110.6C5—C9—H93109.5
Sn1—C2—H2111.6H91—C9—H93109.5
Sn1—C3—C7119.1 (2)H92—C9—H93109.5
Sn1—C4—C8123.0 (2)C6—C10—H101109.5
Sn1—C5—C9121.9 (2)C6—C10—H102109.5
Sn1—C6—C10116.1 (2)H101—C10—H102109.5
Cl5—Ga1—Cl3113.84 (5)C6—C10—H103109.5
Cl5—Ga1—Cl4110.73 (5)H101—C10—H103109.5
Cl3—Ga1—Cl4108.39 (4)H102—C10—H103109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H103···Cl30.972.743.605 (4)149
C7—H71···Cl4ii0.972.783.612 (4)144
Symmetry code: (ii) x+1, y+1, z+1.
Selected bond lengths and contact distances (Å) in 1 and 2 and corresponding ring slippage values and bond valences, calculated using the Brown formalism (Brown, 2009) with r0 = 2.42 and B = 0.39 (Frank, 1990a) top
CC bond lengths were calculated on the B3LYP/6-311++G(d,p) level of theory using the GAUSSIAN09 program package (Frisch et al., 2009). Cntarene = arene centre; Lsqplarene = arene plane.
1212
Sn1—C12.881 (2)2.891 (3)Sn1—Cl12.6316 (6)2.6299 (8)
Sn1—C22.915 (2)2.921 (3)Sn1—Cl1i2.6425 (6)2.6481 (7)
Sn1—C33.097 (2)3.104 (3)Sn1—Cl23.0340 (7)3.0155 (9)
Sn1—C43.216 (2)3.214 (3)Sn1—Cl33.2432 (8)3.2597 (11)
Sn1—C53.181 (2)3.185 (3)Sn1—Cl4ii3.1722 (7)3.1499 (9)
Sn1—C63.028 (2)3.043 (3)
12calculated12
C1—C21.386 (4)1.379 (5)1.3888d(Sn—Cntarene)2.716 (2)2.725 (3)
C2—C31.394 (3)1.396 (4)1.3957d(Sn—Lsqplarene)2.6898 (11)2.6997 (14)
C3—C41.405 (3)1.408 (4)1.4082Ring slippage0.370.37
C4—C51.411 (3)1.408 (5)1.4112
C5—C61.404 (4)1.404 (5)1.4082Σs(Sn—Cl)1.621.63
C6—C11.393 (4)1.388 (5)1.3957s(Sn—arene)0.380.37
Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, 1 - z.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBeckmann, J., Duthie, A. & Wiecko, M. (2012). Main Group Met. Chem. 35, 179–182.  CAS Google Scholar
First citationBirchall, T. & Johnson, J. P. (1981). J. Chem. Soc. Dalton Trans. pp. 69–73.  CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrank, W. (1990a). Z. Anorg. Allg. Chem. 585, 121–141.  CSD CrossRef CAS Google Scholar
First citationFrank, W. (1990b). Chem. Ber. 123, 1233–1237.  CSD CrossRef CAS Google Scholar
First citationFrank, W. (1990c). J. Organomet. Chem. 386, 177–186.  CSD CrossRef CAS Google Scholar
First citationFrank, W., Korrell, G. & Reiss, G. J. (1996). J. Organomet. Chem. 506, 293–300.  CSD CrossRef CAS Web of Science Google Scholar
First citationFrank, W., Weber, J. & Fuchs, E. (1987). Angew. Chem. Int. Ed. Engl. 26, 74–75.  CSD CrossRef Web of Science Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09 Revision D.01. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHulme, R. & Szymanski, J. T. (1969). Acta Cryst. B25, 753–761.  CSD CrossRef IUCr Journals Google Scholar
First citationLecoq de Boisbaudran, P. E. (1881). C. R. Hebd. Seances Acad. Sci. 93, 294–297.  Google Scholar
First citationLefferts, J. L., Hossain, M. B., Molloy, K. C., van der Helm, D. & Zuckerman, J. J. (1980). Angew. Chem. Int. Ed. Engl. 19, 309–310.  CSD CrossRef Google Scholar
First citationLüth, H. & Amma, E. L. (1969). J. Am. Chem. Soc. 91, 7515–7516.  Google Scholar
First citationMenshutkin, B. N. (1911). J. Russ. Phys. Chem. Soc. 43, 1275–1302. [(1912). Chem. Zentralblatt 83, 408–409].  Google Scholar
First citationProbst, T., Steigelmann, O., Riede, J. & Schmidbaur, H. (1990). Angew. Chem. Int. Ed. Engl. 29, 1397–1398.  CSD CrossRef Google Scholar
First citationPrömper, S. W. & Frank, W. (2017). Acta Cryst. E73, 1426–1429.  CrossRef ICSD IUCr Journals Google Scholar
First citationRodesiler, P. F., Amma, E. L. & Auel, T. (1975). J. Am. Chem. Soc. 97, 7405–7410.  CSD CrossRef CAS Google Scholar
First citationSchäfer, A., Winter, F., Saak, W., Haase, D., Pöttgen, R. & Müller, T. (2011). Chem. Eur. J. 17, 10979–10984.  PubMed Google Scholar
First citationSchleep, M., Hettich, C., Velázquez Rojas, J., Kratzert, D., Ludwig, T., Lieberth, K. & Krossing, I. (2017b). Angew. Chem. Int. Ed. 56, 2880–2884.  CSD CrossRef CAS Google Scholar
First citationSchleep, M., Ludwig, T., Hettich, C., Leone, S. & Krossing, I. (2017a). Z. Anorg. Allg. Chem. 643, 1374–1378.  CSD CrossRef CAS Google Scholar
First citationSchloots, S. & Frank, W. (2016). Z. Krist. Suppl. 36, 88–88.  Google Scholar
First citationSchmidbaur, H., Nowak, R., Bublak, W., Burkert, P., Huber, B. & Müller, G. (1987). Z. Naturforsch. Teil B, 42, 553–556.  CrossRef CAS Google Scholar
First citationSchmidbaur, H., Probst, T., Huber, B., Müller, G. & Krüger, C. (1989a). J. Organomet. Chem. 365, 53–60.  CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H., Probst, T., Huber, B., Steigelmann, O. & Müller, G. (1989b). Organometallics, 8, 1567–1569.  CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H., Probst, T., Steigelmann, O. & Müller, G. (1990). Heteroat. Chem. 1, 161–165.  CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H., Probst, T. & Steigelmann, O. (1991). Organometallics, 10, 3176–3179.  CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H., Probst, T., Steigelmann, O. & Müller, G. (1989c). Z. Naturforsch. Teil B, 44, 1175–1178.  CrossRef CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2008). Organometallics, 27, 2361–2395.  CrossRef CAS Google Scholar
First citationSchmidbaur, H., Thewalt, U. & Zafiropoulos, T. (1983). Organometallics, 2, 1550–1554.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, W. (1879). J. Chem. Soc. Trans. 35, 309–311.  CrossRef CAS Google Scholar
First citationSmith, W. & Davis, G. W. (1882). J. Chem. Soc. Trans. 41, 411–412.  CrossRef CAS Google Scholar
First citationStoe & Cie (2009). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., Mc Kinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia, Perth.  Google Scholar
First citationUson-Finkenzeller, M., Bublak, W., Huber, B., Müller, G. & Schmidbaur, H. (1986). Z. Naturforsch. Teil B, 41, 346–350.  Google Scholar
First citationWeininger, M. S., Rodesiler, P. F. & Amma, E. L. (1979). Inorg. Chem. 18, 751–755.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds