research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 62, Kyiv, 01601, Ukraine, bL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospect Nauki 31, Kyiv 03028, Ukraine, cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA, and dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA
*Correspondence e-mail: annpavlis@ukr.net

Edited by A. M. Chippindale, University of Reading, England (Received 3 June 2019; accepted 12 July 2019; online 19 July 2019)

Three new isotypic heteropolynuclear complexes, namely penta­aqua­carbonato­penta­kis­(glycinehydroxamato)nitrato­penta­copper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5xH2O (GlyHA2− is glycine­hydrox­amate, N-hy­droxy­glycinamidate or amino­aceto­hydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 13 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 13 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 13 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycine­hydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 13 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O.

1. Chemical context

The numerous studies of 3d–4f metallamacrocyclic complexes in the last few decades arise from their potentially inter­esting catalytic (Griffiths & Kostakis, 2018[Griffiths, K. & Kostakis, G. E. (2018). Dalton Trans. 47, 12011-12034.]), luminescence (Jankolovits et al., 2011[Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834-9838.]; Li et al., 2017[Li, X.-Z., Zhou, L.-P., Yan, L.-L., Yuan, D.-Q., Lin, C.-S. & Sun, Q.-F. (2017). J. Am. Chem. Soc. 139, 8237-8244.]) and magnetic properties (Dhers et al., 2016[Dhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089-18093.]; Zangana et al., 2014[Zangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242-13249.]). In addition, a number of heteropolynuclear metallacrown complexes have been shown to possess single mol­ecule magnetic (SMM) behaviour (Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]; Wang et al., 2019[Wang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686-1692.]), bright luminescence with high quantum yields (Nguyen et al., 2018[Nguyen, T. N., Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Kampf, J. W., Martinić, I., Petoud, S. & Pecoraro, V. L. (2018). Chem. Eur. J. 24, 1031-1035.]; Martinić et al., 2017[Martinić, I., Eliseeva, S. V., Nguyen, T. N., Pecoraro, V. L. & Petoud, S. (2017). J. Am. Chem. Soc. 139, 8388-8391.]) and the ability to serve as building blocks for the generation of supra­molecular assemblies and coordination polymers (Pavlishchuk et al., 2014[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320-1330.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.]). The utilization of heteronuclear cationic 15-metallacrown-5 complexes as initial building blocks has also led to porous structures that are able to absorb various guest mol­ecules (Lim et al., 2010[Lim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46-49.]). The selection of the initial building blocks with labile counter-anions (e.g. nitrates) is crucial for the creation of coordination polymers with porous structures. Some of the products of the reactions between glycine­hydroxamate-derived 15-metallacrown-5 complexes and polycarboxyl­ates contain carbonate anions (Pavlishchuk et al., 2014[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320-1330.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.]), which block the apical positions of the LnIII ions and lead to the formation of discrete assemblies instead of coordination polymers. The presence of carbonate anions in such complexes was associated with the capture of atmospheric carbon dioxide (Pavlishchuk et al., 2014[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320-1330.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.]).

[Scheme 1]

The first examples of 15-metallacrown-5 complexes were reported by Pecoraro and coworkers in 1999 (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). One of the reported complexes, a EuIII–CuII glycine­hydroxamate metallacrown, contains the [CuGlyHA]5 core and encapsulates an EuIII ion through coordination to five hydroxamate oxygen atoms. It was reported that the positive charge of the 15-metallacrown-5 unit, [EuCu5(GlyHA)5]3+, was partly compensated by two nitrate anions coordinated to copper(II) and europium(III). To fully compensate the positive charge of the [EuCu5(GlyHA)5]3+ unit, an oxygen species coordinated apically to EuIII was assigned as a hydroxide anion, to give a reported overall composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O. The high R-factor of 12.3% for the structure was attributed to the presence of disordered water mol­ecules in the crystal structure (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). We report here the crystal structures of three isostructural 15-metallacrown-5 complexes, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5xH2O (LnIII = Gd (1, x = 3.5); Dy (2, x = 3.28) and Ho (3, x = 3.45)). Based on the high-quality diffraction data collected for 13, a new formula of [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O is proposed for the previously reported Eu compound.

2. Structural commentary and supra­molecular features

Complexes 13, and the previously reported europium analogue (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]), are isotypic based on the unit-cell parameters obtained (Table 1[link]) and the structure refinement results. The b and c lattice parameters and the unit-cell volumes for these complexes decrease slightly across the lanthanide series as a result of the lanthanide contraction (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Zaleski, et al., 2011[Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707-7717.]). All four compounds crystallize in the space group P[\overline{1}] and contain two mol­ecular metallamacrocyclic complexes per unit cell related to each other through a centre of inversion (Fig. 1[link]). For the convenience of structure description, a common atom-numbering scheme is adopted for 13.

Table 1
Comparison of single-crystal data and structure refinement details for complexes 13 with those of their earlier reported EuIII analogue (CCDC127569, Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.])

  CCDC127569 Complex 1 Complex 2 Complex 3
Formula [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O [GdCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O [DyCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.28H2O [HoCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.445H2O
M (g mol−1) 1186.17 1190.49 1191.77 1197.21
Crystal system Triclinic Triclinic Triclinic Triclinic
Space group P[\overline{1}] P[\overline{1}] P[\overline{1}] P[\overline{1}]
a (Å) 11.163 (5) 11.2057 (15) 11.1083 (5) 11.2027 (9)
b (Å) 11.524 (4) 11.5054 (15) 11.4991 (5) 11.4955 (9)
c (Å) 13.323 (4) 13.2983 (10) 13.2894 (6) 13.2467 (10)
α (°) 93.85 (3) 94.026 (4) 93.9235 (16) 94.001 (3)
β (°) 94.79 (3) 94.942 (3) 94.7713 (17) 94.784 (3)
γ (°) 107.14 (3) 107.558 (3) 107.1470 (17) 107.518 (3)
Volume (Å3) 1624.5 (10) 1620.2 (3) 1608.73 (13) 1613.0 (2)
Z 2 2 2 2
T (K) 293 (2) 150 (2) 150 (2) 150 (2)
Range of data collection 2.53 °<2θ < 26.03° 3.091° < 2θ <33.234° 3.091° <2θ <28.693° 2.544° <2θ <33.243°
ρcalc (g cm−3) 2.425 2.440 2.460 2.467
μ (mm−1) 5.229 5.353 5.651 5.773
F(000) 1168 1170 1170 1174.9
Collected reflections 6344 118155 74286 50443
Reflections unique 6344 12399 8274 12306
Rint 0.1272 0.0560 0.0483 0.0417
Goodness-of-fit on F2 1.114 1.050 1.084 1.053
R1([I > 2σ(I)]a 0.1230 0.0343 0.0307 0.0334
wR2[I > 2σ(I)]b 0.2979 0.0681 0.0709 0.0769
Notes: (a) R1 = Σ||Fo| − |Fc||/Σ|Fo|, (b) wR2= {Σ[w(Fo2 − Fc2)2]/Σ[w(Fo2)2]}1/2.
[Figure 1]
Figure 1
The metallacrown content of a unit cell of complex 1, showing the relationship of two mol­ecular units through an inversion center. Non-coordinated water mol­ecules and disorder of the carbonate moiety have been omitted for clarity.

The neutral metallamacrocyclic unit [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] in 13 possesses structural features typical of previously characterized LnIII–CuII hydroxamate 15-metallacrown-5 complexes (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017a). Eur. J. Inorg. Chem. pp. 4866-4878.],b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.], Zaleski, et al., 2011[Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707-7717.]; Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.],b[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202-5208.]). The metallamacrocyclic core is built from the repeating fragment [CuGlyHA], formed via bridging coordin­ation of GlyHA2− dianions to two adjacent copper(II) ions, forming two five-membered chelate rings (Fig. 2[link]). The coord­ination environment of the copper(II) ions in 13 consists of two nitro­gen atoms (from amino and hydroxamate groups) and two oxygen atoms (from carbonyl and hydrox­amate groups) in their basal planes. The Cu—O and Cu—N bond lengths in 13 are typical for hydroxamate metallacrown complexes (Tables 2[link]–4[link][link]) and are comparable with the values previously reported for the EuIII analogue (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). All the copper(II) ions in 13 are penta­coordinate, with N2O3 donor sets in slightly distorted square-pyramidal coord­ination arrangements [τ values (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) fall in the range of 0.01–0.20, Tables 5[link]–7[link][link]]. For all the complexes, a pronounced Jahn-Teller-like distortion is observed, with the Cu—N and Cu—O bonds from glycine­hydroxamate in the plane of the metallacrown unit being substanti­ally shorter than the Cu—O bond of the fifth coordination site, the apical position. This site for the Cu2 atom is in each case occupied by the oxygen atom O15 from the monodentate nitrate anions [Cu2—O15 is 2.469 (3) Å in 1, 2.464 (3) Å in 2 and 2.463 (3) Å in 3], while the coordination spheres of the copper(II) ions of Cu1, Cu3, Cu4 and Cu5 ions in 13 are completed by oxygen atoms of coordinated water mol­ecules. The Cu—Ow bond distances in 13 range from 2.400 (3) to 2.476 (3) Å. The shorter Cu—O and Cu—N bond lengths within the metallacrown plane of 13, on the other hand, range from 1.897 (3) to 2.022 (2) Å.

Table 2
Selected bond lengths (Å) for complex 1

Cu1—O1 1.929 (2) Cu2—O3 1.929 (2) Cu3—O5 1.935 (2)
Cu1—O2 1.949 (2) Cu2—O4 1.939 (2) Cu3—O6 1.952 (2)
Cu1—N9 1.898 (2) Cu2—N1 1.902 (3) Cu3—N3 1.910 (3)
Cu1—N10 2.016 (3) Cu2—N2 1.985 (3) Cu3—N4 2.010 (3)
Cu1—O18w 2.470 (3) Cu2—O15(NO3) 2.469 (3) Cu3—O19w 2.444 (2)
Cu4—O7 1.938 (2) Cu5—O9 1.931 (2) Gd1—O1 2.457 (2)
Cu4—O8 1.953 (2) Cu5—O10 1.939 (2) Gd1—O3 2.381 (2)
Cu4—N5 1.906 (2) Cu5—N7 1.901 (2) Gd1—O5 2.483 (2)
Cu4—N6 2.005 (2) Cu5—N8 2.022 (2) Gd1—O7 2.408 (2)
Cu4—O20w 2.401 (3) Cu5—O24w 2.449 (2) Gd1—O9 2.414 (2)
C11—O12 1.284 (9) C11B—O12B 1.310 (10) Gd1—O11w 2.359 (2)
C11—O13 1.307 (10) C11B—O13B 1.307 (10) Gd1—O12 2.317 (11)
C11—O14 1.252 (9) C11B—O14B 1.253 (9) Gd1—O13 2.288 (17)
Gd1—O12B 2.396 (10) Gd1—O13B 2.388 (17)    

Table 3
Selected bond lengths (Å) for complex 2

Cu1—O1 1.931 (3) Cu2—O3 1.931 (3) Cu3—O5 1.941 (3)
Cu1—O2 1.949 (3) Cu2—O4 1.939 (3) Cu3—O6 1.954 (3)
Cu1—N9 1.897 (3) Cu2—N1 1.907 (4) Cu3—N3 1.905 (4)
Cu1—N10 2.012 (4) Cu2—N2 1.983 (4) Cu3—N4 2.017 (4)
Cu1—O18w 2.476 (3) Cu2—O15(NO3) 2.464 (3) Cu3—O19w 2.430 (3)
Cu4—O7 1.936 (3) Cu5—O9 1.932 (3) Dy1—O1 2.453 (3)
Cu4—O8 1.956 (3) Cu5—O10 1.941 (3) Dy1—O3 2.382 (3)
Cu4—N5 1.904 (3) Cu5—N7 1.899 (3) Dy1—O5 2.469 (3)
Cu4—N6 2.005 (3) Cu5—N8 2.021 (3) Dy1—O7 2.412 (3)
Cu4—O20w 2.400 (3) Cu5—O24w 2.440 (3) Dy1—O9 2.410 (3)
C11—O12 1.275 (16) C11B—O12B 1.295 (9) Dy1—O11w 2.357 (3)
C11—O13 1.318 (16) C11B—O13B 1.326 (8) Dy1—O12 2.27 (2)
C11—O14 1.256 (15) C11B—O14B 1.251 (8) Dy1—O13 2.31 (3)
Dy1—O12B 2.380 (8) Dy1—O13B 2.347 (12)    

Table 4
Selected bond lengths (Å) for complex 3

Cu1—O1 1.930 (2) Cu2—O3 1.926 (2) Cu3—O5 1.939 (2)
Cu1—O2 1.948 (2) Cu2—O4 1.940 (2) Cu3—O6 1.949 (2)
Cu1—N9 1.897 (2) Cu2—N1 1.898 (3) Cu3—N3 1.908 (3)
Cu1—N10 2.013 (3) Cu2–N2 1.987 (3) Cu3—N4 2.010 (3)
Cu1—O18w 2.471 (3) Cu2—O15(NO3) 2.463 (3) Cu3—O19w 2.437 (3)
Cu4—O7 1.937 (2) Cu5—O9 1.931 (2) Ho1—O1 2.446 (2)
Cu4—O8 1.949 (2) Cu5—O10 1.941 (2) Ho1—O3 2.374 (2)
Cu4—N5 1.903 (3) Cu5—N7 1.902 (3) Ho1—O5 2.475 (2)
Cu4—N6 2.008 (3) Cu5—N8 2.019 (3) Ho1—O7 2.404 (2)
Cu4—O20w 2.405 (3) Cu5—O24w 2.443 (3) Ho1—O9 2.407 (2)
C11—O12 1.239 (11) C11B—O12B 1.262 (10) Ho1—O11w 2.358 (2)
C11—O13 1.305 (13) C11B—O13B 1.309 (10) Ho1—O12 2.304 (16)
C11—O14 1.283 (12) C11B—O14B 1.261 (9) Ho1—O13 2.30 (3)
Ho1—O12B 2.374 (12) Ho1—O13B 2.35 (2)    

Table 5
Selected bond angles (°) for complex 1

O1—Cu1—O2 85.28 (9) O3—Cu2—O4 85.63 (9) O5—Cu3—O6 85.44 (9)
N9—Cu1—O1 89.32 (9) N1—Cu2—O3 90.48 (9) N3—Cu3—O5 90.98 (10)
O2—Cu1—N10 100.27 (10) O4—Cu2—N2 100.83 (10) O6—Cu3—N4 99.85 (11)-
N9–Cu1—N10 83.70 (10) N1—Cu2—N2 82.87 (11) N3—Cu3—N4 82.70 (12)
O7—Cu4—O8 84.56 (8) O9—Cu5—O10 85.57 (8) O3—Gd1—O1 71.71 (7)
N5—Cu4—O7 91.39 (9) N7—Cu5—O9 89.59 (9) O3—Gd1—O5 72.08 (7)
O8—Cu4—N6 98.79 (9) O10—Cu5—N8 100.42 (9) O7—Gd1—O5 72.87 (7)
N5—Cu4—N6 83.88 (10) N7—Cu5—N8 83.14 (10) O7—Gd1—O9 71.27 (6)
O13—Gd1—O12 56.4 (3) O13B–Gd1–O12B 54.1 (3) O9—Gd1—O1 70.62 (7)

Table 6
Selected bond angles (°) for complex 2

O1—Cu1—O2 85.19 (12) O3—Cu2—O4 85.41 (12) O5–Cu3—O6 85.39 (12)
O1—Cu1—N9 89.39 (13) O3—Cu2—N1 90.66 (13) O5—Cu3—N3 90.67 (13)
O2—Cu1—N10 100.37 (13) O4—Cu2—N2 101.00 (14) O6—Cu3—N4 100.11 (14)
N9—Cu1—N10 83.73 (14) N1—Cu2—N2 82.65 (15) N3—Cu3—N4 82.79 (15)
O7—Cu4—O8 84.56 (11) O9—Cu5—O10 85.47 (11) O1—Dy1—O3 71.77 (9)
O7—Cu4—N5 91.62 (13) O9—Cu5—N7 89.53 (12) O3—Dy1—O5 71.92 (9)
O8—Cu4—N6 98.55 (13) O10—Cu5—N8 100.49 (13) O5—Dy1—O7 72.60 (9)
N5—Cu4—N6 83.78 (14) N7—Cu5—N8 83.23 (14) O7—Dy1—O9 71.21 (9)
O12—Dy1—O13 57.1 (6) O12B–Dy1—O13B 54.7 (2) O9—Dy1—O1 70.83 (9)

Table 7
Selected bond angles (°) for complex 3

O1—Cu1—O2 85.31 (9) O3—Cu2—O4 85.63 (9) O5—Cu3—O6 85.53 (9)
O1—Cu1—N9 89.22 (10) O3—Cu2—N1 90.61 (10) O5—Cu3—N3 90.80 (10)
O2—Cu1—N10 100.11 (11) O4–Cu2—N2 100.93 (11) O6—Cu3—N4 99.97 (11)
N9—Cu1—N10 83.88 (11) N1—Cu2—N2 82.56 (12) N3—Cu3—N4 82.62 (12)
O7—Cu4—O8 84.51 (9) O9—Cu5—O10 85.63 (9) O1—Ho1—O3 71.84 (7)
O7—Cu4—N5 91.47 (10) O9—Cu5—N7 89.41 (10) O3—Ho1—O5 72.17 (7)
O8—Cu4—N6 98.74 (10) O10—Cu5—N8 100.38 (10) O5—Ho1—O7 72.61 (7)
N5—Cu4—N6 83.87 (11) N7—Cu5—N8 83.25 (11) O7—Ho1—O9 71.34 (7)
O12—Ho1—O13 56.5 (4) O12B—Ho1—O13B 53.9 (3) O9—Ho1—O1 70.69 (7)
[Figure 2]
Figure 2
Structures of the metallamacrocyclic cores [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] in 1 (Gd, A), 2 (Dy, B) and 3 (Ho, C). Disorder of the carbonate moiety has been omitted for clarity.

The centre of the metallamacrocyclic core [CuGlyHA]5 in 13 is occupied by GdIII, DyIII and HoIII ions, respectively, which are coordinated through five hydroxamate oxygen atoms from glycine­hydroxamate. The equatorial Ln—O bond distances in 13 range from 2.381 (2) to 2.484 (2) Å, 2.382 (3) to 2.469 (3) Å and 2.374 (2) to 2.475 (2) Å respectively, paralleling the lanthanide contraction (Table 8[link]). The LnIII ions in 13 and the previously reported EuIII analogue are octa­coordinate (Fig. 3[link]), and the coordination geometry of the GdIII, DyIII and HoIII ions in 13 can be described as triangular dodeca­hedral (D2d), according to Shape2.1 calculations (Table 9[link]) (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]).

Table 8
Comparison of selected characteristics of 13 with the earlier reported EuIII analogue (CCDC127569; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.])

  CCDC127569 Complex 1 Complex 2 Complex 3
  EuCu5 GdCu5 DyCu5 HoCu5
Range of Ln···Cu separations (Å) 3.890 (2)–3.911 (3) 3.8699 (5)–3.9097 (5) 3.8715 (5)–3.9016 (6) 3.8670 (5)–3.9021 (5)
Range of Cu···Cu separations (Å) 4.575 (3)–4.589 (3) 4.5677 (7)–4.5846 (7) 4.5645 (7)–4.5797 (8) 4.5583 (7)–4.5808 (7)
Range of Ln—Oequat (Å) 2.406 (11)–2.493 (11) 2.381 (2)–2.484 (2) 2.382 (3)–2.469 (3) 2.374 (2)–2.475 (2)
Range of Ln—Ocarbonate (Å) 2.369 (13)–2.392 (15) 2.288 (17)–2.396 (10) 2.27 (2)–2.380 (8) 2.30 (3)–2.374 (12)
Range of Cu—Oequat (Å) 1.901 (11)–1.972 (10) 1.929 (2)–1.953 (2) 1.931 (3)–1.956 (4) 1.929 (2)–1.953 (2)
Range of Cu—Nequat (Å) 1.886 (14)–2.022 (13) 1.898 (2)–2.022 (2) 1.898 (3)–2.022 (3) 1.898 (2)–2.022 (2)
Range of τ values (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) for penta­coordinate CuII ions 0.00–0.20 0.01–0.20 0.01–0.20 0.02–0.20
LnIII coordination number 8 8 8 8
Average deviation of non-hydrogen atoms from Cu5 plane (Å) 0.179 0.188 0.183 0.186
Largest deviation among non-hydrogen atoms from Cu5 plane (Å) 0.605 0.606 0.602 0.597
Deviation of LnIII ion from Cu5 plane (Å) 0.351 0.337 0.354 0.330

Table 9
Continuous shape calculations for octa­coordinated Ln3+ ions in 13 obtained using Shape2.1 software (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.])

  Complex 1 Complex 2 Complex 3
OP-8 31.930 31.846 31.915
HPY-8 22.627 22.698 22.560
HBPY-8 16.081 16.114 16.307
CU-8 12.990 12.970 12.794
SAPR-8 3.769 3.759 3.770
TDD-8 1.805 1.743 1.763
JGBF-8 12.037 12.418 12.302
JETBPY-8 27.751 27.478 27.602
[Figure 3]
Figure 3
The coordination environment of the GdIII ion in 1.

The two LnIII ion apical positions in 13 are occupied by oxygen atoms O12 [2.317 (11), 2.27 (2) and 2.304 (16) Å in 13] and O13 [2.288 (17), 2.31 (3) and 2.30 (3) Å in 13] from the bidentately coordinated carbonate anion, forming the charge-balanced moiety, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]. The apical coordination of carbonate dianions to LnIII ions in 15-metallacrown-5 units has been observed previously and can be associated with the capture of atmos­pheric carbon dioxide (Pavlishchuk et al., 2014[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320-1330.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]). The inter­pretation of the X-ray data for the previously described isotypic EuIII complex was based on the assumption of bidentate coordin­ation of two nitrates to EuIII ions instead of one nitrate and one carbonate (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). The reported Ln—O(nitrate) bond distances for the EuIII analogue (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]) are comparable with values for the Ln—O(carbon­ate) bonds observed in 13, and the Eu—O donor previously attributed to a hydroxide ion is assigned here as a water mol­ecule. The third apical position of the LnIII ions in 13, trans to the carbonate anion is occupied by an oxygen donor atom, O11w, from a coordinated water mol­ecule [Gd1—O11w = 2.359 (2), Dy1—O11w = 2.357 (3) and Ho1—O11w = 2.358 (2) Å]. The Ln—O bond lengths for terminal Ln—OH and Ln—OH2 are generally very similar, and a clear distinction between water and OH as the terminal ligand in 13 and in the previously reported EuIII analogue cannot reliably be made. Moreover, both Ln—OH and Ln—OH2 bond lengths are strongly dependent on the lanthanide ion radius, its coordination number and the coordination geometry (Novitchi et al., 2012[Novitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169-1176.]; Yang et al., 2013[Yang, X., Oye, M. M., Jones, R. A. & Huang, S. (2013). Chem. Commun. 49, 9579-9581.]; Yi et al., 2013[Yi, X., Bernot, K., Calvez, G., Daiguebonne, C. & Guillou, O. (2013). Eur. J. Inorg. Chem. pp. 5879-5885.]; Chen et al., 2012[Chen, S., Fan, R.-Q., Sun, C.-F., Wang, P., Yang, Y.-L., Su, Q. & Mu, Y. (2012). Cryst. Growth Des. 12, 1337-1346.]; Wang et al., 2012[Wang, P., Fan, R. Q., Liu, X. R., Yang, Y.-L. & Zhou, G.-P. (2012). J. Inorg. Organomet. Polym. 22, 744-755.]; Gao et al., 2011[Gao, Y., Zhao, L., Xu, X., Xu, G.-F., Guo, Y.-N., Tang, J. & Liu, Z. (2011). Inorg. Chem. 50, 1304-1308.]; Xu et al., 2011[Xu, N., Wang, C., Shi, W., Yan, S., Cheng, P. & Liao, D. (2011). Eur. J. Inorg. Chem. pp. 2387-2393.]; Dai et al., 2011[Dai, F., Sun, D. & Sun, D. (2011). Cryst. Growth Des. 11, 5670-5675.]). While no definite conclusions can therefore be drawn from the bond distances involving Ln—O11, the hydrogen-bonding inter­actions (Tables 10[link]–12[link][link]) involving O11 are informative. The water mol­ecule, O11w, acts as a hydrogen bonding donor to two water mol­ecules: forming an intra­molecular hydrogen bond with coordinated water mol­ecule O24w, as O11w—H11B⋯O24w, and with the non-coordin­ated water mol­ecule, O25w, via O11w—H11A⋯O25w bond (shown for 1 in Fig. 4[link]). Hydrogen atoms for all three water mol­ecules are clearly resolved in difference electron-density maps (shown for 2 in Fig. 5[link]). In 13, one of the non-coord­in­ated water mol­ecules, on the O23w site, was refined as partially occupied [occupancy factors 0.499 (11), 0.280 (14) and 0.445 (11), respectively]. Overall, the observed positions of the H atoms as well as the hydrogen-bonding network itself, based on the positions and distances of the involved oxygen atoms, are incompatible with the assumption of the presence of a hydroxide anion, as previously proposed.

Table 10
Hydrogen-bond geometry (Å, °) for complex 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23A⋯O16i 0.85 (2) 1.81 (2) 2.642 (10) 165 (10)
O23—H23B⋯O14 0.84 (2) 1.90 (2) 2.644 (10) 148 (5)
N2—H2A⋯O13i 0.91 2.17 3.00 (2) 151
N2—H2A⋯O13Bi 0.91 2.06 2.92 (2) 157
N2—H2B⋯O16 0.91 2.25 3.068 (4) 150
N4—H4A⋯O21 0.91 2.08 2.932 (4) 155
N4—H4B⋯O23ii 0.91 1.91 2.604 (8) 132
N6—H6A⋯O16iii 0.91 2.24 3.061 (4) 150
N6—H6B⋯N5iv 0.91 2.53 3.268 (4) 139
N6—H6B⋯O5iv 0.91 2.46 3.357 (4) 171
N8—H8A⋯O7v 0.91 2.51 3.299 (4) 145
N8—H8A⋯O20v 0.91 2.39 3.005 (4) 125
N8—H8B⋯O22vi 0.91 2.15 3.033 (4) 163
N10—H10A⋯O17vii 0.91 2.22 3.025 (4) 146
N10—H10B⋯O11viii 0.91 2.41 3.192 (4) 145
O11—H11A⋯O25 0.84 (2) 1.84 (2) 2.662 (3) 166 (4)
O11—H11B⋯O24 0.84 (2) 1.98 (2) 2.798 (3) 167 (4)
O18—H18A⋯O4i 0.83 (2) 1.99 (2) 2.813 (3) 169 (4)
O18—H18B⋯O13 0.83 (2) 2.07 (2) 2.886 (14) 170 (4)
O18—H18B⋯O13B 0.83 (2) 1.79 (2) 2.612 (14) 169 (5)
O19—H19A⋯O8iv 0.84 (2) 1.89 (2) 2.719 (3) 167 (4)
O19—H19B⋯O18ii 0.84 (2) 2.01 (2) 2.847 (3) 176 (4)
O20—H20A⋯O10v 0.85 (2) 1.96 (3) 2.750 (3) 156 (5)
O20—H20B⋯O14ix 0.85 (2) 2.17 (2) 2.997 (9) 165 (4)
O20—H20B⋯O14Bix 0.85 (2) 2.24 (2) 3.075 (9) 169 (4)
O21—H21A⋯O6x 0.84 (2) 2.00 (2) 2.813 (3) 163 (5)
O21—H21B⋯O22 0.85 (2) 1.83 (2) 2.650 (5) 162 (5)
O22—H22A⋯O14ix 0.86 (2) 1.96 (4) 2.742 (9) 150 (6)
O22—H22A⋯O14Bix 0.86 (2) 1.89 (3) 2.730 (8) 166 (6)
O22—H22B⋯O12 0.87 (2) 1.74 (3) 2.594 (12) 168 (6)
O22—H22B⋯O14 0.87 (2) 2.49 (5) 3.137 (9) 131 (5)
O22—H22B⋯O12B 0.87 (2) 1.94 (2) 2.803 (11) 176 (6)
O24—H24A⋯O2viii 0.83 (2) 1.98 (2) 2.785 (3) 163 (4)
O24—H24B⋯O21vi 0.84 (2) 1.95 (2) 2.755 (3) 161 (4)
O25—H25A⋯O19 0.86 (2) 1.92 (2) 2.773 (3) 173 (5)
O25—H25B⋯O15 0.85 (2) 1.93 (2) 2.754 (4) 166 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y, z-1; (iv) -x+1, -y, -z; (v) -x+2, -y, -z; (vi) x, y-1, z; (vii) x+1, y, z; (viii) -x+2, -y, -z+1; (ix) -x+2, -y+1, -z; (x) -x+1, -y+1, -z.

Table 11
Hydrogen-bond geometry (Å, °) for complex 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23A⋯O16i 0.84 1.84 2.61 (2) 150
O23—H23B⋯O14 0.84 1.95 2.657 (17) 141
N2—H2A⋯O13i 0.91 2.23 3.05 (3) 150
N2—H2A⋯O13Bi 0.91 2.05 2.900 (11) 156
N2—H2B⋯O16 0.91 2.23 3.054 (6) 150
N4—H4A⋯O21 0.91 2.08 2.912 (6) 152
N4—H4B⋯O23ii 0.91 1.86 2.520 (16) 128
N6—H6A⋯O16iii 0.91 2.29 3.091 (6) 147
N6—H6B⋯N5iv 0.91 2.54 3.287 (5) 140
N6—H6B⋯O5iv 0.91 2.49 3.396 (5) 171
N8—H8A⋯O7v 0.91 2.48 3.262 (5) 144
N8—H8A⋯O20v 0.91 2.38 2.989 (5) 124
N8—H8B⋯O22vi 0.91 2.17 3.045 (6) 162
N10—H10A⋯O17vii 0.91 2.20 3.005 (5) 147
N10—H10B⋯O11viii 0.91 2.42 3.198 (5) 143
O11—H11A⋯O25 0.83 (2) 1.86 (3) 2.642 (4) 157 (6)
O11—H11B⋯O24 0.82 (2) 2.00 (3) 2.800 (4) 164 (6)
O18—H18A⋯O4i 0.83 (2) 2.01 (2) 2.821 (4) 165 (6)
O18—H18B⋯O13 0.83 (2) 2.05 (4) 2.87 (3) 169 (6)
O18—H18B⋯O13B 0.83 (2) 1.84 (3) 2.650 (10) 165 (6)
O19—H19A⋯O8iv 0.82 (2) 1.91 (2) 2.710 (4) 167 (6)
O19—H19B⋯O18ii 0.82 (2) 2.01 (2) 2.827 (4) 172 (6)
O20—H20A⋯O10v 0.82 (2) 1.95 (3) 2.738 (4) 160 (6)
O20—H20B⋯O14ix 0.83 (2) 2.18 (3) 2.973 (18) 158 (6)
O20—H20B⋯O14Bix 0.83 (2) 2.28 (3) 3.065 (7) 158 (6)
O21—H21A⋯O6x 0.84 (2) 1.98 (2) 2.810 (4) 174 (7)
O21—H21B⋯O22 0.84 (2) 1.85 (3) 2.660 (6) 160 (7)
O22—H22A⋯O14ix 0.85 (2) 1.91 (3) 2.736 (19) 166 (8)
O22—H22A⋯O14Bix 0.85 (2) 1.87 (2) 2.708 (8) 171 (8)
O22—H22B⋯O12 0.85 (2) 1.74 (4) 2.57 (2) 165 (8)
O22—H22B⋯O14 0.85 (2) 2.41 (7) 3.033 (18) 130 (7)
O22—H22B⋯O12B 0.85 (2) 1.90 (2) 2.753 (10) 179 (9)
O24—H24A⋯O2viii 0.83 (2) 1.97 (2) 2.777 (4) 165 (5)
O24—H24B⋯O21vi 0.83 (2) 1.95 (2) 2.767 (5) 168 (5)
O25—H25A⋯O19 0.83 (2) 1.95 (2) 2.769 (5) 168 (6)
O25—H25B⋯O15 0.83 (2) 1.94 (3) 2.752 (5) 163 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y, z-1; (iv) -x+1, -y, -z; (v) -x+2, -y, -z; (vi) x, y-1, z; (vii) x+1, y, z; (viii) -x+2, -y, -z+1; (ix) -x+2, -y+1, -z; (x) -x+1, -y+1, -z.

Table 12
Hydrogen-bond geometry (Å, °) for complex 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23A⋯O16i 0.88 1.87 2.747 (11) 173
O23—H23B⋯O14 0.83 1.98 2.509 (13) 121
N2—H2A⋯O13i 0.91 2.17 3.00 (3) 150
N2—H2A⋯O13Bi 0.91 2.05 2.90 (2) 155
N2—H2B⋯O16 0.91 2.26 3.078 (5) 149
N4—H4A⋯O21 0.91 2.07 2.914 (5) 154
N4—H4B⋯O23ii 0.91 1.98 2.726 (10) 138
N6—H6A⋯O16iii 0.91 2.25 3.060 (5) 149
N6—H6B⋯N5iv 0.91 2.52 3.267 (4) 139
N6—H6B⋯O5iv 0.91 2.46 3.359 (4) 171
N8—H8A⋯O7v 0.91 2.49 3.285 (4) 146
N8—H8A⋯O20v 0.91 2.41 3.017 (4) 124
N8—H8B⋯O22vi 0.91 2.17 3.048 (5) 163
N10—H10A⋯O17vii 0.91 2.23 3.024 (4) 145
N10—H10B⋯O11viii 0.91 2.39 3.183 (4) 146
O11—H11A⋯O25 0.82 (2) 1.86 (2) 2.660 (4) 165 (5)
O11—H11B⋯O24 0.81 (2) 2.00 (2) 2.801 (4) 166 (5)
O18—H18A⋯O4i 0.82 (2) 2.01 (3) 2.801 (3) 160 (5)
O18—H18B⋯O13 0.83 (2) 2.04 (3) 2.87 (2) 173 (5)
O18—H18B⋯O13B 0.83 (2) 1.84 (3) 2.671 (18) 171 (5)
O19—H19A⋯O8iv 0.82 (2) 1.90 (2) 2.713 (3) 174 (5)
O19—H19B⋯O18ii 0.83 (2) 2.02 (2) 2.840 (4) 174 (5)
O20—H20A⋯O10v 0.82 (2) 1.96 (3) 2.732 (3) 156 (5)
O20—H20B⋯O14ix 0.81 (2) 2.21 (3) 2.997 (12) 162 (5)
O20—H20B⋯O14Bix 0.81 (2) 2.27 (3) 3.060 (9) 163 (5)
O21—H21A⋯O6x 0.82 (2) 2.07 (3) 2.813 (4) 151 (6)
O21—H21B⋯O22 0.83 (2) 1.87 (3) 2.638 (5) 154 (6)
O22—H22A⋯O14ix 0.87 (2) 1.88 (3) 2.736 (12) 170 (7)
O22—H22A⋯O14Bix 0.87 (2) 1.84 (2) 2.709 (9) 173 (7)
O22—H22B⋯O12 0.86 (2) 1.74 (3) 2.600 (16) 170 (7)
O22—H22B⋯O14 0.86 (2) 2.51 (6) 3.088 (11) 125 (6)
O22—H22B⋯O12B 0.86 (2) 1.93 (3) 2.791 (14) 173 (7)
O24—H24A⋯O2viii 0.81 (2) 1.99 (2) 2.781 (3) 166 (5)
O24—H24B⋯O21vi 0.82 (2) 1.94 (2) 2.759 (4) 174 (5)
O25—H25A⋯O19 0.82 (2) 1.96 (2) 2.779 (4) 177 (5)
O25—H25B⋯O15 0.83 (2) 1.95 (2) 2.751 (4) 165 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y, z-1; (iv) -x+1, -y, -z; (v) -x+2, -y, -z; (vi) x, y-1, z; (vii) x+1, y, z; (viii) -x+2, -y, -z+1; (ix) -x+2, -y+1, -z; (x) -x+1, -y+1, -z.
[Figure 4]
Figure 4
A metallacrown moiety in 1, showing the involvement of the apically coordinated ligands in hydrogen bonds (shown as dotted lines).
[Figure 5]
Figure 5
Difference electron density in 2 around the water mol­ecules O11w, O24w and O25w (using the SHELXLE GUI for SHELXL; Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). Difference electron densities were calculated with water H atoms removed from the final structural model. H-atom positions, refined as described in the Refinement section, are shown. The difference electron-density mesh setting used is 0.28 e Å−3.

The LnIII⋯CuII and CuII⋯CuII separations in the metallamacrocyclic cores of 13 and their EuIII analogue (Table 8[link]) have values typical of hydroxamate 15-metallacrown-5 complexes (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]). The metallamacrocyclic cores [LnCu5(GlyHA)5]3+ are almost planar: the average deviations of non-hydrogen atoms from the Cu5 mean planes do not exceed 0.2 Å, while the deviations of the Ln ions from the Cu5 mean planes have values typical for 15-metallacrown-5 complexes. (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2017b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Zaleski, et al., 2011[Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707-7717.]; Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.],b[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202-5208.]). The largest deviations from the Cu5 mean planes are observed for nitro­gen atoms N8 from amino groups located on the periphery of the metallamacrocyclic [LnCu5(GlyHA)5]3+ cores (Table 8[link]).

The 15-metallacrown-5 units [LnCu5(GlyHA)5]3+ in 13 are non-oligomerised, as is typical for heteropolynuclear 15-metallacrown-5 complexes. The [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] fragments are linked to each other through an extended system of hydrogen bonds. Carbonates coordinated to LnIII ions link each [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] unit with two adjacent metallamacrocycles through O13i⋯H2A—N2 [symmetry code: (i) 2 − x, 1 − y, 1 − z] and O13B⋯H18B—O18w bonds. Nitrate anions in [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] also connect each metalla­macro­cyclic unit with neighbouring cations via O17ii⋯H10A—N10 hydrogen bonds [symmetry code: (ii) x + 1, y, z]. In addition, water mol­ecules coordinated to the CuII ions in 13 also link {LnCu5}3+ cores with adjacent fragments (O18wiii⋯H19B—O19 [symmetry code: (iii) x − 1, y, z], O18w—H18A⋯O4i, O19w—H19A⋯O8iv [symmetry code: (iv) −x + 1, −y, −z], O20w—H20A⋯O10v [symmetry code: (v) −x + 2, −y, −z], O20w—H20B⋯O14vi [symmetry code: (vi) −x + 2, −y + 1, −z], O24w—H24A⋯O2vii [symmetry code: (vii) −x + 2, −y, −z + 1]. Multiple hydrogen bonds connect 15-metallacrown-5 units with non-coordinated water mol­ecules. As mentioned above, one of the the non-coordinated water mol­ecule positions, O23w, is partially occupied, inducing disorder for the nearby carbonate anion, with refined occupancy factors of 0.499 (11), 0.280 (14) and 0.445 (11) in 13, respectively (see the Refinement section for details). Bond distances within the anion are biased because of the disorder, so no assignment of nitrate vs carbonate can be made based on expected N—O or C—O bond distances. However, despite this disorder involving the anions neighbouring the partially occupied water mol­ecule, the nature of the entity as a carbonate anion is clearly resolved in difference electron-density maps. Replacement of the carbonate carbon atom, C11, with a nitro­gen atom results only in a marginal increase in R value (e.g. 3.10 vs 3.07% for compound 2). Thermal parameters of the `nitro­gen' atoms do however become unreasonably large, compared to the neighbouring oxygen atoms, and a positive residual electron density is clearly visible around the central atoms of the anion when refined as nitro­gen (Fig. 6[link]).

[Figure 6]
Figure 6
Displacement ellipsoid plot with difference electron density after refinement of the carbonate ion as a `nitrate' in 2 (using the SHELXLE GUI for SHELXL; Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). The large thermal parameters for the central atoms, compared to neighbouring oxygen atoms, indicates insufficient available electron density for the presence of a `nitro­gen' atom. The difference electron-density mesh setting used is 0.28 e Å−3.

For the other O3X anion, coordinated to Cu4, the opposite observation can be made, and this anion matches the electron density requirements of a nitrate anion.

In summary, we have synthesized three new metallamacrocyclic (Ln = Gd, Dy and Ho) complexes with glycine­hydroxamate, which are isotypic with the first representative of the 15-metallacrown-5 family reported in 1999. The better quality of the new structural data allow us to propose an alternative composition [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5xH2O [LnIII = Gd (1, x = 3.5), Dy (2, x = 3.28) and Ho (3, x = 3.45)] for this series of compounds and the previously reported Eu complex (x = 3.5). The cationic charge of the {LnCu5}3+ metallamacrocyclic cores in 13 is compensated by a monodentate nitrate anion coordinated to a CuII ion and a bidentate carbonate ion linked to the LnIII ions. The presence of capping carbonate anions in metallacrown building blocks can prevent the formation of coordination polymers based on the metallacrown complex.

3. Synthesis and crystallization

Complexes 13 were prepared and isolated as dark-blue single crystals according to the previously reported procedure for the EuIII analogue, using Gd(NO3)3·6H2O, Dy(NO3)3·6H2O and Ho(NO3)3·5H2O, respectively (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 13[link]. The three structures are isotypic and were refined using a common structural model.

Table 13
Experimental details

  Complex 1 Complex 2 Complex 3
Crystal data
Chemical formula [Cu5Gd(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.5H2O [Cu5Dy(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.28H2O [Cu5Ho(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.445H2O
Mr 1190.49 1191.77 1197.21
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 150 150 150
a, b, c (Å) 11.2057 (15), 11.5054 (15), 13.2983 (10) 11.1083 (5), 11.4991 (5), 13.2894 (6) 11.2027 (9), 11.4955 (9), 13.2467 (10)
α, β, γ (°) 94.026 (4), 94.942 (3), 107.558 (3) 93.9235 (16), 94.7713 (17), 107.1470 (17) 94.001 (3), 94.784 (3), 107.518 (3)
V3) 1620.2 (3) 1608.73 (13) 1613.0 (2)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 5.35 5.65 5.77
Crystal size (mm) 0.15 × 0.10 × 0.05 0.25 × 0.21 × 0.11 0.44 × 0.42 × 0.28
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.599, 0.747 0.648, 0.754 0.548, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 118155, 12399, 9545 74286, 8274, 6997 50443, 12306, 10012
Rint 0.056 0.048 0.042
(sin θ/λ)max−1) 0.771 0.676 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.05 0.031, 0.076, 1.08 0.033, 0.082, 1.05
No. of reflections 12399 8274 12306
No. of parameters 570 564 563
No. of restraints 135 133 139
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.06, −1.40 0.99, −1.26 2.80, −2.27
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All carbon- and nitro­gen-bound H atoms, while observed in difference density maps, were placed in calculated positions, with C—H distances of 0.99 Å and N—H distances of 0.91 Å. All H-atom positions of the ordered water mol­ecules were clearly resolved in difference electron-density maps and their positions were refined with O—H and H⋯H distances restrained to 0.84 (2) and 1.36 (2) Å, respectively. The H-atom positions of the disordered water moieties were further restrained based on hydrogen-bonding considerations. In the final refinement cycles, the partially occupied H atoms were set to ride on their carrier oxygen atoms. Uiso values of all H atoms were set to a multiple of their respective carrier atom, with Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(O).

In all three structures, one water mol­ecule position is partially occupied, inducing disorder for the nearby carbonate anion. The two disordered carbonate moieties were restrained to have similar geometries (using SHELXL SAME restraints, esd = 0.02 Å). Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar within a standard deviation of 0.01 Å2 (SIMU restraint of SHELXL). In 1 and 3, the distance of the water oxygen to one of the carbonate oxygen atoms was restrained to be at least 2.80 (2) Å for the moiety that contains the water mol­ecule [2.75 (2) Å for 2]. Subject to these conditions, the occupancy ratios refined to 0.499 (11) to 0.501 (11) for 1, 0.280 (14) to 0.720 (14) for 2 and 0.445 (11) to 0.555 (11) for 3.

There is an indication of additional disorder involving the partially ordered water mol­ecule nearby the carbonate ion. This additional disorder is not well enough resolved to be independently refined and may cause the B alerts in the CIF files of 13. We opted to not attempt to refine additional potentially highly ambiguous disorder.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Pentaaquacarbonatopentakis(glycine hydroxamato)nitratopentacopper(II)gadolinium(III) 3.5-hydrate (Complex_1) top
Crystal data top
[Cu5Gd(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.5H2OZ = 2
Mr = 1190.49F(000) = 1170
Triclinic, P1Dx = 2.440 Mg m3
a = 11.2057 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5054 (15) ÅCell parameters from 9949 reflections
c = 13.2983 (10) Åθ = 3.1–32.5°
α = 94.026 (4)°µ = 5.35 mm1
β = 94.942 (3)°T = 150 K
γ = 107.558 (3)°Rod, blue
V = 1620.2 (3) Å30.15 × 0.10 × 0.05 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
12399 independent reflections
Radiation source: sealed tube X-ray source9545 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.056
ω and phi scansθmax = 33.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.599, Tmax = 0.747k = 1717
118155 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0346P)2 + 2.5135P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
12399 reflectionsΔρmax = 2.06 e Å3
570 parametersΔρmin = 1.40 e Å3
135 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00141 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A water molecule is partially occupied, inducing disorder for the nearby carbonate anion. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. The distance of the water oxygen to one of the carbonate oxygen atoms was restrained to be at least 2.8 Angstrom for the moiety that contains the water molecule.

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water H atom positions of the disordered moiety were further restrained based on hydrogen bonding considerations. Subject to these conditions the occupancy ratio refined to 0.499 (11) to 0.501 (11).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0282 (3)0.3071 (3)0.5735 (2)0.0169 (5)
C21.0133 (3)0.3907 (3)0.6602 (2)0.0198 (6)
H2C1.0114500.3500050.7234780.024*
H2D1.0858020.4667510.6696860.024*
C30.6601 (3)0.4525 (3)0.3876 (2)0.0184 (5)
C40.5624 (3)0.5110 (3)0.3531 (2)0.0237 (6)
H4C0.4923260.4895770.3958530.028*
H4D0.6002530.6012790.3611890.028*
C50.5301 (3)0.2146 (3)0.0120 (2)0.0180 (5)
C60.4908 (3)0.1751 (3)0.0995 (2)0.0211 (6)
H6C0.3982560.1368610.1109880.025*
H6D0.5130500.2479140.1378280.025*
C70.8131 (3)0.0807 (3)0.0320 (2)0.0158 (5)
C80.8535 (3)0.1924 (3)0.0560 (2)0.0185 (5)
H8C0.7781710.2655990.0713590.022*
H8D0.8996280.1822270.1166460.022*
C91.1071 (3)0.0372 (3)0.3184 (2)0.0155 (5)
C101.2060 (3)0.0372 (3)0.4025 (2)0.0182 (5)
H10C1.1833980.1181070.4295790.022*
H10D1.2881310.0235410.3753270.022*
C111.0002 (9)0.3923 (10)0.1657 (8)0.0187 (17)0.499 (11)
O120.8812 (8)0.3500 (10)0.1377 (9)0.0268 (16)0.499 (11)
O131.0398 (17)0.3359 (17)0.2371 (11)0.0221 (18)0.499 (11)
O141.0726 (7)0.4812 (8)0.1298 (7)0.0296 (16)0.499 (11)
O231.3130 (8)0.5342 (7)0.1998 (11)0.100 (5)0.499 (11)
H23A1.324 (17)0.608 (5)0.223 (7)0.150*0.499 (11)
H23B1.242 (5)0.491 (7)0.171 (13)0.150*0.499 (11)
C11B1.0371 (9)0.3913 (10)0.1761 (9)0.0210 (18)0.501 (11)
O12B0.9211 (8)0.3493 (10)0.1322 (8)0.0280 (16)0.501 (11)
O13B1.0555 (17)0.3350 (16)0.2552 (11)0.0231 (19)0.501 (11)
O14B1.1203 (8)0.4785 (8)0.1474 (6)0.0319 (18)0.501 (11)
N10.9476 (2)0.2923 (2)0.49334 (18)0.0184 (5)
N20.8943 (3)0.4211 (3)0.6387 (2)0.0242 (5)
H2A0.9095290.5030640.6536940.029*
H2B0.8369620.3811550.6790070.029*
N30.6792 (3)0.3745 (2)0.32041 (19)0.0194 (5)
N40.5128 (3)0.4690 (3)0.2453 (2)0.0321 (7)
H4A0.5414060.5314890.2064410.038*
H4B0.4271240.4468000.2385240.038*
N50.6111 (2)0.1674 (2)0.05484 (18)0.0177 (5)
N60.5532 (2)0.0865 (2)0.13735 (18)0.0190 (5)
H6A0.5856430.1088220.1960560.023*
H6B0.4960540.0103740.1503770.023*
N70.8504 (2)0.0252 (2)0.05833 (18)0.0161 (4)
N80.9361 (2)0.2106 (2)0.03158 (19)0.0193 (5)
H8A1.0140480.2030190.0128360.023*
H8B0.9036080.2874670.0501440.023*
N91.0599 (2)0.0527 (2)0.32669 (17)0.0157 (4)
N101.2174 (3)0.0598 (3)0.4855 (2)0.0236 (5)
H10A1.2979910.1110810.4955770.028*
H10B1.1991140.0251110.5439710.028*
N110.5782 (3)0.2254 (3)0.6118 (2)0.0282 (6)
Cu11.09871 (3)0.15598 (3)0.45052 (3)0.01629 (7)
Cu20.82345 (3)0.37425 (3)0.49429 (3)0.01666 (7)
Cu30.56789 (4)0.32576 (3)0.19730 (3)0.01924 (8)
Cu40.69162 (3)0.08373 (3)0.03230 (3)0.01653 (7)
Cu50.95028 (3)0.08613 (3)0.15079 (3)0.01552 (7)
Gd10.84770 (2)0.19381 (2)0.24301 (2)0.01278 (4)
O10.9539 (2)0.2085 (2)0.41509 (15)0.0205 (4)
O21.1140 (2)0.2528 (2)0.57995 (15)0.0193 (4)
O30.7698 (2)0.31983 (19)0.35249 (15)0.0186 (4)
O40.7179 (2)0.47939 (19)0.47886 (16)0.0204 (4)
O50.6439 (2)0.2014 (2)0.15887 (15)0.0208 (4)
O60.4844 (2)0.2916 (2)0.05861 (16)0.0213 (4)
O70.8123 (2)0.07808 (19)0.07923 (15)0.0188 (4)
O80.7441 (2)0.04598 (19)0.09994 (15)0.0184 (4)
O90.97139 (19)0.05463 (18)0.24655 (15)0.0164 (4)
O101.0746 (2)0.12244 (19)0.24335 (15)0.0178 (4)
O110.7121 (2)0.0139 (2)0.29536 (17)0.0213 (4)
H11A0.643 (3)0.014 (4)0.316 (3)0.032*
H11B0.719 (4)0.056 (2)0.281 (3)0.032*
O150.6328 (2)0.2178 (2)0.53415 (19)0.0310 (5)
O160.6467 (3)0.2508 (4)0.6961 (2)0.0585 (10)
O170.4642 (3)0.2055 (3)0.6078 (3)0.0426 (7)
O181.2479 (2)0.3217 (2)0.37422 (18)0.0241 (5)
H18A1.266 (4)0.378 (3)0.421 (2)0.036*
H18B1.192 (3)0.336 (4)0.336 (3)0.036*
O190.3869 (2)0.1932 (2)0.26751 (17)0.0235 (5)
H19A0.338 (3)0.154 (4)0.216 (2)0.035*
H19B0.348 (4)0.234 (3)0.297 (3)0.035*
O200.8216 (2)0.2497 (2)0.11207 (19)0.0283 (5)
H20A0.844 (4)0.221 (4)0.165 (2)0.042*
H20B0.839 (4)0.3266 (19)0.113 (4)0.042*
O210.6426 (3)0.6180 (2)0.0939 (2)0.0357 (6)
H21A0.599 (4)0.629 (5)0.043 (3)0.054*
H21B0.685 (4)0.572 (4)0.075 (4)0.054*
O220.8172 (4)0.5178 (3)0.0465 (3)0.0538 (9)
H22A0.824 (6)0.514 (6)0.0174 (18)0.081*
H22B0.850 (6)0.468 (5)0.076 (4)0.081*
O240.7763 (2)0.1972 (2)0.24123 (17)0.0213 (4)
H24A0.805 (4)0.228 (4)0.289 (2)0.032*
H24B0.739 (4)0.264 (2)0.206 (3)0.032*
O250.5128 (2)0.0541 (2)0.36852 (19)0.0266 (5)
H25A0.477 (4)0.102 (4)0.340 (3)0.040*
H25B0.541 (4)0.095 (4)0.425 (2)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (13)0.0140 (12)0.0141 (12)0.0016 (10)0.0034 (10)0.0020 (9)
C20.0288 (15)0.0167 (13)0.0115 (12)0.0042 (11)0.0009 (11)0.0007 (10)
C30.0241 (14)0.0139 (12)0.0158 (12)0.0040 (11)0.0028 (11)0.0003 (10)
C40.0318 (17)0.0204 (14)0.0204 (14)0.0120 (13)0.0012 (12)0.0030 (11)
C50.0200 (13)0.0194 (13)0.0147 (12)0.0062 (11)0.0016 (10)0.0022 (10)
C60.0246 (15)0.0286 (15)0.0134 (12)0.0143 (12)0.0004 (11)0.0001 (11)
C70.0177 (13)0.0158 (12)0.0133 (12)0.0046 (10)0.0019 (10)0.0000 (9)
C80.0252 (14)0.0177 (13)0.0133 (12)0.0089 (11)0.0009 (10)0.0027 (10)
C90.0164 (12)0.0152 (12)0.0142 (12)0.0040 (10)0.0010 (10)0.0024 (9)
C100.0190 (13)0.0186 (13)0.0181 (13)0.0075 (11)0.0003 (10)0.0037 (10)
C110.019 (4)0.021 (3)0.016 (3)0.006 (3)0.003 (3)0.002 (2)
O120.019 (4)0.027 (2)0.030 (3)0.000 (3)0.002 (3)0.011 (2)
O130.021 (4)0.023 (3)0.019 (4)0.003 (3)0.001 (3)0.005 (3)
O140.027 (4)0.027 (3)0.028 (3)0.003 (3)0.003 (3)0.006 (2)
O230.047 (5)0.050 (5)0.203 (13)0.028 (4)0.018 (6)0.007 (6)
C11B0.024 (4)0.019 (2)0.017 (3)0.005 (3)0.002 (3)0.005 (2)
O12B0.026 (4)0.027 (2)0.024 (3)0.003 (3)0.001 (3)0.011 (2)
O13B0.022 (4)0.020 (3)0.023 (5)0.001 (3)0.005 (3)0.001 (3)
O14B0.036 (4)0.026 (3)0.020 (3)0.010 (3)0.009 (3)0.002 (2)
N10.0251 (13)0.0185 (11)0.0115 (10)0.0072 (10)0.0040 (9)0.0032 (9)
N20.0282 (14)0.0270 (13)0.0164 (12)0.0092 (11)0.0003 (10)0.0054 (10)
N30.0264 (13)0.0174 (11)0.0168 (11)0.0109 (10)0.0008 (10)0.0010 (9)
N40.056 (2)0.0267 (14)0.0207 (13)0.0252 (14)0.0001 (13)0.0008 (11)
N50.0210 (12)0.0238 (12)0.0102 (10)0.0106 (10)0.0005 (9)0.0003 (9)
N60.0215 (12)0.0231 (12)0.0123 (10)0.0076 (10)0.0003 (9)0.0002 (9)
N70.0213 (12)0.0164 (11)0.0131 (10)0.0106 (9)0.0004 (9)0.0011 (8)
N80.0221 (12)0.0195 (12)0.0177 (11)0.0098 (10)0.0006 (9)0.0011 (9)
N90.0177 (11)0.0159 (11)0.0130 (10)0.0054 (9)0.0021 (8)0.0007 (8)
N100.0225 (13)0.0275 (13)0.0199 (12)0.0088 (11)0.0050 (10)0.0003 (10)
N110.0271 (14)0.0270 (14)0.0263 (14)0.0020 (11)0.0040 (11)0.0032 (11)
Cu10.01724 (16)0.01941 (16)0.01143 (15)0.00596 (13)0.00150 (12)0.00123 (12)
Cu20.02216 (18)0.01550 (16)0.01149 (15)0.00558 (13)0.00110 (13)0.00207 (12)
Cu30.02855 (19)0.01987 (17)0.01282 (15)0.01423 (15)0.00091 (14)0.00107 (13)
Cu40.01952 (17)0.02133 (17)0.01026 (15)0.01014 (14)0.00125 (12)0.00179 (12)
Cu50.01973 (17)0.01519 (15)0.01250 (15)0.00790 (13)0.00066 (12)0.00106 (12)
Gd10.01725 (7)0.01235 (6)0.00865 (6)0.00532 (5)0.00028 (4)0.00060 (4)
O10.0234 (11)0.0277 (11)0.0114 (9)0.0128 (9)0.0023 (8)0.0074 (8)
O20.0218 (10)0.0217 (10)0.0135 (9)0.0064 (8)0.0011 (8)0.0008 (8)
O30.0256 (11)0.0203 (10)0.0129 (9)0.0124 (8)0.0000 (8)0.0001 (7)
O40.0254 (11)0.0190 (10)0.0159 (9)0.0065 (8)0.0025 (8)0.0031 (8)
O50.0281 (11)0.0277 (11)0.0102 (9)0.0170 (9)0.0026 (8)0.0049 (8)
O60.0283 (11)0.0263 (11)0.0142 (9)0.0169 (9)0.0010 (8)0.0004 (8)
O70.0251 (11)0.0193 (10)0.0150 (9)0.0139 (8)0.0021 (8)0.0036 (7)
O80.0233 (10)0.0213 (10)0.0119 (9)0.0107 (8)0.0013 (8)0.0025 (7)
O90.0198 (10)0.0170 (9)0.0125 (9)0.0083 (8)0.0047 (7)0.0016 (7)
O100.0209 (10)0.0176 (9)0.0163 (9)0.0090 (8)0.0005 (8)0.0003 (7)
O110.0194 (10)0.0185 (10)0.0254 (11)0.0043 (8)0.0041 (9)0.0024 (8)
O150.0318 (13)0.0314 (13)0.0280 (12)0.0052 (10)0.0081 (10)0.0059 (10)
O160.0445 (18)0.087 (3)0.0234 (14)0.0098 (17)0.0007 (13)0.0051 (15)
O170.0271 (13)0.0321 (14)0.070 (2)0.0112 (11)0.0091 (13)0.0005 (14)
O180.0274 (12)0.0211 (11)0.0230 (11)0.0090 (9)0.0002 (9)0.0060 (9)
O190.0230 (11)0.0295 (12)0.0177 (10)0.0101 (9)0.0006 (8)0.0041 (9)
O200.0317 (13)0.0248 (12)0.0303 (13)0.0103 (10)0.0089 (10)0.0017 (10)
O210.0499 (17)0.0296 (13)0.0284 (13)0.0187 (12)0.0119 (12)0.0000 (10)
O220.091 (3)0.0470 (18)0.0389 (17)0.0372 (18)0.0265 (18)0.0148 (15)
O240.0249 (11)0.0196 (10)0.0181 (10)0.0060 (9)0.0014 (8)0.0027 (8)
O250.0262 (12)0.0255 (12)0.0279 (12)0.0083 (10)0.0031 (10)0.0008 (9)
Geometric parameters (Å, º) top
C1—O21.296 (4)N5—Cu41.906 (2)
C1—N11.303 (4)N6—Cu42.005 (2)
C1—C21.501 (4)N6—H6A0.9100
C2—N21.488 (4)N6—H6B0.9100
C2—H2C0.9900N7—O71.397 (3)
C2—H2D0.9900N7—Cu51.901 (2)
C3—O41.295 (4)N8—Cu52.022 (2)
C3—N31.298 (4)N8—H8A0.9100
C3—C41.505 (4)N8—H8B0.9100
C4—N41.483 (4)N9—O91.398 (3)
C4—H4C0.9900N9—Cu11.898 (2)
C4—H4D0.9900N10—Cu12.016 (3)
C5—O61.298 (4)N10—H10A0.9100
C5—N51.302 (4)N10—H10B0.9100
C5—C61.506 (4)N11—O171.223 (4)
C6—N61.485 (4)N11—O151.255 (4)
C6—H6C0.9900N11—O161.266 (4)
C6—H6D0.9900Cu1—O11.929 (2)
C7—N71.292 (4)Cu1—O21.949 (2)
C7—O81.301 (3)Cu1—O182.470 (3)
C7—C81.509 (4)Cu2—O31.929 (2)
C8—N81.490 (4)Cu2—O41.939 (2)
C8—H8C0.9900Cu2—O152.469 (3)
C8—H8D0.9900Cu3—O51.935 (2)
C9—O101.294 (3)Cu3—O61.952 (2)
C9—N91.298 (4)Cu3—O192.444 (2)
C9—C101.506 (4)Cu4—O71.938 (2)
C10—N101.482 (4)Cu4—O81.953 (2)
C10—H10C0.9900Cu4—O202.401 (3)
C10—H10D0.9900Cu5—O91.931 (2)
C11—O141.252 (9)Cu5—O101.939 (2)
C11—O121.284 (9)Cu5—O242.449 (2)
C11—O131.307 (10)Gd1—O112.359 (2)
C11—Gd12.733 (10)Gd1—O32.381 (2)
O12—Gd12.317 (11)Gd1—O72.408 (2)
O13—Gd12.288 (17)Gd1—O92.414 (2)
O23—H23A0.851 (19)Gd1—O12.457 (2)
O23—H23B0.84 (2)Gd1—O52.483 (2)
C11B—O14B1.253 (9)O11—H11A0.840 (19)
C11B—O13B1.307 (10)O11—H11B0.838 (19)
C11B—O12B1.310 (10)O18—H18A0.829 (19)
C11B—Gd12.857 (10)O18—H18B0.830 (19)
O12B—Gd12.396 (10)O19—H19A0.844 (19)
O13B—Gd12.388 (17)O19—H19B0.836 (19)
N1—O11.389 (3)O20—H20A0.847 (19)
N1—Cu21.902 (3)O20—H20B0.849 (19)
N2—Cu21.985 (3)O21—H21A0.840 (19)
N2—H2A0.9100O21—H21B0.849 (19)
N2—H2B0.9100O22—H22A0.86 (2)
N3—O31.399 (3)O22—H22B0.87 (2)
N3—Cu31.910 (3)O24—H24A0.833 (19)
N4—Cu32.010 (3)O24—H24B0.839 (19)
N4—H4A0.9100O25—H25A0.861 (19)
N4—H4B0.9100O25—H25B0.845 (19)
N5—O51.397 (3)
O2—C1—N1123.2 (3)O4—Cu2—O1586.11 (9)
O2—C1—C2121.7 (3)N2—Cu2—O1593.88 (11)
N1—C1—C2115.1 (3)N3—Cu3—O590.98 (10)
N2—C2—C1109.7 (2)N3—Cu3—O6168.46 (11)
N2—C2—H2C109.7O5—Cu3—O685.44 (9)
C1—C2—H2C109.7N3—Cu3—N482.70 (12)
N2—C2—H2D109.7O5—Cu3—N4172.15 (13)
C1—C2—H2D109.7O6—Cu3—N499.85 (11)
H2C—C2—H2D108.2N3—Cu3—O1997.56 (10)
O4—C3—N3124.2 (3)O5—Cu3—O1997.57 (9)
O4—C3—C4120.7 (3)O6—Cu3—O1993.78 (9)
N3—C3—C4115.1 (3)N4—Cu3—O1987.90 (12)
N4—C4—C3110.7 (2)N5—Cu4—O791.39 (9)
N4—C4—H4C109.5N5—Cu4—O8161.67 (10)
C3—C4—H4C109.5O7—Cu4—O884.56 (8)
N4—C4—H4D109.5N5—Cu4—N683.88 (10)
C3—C4—H4D109.5O7—Cu4—N6174.00 (10)
H4C—C4—H4D108.1O8—Cu4—N698.79 (9)
O6—C5—N5124.4 (3)N5—Cu4—O20101.61 (10)
O6—C5—C6120.0 (3)O7—Cu4—O2099.20 (9)
N5—C5—C6115.6 (3)O8—Cu4—O2096.69 (9)
N6—C6—C5111.2 (2)N6—Cu4—O2085.40 (10)
N6—C6—H6C109.4N7—Cu5—O989.59 (9)
C5—C6—H6C109.4N7—Cu5—O10170.23 (10)
N6—C6—H6D109.4O9—Cu5—O1085.57 (8)
C5—C6—H6D109.4N7—Cu5—N883.14 (10)
H6C—C6—H6D108.0O9—Cu5—N8169.38 (10)
N7—C7—O8123.8 (3)O10—Cu5—N8100.42 (9)
N7—C7—C8116.0 (2)N7—Cu5—O2495.81 (9)
O8—C7—C8120.2 (2)O9—Cu5—O2487.44 (8)
N8—C8—C7110.4 (2)O10—Cu5—O2492.45 (8)
N8—C8—H8C109.6N8—Cu5—O24100.96 (9)
C7—C8—H8C109.6O13—Gd1—O1256.4 (3)
N8—C8—H8D109.6O13—Gd1—O11153.9 (3)
C7—C8—H8D109.6O12—Gd1—O11149.4 (2)
H8C—C8—H8D108.1O13—Gd1—O396.0 (6)
O10—C9—N9123.9 (3)O12—Gd1—O386.3 (3)
O10—C9—C10120.3 (2)O11—Gd1—O391.62 (8)
N9—C9—C10115.8 (2)O11—Gd1—O13B147.7 (3)
N10—C10—C9110.9 (2)O3—Gd1—O13B95.0 (5)
N10—C10—H10C109.5O11—Gd1—O12B156.6 (2)
C9—C10—H10C109.5O3—Gd1—O12B94.1 (3)
N10—C10—H10D109.5O13B—Gd1—O12B54.1 (3)
C9—C10—H10D109.5O13—Gd1—O7102.1 (5)
H10C—C10—H10D108.0O12—Gd1—O779.3 (3)
O14—C11—O12123.6 (9)O11—Gd1—O785.23 (8)
O14—C11—O13122.2 (9)O3—Gd1—O7144.85 (7)
O12—C11—O13114.2 (9)O13B—Gd1—O7106.2 (5)
O14—C11—Gd1178.1 (8)O12B—Gd1—O777.1 (3)
O12—C11—Gd157.7 (6)O13—Gd1—O982.7 (5)
O13—C11—Gd156.5 (7)O12—Gd1—O9122.3 (2)
C11—O12—Gd194.3 (7)O11—Gd1—O975.95 (7)
C11—O13—Gd195.0 (8)O3—Gd1—O9141.57 (7)
H23A—O23—H23B119 (10)O13B—Gd1—O979.4 (5)
O14B—C11B—O13B123.7 (10)O12B—Gd1—O9111.8 (3)
O14B—C11B—O12B123.8 (9)O7—Gd1—O971.27 (6)
O13B—C11B—O12B112.5 (9)O13—Gd1—O176.8 (3)
O14B—C11B—Gd1179.5 (9)O12—Gd1—O1125.7 (3)
O13B—C11B—Gd156.1 (7)O11—Gd1—O181.98 (8)
O12B—C11B—Gd156.4 (5)O3—Gd1—O171.71 (7)
C11B—O12B—Gd196.5 (7)O13B—Gd1—O170.3 (3)
C11B—O13B—Gd196.9 (8)O12B—Gd1—O1121.3 (2)
C1—N1—O1116.0 (2)O7—Gd1—O1141.68 (7)
C1—N1—Cu2119.25 (19)O9—Gd1—O170.62 (7)
O1—N1—Cu2124.58 (18)O13—Gd1—O5125.4 (3)
C2—N2—Cu2111.49 (18)O12—Gd1—O569.6 (2)
C2—N2—H2A109.3O11—Gd1—O580.69 (8)
Cu2—N2—H2A109.3O3—Gd1—O572.08 (7)
C2—N2—H2B109.3O13B—Gd1—O5131.3 (3)
Cu2—N2—H2B109.3O12B—Gd1—O579.6 (2)
H2A—N2—H2B108.0O7—Gd1—O572.87 (7)
C3—N3—O3115.2 (2)O9—Gd1—O5138.36 (7)
C3—N3—Cu3118.8 (2)O1—Gd1—O5139.11 (7)
O3—N3—Cu3125.28 (18)O13—Gd1—C1128.5 (3)
C4—N4—Cu3110.4 (2)O12—Gd1—C1127.9 (2)
C4—N4—H4A109.6O11—Gd1—C11175.0 (3)
Cu3—N4—H4A109.6O3—Gd1—C1192.2 (3)
C4—N4—H4B109.6O7—Gd1—C1189.8 (3)
Cu3—N4—H4B109.6O9—Gd1—C11102.9 (2)
H4A—N4—H4B108.1O1—Gd1—C11102.3 (2)
C5—N5—O5115.2 (2)O5—Gd1—C1197.4 (2)
C5—N5—Cu4117.2 (2)O11—Gd1—C11B171.5 (2)
O5—N5—Cu4126.74 (18)O3—Gd1—C11B95.6 (2)
C6—N6—Cu4109.20 (18)O13B—Gd1—C11B27.0 (2)
C6—N6—H6A109.8O12B—Gd1—C11B27.1 (2)
Cu4—N6—H6A109.8O7—Gd1—C11B91.4 (2)
C6—N6—H6B109.8O9—Gd1—C11B95.6 (2)
Cu4—N6—H6B109.8O1—Gd1—C11B96.0 (2)
H6A—N6—H6B108.3O5—Gd1—C11B105.8 (2)
C7—N7—O7115.2 (2)N1—O1—Cu1107.85 (16)
C7—N7—Cu5119.6 (2)N1—O1—Gd1123.02 (16)
O7—N7—Cu5125.20 (17)Cu1—O1—Gd1125.67 (9)
C8—N8—Cu5110.78 (17)C1—O2—Cu1107.29 (17)
C8—N8—H8A109.5N3—O3—Cu2107.71 (15)
Cu5—N8—H8A109.5N3—O3—Gd1123.98 (15)
C8—N8—H8B109.5Cu2—O3—Gd1128.20 (10)
Cu5—N8—H8B109.5C3—O4—Cu2106.89 (18)
H8A—N8—H8B108.1N5—O5—Cu3107.81 (16)
C9—N9—O9115.5 (2)N5—O5—Gd1120.57 (16)
C9—N9—Cu1118.54 (19)Cu3—O5—Gd1123.24 (10)
O9—N9—Cu1125.47 (17)C5—O6—Cu3106.60 (18)
C10—N10—Cu1110.37 (18)N7—O7—Cu4107.98 (15)
C10—N10—H10A109.6N7—O7—Gd1124.61 (15)
Cu1—N10—H10A109.6Cu4—O7—Gd1125.52 (9)
C10—N10—H10B109.6C7—O8—Cu4106.96 (17)
Cu1—N10—H10B109.6N9—O9—Cu5107.74 (15)
H10A—N10—H10B108.1N9—O9—Gd1125.05 (15)
O17—N11—O15122.5 (3)Cu5—O9—Gd1126.68 (9)
O17—N11—O16120.9 (3)C9—O10—Cu5107.26 (17)
O15—N11—O16116.5 (3)Gd1—O11—H11A120 (3)
N9—Cu1—O189.32 (9)Gd1—O11—H11B122 (3)
N9—Cu1—O2172.09 (10)H11A—O11—H11B115 (4)
O1—Cu1—O285.28 (9)N11—O15—Cu2124.8 (2)
N9—Cu1—N1083.70 (10)Cu1—O18—H18A101 (3)
O1—Cu1—N10165.70 (11)Cu1—O18—H18B94 (3)
O2—Cu1—N10100.27 (10)H18A—O18—H18B104 (4)
N9—Cu1—O1891.70 (9)Cu3—O19—H19A105 (3)
O1—Cu1—O1895.08 (9)Cu3—O19—H19B111 (3)
O2—Cu1—O1894.54 (8)H19A—O19—H19B106 (4)
N10—Cu1—O1897.58 (10)Cu4—O20—H20A109 (3)
N1—Cu2—O390.48 (9)Cu4—O20—H20B140 (3)
N1—Cu2—O4168.71 (10)H20A—O20—H20B108 (4)
O3—Cu2—O485.63 (9)H21A—O21—H21B110 (5)
N1—Cu2—N282.87 (11)H22A—O22—H22B111 (6)
O3—Cu2—N2173.32 (10)Cu5—O24—H24A109 (3)
O4—Cu2—N2100.83 (10)Cu5—O24—H24B107 (3)
N1—Cu2—O15104.38 (10)H24A—O24—H24B95 (4)
O3—Cu2—O1588.22 (9)H25A—O25—H25B100 (4)
O2—C1—C2—N2169.6 (3)C10—C9—N9—Cu19.9 (3)
N1—C1—C2—N29.2 (4)C9—C10—N10—Cu11.5 (3)
O4—C3—C4—N4178.1 (3)C9—N9—Cu1—O1160.3 (2)
N3—C3—C4—N42.6 (4)O9—N9—Cu1—O111.1 (2)
O6—C5—C6—N6179.6 (3)C9—N9—Cu1—N107.2 (2)
N5—C5—C6—N60.9 (4)O9—N9—Cu1—N10178.6 (2)
N7—C7—C8—N83.0 (4)C9—N9—Cu1—O18104.6 (2)
O8—C7—C8—N8177.5 (2)O9—N9—Cu1—O1884.0 (2)
O10—C9—C10—N10173.5 (3)C1—N1—O1—Cu16.3 (3)
N9—C9—C10—N107.1 (4)Cu2—N1—O1—Cu1178.65 (14)
O14—C11—O12—Gd1178.3 (11)C1—N1—O1—Gd1166.34 (19)
O13—C11—O12—Gd13.1 (13)Cu2—N1—O1—Gd118.6 (3)
O14—C11—O13—Gd1178.2 (10)N1—C1—O2—Cu11.7 (3)
O12—C11—O13—Gd13.2 (13)C2—C1—O2—Cu1179.6 (2)
O14B—C11B—O12B—Gd1179.5 (10)C3—N3—O3—Cu24.8 (3)
O13B—C11B—O12B—Gd11.7 (13)Cu3—N3—O3—Cu2165.22 (15)
O14B—C11B—O13B—Gd1179.5 (10)C3—N3—O3—Gd1171.5 (2)
O12B—C11B—O13B—Gd11.7 (13)Cu3—N3—O3—Gd118.4 (3)
O2—C1—N1—O13.2 (4)N3—C3—O4—Cu23.9 (4)
C2—C1—N1—O1175.5 (2)C4—C3—O4—Cu2175.3 (2)
O2—C1—N1—Cu2178.5 (2)C5—N5—O5—Cu36.9 (3)
C2—C1—N1—Cu20.2 (3)Cu4—N5—O5—Cu3161.96 (15)
C1—C2—N2—Cu213.4 (3)C5—N5—O5—Gd1156.0 (2)
O4—C3—N3—O30.6 (4)Cu4—N5—O5—Gd112.8 (3)
C4—C3—N3—O3179.9 (2)N5—C5—O6—Cu33.2 (4)
O4—C3—N3—Cu3170.1 (2)C6—C5—O6—Cu3176.2 (2)
C4—C3—N3—Cu39.1 (4)C7—N7—O7—Cu49.2 (3)
C3—C4—N4—Cu311.8 (3)Cu5—N7—O7—Cu4171.09 (14)
O6—C5—N5—O52.5 (4)C7—N7—O7—Gd1174.27 (19)
C6—C5—N5—O5178.0 (2)Cu5—N7—O7—Gd16.0 (3)
O6—C5—N5—Cu4167.4 (2)N7—C7—O8—Cu48.2 (3)
C6—C5—N5—Cu412.1 (4)C8—C7—O8—Cu4171.2 (2)
C5—C6—N6—Cu412.1 (3)C9—N9—O9—Cu51.1 (3)
O8—C7—N7—O70.7 (4)Cu1—N9—O9—Cu5170.58 (13)
C8—C7—N7—O7179.9 (2)C9—N9—O9—Gd1173.21 (19)
O8—C7—N7—Cu5179.6 (2)Cu1—N9—O9—Gd11.5 (3)
C8—C7—N7—Cu50.2 (4)N9—C9—O10—Cu51.1 (3)
C7—C8—N8—Cu54.2 (3)C10—C9—O10—Cu5178.2 (2)
O10—C9—N9—O91.6 (4)O17—N11—O15—Cu2131.9 (3)
C10—C9—N9—O9177.8 (2)O16—N11—O15—Cu250.5 (4)
O10—C9—N9—Cu1170.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23A···O16i0.85 (2)1.81 (2)2.642 (10)165 (10)
O23—H23B···O140.84 (2)1.90 (2)2.644 (10)148 (5)
N2—H2A···O13i0.912.173.00 (2)151
N2—H2A···O13Bi0.912.062.92 (2)157
N2—H2B···O160.912.253.068 (4)150
N4—H4A···O210.912.082.932 (4)155
N4—H4B···O23ii0.911.912.604 (8)132
N6—H6A···O16iii0.912.243.061 (4)150
N6—H6B···N5iv0.912.533.268 (4)139
N6—H6B···O5iv0.912.463.357 (4)171
N8—H8A···O7v0.912.513.299 (4)145
N8—H8A···O20v0.912.393.005 (4)125
N8—H8B···O22vi0.912.153.033 (4)163
N10—H10A···O17vii0.912.223.025 (4)146
N10—H10B···O11viii0.912.413.192 (4)145
O11—H11A···O250.84 (2)1.84 (2)2.662 (3)166 (4)
O11—H11B···O240.84 (2)1.98 (2)2.798 (3)167 (4)
O18—H18A···O4i0.83 (2)1.99 (2)2.813 (3)169 (4)
O18—H18B···O130.83 (2)2.07 (2)2.886 (14)170 (4)
O18—H18B···O13B0.83 (2)1.79 (2)2.612 (14)169 (5)
O19—H19A···O8iv0.84 (2)1.89 (2)2.719 (3)167 (4)
O19—H19B···O18ii0.84 (2)2.01 (2)2.847 (3)176 (4)
O20—H20A···O10v0.85 (2)1.96 (3)2.750 (3)156 (5)
O20—H20B···O14ix0.85 (2)2.17 (2)2.997 (9)165 (4)
O20—H20B···O14Bix0.85 (2)2.24 (2)3.075 (9)169 (4)
O21—H21A···O6x0.84 (2)2.00 (2)2.813 (3)163 (5)
O21—H21B···O220.85 (2)1.83 (2)2.650 (5)162 (5)
O22—H22A···O14ix0.86 (2)1.96 (4)2.742 (9)150 (6)
O22—H22A···O14Bix0.86 (2)1.89 (3)2.730 (8)166 (6)
O22—H22B···O120.87 (2)1.74 (3)2.594 (12)168 (6)
O22—H22B···O140.87 (2)2.49 (5)3.137 (9)131 (5)
O22—H22B···O12B0.87 (2)1.94 (2)2.803 (11)176 (6)
O24—H24A···O2viii0.83 (2)1.98 (2)2.785 (3)163 (4)
O24—H24B···O21vi0.84 (2)1.95 (2)2.755 (3)161 (4)
O25—H25A···O190.86 (2)1.92 (2)2.773 (3)173 (5)
O25—H25B···O150.85 (2)1.93 (2)2.754 (4)166 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+2, y, z+1; (ix) x+2, y+1, z; (x) x+1, y+1, z.
Pentaaquacarbonatopentakis(glycine hydroxamato)nitratopentacopper(II)dysprosium(III) 3.28-hydrate (Complex_2) top
Crystal data top
[Cu5Dy(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.28H2OZ = 2
Mr = 1191.77F(000) = 1170
Triclinic, P1Dx = 2.460 Mg m3
a = 11.1083 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4991 (5) ÅCell parameters from 9708 reflections
c = 13.2894 (6) Åθ = 3.1–28.6°
α = 93.9235 (16)°µ = 5.65 mm1
β = 94.7713 (17)°T = 150 K
γ = 107.1470 (17)°Block, blue
V = 1608.73 (13) Å30.25 × 0.21 × 0.11 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
8274 independent reflections
Radiation source: sealed tube X-ray source6997 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.048
ω and phi scansθmax = 28.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.648, Tmax = 0.754k = 1515
74286 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0283P)2 + 7.9239P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
8274 reflectionsΔρmax = 0.99 e Å3
564 parametersΔρmin = 1.26 e Å3
133 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00073 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure is isotypic to its Gd analogue, AVP815, and was solved by isomorphous replacement. A water molecule is partially occupied, inducing disorder for the nearby carbonate anion. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. The distance of the water oxygen to one of the carbonate oxygen atoms was restrained to be at least 2.75 Angstrom for the moiety that contains the water molecule.

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water H atom positions of the disordered moiety were further restrained based on hydrogen bonding considerations. In the final refinement cycles the partially occupied H atoms were set to ride on their carrier oxygen atom. Subject to these conditions the occupancy ratio refined to 0.280 (14) to 0.720 (14).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0262 (4)0.3060 (4)0.5723 (3)0.0144 (7)
C21.0110 (4)0.3901 (4)0.6587 (3)0.0179 (8)
H2C1.0084190.3494700.7221530.022*
H2D1.0842430.4653870.6680600.022*
C30.6572 (4)0.4541 (4)0.3859 (3)0.0165 (8)
C40.5587 (4)0.5142 (4)0.3520 (3)0.0212 (9)
H4C0.4893680.4951170.3962680.025*
H4D0.5975170.6040640.3580820.025*
C50.5288 (4)0.2157 (4)0.0107 (3)0.0161 (8)
C60.4890 (4)0.1761 (4)0.0999 (3)0.0191 (8)
H6C0.3958960.1388730.1109900.023*
H6D0.5117060.2483960.1389410.023*
C70.8143 (4)0.0808 (4)0.0313 (3)0.0137 (7)
C80.8543 (4)0.1927 (4)0.0548 (3)0.0167 (8)
H8C0.7784010.2652530.0689360.020*
H8D0.8999910.1836630.1160180.020*
C91.1083 (4)0.0375 (4)0.3189 (3)0.0139 (7)
C101.2074 (4)0.0386 (4)0.4026 (3)0.0174 (8)
H10C1.1853440.1198340.4290570.021*
H10D1.2904390.0240000.3755910.021*
C110.999 (2)0.391 (2)0.165 (2)0.022 (3)0.280 (14)
O120.8801 (17)0.350 (2)0.1404 (16)0.023 (3)0.280 (14)
O131.045 (3)0.334 (3)0.2344 (18)0.024 (3)0.280 (14)
O141.0694 (15)0.4834 (17)0.1307 (14)0.029 (4)0.280 (14)
O231.3131 (16)0.5344 (19)0.198 (2)0.111 (13)0.280 (14)
H23A1.2986620.5933300.2304520.167*0.280 (14)
H23B1.2431990.4861080.1718350.167*0.280 (14)
C11B1.0347 (8)0.3924 (8)0.1751 (7)0.0201 (16)0.720 (14)
O12B0.9201 (8)0.3484 (8)0.1307 (6)0.0274 (15)0.720 (14)
O13B1.0523 (12)0.3364 (10)0.2565 (6)0.0217 (15)0.720 (14)
O14B1.1204 (8)0.4780 (6)0.1476 (5)0.0304 (17)0.720 (14)
N10.9464 (3)0.2917 (3)0.4929 (2)0.0162 (7)
N20.8921 (4)0.4220 (4)0.6368 (3)0.0227 (8)
H2A0.9077850.5039390.6513350.027*
H2B0.8340020.3829470.6773050.027*
N30.6771 (4)0.3763 (3)0.3186 (3)0.0180 (7)
N40.5064 (4)0.4693 (4)0.2446 (3)0.0269 (9)
H4A0.5320370.5311240.2045120.032*
H4B0.4202560.4454190.2396990.032*
N50.6108 (3)0.1700 (3)0.0538 (2)0.0163 (7)
N60.5516 (3)0.0862 (3)0.1372 (2)0.0163 (7)
H6A0.5836390.1071480.1964660.020*
H6B0.4940360.0104170.1488830.020*
N70.8515 (3)0.0248 (3)0.0586 (2)0.0140 (6)
N80.9383 (3)0.2107 (3)0.0324 (2)0.0161 (7)
H8A1.0166970.2032910.0131730.019*
H8B0.9062750.2873050.0515330.019*
N91.0612 (3)0.0525 (3)0.3265 (2)0.0140 (6)
N101.2167 (4)0.0571 (4)0.4862 (3)0.0211 (7)
H10A1.2976720.1078650.4974660.025*
H10B1.1968100.0214310.5441380.025*
N110.5764 (4)0.2266 (4)0.6120 (3)0.0249 (8)
Cu11.09805 (5)0.15432 (4)0.45064 (3)0.01439 (10)
Cu20.82144 (5)0.37532 (4)0.49270 (3)0.01460 (10)
Cu30.56561 (5)0.32746 (5)0.19608 (4)0.01661 (11)
Cu40.69158 (5)0.08435 (5)0.03239 (3)0.01462 (10)
Cu50.95212 (5)0.08593 (4)0.15104 (3)0.01321 (10)
Dy10.84875 (2)0.19510 (2)0.24230 (2)0.01371 (6)
O10.9519 (3)0.2074 (3)0.4149 (2)0.0176 (6)
O21.1124 (3)0.2513 (3)0.5797 (2)0.0169 (6)
O30.7689 (3)0.3219 (3)0.3506 (2)0.0160 (6)
O40.7152 (3)0.4811 (3)0.4763 (2)0.0189 (6)
O50.6460 (3)0.2048 (3)0.1576 (2)0.0190 (6)
O60.4823 (3)0.2928 (3)0.0572 (2)0.0191 (6)
O70.8131 (3)0.0785 (3)0.0789 (2)0.0168 (6)
O80.7442 (3)0.0466 (3)0.0994 (2)0.0158 (6)
O90.9731 (3)0.0552 (3)0.2462 (2)0.0145 (5)
O101.0775 (3)0.1224 (3)0.2439 (2)0.0156 (6)
O110.7120 (3)0.0153 (3)0.2935 (2)0.0202 (6)
H11A0.646 (3)0.008 (5)0.322 (4)0.030*
H11B0.720 (5)0.054 (3)0.284 (4)0.030*
O150.6305 (3)0.2204 (3)0.5340 (3)0.0289 (7)
O160.6442 (4)0.2556 (5)0.6960 (3)0.0562 (13)
O170.4608 (3)0.2031 (3)0.6087 (3)0.0378 (9)
O181.2494 (3)0.3207 (3)0.3755 (2)0.0222 (6)
H18A1.272 (5)0.377 (4)0.422 (3)0.033*
H18B1.197 (4)0.334 (5)0.333 (3)0.033*
O190.3864 (3)0.1929 (3)0.2659 (2)0.0208 (6)
H19A0.337 (4)0.153 (5)0.218 (3)0.031*
H19B0.340 (5)0.225 (5)0.295 (4)0.031*
O200.8193 (3)0.2509 (3)0.1131 (3)0.0244 (7)
H20A0.848 (5)0.225 (5)0.162 (3)0.037*
H20B0.838 (6)0.3269 (19)0.105 (5)0.037*
O210.6433 (4)0.6160 (3)0.0964 (3)0.0301 (8)
H21A0.606 (6)0.639 (6)0.048 (3)0.045*
H21B0.685 (5)0.573 (5)0.070 (5)0.045*
O220.8208 (5)0.5167 (4)0.0461 (3)0.0469 (11)
H22A0.847 (7)0.523 (7)0.012 (3)0.070*
H22B0.852 (7)0.466 (6)0.073 (6)0.070*
O240.7778 (3)0.1964 (3)0.2415 (2)0.0181 (6)
H24A0.806 (5)0.226 (5)0.290 (3)0.027*
H24B0.739 (5)0.259 (3)0.204 (3)0.027*
O250.5139 (3)0.0557 (3)0.3692 (3)0.0248 (7)
H25A0.474 (5)0.101 (5)0.347 (4)0.037*
H25B0.538 (6)0.097 (5)0.425 (3)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (19)0.0133 (18)0.0110 (17)0.0007 (15)0.0037 (14)0.0030 (14)
C20.024 (2)0.0163 (19)0.0109 (17)0.0026 (16)0.0017 (15)0.0023 (14)
C30.021 (2)0.0118 (18)0.0153 (18)0.0030 (15)0.0036 (15)0.0001 (14)
C40.031 (2)0.016 (2)0.019 (2)0.0121 (18)0.0001 (17)0.0009 (16)
C50.021 (2)0.0170 (19)0.0109 (17)0.0061 (16)0.0002 (15)0.0021 (14)
C60.024 (2)0.026 (2)0.0105 (18)0.0138 (18)0.0013 (15)0.0009 (15)
C70.0146 (18)0.0150 (18)0.0117 (17)0.0045 (15)0.0026 (14)0.0015 (14)
C80.022 (2)0.0159 (19)0.0127 (18)0.0078 (16)0.0009 (15)0.0016 (14)
C90.0141 (18)0.0138 (18)0.0132 (17)0.0031 (14)0.0018 (14)0.0025 (14)
C100.0170 (19)0.0191 (19)0.0174 (19)0.0078 (16)0.0005 (15)0.0011 (15)
C110.028 (5)0.022 (4)0.016 (4)0.006 (5)0.006 (5)0.000 (4)
O120.022 (6)0.026 (4)0.019 (5)0.003 (5)0.010 (5)0.006 (4)
O130.027 (5)0.023 (4)0.015 (5)0.002 (4)0.008 (5)0.001 (5)
O140.030 (7)0.029 (6)0.020 (6)0.003 (6)0.002 (6)0.004 (5)
O230.052 (13)0.058 (13)0.23 (4)0.042 (11)0.013 (16)0.019 (16)
C11B0.029 (4)0.017 (2)0.013 (3)0.006 (3)0.006 (3)0.002 (2)
O12B0.031 (4)0.026 (2)0.022 (3)0.001 (3)0.007 (3)0.0090 (19)
O13B0.025 (3)0.021 (2)0.015 (4)0.002 (2)0.000 (3)0.001 (3)
O14B0.041 (4)0.023 (3)0.018 (3)0.004 (3)0.009 (3)0.001 (2)
N10.0246 (18)0.0153 (16)0.0084 (15)0.0058 (14)0.0042 (13)0.0038 (12)
N20.027 (2)0.026 (2)0.0151 (17)0.0114 (16)0.0011 (14)0.0049 (14)
N30.0274 (19)0.0159 (16)0.0140 (16)0.0114 (14)0.0019 (14)0.0022 (13)
N40.045 (3)0.0235 (19)0.0176 (18)0.0205 (18)0.0008 (17)0.0010 (15)
N50.0189 (17)0.0201 (17)0.0112 (15)0.0095 (14)0.0016 (13)0.0013 (13)
N60.0184 (17)0.0213 (17)0.0107 (15)0.0092 (14)0.0001 (13)0.0008 (13)
N70.0200 (17)0.0120 (15)0.0125 (15)0.0088 (13)0.0030 (13)0.0008 (12)
N80.0201 (17)0.0165 (16)0.0130 (15)0.0080 (14)0.0007 (13)0.0002 (12)
N90.0139 (16)0.0185 (16)0.0087 (14)0.0048 (13)0.0035 (12)0.0003 (12)
N100.0219 (19)0.028 (2)0.0145 (16)0.0113 (15)0.0035 (14)0.0008 (14)
N110.024 (2)0.026 (2)0.0220 (19)0.0033 (16)0.0022 (15)0.0022 (15)
Cu10.0158 (2)0.0178 (2)0.0092 (2)0.00580 (19)0.00147 (17)0.00123 (17)
Cu20.0202 (2)0.0138 (2)0.0094 (2)0.00534 (19)0.00115 (18)0.00185 (17)
Cu30.0250 (3)0.0173 (2)0.0107 (2)0.0125 (2)0.00060 (19)0.00092 (18)
Cu40.0181 (2)0.0191 (2)0.0083 (2)0.00965 (19)0.00130 (17)0.00176 (17)
Cu50.0177 (2)0.0126 (2)0.0102 (2)0.00695 (18)0.00060 (17)0.00128 (17)
Dy10.01860 (10)0.01323 (9)0.00956 (9)0.00606 (7)0.00016 (6)0.00055 (6)
O10.0217 (15)0.0213 (15)0.0108 (13)0.0110 (12)0.0017 (11)0.0079 (11)
O20.0203 (15)0.0198 (14)0.0106 (13)0.0067 (12)0.0002 (11)0.0003 (11)
O30.0210 (15)0.0171 (14)0.0130 (13)0.0116 (12)0.0002 (11)0.0009 (11)
O40.0242 (16)0.0183 (14)0.0143 (13)0.0071 (12)0.0024 (11)0.0016 (11)
O50.0279 (16)0.0280 (16)0.0053 (12)0.0174 (13)0.0034 (11)0.0037 (11)
O60.0248 (16)0.0220 (15)0.0141 (13)0.0140 (13)0.0017 (11)0.0010 (11)
O70.0244 (15)0.0170 (14)0.0130 (13)0.0145 (12)0.0024 (11)0.0041 (11)
O80.0198 (14)0.0192 (14)0.0091 (12)0.0089 (12)0.0025 (10)0.0025 (10)
O90.0177 (14)0.0164 (13)0.0092 (12)0.0071 (11)0.0055 (10)0.0007 (10)
O100.0195 (14)0.0149 (13)0.0136 (13)0.0081 (11)0.0005 (11)0.0012 (10)
O110.0186 (15)0.0170 (14)0.0247 (16)0.0042 (12)0.0051 (12)0.0019 (12)
O150.0303 (18)0.0313 (18)0.0233 (17)0.0047 (15)0.0068 (14)0.0064 (14)
O160.042 (2)0.088 (4)0.0178 (18)0.011 (2)0.0019 (17)0.003 (2)
O170.0249 (18)0.0300 (19)0.058 (3)0.0085 (15)0.0077 (17)0.0026 (17)
O180.0247 (17)0.0192 (15)0.0212 (16)0.0075 (13)0.0009 (13)0.0087 (12)
O190.0212 (16)0.0255 (16)0.0157 (14)0.0091 (13)0.0000 (12)0.0042 (12)
O200.0289 (18)0.0234 (16)0.0233 (16)0.0108 (14)0.0079 (13)0.0005 (13)
O210.044 (2)0.0262 (18)0.0204 (16)0.0149 (16)0.0072 (15)0.0016 (13)
O220.076 (3)0.044 (2)0.035 (2)0.034 (2)0.021 (2)0.0123 (19)
O240.0230 (16)0.0172 (14)0.0130 (14)0.0053 (12)0.0016 (11)0.0026 (11)
O250.0210 (16)0.0276 (17)0.0270 (17)0.0094 (13)0.0027 (13)0.0016 (14)
Geometric parameters (Å, º) top
C1—N11.289 (5)N5—Cu41.904 (3)
C1—O21.293 (5)N6—Cu42.005 (3)
C1—C21.503 (5)N6—H6A0.9100
C2—N21.484 (6)N6—H6B0.9100
C2—H2C0.9900N7—O71.393 (4)
C2—H2D0.9900N7—Cu51.899 (3)
C3—O41.288 (5)N8—Cu52.021 (3)
C3—N31.299 (5)N8—H8A0.9100
C3—C41.512 (6)N8—H8B0.9100
C4—N41.492 (6)N9—O91.395 (4)
C4—H4C0.9900N9—Cu11.897 (3)
C4—H4D0.9900N10—Cu12.012 (4)
C5—N51.293 (5)N10—H10A0.9100
C5—O61.298 (5)N10—H10B0.9100
C5—C61.499 (5)N11—O171.228 (5)
C6—N61.486 (5)N11—O151.249 (5)
C6—H6C0.9900N11—O161.260 (5)
C6—H6D0.9900Cu1—O11.931 (3)
C7—N71.292 (5)Cu1—O21.949 (3)
C7—O81.301 (5)Cu1—O182.476 (3)
C7—C81.501 (5)Cu2—O31.931 (3)
C8—N81.491 (5)Cu2—O41.939 (3)
C8—H8C0.9900Cu2—O152.464 (3)
C8—H8D0.9900Cu3—O51.941 (3)
C9—N91.293 (5)Cu3—O61.954 (3)
C9—O101.295 (5)Cu3—O192.430 (3)
C9—C101.502 (5)Cu4—O71.936 (3)
C10—N101.484 (5)Cu4—O81.956 (3)
C10—H10C0.9900Cu4—O202.400 (3)
C10—H10D0.9900Cu5—O91.932 (3)
C11—O141.256 (15)Cu5—O101.941 (3)
C11—O121.275 (16)Cu5—O242.440 (3)
C11—O131.318 (16)Dy1—O112.357 (3)
C11—Dy12.704 (19)Dy1—O32.382 (3)
O12—Dy12.27 (2)Dy1—O92.410 (3)
O13—Dy12.31 (3)Dy1—O72.412 (3)
O23—H23A0.8410Dy1—O12.453 (3)
O23—H23B0.8398Dy1—O52.469 (3)
C11B—O14B1.251 (8)O11—H11A0.83 (2)
C11B—O12B1.295 (9)O11—H11B0.82 (2)
C11B—O13B1.326 (8)O18—H18A0.83 (2)
C11B—Dy12.834 (8)O18—H18B0.83 (2)
O12B—Dy12.380 (8)O19—H19A0.82 (2)
O13B—Dy12.347 (12)O19—H19B0.82 (2)
N1—O11.387 (4)O20—H20A0.82 (2)
N1—Cu21.907 (4)O20—H20B0.83 (2)
N2—Cu21.983 (4)O21—H21A0.84 (2)
N2—H2A0.9100O21—H21B0.84 (2)
N2—H2B0.9100O22—H22A0.85 (2)
N3—O31.398 (4)O22—H22B0.85 (2)
N3—Cu31.905 (4)O24—H24A0.83 (2)
N4—Cu32.017 (4)O24—H24B0.83 (2)
N4—H4A0.9100O25—H25A0.83 (2)
N4—H4B0.9100O25—H25B0.83 (2)
N5—O51.399 (4)
N1—C1—O2123.5 (4)O4—Cu2—O1586.41 (12)
N1—C1—C2115.2 (4)N2—Cu2—O1593.60 (15)
O2—C1—C2121.2 (3)N3—Cu3—O590.67 (13)
N2—C2—C1109.7 (3)N3—Cu3—O6168.26 (15)
N2—C2—H2C109.7O5—Cu3—O685.39 (12)
C1—C2—H2C109.7N3—Cu3—N482.79 (15)
N2—C2—H2D109.7O5—Cu3—N4171.97 (16)
C1—C2—H2D109.7O6—Cu3—N4100.11 (14)
H2C—C2—H2D108.2N3—Cu3—O1997.68 (13)
O4—C3—N3124.3 (4)O5—Cu3—O1997.42 (12)
O4—C3—C4120.1 (4)O6—Cu3—O1993.80 (12)
N3—C3—C4115.6 (4)N4—Cu3—O1988.10 (15)
N4—C4—C3110.0 (3)N5—Cu4—O791.62 (13)
N4—C4—H4C109.7N5—Cu4—O8161.94 (14)
C3—C4—H4C109.7O7—Cu4—O884.56 (11)
N4—C4—H4D109.7N5—Cu4—N683.78 (14)
C3—C4—H4D109.7O7—Cu4—N6173.83 (14)
H4C—C4—H4D108.2O8—Cu4—N698.55 (13)
N5—C5—O6123.9 (4)N5—Cu4—O20100.27 (13)
N5—C5—C6116.2 (4)O7—Cu4—O2099.73 (12)
O6—C5—C6119.9 (4)O8—Cu4—O2097.78 (12)
N6—C6—C5111.0 (3)N6—Cu4—O2085.18 (13)
N6—C6—H6C109.4N7—Cu5—O989.53 (12)
C5—C6—H6C109.4N7—Cu5—O10170.19 (14)
N6—C6—H6D109.4O9—Cu5—O1085.47 (11)
C5—C6—H6D109.4N7—Cu5—N883.23 (14)
H6C—C6—H6D108.0O9—Cu5—N8169.36 (13)
N7—C7—O8123.7 (4)O10—Cu5—N8100.49 (13)
N7—C7—C8116.3 (3)N7—Cu5—O2495.86 (13)
O8—C7—C8120.0 (3)O9—Cu5—O2487.84 (11)
N8—C8—C7110.4 (3)O10—Cu5—O2492.38 (11)
N8—C8—H8C109.6N8—Cu5—O24100.61 (13)
C7—C8—H8C109.6O12—Dy1—O1357.1 (6)
N8—C8—H8D109.6O12—Dy1—O11148.9 (5)
C7—C8—H8D109.6O13—Dy1—O11153.5 (6)
H8C—C8—H8D108.1O13B—Dy1—O11148.4 (2)
N9—C9—O10124.2 (4)O13B—Dy1—O12B54.7 (2)
N9—C9—C10116.1 (3)O11—Dy1—O12B155.6 (2)
O10—C9—C10119.6 (3)O12—Dy1—O385.0 (5)
N10—C10—C9110.6 (3)O13—Dy1—O397.2 (8)
N10—C10—H10C109.5O13B—Dy1—O393.6 (3)
C9—C10—H10C109.5O11—Dy1—O392.12 (10)
N10—C10—H10D109.5O12B—Dy1—O393.8 (2)
C9—C10—H10D109.5O12—Dy1—O9123.4 (5)
H10C—C10—H10D108.1O13—Dy1—O981.7 (8)
O14—C11—O12123.4 (18)O13B—Dy1—O980.7 (3)
O14—C11—O13121.3 (19)O11—Dy1—O975.78 (10)
O12—C11—O13115.3 (18)O12B—Dy1—O9112.1 (2)
O14—C11—Dy1179 (2)O3—Dy1—O9141.93 (9)
O12—C11—Dy156.8 (11)O12—Dy1—O780.3 (5)
O13—C11—Dy158.5 (14)O13—Dy1—O7101.5 (7)
C11—O12—Dy195.2 (13)O13B—Dy1—O7107.8 (3)
C11—O13—Dy192.3 (16)O11—Dy1—O784.36 (11)
H23A—O23—H23B107.9O12B—Dy1—O777.1 (2)
O14B—C11B—O12B125.8 (7)O3—Dy1—O7144.46 (9)
O14B—C11B—O13B122.3 (8)O9—Dy1—O771.21 (9)
O12B—C11B—O13B111.8 (7)O12—Dy1—O1126.0 (5)
O14B—C11B—Dy1177.4 (6)O13—Dy1—O177.8 (5)
O12B—C11B—Dy156.6 (4)O13B—Dy1—O170.69 (19)
O13B—C11B—Dy155.3 (5)O11—Dy1—O181.73 (11)
C11B—O12B—Dy196.4 (5)O12B—Dy1—O1122.6 (2)
C11B—O13B—Dy197.0 (6)O3—Dy1—O171.77 (9)
C1—N1—O1116.4 (3)O9—Dy1—O170.83 (9)
C1—N1—Cu2119.4 (3)O7—Dy1—O1141.70 (9)
O1—N1—Cu2124.0 (3)O12—Dy1—O568.7 (5)
C2—N2—Cu2111.6 (3)O13—Dy1—O5125.6 (6)
C2—N2—H2A109.3O13B—Dy1—O5130.3 (2)
Cu2—N2—H2A109.3O11—Dy1—O580.88 (11)
C2—N2—H2B109.3O12B—Dy1—O578.5 (2)
Cu2—N2—H2B109.3O3—Dy1—O571.92 (9)
H2A—N2—H2B108.0O9—Dy1—O5138.36 (9)
C3—N3—O3115.0 (3)O7—Dy1—O572.60 (9)
C3—N3—Cu3119.0 (3)O1—Dy1—O5138.84 (9)
O3—N3—Cu3125.2 (2)O12—Dy1—C1128.0 (4)
C4—N4—Cu3110.8 (3)O13—Dy1—C1129.1 (4)
C4—N4—H4A109.5O11—Dy1—C11174.5 (7)
Cu3—N4—H4A109.5O3—Dy1—C1191.8 (7)
C4—N4—H4B109.5O9—Dy1—C11103.3 (6)
Cu3—N4—H4B109.5O7—Dy1—C1190.2 (7)
H4A—N4—H4B108.1O1—Dy1—C11103.2 (6)
C5—N5—O5116.2 (3)O5—Dy1—C1196.7 (5)
C5—N5—Cu4117.2 (3)O13B—Dy1—C11B27.67 (19)
O5—N5—Cu4125.8 (2)O11—Dy1—C11B172.4 (2)
C6—N6—Cu4109.1 (2)O12B—Dy1—C11B27.0 (2)
C6—N6—H6A109.9O3—Dy1—C11B94.7 (2)
Cu4—N6—H6A109.9O9—Dy1—C11B96.7 (2)
C6—N6—H6B109.9O7—Dy1—C11B92.0 (2)
Cu4—N6—H6B109.9O1—Dy1—C11B97.2 (2)
H6A—N6—H6B108.3O5—Dy1—C11B104.4 (2)
C7—N7—O7115.4 (3)N1—O1—Cu1107.4 (2)
C7—N7—Cu5119.3 (3)N1—O1—Dy1123.3 (2)
O7—N7—Cu5125.3 (2)Cu1—O1—Dy1125.28 (13)
C8—N8—Cu5110.6 (2)C1—O2—Cu1107.0 (2)
C8—N8—H8A109.5N3—O3—Cu2107.7 (2)
Cu5—N8—H8A109.5N3—O3—Dy1124.3 (2)
C8—N8—H8B109.5Cu2—O3—Dy1127.93 (13)
Cu5—N8—H8B109.5C3—O4—Cu2107.0 (3)
H8A—N8—H8B108.1N5—O5—Cu3107.2 (2)
C9—N9—O9115.5 (3)N5—O5—Dy1121.8 (2)
C9—N9—Cu1118.3 (3)Cu3—O5—Dy1123.95 (13)
O9—N9—Cu1125.6 (2)C5—O6—Cu3106.9 (2)
C10—N10—Cu1110.4 (2)N7—O7—Cu4108.0 (2)
C10—N10—H10A109.6N7—O7—Dy1124.6 (2)
Cu1—N10—H10A109.6Cu4—O7—Dy1125.53 (13)
C10—N10—H10B109.6C7—O8—Cu4106.9 (2)
Cu1—N10—H10B109.6N9—O9—Cu5107.8 (2)
H10A—N10—H10B108.1N9—O9—Dy1124.9 (2)
O17—N11—O15122.1 (4)Cu5—O9—Dy1126.77 (12)
O17—N11—O16120.1 (4)C9—O10—Cu5107.0 (2)
O15—N11—O16117.8 (4)Dy1—O11—H11A128 (4)
N9—Cu1—O189.39 (13)Dy1—O11—H11B125 (4)
N9—Cu1—O2172.56 (14)H11A—O11—H11B107 (6)
O1—Cu1—O285.19 (12)N11—O15—Cu2125.3 (3)
N9—Cu1—N1083.73 (14)Cu1—O18—H18A103 (4)
O1—Cu1—N10165.35 (15)Cu1—O18—H18B97 (4)
O2—Cu1—N10100.37 (13)H18A—O18—H18B111 (6)
N9—Cu1—O1891.67 (12)Cu3—O19—H19A107 (4)
O1—Cu1—O1895.28 (12)Cu3—O19—H19B117 (4)
O2—Cu1—O1893.90 (11)H19A—O19—H19B101 (6)
N10—Cu1—O1897.82 (14)Cu4—O20—H20A110 (4)
N1—Cu2—O390.66 (13)Cu4—O20—H20B136 (4)
N1—Cu2—O4168.94 (14)H20A—O20—H20B114 (6)
O3—Cu2—O485.41 (12)H21A—O21—H21B106 (6)
N1—Cu2—N282.65 (15)H22A—O22—H22B106 (7)
O3—Cu2—N2173.24 (14)Cu5—O24—H24A110 (4)
O4—Cu2—N2101.00 (14)Cu5—O24—H24B106 (4)
N1—Cu2—O15103.87 (14)H24A—O24—H24B101 (5)
O3—Cu2—O1588.90 (12)H25A—O25—H25B95 (6)
N1—C1—C2—N29.0 (5)O9—N9—Cu1—O111.1 (3)
O2—C1—C2—N2169.9 (4)C9—N9—Cu1—N107.5 (3)
O4—C3—C4—N4179.4 (4)O9—N9—Cu1—N10178.1 (3)
N3—C3—C4—N40.7 (5)C9—N9—Cu1—O18105.2 (3)
N5—C5—C6—N61.9 (5)O9—N9—Cu1—O1884.2 (3)
O6—C5—C6—N6178.9 (4)C7—N7—Cu5—O9174.1 (3)
N7—C7—C8—N83.7 (5)O7—N7—Cu5—O95.5 (3)
O8—C7—C8—N8177.5 (3)C7—N7—Cu5—N81.9 (3)
N9—C9—C10—N108.5 (5)O7—N7—Cu5—N8177.7 (3)
O10—C9—C10—N10173.1 (3)C7—N7—Cu5—O2498.1 (3)
O14—C11—O12—Dy1179 (3)O7—N7—Cu5—O2482.2 (3)
O13—C11—O12—Dy12 (3)C1—N1—O1—Cu16.8 (4)
O14—C11—O13—Dy1179 (3)Cu2—N1—O1—Cu1178.22 (19)
O12—C11—O13—Dy12 (3)C1—N1—O1—Dy1165.3 (3)
O14B—C11B—O12B—Dy1179.0 (9)Cu2—N1—O1—Dy119.7 (4)
O13B—C11B—O12B—Dy11.8 (9)N1—C1—O2—Cu11.8 (5)
O14B—C11B—O13B—Dy1178.9 (9)C2—C1—O2—Cu1179.4 (3)
O12B—C11B—O13B—Dy11.9 (9)C3—N3—O3—Cu25.3 (4)
O2—C1—N1—O13.6 (6)Cu3—N3—O3—Cu2164.7 (2)
C2—C1—N1—O1175.2 (3)C3—N3—O3—Dy1171.9 (3)
O2—C1—N1—Cu2178.7 (3)Cu3—N3—O3—Dy118.1 (4)
C2—C1—N1—Cu20.0 (5)N3—C3—O4—Cu24.7 (5)
C1—C2—N2—Cu213.2 (4)C4—C3—O4—Cu2175.2 (3)
O4—C3—N3—O30.4 (6)C5—N5—O5—Cu35.6 (4)
C4—C3—N3—O3179.7 (3)Cu4—N5—O5—Cu3163.6 (2)
O4—C3—N3—Cu3170.3 (3)C5—N5—O5—Dy1157.2 (3)
C4—C3—N3—Cu39.7 (5)Cu4—N5—O5—Dy112.0 (4)
C3—C4—N4—Cu39.5 (5)N5—C5—O6—Cu32.5 (5)
O6—C5—N5—O52.2 (6)C6—C5—O6—Cu3176.5 (3)
C6—C5—N5—O5178.7 (3)C7—N7—O7—Cu49.3 (4)
O6—C5—N5—Cu4168.0 (3)Cu5—N7—O7—Cu4171.08 (19)
C6—C5—N5—Cu411.1 (5)C7—N7—O7—Dy1174.4 (3)
C5—C6—N6—Cu412.7 (4)Cu5—N7—O7—Dy16.0 (4)
O8—C7—N7—O71.1 (6)N7—C7—O8—Cu47.6 (5)
C8—C7—N7—O7179.8 (3)C8—C7—O8—Cu4171.1 (3)
O8—C7—N7—Cu5179.3 (3)C9—N9—O9—Cu51.2 (4)
C8—C7—N7—Cu50.5 (5)Cu1—N9—O9—Cu5169.69 (19)
C7—C8—N8—Cu54.8 (4)C9—N9—O9—Dy1172.9 (3)
O10—C9—N9—O90.9 (6)Cu1—N9—O9—Dy12.0 (4)
C10—C9—N9—O9177.5 (3)N9—C9—O10—Cu50.1 (5)
O10—C9—N9—Cu1170.7 (3)C10—C9—O10—Cu5178.2 (3)
C10—C9—N9—Cu111.0 (5)O17—N11—O15—Cu2134.4 (4)
C9—C10—N10—Cu12.5 (4)O16—N11—O15—Cu247.2 (6)
C9—N9—Cu1—O1159.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23A···O16i0.841.842.61 (2)150
O23—H23B···O140.841.952.657 (17)141
N2—H2A···O13i0.912.233.05 (3)150
N2—H2A···O13Bi0.912.052.900 (11)156
N2—H2B···O160.912.233.054 (6)150
N4—H4A···O210.912.082.912 (6)152
N4—H4B···O23ii0.911.862.520 (16)128
N6—H6A···O16iii0.912.293.091 (6)147
N6—H6B···N5iv0.912.543.287 (5)140
N6—H6B···O5iv0.912.493.396 (5)171
N8—H8A···O7v0.912.483.262 (5)144
N8—H8A···O20v0.912.382.989 (5)124
N8—H8B···O22vi0.912.173.045 (6)162
N10—H10A···O17vii0.912.203.005 (5)147
N10—H10B···O11viii0.912.423.198 (5)143
O11—H11A···O250.83 (2)1.86 (3)2.642 (4)157 (6)
O11—H11B···O240.82 (2)2.00 (3)2.800 (4)164 (6)
O18—H18A···O4i0.83 (2)2.01 (2)2.821 (4)165 (6)
O18—H18B···O130.83 (2)2.05 (4)2.87 (3)169 (6)
O18—H18B···O13B0.83 (2)1.84 (3)2.650 (10)165 (6)
O19—H19A···O8iv0.82 (2)1.91 (2)2.710 (4)167 (6)
O19—H19B···O18ii0.82 (2)2.01 (2)2.827 (4)172 (6)
O20—H20A···O10v0.82 (2)1.95 (3)2.738 (4)160 (6)
O20—H20B···O14ix0.83 (2)2.18 (3)2.973 (18)158 (6)
O20—H20B···O14Bix0.83 (2)2.28 (3)3.065 (7)158 (6)
O21—H21A···O6x0.84 (2)1.98 (2)2.810 (4)174 (7)
O21—H21B···O220.84 (2)1.85 (3)2.660 (6)160 (7)
O22—H22A···O14ix0.85 (2)1.91 (3)2.736 (19)166 (8)
O22—H22A···O14Bix0.85 (2)1.87 (2)2.708 (8)171 (8)
O22—H22B···O120.85 (2)1.74 (4)2.57 (2)165 (8)
O22—H22B···O140.85 (2)2.41 (7)3.033 (18)130 (7)
O22—H22B···O12B0.85 (2)1.90 (2)2.753 (10)179 (9)
O24—H24A···O2viii0.83 (2)1.97 (2)2.777 (4)165 (5)
O24—H24B···O21vi0.83 (2)1.95 (2)2.767 (5)168 (5)
O25—H25A···O190.83 (2)1.95 (2)2.769 (5)168 (6)
O25—H25B···O150.83 (2)1.94 (3)2.752 (5)163 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+2, y, z+1; (ix) x+2, y+1, z; (x) x+1, y+1, z.
Pentaaquacarbonatopentakis(glycine hydroxamato)nitratopentacopper(II)holmium(III) 3.445-hydrate (Complex_3) top
Crystal data top
[Cu5Ho(C2H4N2O2)5(CO3)(NO3)(H2O)5]·3.445H2OZ = 2
Mr = 1197.21F(000) = 1174.9
Triclinic, P1Dx = 2.467 Mg m3
a = 11.2027 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4955 (9) ÅCell parameters from 9995 reflections
c = 13.2467 (10) Åθ = 2.3–33.2°
α = 94.001 (3)°µ = 5.77 mm1
β = 94.784 (3)°T = 150 K
γ = 107.518 (3)°Prism, blue
V = 1613.0 (2) Å30.44 × 0.42 × 0.28 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
12306 independent reflections
Radiation source: fine focus sealed tube X-ray source10012 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 33.2°, θmin = 2.5°
ω and phi scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.548, Tmax = 0.747l = 2020
50443 measured reflections
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0289P)2 + 5.881P]
where P = (Fo2 + 2Fc2)/3
12306 reflections(Δ/σ)max = 0.001
563 parametersΔρmax = 2.80 e Å3
139 restraintsΔρmin = 2.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Solved by isomorphous replacement from its Gd analogue.

A water molecule is partially occupied, inducing disorder for the nearby carbonate anion. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. The distance of the water oxygen to one of the carbonate oxygen atoms was restrained to be at least 2.8 Angstrom for the moiety that contains the water molecule.

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water H atom positions of the disordered moiety were further restrained based on hydrogen bonding considerations. Subject to these conditions the occupancy ratio refined to 0.445 (11) to 0.555 (11).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0280 (3)0.3079 (3)0.5731 (2)0.0118 (5)
C21.0125 (3)0.3910 (3)0.6604 (2)0.0141 (6)
H2C1.0092970.3494010.7235920.017*
H2D1.0854380.4666470.6707870.017*
C30.6597 (3)0.4528 (3)0.3871 (2)0.0138 (5)
C40.5618 (3)0.5118 (3)0.3530 (3)0.0177 (6)
H4C0.4916880.4900890.3959410.021*
H4D0.5995800.6020760.3611060.021*
C50.5303 (3)0.2146 (3)0.0111 (2)0.0123 (5)
C60.4901 (3)0.1750 (3)0.1003 (2)0.0173 (6)
H6C0.3975310.1369350.1112780.021*
H6D0.5122970.2475450.1392500.021*
C70.8131 (3)0.0808 (3)0.0328 (2)0.0114 (5)
C80.8533 (3)0.1924 (3)0.0563 (2)0.0140 (5)
H8C0.7780560.2656080.0708910.017*
H8D0.8989300.1827880.1176110.017*
C91.1067 (3)0.0368 (3)0.3181 (2)0.0098 (5)
C101.2053 (3)0.0372 (3)0.4021 (2)0.0139 (5)
H10C1.1820020.1177680.4299420.017*
H10D1.2871420.0246970.3744590.017*
C110.9971 (13)0.3886 (16)0.1665 (14)0.022 (2)0.445 (11)
O120.8827 (10)0.3498 (14)0.1383 (12)0.0236 (19)0.445 (11)
O131.042 (3)0.334 (2)0.2371 (15)0.024 (2)0.445 (11)
O141.0681 (9)0.4809 (11)0.1285 (9)0.030 (2)0.445 (11)
O231.2942 (11)0.5207 (9)0.1960 (8)0.082 (4)0.445 (11)
H23A1.3083370.5906340.2334180.122*0.445 (11)
H23B1.2330230.4607800.1734020.122*0.445 (11)
C11B1.0297 (10)0.3906 (11)0.1741 (10)0.0202 (19)0.555 (11)
O12B0.9181 (9)0.3477 (11)0.1319 (10)0.0282 (19)0.555 (11)
O13B1.050 (2)0.3358 (17)0.2541 (11)0.0225 (19)0.555 (11)
O14B1.1139 (8)0.4780 (8)0.1452 (6)0.0272 (17)0.555 (11)
N10.9480 (3)0.2936 (2)0.49315 (19)0.0136 (5)
N20.8953 (3)0.4226 (3)0.6386 (2)0.0216 (6)
H2A0.9115750.5047720.6530580.026*
H2B0.8378330.3837920.6796530.026*
N30.6791 (3)0.3750 (2)0.3201 (2)0.0138 (5)
N40.5131 (4)0.4698 (3)0.2452 (2)0.0255 (7)
H4A0.5420340.5323050.2061810.031*
H4B0.4274580.4478520.2383320.031*
N50.6111 (3)0.1682 (2)0.05439 (19)0.0122 (5)
N60.5523 (3)0.0857 (3)0.13800 (19)0.0136 (5)
H6A0.5845000.1074400.1972280.016*
H6B0.4951050.0096160.1503970.016*
N70.8501 (3)0.0247 (2)0.05795 (19)0.0109 (4)
N80.9364 (3)0.2099 (2)0.0309 (2)0.0141 (5)
H8A1.0143230.2018930.0116540.017*
H8B0.9045660.2869570.0496670.017*
N91.0597 (2)0.0533 (2)0.32597 (19)0.0110 (4)
N101.2179 (3)0.0612 (3)0.4850 (2)0.0185 (5)
H10A1.2984570.1124970.4940200.022*
H10B1.2004530.0274050.5442880.022*
N110.5792 (3)0.2265 (3)0.6124 (2)0.0229 (6)
Cu11.09880 (4)0.15681 (3)0.44997 (3)0.01166 (7)
Cu20.82339 (4)0.37481 (3)0.49405 (3)0.01165 (7)
Cu30.56785 (4)0.32620 (4)0.19698 (3)0.01405 (8)
Cu40.69119 (4)0.08365 (4)0.03271 (3)0.01185 (7)
Cu50.95011 (4)0.08588 (3)0.15039 (3)0.01067 (7)
Ho10.84737 (2)0.19371 (2)0.24296 (2)0.01295 (4)
O10.9539 (2)0.2094 (2)0.41456 (17)0.0171 (5)
O21.1136 (2)0.2531 (2)0.57996 (16)0.0139 (4)
O30.7699 (2)0.3202 (2)0.35211 (16)0.0136 (4)
O40.7177 (2)0.4801 (2)0.47858 (17)0.0150 (4)
O50.6451 (2)0.2021 (2)0.15826 (16)0.0159 (4)
O60.4839 (2)0.2914 (2)0.05838 (17)0.0159 (4)
O70.8119 (2)0.0781 (2)0.07896 (17)0.0143 (4)
O80.7438 (2)0.0459 (2)0.10037 (16)0.0142 (4)
O90.9714 (2)0.0553 (2)0.24613 (16)0.0120 (4)
O101.0747 (2)0.1222 (2)0.24305 (17)0.0126 (4)
O110.7125 (2)0.0137 (2)0.2961 (2)0.0176 (5)
H11A0.647 (3)0.013 (4)0.320 (4)0.026*
H11B0.718 (5)0.054 (2)0.280 (4)0.026*
O150.6333 (3)0.2185 (3)0.5342 (2)0.0257 (6)
O160.6461 (4)0.2526 (4)0.6963 (2)0.0562 (12)
O170.4642 (3)0.2061 (3)0.6079 (3)0.0366 (7)
O181.2491 (3)0.3228 (2)0.3739 (2)0.0212 (5)
H18A1.265 (5)0.370 (4)0.426 (2)0.032*
H18B1.193 (4)0.332 (5)0.333 (3)0.032*
O190.3874 (2)0.1934 (2)0.26731 (19)0.0187 (5)
H19A0.343 (4)0.151 (4)0.218 (3)0.028*
H19B0.343 (4)0.226 (4)0.298 (3)0.028*
O200.8212 (3)0.2497 (2)0.1135 (2)0.0225 (5)
H20A0.839 (5)0.217 (4)0.165 (3)0.034*
H20B0.841 (5)0.3242 (18)0.108 (4)0.034*
O210.6432 (3)0.6168 (3)0.0936 (2)0.0311 (7)
H21A0.597 (5)0.617 (5)0.042 (3)0.047*
H21B0.677 (5)0.568 (4)0.071 (4)0.047*
O220.8170 (5)0.5170 (4)0.0460 (3)0.0501 (10)
H22A0.845 (7)0.518 (7)0.013 (3)0.075*
H22B0.843 (7)0.460 (5)0.070 (5)0.075*
O240.7767 (2)0.1977 (2)0.24108 (19)0.0173 (5)
H24A0.801 (4)0.226 (4)0.290 (3)0.026*
H24B0.737 (4)0.256 (3)0.201 (3)0.026*
O250.5129 (3)0.0538 (2)0.3694 (2)0.0218 (5)
H25A0.477 (4)0.094 (4)0.338 (4)0.033*
H25B0.540 (5)0.094 (4)0.425 (2)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (13)0.0115 (12)0.0078 (11)0.0018 (10)0.0012 (10)0.0010 (9)
C20.0204 (15)0.0121 (13)0.0079 (12)0.0028 (11)0.0018 (11)0.0008 (10)
C30.0203 (15)0.0086 (12)0.0119 (13)0.0034 (11)0.0032 (11)0.0004 (10)
C40.0232 (16)0.0141 (14)0.0159 (14)0.0078 (12)0.0007 (12)0.0035 (11)
C50.0152 (14)0.0140 (13)0.0081 (12)0.0052 (11)0.0004 (10)0.0010 (9)
C60.0209 (16)0.0243 (16)0.0093 (12)0.0126 (13)0.0024 (11)0.0001 (11)
C70.0139 (13)0.0129 (12)0.0081 (12)0.0053 (11)0.0013 (10)0.0002 (9)
C80.0200 (15)0.0124 (13)0.0100 (12)0.0068 (11)0.0005 (11)0.0033 (10)
C90.0093 (12)0.0113 (12)0.0087 (11)0.0028 (10)0.0011 (9)0.0015 (9)
C100.0138 (13)0.0144 (13)0.0146 (13)0.0059 (11)0.0001 (11)0.0029 (10)
C110.025 (5)0.024 (3)0.017 (3)0.009 (4)0.005 (4)0.003 (3)
O120.022 (4)0.026 (3)0.022 (3)0.004 (4)0.003 (4)0.008 (3)
O130.026 (4)0.022 (3)0.021 (5)0.001 (3)0.004 (4)0.001 (4)
O140.027 (5)0.029 (4)0.030 (4)0.000 (4)0.005 (4)0.005 (3)
O230.145 (10)0.061 (6)0.075 (7)0.088 (7)0.012 (7)0.002 (5)
C11B0.030 (4)0.016 (2)0.014 (3)0.004 (3)0.007 (3)0.003 (2)
O12B0.032 (5)0.021 (2)0.026 (3)0.003 (4)0.009 (4)0.006 (2)
O13B0.025 (4)0.019 (3)0.018 (4)0.002 (2)0.001 (3)0.002 (3)
O14B0.032 (4)0.021 (3)0.019 (3)0.007 (3)0.011 (3)0.000 (2)
N10.0176 (12)0.0149 (12)0.0083 (11)0.0056 (10)0.0029 (9)0.0040 (9)
N20.0274 (16)0.0282 (15)0.0106 (12)0.0139 (13)0.0014 (11)0.0083 (11)
N30.0199 (13)0.0131 (11)0.0095 (11)0.0081 (10)0.0011 (9)0.0014 (9)
N40.046 (2)0.0207 (14)0.0164 (13)0.0227 (15)0.0035 (13)0.0010 (11)
N50.0145 (12)0.0167 (12)0.0066 (10)0.0080 (10)0.0024 (9)0.0014 (8)
N60.0163 (12)0.0169 (12)0.0076 (10)0.0059 (10)0.0004 (9)0.0004 (9)
N70.0153 (12)0.0104 (10)0.0088 (10)0.0073 (9)0.0004 (9)0.0012 (8)
N80.0170 (12)0.0130 (11)0.0130 (11)0.0072 (10)0.0011 (9)0.0026 (9)
N90.0118 (11)0.0115 (11)0.0087 (10)0.0035 (9)0.0031 (8)0.0011 (8)
N100.0191 (14)0.0213 (14)0.0147 (12)0.0081 (11)0.0050 (10)0.0014 (10)
N110.0229 (15)0.0218 (14)0.0209 (14)0.0027 (12)0.0021 (12)0.0007 (11)
Cu10.01256 (17)0.01432 (17)0.00767 (15)0.00496 (14)0.00191 (12)0.00186 (12)
Cu20.01622 (18)0.01112 (16)0.00713 (15)0.00445 (14)0.00047 (13)0.00241 (12)
Cu30.0221 (2)0.01470 (17)0.00826 (16)0.01148 (15)0.00165 (14)0.00181 (12)
Cu40.01516 (17)0.01590 (17)0.00609 (15)0.00853 (14)0.00143 (12)0.00185 (12)
Cu50.01450 (17)0.00999 (15)0.00826 (15)0.00602 (13)0.00087 (12)0.00170 (12)
Ho10.01760 (7)0.01211 (6)0.00911 (6)0.00536 (5)0.00014 (5)0.00060 (4)
O10.0202 (11)0.0247 (12)0.0085 (9)0.0135 (10)0.0027 (8)0.0079 (8)
O20.0158 (10)0.0164 (10)0.0085 (9)0.0050 (9)0.0018 (8)0.0016 (8)
O30.0185 (11)0.0150 (10)0.0096 (9)0.0102 (9)0.0013 (8)0.0016 (8)
O40.0214 (11)0.0133 (10)0.0101 (9)0.0064 (9)0.0003 (8)0.0037 (8)
O50.0229 (12)0.0225 (11)0.0050 (9)0.0140 (10)0.0042 (8)0.0049 (8)
O60.0222 (12)0.0193 (11)0.0101 (10)0.0135 (9)0.0016 (8)0.0018 (8)
O70.0211 (11)0.0143 (10)0.0106 (9)0.0128 (9)0.0033 (8)0.0046 (8)
O80.0203 (11)0.0162 (10)0.0079 (9)0.0098 (9)0.0016 (8)0.0023 (7)
O90.0159 (10)0.0135 (10)0.0070 (9)0.0076 (8)0.0055 (7)0.0012 (7)
O100.0152 (10)0.0116 (9)0.0114 (9)0.0056 (8)0.0001 (8)0.0003 (7)
O110.0150 (11)0.0137 (10)0.0236 (12)0.0037 (9)0.0030 (9)0.0003 (9)
O150.0262 (14)0.0257 (13)0.0224 (13)0.0025 (11)0.0059 (11)0.0047 (10)
O160.039 (2)0.086 (3)0.0181 (15)0.0168 (19)0.0004 (14)0.0038 (17)
O170.0214 (14)0.0286 (15)0.059 (2)0.0074 (12)0.0086 (14)0.0025 (14)
O180.0242 (13)0.0197 (12)0.0194 (12)0.0088 (10)0.0004 (10)0.0062 (9)
O190.0176 (12)0.0233 (12)0.0142 (11)0.0071 (10)0.0017 (9)0.0041 (9)
O200.0257 (13)0.0200 (12)0.0240 (13)0.0097 (11)0.0079 (10)0.0001 (10)
O210.0443 (19)0.0255 (14)0.0248 (14)0.0174 (13)0.0118 (13)0.0005 (11)
O220.087 (3)0.043 (2)0.0364 (19)0.037 (2)0.026 (2)0.0151 (16)
O240.0195 (12)0.0172 (11)0.0146 (11)0.0050 (9)0.0019 (9)0.0040 (8)
O250.0198 (12)0.0216 (12)0.0241 (13)0.0072 (10)0.0019 (10)0.0004 (10)
Geometric parameters (Å, º) top
C1—N11.296 (4)N5—Cu41.903 (3)
C1—O21.297 (4)N6—Cu42.008 (3)
C1—C21.503 (4)N6—H6A0.9100
C2—N21.475 (5)N6—H6B0.9100
C2—H2C0.9900N7—O71.391 (3)
C2—H2D0.9900N7—Cu51.902 (3)
C3—N31.294 (4)N8—Cu52.019 (3)
C3—O41.297 (4)N8—H8A0.9100
C3—C41.508 (5)N8—H8B0.9100
C4—N41.478 (4)N9—O91.393 (3)
C4—H4C0.9900N9—Cu11.897 (2)
C4—H4D0.9900N10—Cu12.013 (3)
C5—N51.296 (4)N10—H10A0.9100
C5—O61.302 (4)N10—H10B0.9100
C5—C61.504 (4)N11—O171.234 (4)
C6—N61.485 (4)N11—O161.252 (5)
C6—H6C0.9900N11—O151.253 (4)
C6—H6D0.9900Cu1—O11.930 (2)
C7—N71.296 (4)Cu1—O21.948 (2)
C7—O81.299 (4)Cu1—O182.471 (3)
C7—C81.504 (4)Cu2—O31.926 (2)
C8—N81.485 (4)Cu2—O41.940 (2)
C8—H8C0.9900Cu2—O152.463 (3)
C8—H8D0.9900Cu3—O51.939 (2)
C9—O101.294 (3)Cu3—O61.949 (2)
C9—N91.297 (4)Cu3—O192.437 (3)
C9—C101.502 (4)Cu4—O71.937 (2)
C10—N101.487 (4)Cu4—O81.949 (2)
C10—H10C0.9900Cu4—O202.405 (3)
C10—H10D0.9900Cu5—O91.931 (2)
C11—O121.239 (11)Cu5—O101.941 (2)
C11—O141.283 (12)Cu5—O242.443 (3)
C11—O131.305 (13)Ho1—O112.358 (2)
C11—Ho12.683 (14)Ho1—O32.374 (2)
O12—Ho12.304 (16)Ho1—O72.404 (2)
O13—Ho12.30 (3)Ho1—O92.407 (2)
O23—H23A0.8779Ho1—O12.446 (2)
O23—H23B0.8290Ho1—O52.475 (2)
C11B—O14B1.261 (9)O11—H11A0.817 (19)
C11B—O12B1.262 (10)O11—H11B0.813 (19)
C11B—O13B1.309 (10)O18—H18A0.821 (19)
C11B—Ho12.817 (10)O18—H18B0.834 (19)
O12B—Ho12.374 (12)O19—H19A0.820 (19)
O13B—Ho12.35 (2)O19—H19B0.826 (19)
N1—O11.391 (3)O20—H20A0.824 (19)
N1—Cu21.898 (3)O20—H20B0.814 (19)
N2—Cu21.987 (3)O21—H21A0.822 (19)
N2—H2A0.9100O21—H21B0.827 (19)
N2—H2B0.9100O22—H22A0.87 (2)
N3—O31.400 (3)O22—H22B0.86 (2)
N3—Cu31.908 (3)O24—H24A0.810 (19)
N4—Cu32.010 (3)O24—H24B0.820 (19)
N4—H4A0.9100O25—H25A0.817 (19)
N4—H4B0.9100O25—H25B0.826 (19)
N5—O51.392 (3)
N1—C1—O2123.5 (3)O4—Cu2—O1586.17 (10)
N1—C1—C2115.0 (3)N2—Cu2—O1594.35 (12)
O2—C1—C2121.5 (3)N3—Cu3—O590.80 (10)
N2—C2—C1109.7 (3)N3—Cu3—O6168.64 (12)
N2—C2—H2C109.7O5—Cu3—O685.53 (9)
C1—C2—H2C109.7N3—Cu3—N482.62 (12)
N2—C2—H2D109.7O5—Cu3—N4171.72 (13)
C1—C2—H2D109.7O6—Cu3—N499.97 (11)
H2C—C2—H2D108.2N3—Cu3—O1997.77 (10)
N3—C3—O4124.0 (3)O5—Cu3—O1997.72 (10)
N3—C3—C4115.6 (3)O6—Cu3—O1993.38 (10)
O4—C3—C4120.4 (3)N4—Cu3—O1988.20 (13)
N4—C4—C3110.2 (3)N5—Cu4—O791.47 (10)
N4—C4—H4C109.6N5—Cu4—O8162.00 (11)
C3—C4—H4C109.6O7—Cu4—O884.51 (9)
N4—C4—H4D109.6N5—Cu4—N683.87 (11)
C3—C4—H4D109.6O7—Cu4—N6173.92 (11)
H4C—C4—H4D108.1O8—Cu4—N698.74 (10)
N5—C5—O6123.9 (3)N5—Cu4—O20101.33 (10)
N5—C5—C6116.3 (3)O7—Cu4—O2099.21 (10)
O6—C5—C6119.8 (3)O8—Cu4—O2096.64 (9)
N6—C6—C5110.8 (3)N6—Cu4—O2085.56 (11)
N6—C6—H6C109.5N7—Cu5—O989.41 (10)
C5—C6—H6C109.5N7—Cu5—O10170.18 (10)
N6—C6—H6D109.5O9—Cu5—O1085.63 (9)
C5—C6—H6D109.5N7—Cu5—N883.25 (11)
H6C—C6—H6D108.1O9—Cu5—N8169.11 (11)
N7—C7—O8123.2 (3)O10—Cu5—N8100.38 (10)
N7—C7—C8116.1 (3)N7—Cu5—O2495.87 (10)
O8—C7—C8120.7 (3)O9—Cu5—O2487.88 (9)
N8—C8—C7110.6 (2)O10—Cu5—O2492.41 (9)
N8—C8—H8C109.5N8—Cu5—O24100.83 (10)
C7—C8—H8C109.5O13—Ho1—O1256.5 (4)
N8—C8—H8D109.5O13—Ho1—O11152.9 (5)
C7—C8—H8D109.5O12—Ho1—O11150.1 (3)
H8C—C8—H8D108.1O13B—Ho1—O11148.4 (3)
O10—C9—N9124.0 (3)O13—Ho1—O396.3 (8)
O10—C9—C10120.0 (3)O12—Ho1—O386.1 (3)
N9—C9—C10116.1 (3)O13B—Ho1—O394.1 (6)
N10—C10—C9110.9 (3)O11—Ho1—O391.94 (8)
N10—C10—H10C109.5O13B—Ho1—O12B53.9 (3)
C9—C10—H10C109.5O11—Ho1—O12B156.3 (3)
N10—C10—H10D109.5O3—Ho1—O12B93.6 (3)
C9—C10—H10D109.5O13—Ho1—O7102.0 (6)
H10C—C10—H10D108.1O12—Ho1—O779.5 (4)
O12—C11—O14120.4 (12)O13B—Ho1—O7106.6 (5)
O12—C11—O13117.9 (14)O11—Ho1—O785.22 (8)
O14—C11—O13121.7 (13)O3—Ho1—O7144.68 (8)
O12—C11—Ho159.0 (8)O12B—Ho1—O777.0 (3)
O14—C11—Ho1179.1 (14)O13—Ho1—O981.6 (7)
O13—C11—Ho158.9 (12)O12—Ho1—O9121.8 (3)
C11—O12—Ho193.5 (9)O13B—Ho1—O980.2 (5)
C11—O13—Ho192.0 (13)O11—Ho1—O976.01 (8)
H23A—O23—H23B137.8O3—Ho1—O9141.82 (7)
O14B—C11B—O12B124.9 (10)O12B—Ho1—O9112.0 (3)
O14B—C11B—O13B122.2 (10)O7—Ho1—O971.34 (7)
O12B—C11B—O13B112.9 (10)O13—Ho1—O176.1 (4)
O14B—C11B—Ho1178.2 (8)O12—Ho1—O1124.9 (4)
O12B—C11B—Ho156.8 (6)O13B—Ho1—O170.4 (3)
O13B—C11B—Ho156.1 (9)O11—Ho1—O182.19 (9)
C11B—O12B—Ho196.8 (7)O3—Ho1—O171.84 (7)
C11B—O13B—Ho196.4 (9)O12B—Ho1—O1121.4 (3)
C1—N1—O1116.0 (3)O7—Ho1—O1141.85 (8)
C1—N1—Cu2119.6 (2)O9—Ho1—O170.69 (7)
O1—N1—Cu2124.2 (2)O13—Ho1—O5125.9 (5)
C2—N2—Cu2111.84 (19)O12—Ho1—O569.8 (3)
C2—N2—H2A109.2O13B—Ho1—O5130.1 (4)
Cu2—N2—H2A109.2O11—Ho1—O581.21 (9)
C2—N2—H2B109.2O3—Ho1—O572.17 (7)
Cu2—N2—H2B109.2O12B—Ho1—O578.7 (3)
H2A—N2—H2B107.9O7—Ho1—O572.61 (7)
C3—N3—O3115.4 (3)O9—Ho1—O5138.51 (7)
C3—N3—Cu3118.6 (2)O1—Ho1—O5139.56 (7)
O3—N3—Cu3125.27 (18)O13—Ho1—C1129.1 (3)
C4—N4—Cu3110.7 (2)O12—Ho1—C1127.5 (3)
C4—N4—H4A109.5O11—Ho1—C11175.1 (4)
Cu3—N4—H4A109.5O3—Ho1—C1191.9 (4)
C4—N4—H4B109.5O7—Ho1—C1189.9 (4)
Cu3—N4—H4B109.5O9—Ho1—C11102.7 (4)
H4A—N4—H4B108.1O1—Ho1—C11101.9 (4)
C5—N5—O5116.0 (2)O5—Ho1—C1197.1 (3)
C5—N5—Cu4117.0 (2)O13B—Ho1—C11B27.5 (2)
O5—N5—Cu4126.14 (19)O11—Ho1—C11B172.5 (3)
C6—N6—Cu4109.22 (19)O3—Ho1—C11B94.7 (3)
C6—N6—H6A109.8O12B—Ho1—C11B26.4 (3)
Cu4—N6—H6A109.8O7—Ho1—C11B91.3 (3)
C6—N6—H6B109.8O9—Ho1—C11B96.6 (3)
Cu4—N6—H6B109.8O1—Ho1—C11B96.6 (3)
H6A—N6—H6B108.3O5—Ho1—C11B104.1 (3)
C7—N7—O7115.5 (2)N1—O1—Cu1107.69 (18)
C7—N7—Cu5119.1 (2)N1—O1—Ho1123.14 (18)
O7—N7—Cu5125.31 (18)Cu1—O1—Ho1125.76 (10)
C8—N8—Cu5110.78 (19)C1—O2—Cu1107.06 (18)
C8—N8—H8A109.5N3—O3—Cu2107.65 (16)
Cu5—N8—H8A109.5N3—O3—Ho1124.14 (16)
C8—N8—H8B109.5Cu2—O3—Ho1128.11 (11)
Cu5—N8—H8B109.5C3—O4—Cu2106.88 (19)
H8A—N8—H8B108.1N5—O5—Cu3107.34 (17)
C9—N9—O9115.8 (2)N5—O5—Ho1121.38 (17)
C9—N9—Cu1118.3 (2)Cu3—O5—Ho1123.44 (10)
O9—N9—Cu1125.40 (19)C5—O6—Cu3106.62 (19)
C10—N10—Cu1110.2 (2)N7—O7—Cu4107.95 (16)
C10—N10—H10A109.6N7—O7—Ho1124.58 (17)
Cu1—N10—H10A109.6Cu4—O7—Ho1125.63 (10)
C10—N10—H10B109.6C7—O8—Cu4107.32 (18)
Cu1—N10—H10B109.6N9—O9—Cu5107.61 (16)
H10A—N10—H10B108.1N9—O9—Ho1125.18 (16)
O17—N11—O16120.7 (4)Cu5—O9—Ho1126.63 (10)
O17—N11—O15121.9 (3)C9—O10—Cu5107.02 (19)
O16—N11—O15117.4 (3)Ho1—O11—H11A122 (3)
N9—Cu1—O189.22 (10)Ho1—O11—H11B122 (3)
N9—Cu1—O2171.80 (11)H11A—O11—H11B114 (5)
O1—Cu1—O285.31 (9)N11—O15—Cu2124.4 (2)
N9—Cu1—N1083.88 (11)Cu1—O18—H18A93 (4)
O1—Cu1—N10165.90 (12)Cu1—O18—H18B93 (4)
O2—Cu1—N10100.11 (11)H18A—O18—H18B114 (5)
N9—Cu1—O1892.05 (10)Cu3—O19—H19A104 (3)
O1—Cu1—O1895.36 (10)Cu3—O19—H19B118 (3)
O2—Cu1—O1894.54 (9)H19A—O19—H19B108 (5)
N10—Cu1—O1897.16 (11)Cu4—O20—H20A105 (4)
N1—Cu2—O390.61 (10)Cu4—O20—H20B137 (4)
N1—Cu2—O4168.51 (11)H20A—O20—H20B116 (5)
O3—Cu2—O485.63 (9)H21A—O21—H21B99 (6)
N1—Cu2—N282.56 (12)H22A—O22—H22B100 (6)
O3—Cu2—N2173.12 (11)Cu5—O24—H24A112 (3)
O4—Cu2—N2100.93 (11)Cu5—O24—H24B104 (3)
N1—Cu2—O15104.57 (11)H24A—O24—H24B106 (5)
O3—Cu2—O1588.10 (10)H25A—O25—H25B105 (5)
N1—C1—C2—N28.4 (4)C9—N9—Cu1—N107.6 (2)
O2—C1—C2—N2169.9 (3)O9—N9—Cu1—N10178.8 (2)
N3—C3—C4—N42.7 (4)C9—N9—Cu1—O18104.6 (2)
O4—C3—C4—N4177.8 (3)O9—N9—Cu1—O1884.2 (2)
N5—C5—C6—N61.1 (4)C1—N1—Cu2—O3173.7 (2)
O6—C5—C6—N6178.8 (3)O1—N1—Cu2—O312.2 (2)
N7—C7—C8—N83.6 (4)C1—N1—Cu2—O4103.0 (5)
O8—C7—C8—N8177.4 (3)O1—N1—Cu2—O482.9 (6)
O10—C9—C10—N10174.3 (3)C1—N1—Cu2—N25.5 (3)
N9—C9—C10—N106.7 (4)O1—N1—Cu2—N2168.6 (3)
O14—C11—O12—Ho1179.1 (16)C1—N1—Cu2—O1598.1 (2)
O13—C11—O12—Ho12.4 (19)O1—N1—Cu2—O1576.0 (2)
O12—C11—O13—Ho12.4 (19)C1—N1—O1—Cu16.7 (3)
O14—C11—O13—Ho1179.2 (16)Cu2—N1—O1—Cu1178.98 (15)
O14B—C11B—O12B—Ho1179.6 (12)C1—N1—O1—Ho1166.9 (2)
O13B—C11B—O12B—Ho11.4 (14)Cu2—N1—O1—Ho118.8 (3)
O14B—C11B—O13B—Ho1179.5 (12)N1—C1—O2—Cu12.0 (4)
O12B—C11B—O13B—Ho11.4 (14)C2—C1—O2—Cu1179.9 (2)
O2—C1—N1—O13.3 (4)C3—N3—O3—Cu24.8 (3)
C2—C1—N1—O1174.9 (2)Cu3—N3—O3—Cu2165.17 (16)
O2—C1—N1—Cu2177.9 (2)C3—N3—O3—Ho1171.8 (2)
C2—C1—N1—Cu20.3 (4)Cu3—N3—O3—Ho118.3 (3)
C1—C2—N2—Cu212.2 (3)N3—C3—O4—Cu24.1 (4)
O4—C3—N3—O30.4 (5)C4—C3—O4—Cu2175.3 (2)
C4—C3—N3—O3179.8 (3)C5—N5—O5—Cu36.4 (3)
O4—C3—N3—Cu3170.2 (2)Cu4—N5—O5—Cu3162.64 (16)
C4—C3—N3—Cu39.2 (4)C5—N5—O5—Ho1156.4 (2)
C3—C4—N4—Cu312.1 (4)Cu4—N5—O5—Ho112.6 (3)
O6—C5—N5—O51.8 (5)N5—C5—O6—Cu33.7 (4)
C6—C5—N5—O5178.0 (3)C6—C5—O6—Cu3176.4 (2)
O6—C5—N5—Cu4168.2 (2)C7—N7—O7—Cu49.1 (3)
C6—C5—N5—Cu411.9 (4)Cu5—N7—O7—Cu4171.06 (15)
C5—C6—N6—Cu412.2 (3)C7—N7—O7—Ho1174.4 (2)
O8—C7—N7—O70.8 (4)Cu5—N7—O7—Ho15.8 (3)
C8—C7—N7—O7179.8 (3)N7—C7—O8—Cu48.0 (4)
O8—C7—N7—Cu5179.4 (2)C8—C7—O8—Cu4171.0 (2)
C8—C7—N7—Cu50.4 (4)C9—N9—O9—Cu50.9 (3)
C7—C8—N8—Cu54.8 (3)Cu1—N9—O9—Cu5170.52 (14)
O10—C9—N9—O91.0 (4)C9—N9—O9—Ho1172.60 (19)
C10—C9—N9—O9177.9 (2)Cu1—N9—O9—Ho11.2 (3)
O10—C9—N9—Cu1171.0 (2)N9—C9—O10—Cu50.6 (3)
C10—C9—N9—Cu110.0 (3)C10—C9—O10—Cu5178.3 (2)
C9—C10—N10—Cu10.8 (3)O17—N11—O15—Cu2132.2 (3)
C9—N9—Cu1—O1160.1 (2)O16—N11—O15—Cu250.0 (5)
O9—N9—Cu1—O111.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23A···O16i0.881.872.747 (11)173
O23—H23B···O140.831.982.509 (13)121
N2—H2A···O13i0.912.173.00 (3)150
N2—H2A···O13Bi0.912.052.90 (2)155
N2—H2B···O160.912.263.078 (5)149
N4—H4A···O210.912.072.914 (5)154
N4—H4B···O23ii0.911.982.726 (10)138
N6—H6A···O16iii0.912.253.060 (5)149
N6—H6B···N5iv0.912.523.267 (4)139
N6—H6B···O5iv0.912.463.359 (4)171
N8—H8A···O7v0.912.493.285 (4)146
N8—H8A···O20v0.912.413.017 (4)124
N8—H8B···O22vi0.912.173.048 (5)163
N10—H10A···O17vii0.912.233.024 (4)145
N10—H10B···O11viii0.912.393.183 (4)146
O11—H11A···O250.82 (2)1.86 (2)2.660 (4)165 (5)
O11—H11B···O240.81 (2)2.00 (2)2.801 (4)166 (5)
O18—H18A···O4i0.82 (2)2.01 (3)2.801 (3)160 (5)
O18—H18B···O130.83 (2)2.04 (3)2.87 (2)173 (5)
O18—H18B···O13B0.83 (2)1.84 (3)2.671 (18)171 (5)
O19—H19A···O8iv0.82 (2)1.90 (2)2.713 (3)174 (5)
O19—H19B···O18ii0.83 (2)2.02 (2)2.840 (4)174 (5)
O20—H20A···O10v0.82 (2)1.96 (3)2.732 (3)156 (5)
O20—H20B···O14ix0.81 (2)2.21 (3)2.997 (12)162 (5)
O20—H20B···O14Bix0.81 (2)2.27 (3)3.060 (9)163 (5)
O21—H21A···O6x0.82 (2)2.07 (3)2.813 (4)151 (6)
O21—H21B···O220.83 (2)1.87 (3)2.638 (5)154 (6)
O22—H22A···O14ix0.87 (2)1.88 (3)2.736 (12)170 (7)
O22—H22A···O14Bix0.87 (2)1.84 (2)2.709 (9)173 (7)
O22—H22B···O120.86 (2)1.74 (3)2.600 (16)170 (7)
O22—H22B···O140.86 (2)2.51 (6)3.088 (11)125 (6)
O22—H22B···O12B0.86 (2)1.93 (3)2.791 (14)173 (7)
O24—H24A···O2viii0.81 (2)1.99 (2)2.781 (3)166 (5)
O24—H24B···O21vi0.82 (2)1.94 (2)2.759 (4)174 (5)
O25—H25A···O190.82 (2)1.96 (2)2.779 (4)177 (5)
O25—H25B···O150.83 (2)1.95 (2)2.751 (4)165 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+2, y, z+1; (ix) x+2, y+1, z; (x) x+1, y+1, z.
Comparison of single crystal data and structure refinement details for complexes 13 with those of their earlier reported EuIII analogue (CCDC127569, Stemmler et al., 1999) top
CCDC127569Complex 1Complex 2Complex 3
Formula[EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O[GdCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5(H2O)[DyCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.28(H2O)[HoCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.445(H2O)
M (g mol-1)1186.171190.491191.771197.21
Crystal systemTriclinicTriclinicTriclinicTriclinic
Space groupP1P1P1P1
a (Å)11.163 (5)11.2057 (15)11.1083 (5)11.2027 (9)
b (Å)11.524 (4)11.5054 (15)11.4991 (5)11.4955 (9)
c (Å)13.323 (4)13.2983 (10)13.2894 (6)13.2467 (10)
α (°)93.85 (3)94.026 (4)93.9235 (16)94.001 (3)
β (°)94.79 (3)94.942 (3)94.7713 (17)94.784 (3)
γ (°)107.14 (3)107.558 (3)107.1470 (17)107.518 (3)
Volume (Å3)1624.5 (10)1620.2 (3)1608.73 (13)1613.0 (2)
Z2222
T (K)293 (2)150 (2)150 (2)150 (2)
Range of data collection2.53 °<2θ < 26.03°3.091° < 2θ <33.234°3.091° <2θ <28.693°2.544° <2θ <33.243°
ρcalc (g cm-3)2.4252.4402.4602.467
Absorption coefficient (mm-1)5.2295.3535.6515.773
F(000)1168117011701174.9
Collected reflections63441181557428650443
Reflections unique634412399827412306
Rint0.12720.05600.04830.0417
Goodness-of-fit on F21.1141.0501.0841.053
R1([I>2σ(I)]a0.12300.03430.03070.0334
wR2[I>2σ(I)]b0.29790.06810.07090.0769
Notes: (a) R1 = Σ||Fo| - |Fc||/Σ|Fo|, (b) wR2= {Σ[w(Fo2 - Fc2)2]/Σ[w(Fo2)2]}1/2
Selected bond lengths (Å) for complex 1 top
Cu1—O11.929 (2)Cu2—O31.929 (2)Cu3—O51.935 (2)
Cu1—O21.949 (2)Cu2—O41.939 (2)Cu3—O61.952 (2)
Cu1—N91.898 (2)Cu2—N11.902 (3)Cu3—N31.910 (3)
Cu1—N102.016 (3)Cu2—N21.985 (3)Cu3—N42.010 (3)
Cu1—O18w2.470 (3)Cu2—O15(NO3)2.469 (3)Cu3—O19w2.444 (2)
Cu4—O71.938 (2)Cu5—O91.931 (2)Gd1—O12.457 (2)
Cu4—O81.953 (2)Cu5—O101.939 (2)Gd1—O32.381 (2)
Cu4—N51.906 (2)Cu5—N71.901 (2)Gd1—O52.483 (2)
Cu4—N62.005 (2)Cu5—N82.022 (2)Gd1—O72.408 (2)
Cu4—O20w2.401 (3)Cu5—O24w2.449 (2)Gd1—O92.414 (2)
C11—O121.284 (9)C11B—O12B1.310 (10)Gd1—O11w2.359 (2)
C11—O131.307 (10)C11B—O13B1.307 (10)Gd1—O122.317 (11)
C11—O141.252 (9)C11B—O14B1.253 (9)Gd1—O132.288 (17)
Gd1—O12B2.396 (10)Gd1—O13B2.388 (17)
Selected bond lengths (Å) for complex 2 top
Cu1—O11.931 (3)Cu2—O31.931 (3)Cu3—O51.941 (3)
Cu1—O21.949 (3)Cu2—O41.939 (3)Cu3—O61.954 (3)
Cu1—N91.897 (3)Cu2—N11.907 (4)Cu3—N31.905 (4)
Cu1—N102.012 (4)Cu2—N21.983 (4)Cu3—N42.017 (4)
Cu1—O18w2.476 (3)Cu2—O15(NO3)2.464 (3)Cu3—O19w2.430 (3)
Cu4—O71.936 (3)Cu5—O91.932 (3)Dy1—O12.453 (3)
Cu4—O81.956 (3)Cu5—O101.941 (3)Dy1—O32.382 (3)
Cu4—N51.904 (3)Cu5—N71.899 (3)Dy1—O52.469 (3)
Cu4—N62.005 (3)Cu5—N82.021 (3)Dy1—O72.412 (3)
Cu4—O20w2.400 (3)Cu5—O24w2.440 (3)Dy1—O92.410 (3)
C11—O121.275 (16)C11B—O12B1.295 (9)Dy1—O11w2.357 (3)
C11—O131.318 (16)C11B—O13B1.326 (8)Dy1—O122.27 (2)
C11—O141.256 (15)C11B—O14B1.251 (8)Dy1—O132.31 (3)
Dy1—O12B2.380 (8)Dy1—O13B2.347 (12)
Selected bond lengths (Å) for complex 3 top
Cu1—O11.930 (2)Cu2—O31.926 (2)Cu3—O51.939 (2)
Cu1—O21.948 (2)Cu2—O41.940 (2)Cu3—O61.949 (2)
Cu1—N91.897 (2)Cu2—N11.898 (3)Cu3—N31.908 (3)
Cu1—N102.013 (3)Cu2–N21.987 (3)Cu3—N42.010 (3)
Cu1—O18w2.471 (3)Cu2—O15(NO3)2.463 (3)Cu3—O19w2.437 (3)
Cu4—O71.937 (2)Cu5—O91.931 (2)Ho1—O12.446 (2)
Cu4—O81.949 (2)Cu5—O101.941 (2)Ho1—O32.374 (2)
Cu4—N51.903 (3)Cu5—N71.902 (3)Ho1—O52.475 (2)
Cu4—N62.008 (3)Cu5—N82.019 (3)Ho1—O72.404 (2)
Cu4—O20w2.405 (3)Cu5—O24w2.443 (3)Ho1—O92.407 (2)
C11—O121.239 (11)C11B—O12B1.262 (10)Ho1—O11w2.358 (2)
C11—O131.305 (13)C11B—O13B1.309 (10)Ho1—O122.304 (16)
C11—O141.283 (12)C11B—O14B1.261 (9)Ho1—O132.30 (3)
Ho1—O12B2.374 (12)Ho1—O13B2.35 (2)
Selected angles (°) for complex 1 top
O1—Cu1—O285.28 (9)O3—Cu2—O485.63 (9)O5—Cu3—O685.44 (9)
N9—Cu1—O189.32 (9)N1—Cu2—O390.48 (9)N3—Cu3—O590.98 (10)
O2—Cu1—N10100.27 (10)O4—Cu2—N2100.83 (10)O6—Cu3—N499.85 (11)-
N9–Cu1—N1083.70 (10)N1—Cu2—N282.87 (11)N3—Cu3—N482.70 (12)
O7—Cu4—O884.56 (8)O9—Cu5—O1085.57 (8)O3—Gd1—O171.71 (7)
N5—Cu4—O791.39 (9)N7—Cu5—O989.59 (9)O3—Gd1—O572.08 (7)
O8—Cu4—N698.79 (9)O10—Cu5—N8100.42 (9)O7—Gd1—O572.87 (7)
N5—Cu4—N683.88 (10)N7—Cu5—N883.14 (10)O7—Gd1—O971.27 (6)
O13—Gd1—O1256.4 (3)O13B–Gd1–O12B54.1 (3)O9—Gd1—O170.62 (7)
Selected angles (°) for complex 2 top
O1—Cu1—O285.19 (12)O3—Cu2—O485.41 (12)O5–Cu3—O685.39 (12)
O1—Cu1—N989.39 (13)O3—Cu2—N190.66 (13)O5—Cu3—N390.67 (13)
O2—Cu1—N10100.37 (13)O4—Cu2—N2101.00 (14)O6—Cu3—N4100.11 (14)
N9—Cu1—N1083.73 (14)N1—Cu2—N282.65 (15)N3—Cu3—N482.79 (15)
O7—Cu4—O884.56 (11)O9—Cu5—O1085.47 (11)O1—Dy1—O371.77 (9)
O7—Cu4—N591.62 (13)O9—Cu5—N789.53 (12)O3—Dy1—O571.92 (9)
O8—Cu4—N698.55 (13)O10—Cu5—N8100.49 (13)O5—Dy1—O772.60 (9)
N5—Cu4—N683.78 (14)N7—Cu5—N883.23 (14)O7—Dy1—O971.21 (9)
O12—Dy1—O1357.1 (6)O12B–Dy1—O13B54.7 (2)O9—Dy1—O170.83 (9)
Selected angles (°) for complex 3 top
O1—Cu1—O285.31 (9)O3—Cu2—O485.63 (9)O5—Cu3—O685.53 (9)
O1—Cu1—N989.22 (10)O3—Cu2—N190.61 (10)O5—Cu3—N390.80 (10)
O2—Cu1—N10100.11 (11)O4–Cu2—N2100.93 (11)O6—Cu3—N499.97 (11)
N9—Cu1—N1083.88 (11)N1—Cu2—N282.56 (12)N3—Cu3—N482.62 (12)
O7—Cu4—O884.51 (9)O9—Cu5—O1085.63 (9)O1—Ho1—O371.84 (7)
O7—Cu4—N591.47 (10)O9—Cu5—N789.41 (10)O3—Ho1—O572.17 (7)
O8—Cu4—N698.74 (10)O10—Cu5—N8100.38 (10)O5—Ho1—O772.61 (7)
N5—Cu4—N683.87 (11)N7—Cu5—N883.25 (11)O7—Ho1—O971.34 (7)
O12—Ho1—O1356.5 (4)O12B—Ho1—O13B53.9 (3)O9—Ho1—O170.69 (7)
Comparison of selected characteristics of 13 with the earlier reported EuIII analogue (CCDC127569; Stemmler et al., 1999) top
CCDC127569Complex 1Complex 2Complex 3
EuCu5GdCu5DyCu5HoCu5
Range of Ln···Cu separations (Å)3.890 (2)–3.911 (3)3.8699 (5)–3.9097 (5)3.8715 (5)–3.9016 (6)3.8670 (5)–3.9021 (5)
Range of Cu···Cu separations (Å)4.575 (3)–4.589 (3)4.5677 (7)–4.5846 (7)4.5645 (7)–4.5797 (8)4.5583 (7)–4.5808 (7)
Range of Ln—Oequat (Å)2.406 (11)–2.493 (11)2.381 (2)–2.484 (2)2.382 (3)–2.469 (3)2.374 (2)–2.475 (2)
Range of Ln—Ocarbonate (Å)2.369 (13)–2.392 (15)2.288 (17)–2.396 (10)2.27 (2)–2.380 (8)2.30 (3)–2.374 (12)
Range of Cu—Oequat (Å)1.901 (11)–1.972 (10)1.929 (2)–1.953 (2)1.931 (3)–1.956 (4)1.929 (2)–1.953 (2)
Range of Cu—Nequat (Å)1.886 (14)–2.022 (13)1.898 (2)–2.022 (2)1.898 (3)–2.022 (3)1.898 (2)–2.022 (2)
Range of τ values (Addison et al., 1984) for pentacoordinate CuII ions0.00–0.200.01–0.200.01–0.200.02–0.20
LnIII coordination number8888
Average deviation of non-hydrogen atoms from Cu5 plane (Å)0.1790.1880.1830.186
Largest deviation among non-hydrogen atoms from Cu5 plane (Å)0.6050.6060.6020.597
Deviation of LnIII ion from Cu5 plane (Å)0.3510.3370.3540.330
Continuous shape calculations for octacoordinated Ln3+ ions in 13 obtained using Shape2.1 software (Casanova et al., 2005) top
Complex 1Complex 2Complex 3
OP-831.93031.84631.915
HPY-822.62722.69822.560
HBPY-816.08116.11416.307
CU-812.99012.97012.794
SAPR-83.7693.7593.770
TDD-81.8051.7431.763
JGBF-812.03712.41812.302
JETBPY-827.75127.47827.602
 

Funding information

AWA thanks Drexel University for support under the Collaborative Research Agreement between the Drexel University College of Arts & Sciences and the Pisarzhevskii Institute of Physical Chemistry. The X-ray diffractometer was funded by the National Science Foundation, Division of Chemistry (grant No. 1625543 to MZ). AVP thanks the Foundation Volkswagen Stiftung (project No. 90343) and the Fulbright Foundation for a Research Fellowship.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, S., Fan, R.-Q., Sun, C.-F., Wang, P., Yang, Y.-L., Su, Q. & Mu, Y. (2012). Cryst. Growth Des. 12, 1337–1346.  CSD CrossRef CAS Google Scholar
First citationDai, F., Sun, D. & Sun, D. (2011). Cryst. Growth Des. 11, 5670–5675.  Web of Science CSD CrossRef CAS Google Scholar
First citationDhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089–18093.  CSD CrossRef CAS PubMed Google Scholar
First citationGao, Y., Zhao, L., Xu, X., Xu, G.-F., Guo, Y.-N., Tang, J. & Liu, Z. (2011). Inorg. Chem. 50, 1304–1308.  CSD CrossRef CAS PubMed Google Scholar
First citationGriffiths, K. & Kostakis, G. E. (2018). Dalton Trans. 47, 12011–12034.  CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834–9838.  CrossRef Google Scholar
First citationKatkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31–33.  CSD CrossRef CAS Google Scholar
First citationKatkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202–5208.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, X.-Z., Zhou, L.-P., Yan, L.-L., Yuan, D.-Q., Lin, C.-S. & Sun, Q.-F. (2017). J. Am. Chem. Soc. 139, 8237–8244.  CSD CrossRef CAS PubMed Google Scholar
First citationLim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46–49.  CSD CrossRef PubMed CAS Google Scholar
First citationMartinić, I., Eliseeva, S. V., Nguyen, T. N., Pecoraro, V. L. & Petoud, S. (2017). J. Am. Chem. Soc. 139, 8388–8391.  PubMed Google Scholar
First citationNguyen, T. N., Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Kampf, J. W., Martinić, I., Petoud, S. & Pecoraro, V. L. (2018). Chem. Eur. J. 24, 1031–1035.  CSD CrossRef CAS PubMed Google Scholar
First citationNovitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169–1176.  CSD CrossRef CAS Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255–m265.  CSD CrossRef IUCr Journals Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511.  CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017a). Eur. J. Inorg. Chem. pp. 4866–4878.  CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017b). Inorg. Chem. 56, 13152–13165.  CSD CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320–1330.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686–1692.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, P., Fan, R. Q., Liu, X. R., Yang, Y.-L. & Zhou, G.-P. (2012). J. Inorg. Organomet. Polym. 22, 744–755.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, N., Wang, C., Shi, W., Yan, S., Cheng, P. & Liao, D. (2011). Eur. J. Inorg. Chem. pp. 2387–2393.  CSD CrossRef Google Scholar
First citationYang, X., Oye, M. M., Jones, R. A. & Huang, S. (2013). Chem. Commun. 49, 9579–9581.  CSD CrossRef CAS Google Scholar
First citationYi, X., Bernot, K., Calvez, G., Daiguebonne, C. & Guillou, O. (2013). Eur. J. Inorg. Chem. pp. 5879–5885.  CSD CrossRef Google Scholar
First citationZaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707–7717.  CSD CrossRef CAS PubMed Google Scholar
First citationZangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242–13249.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds