research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-N′-(3,4-di­hy­droxy­benzyl­­idene)-4-hy­dr­oxy­benzohydrazide1

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

Edited by H. Ishida, Okayama University, Japan (Received 22 June 2019; accepted 22 July 2019; online 28 July 2019)

In the title benzohydrazide derivative, C14H12N2O4, the azomethine C=N double bond has an E configuration. The hydrazide connecting bridge, (C=O)—(NH)—N=(CH), is nearly planar with C—C—N—N and C—N—N=C torsion angles of −177.33 (10) and −174.98 (12)°, respectively. The 4-hy­droxy­phenyl and 3,4-di­hydroxy­phenyl rings are slightly twisted, making a dihedral angle of 9.18 (6)°. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network, while further consolidated via ππ inter­actions [centroid–centroid distances = 3.6480 (8) and 3.7607 (8) Å]. The conformation is compared to those of related benzyl­idene-4-hy­droxy­benzohydrazide derivatives.

1. Chemical context

Hydrazides and hydrazones are important synthons for several transformations and have gained importance because of their various biological and clinical applications (Narasimhan et al., 2010[Narasimhan, B., Kumar, P. & Sharma, D. (2010). Acta Pharm. Sci. 52, 169-180.]). Benzohydrazide derivatives containing an azomethine (–NHN=CH–) group have been reported to possess diverse biological activities such as anti­tumor (Xia et al., 2007[Xia, Z., Hu, L. W. & Wang, X. (2007). Bioorg. Med. Chem. 17, 3374-3377.]; Kumari & Bansal, 2018[Kumari, D. & Bansal, H. (2018). Pharm. Innov. J, 7, 543-550.]), anti­oxidant (Aziz et al., 2014[Aziz, A. N., Taha, M., Ismail, N. H., Anouar, el H., Yousuf, S., Jamil, W., Awang, K., Ahmat, N., Khan, K. M. & Kashif, S. M. (2014). Molecules, 19, 8414-8433.]), anti­tubercular and anti­microbial (Maheswari & Manjula, 2015[Maheswari, R. & Manjula, J. (2015). Inter. J. Applied Res. 1, 587-592.]) and α-glucosidase inhibition (Taha et al., 2015[Taha, M., Ismail, N. H., Imran, S., Rokei, M. Q., Saad, S. M. & Khan, K. M. (2015). Bioorg. Med. Chem. 23, 4155-4162.]) activities. The inter­esting biological activities of benzohydrazides led us to synthesize several benzohydrazides to study their bioactivities (Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]; Chantrapromma et al., 2016[Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339-1342.]), including the title compound (I)[link], which was found to exhibit anti­oxidant activity with an IC50 value of 0.035 ± 0.004 mM (ascorbic acid used as the reference standard; Thaipong et al., 2006[Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Byrne, D. H. (2006). J. Food. Composition Anal. 19, 669-675.]) and α-glucosidase inhibitory activity with an IC50 value of 0.014 ± 0.001 mM (acarbose as the reference standard; Bachhawat et al., 2011[Bachhawat, A., Shihabudeen, J. M. S. & Thirumurugan, K. (2011). Int. J. Pharm. Pharm. Sci. 3, 267-274.]).

[Scheme 1]

2. Structural commentary

The title hydrazide derivative, (I), consists of a 4-hy­droxy­phenyl ring, a 3,4-di­hydroxyphenyl ring and a hydrazide (C=O)—(NH)—N=(CH) connecting bridge (Fig. 1[link]). The C6—C7, C7—N1 and C8—C9 bond lengths of 1.4861 (15), 1.3385 (17) and 1.4584 (16) Å, respectively, confirm their single-bond character, whereas the C7=O2 and N2=C8 bond lengths of 1.2403 (15) and 1.2738 (17) Å, respectively, confirm the presence of the double bonds. The sp2-hybridized character of atoms C7 and C8 is further supported by the bond angles C6—C7—N1 [116.49 (11)°] and N2—C8—C9 [120.86 (12)°]. The bond lengths and angles of the central hydrazide connecting bridge are consistent with those in related structures (Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Chantrapromma et al., 2016[Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339-1342.]). The mol­ecule exhibits an E configuration with respect to the azomethine C=N double bond. As the torsion angle C6—C7—N1—N2 [−177.33 (10)°] and C7—N1—N2—C8 [−174.98 (12)°] are both in an anti-periplanar conformation, the overall conformation for the hydrazide connecting bridge is almost planar. Furthermore, the 4-hy­droxy­phenyl and 3,4-di­hydroxy­phenyl rings are also coplanar to the corresponding azomethine and carbonyl double bonds, with torsion angles N2—C8—C9—C10 [−0.76 (19)°] and C5—C6—C7—O2 [−1.18 (19)°] both in a syn-periplanar conformation. Those torsion angles result in an overall flat shape of the title compound with the dihedral angle between the terminal benzene rings being 9.18 (6)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) into a three-dimensional network. Mol­ecules are connected into infinite chains along [101] through an O4—H1O4⋯O1iii hydrogen bond and those chains are further connected into two-dimensional plates parallel to the ac plane via N1—H1N1⋯O3i and O1—H1O1⋯O2i hydrogen bonds with an R22(18) ring motif (Fig. 2a[link] and 3a[link]; symmetry codes as in Table 1[link]). Those plate are inter­connected via an O3—H1O3⋯O2ii hydrogen bond with an R22(20) ring motif, forming a three-dimensional network (Fig. 2b[link] and 3b[link]; symmetry code as in Table 1[link]). In addition, the mol­ecules are further stabilized by ππ inter­actions involving both aromatic rings with Cg1⋯Cg2iv = 3.6480 (8) Å and Cg1⋯Cg2v = 3.7607 (8) Å [symmetry codes: (iv) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 aromatic rings, respectively.]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.80 (2) 1.92 (2) 2.7203 (15) 171 (2)
O3—H1O3⋯O2ii 0.88 (2) 2.17 (2) 3.0276 (13) 163 (2)
O4—H1O4⋯O1iii 0.82 (2) 1.93 (2) 2.7379 (16) 166 (2)
N1—H1N1⋯O3i 0.87 (2) 2.24 (2) 3.0017 (16) 146.1 (19)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) x-1, y, z-1.
[Figure 2]
Figure 2
(a) A partial packing diagram of the title compound, showing a two-dimensional plate formed by O—H⋯O and N—H⋯O hydrogen bonds (cyan dotted lines). [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (iii) x − 1, y, z − 1.] (b) A partial packing diagram of the title compound with additional O—H⋯O hydrogen bonds (magenta dotted lines). [Symmetry code: (ii) −x + 1, −y + 1, −z.] Hydrogen atoms not involved in with these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
A view of dimers with (a) R22(18) and (b) R22(20) ring motifs. [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z.]

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-N′-benzenyl­idene-4-hy­droxy­benzohydrazide as the reference moiety resulted in 31 structures with different substituents at the benzyl­idenyl ring. The different substituent (R) together with selected torsion angles, τ1 (C5—C6—C7—O2), τ2 (C6—C7—N1—N2), τ3 (C7—N1—N2—C8) and τ4 (N2—C8—C9—C10) as shown in Fig. 4[link], and the dihedral angle between the terminal aromatic rings are summarized in Table 2[link]. The torsion angles τ2 and τ3 are anti-periplanar (151.7–179.8°), showing that the hydrazide connecting bridges are nearly planar. As for the torsion angle τ4, all structures adopt a syn-periplanar conformation (0.6–19.6°). Similar to the title compound, the τ1 torsion angles for most of the structures are syn-periplanar (2.0–29.1°). However, there are three outliers (CEDBAQ, HUCWOS and PAQJID) whose τ1 torsion angles are syn-clinal (34.9–50.9°). By comparing the dihedral angles, the structures can be divided into planar compounds (dihedral angle = 2.5–29.3°) and non-planar compounds (dihedral angle = 30.5–77.3°). In general, as the hydrazide-connecting bridges are nearly planar, relatively flat τ1 and τ4 torsion angles are observed in the former compounds, while relatively twisted τ1 and τ4 torsion angles are observed in the latter.

Table 2
Selected torsion angles (°) and the dihedral angle (°) between the terminal benzene rings

Compound R τ1 τ2 τ3 τ4 Dihedral angle
Planar            
(I) 3,4-di­hydroxy­phen­yl −1.2 −177.3 −175.0 −0.8 9.2
ABALIA (Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]) 3-hy­droxy-4-meth­oxy­phen­yl 3.2 178.4 170.1 −14.2 24.2
CECZOB (Subashini et al., 2012[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012). Acta Cryst. C68, o408-o412.]) 4-chloro­phen­yl 26.1 −174.4 166.6 −8.9 5.8
CECZUH (Subashini et al., 2012[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012). Acta Cryst. C68, o408-o412.]) 4-bromo­phen­yl 25.6 −174.9 169.0 −7.2 9.8
ESOTUD (Chantrapromma et al., 2016[Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339-1342.]) 3-meth­oxy­phen­yl −19.4, 20.7 −173.5, −177.8 −175.7, −173.0 1.2, 0.6 24.0, 29.3
HOZBII (Li & Ban, 2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]) 4-nitro­phen­yl 2.0 177.7 178.3 −0.6 2.5
IJUKEE (Zhang, 2011[Zhang, Z. (2011). Acta Cryst. E67, o300.]) 4-hy­droxy-3-nitro­phen­yl −7.2 −177.0 −179.3 6.0 5.5
IRAXEF (Sánchez-Lozano et al., 2011[Sánchez-Lozano, M., Vázquez-López, E. M., Hermida-Ramón, J. M. & Estévez, C. M. (2011). Polyhedron, 30, 953-962.]) 2,4-di­hydroxy­phen­yl −7.7 −177.8 −177.2 −4.1 6.9
MOZPEX (Ren, 2009[Ren, C.-G. (2009). Acta Cryst. E65, o1503-o1504.]) 3,5-di­chloro-2-hy­droxy­phen­yl 12.3 178.7 −179.4 −7.3 5.1
ROFMOP (Xue et al., 2008[Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.]) 3-bromo-5-chloro-2-hy­droxy­phen­yl −2.3 175.9 −176.5 −1.3 3.0
TEWLAL (Ayyannan et al., 2016[Ayyannan, G., Mohanraj, M., Raja, G., Bhuvanesh, N., Nandhakumar, R. & Jayabalakrishnan, C. (2016). J. Photochem. Photobiol. B, 163, 1-13.]) 5-bromo-2-hy­droxy­phen­yl −15.7 −173.6 168.9 3.1 27.0
WACVON (Shalash et al., 2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]) 4-hy­droxy-3-meth­oxy­phen­yl −34.2 −175.5 174.7 15.4 28.6
WACXOP (Huang, 2010[Huang, H.-W. (2010). Acta Cryst. E66, o3143.]) 2,4-di­chloro­phen­yl −14.3 −179.8 −175.0 3.0 7.0
YAGYAI (Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]) 3,4,5-tri­meth­oxy­phen­yl −10.6 172.2 175.8 2.8 19.4
YIFPAF (Salhin et al., 2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]) 2-hy­droxy­phen­yl 18.8 179.5 178.7 3.3 21.7
ZAPKOS (Hou, 2012[Hou, J.-L. (2012). Acta Cryst. E68, o1352.]) 3-nitro­phen­yl −14.6 169.4 177.4 13.8 9.2
ZIPLAO (Prachumrat et al., 2018[Prachumrat, P., Kobkeatthawin, T., Ruanwas, P., Boonnak, N., Laphookhieo, S., Kassim, M. B. & Chantrapromma, S. (2018). Crystallogr. Rep. 63, 405-411.]) 2,3-di­meth­oxy­phen­yl 9.6 −175.3 172.9 −1.3 9.3
Non-planar            
CABWUA (Meng et al., 2014[Meng, X.-F., Li, W.-N. & Ma, J.-J. (2014). J. Chil. Chem. Soc. 59, 2647-2651.]) 2-hy­droxy-5-methyl­phen­yl 18.4 −178.5 −169.8 8.0 40.8
CEDBAQ (Subashini et al., 2012[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012). Acta Cryst. C68, o408-o412.]) 4-(di­ethyl­amino)­phen­yl 34.9 −178.5 −151.7 8.75 77.3
HUCVIL (Hao, 2009[Hao, Y.-M. (2009). Acta Cryst. E65, o2098.]) 2-chloro­phen­yl −22.5 −179.2 177.4 −4.2 30.5
HUCWOS (Shi, 2009[Shi, D.-H. (2009). Acta Cryst. E65, o2107.]) 4-meth­oxy­phen­yl −50.9 −177.5 174.8 9.2 46.6
MOSPEQ (Qiu, 2009[Qiu, X.-Y. (2009). Acta Cryst. E65, o975.]) 5-chloro-2-hy­droxy­phen­yl 19.0 −178.5 −170.9 7.59 40.2
PAQJID (Gopal Reddy et al., 2017[Gopal Reddy, N. B., Krishna, P. M., Shantha Kumar, S. S., Patil, Y. P. & Nethaji, M. (2017). J. Mol. Struct. 1137, 543-552.]) 4-ethyl­phen­yl −39.9 171.1 173.9 7.4 49.9
PAWVUG (Rassem et al., 2012a[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012a). Acta Cryst. E68, o1832.]) 2-meth­oxy­phen­yl 29.1 −166.8 −175.1 19.2 66.6
PEDGOW (Saad et al., 2012[Saad, S. M., Fatima, I., Perveen, S., Khan, K. M. & Yousuf, S. (2012). Acta Cryst. E68, o3499.]) 3-chloro­phen­yl −21.1 179.5 175.3 −9.3 39.0
XEBYUA (Rassem et al., 2012b[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012b). Acta Cryst. E68, o2279.]) 2-hy­droxy-4-meth­oxy­phen­yl 28.7 178.1 −169.8 1.3 40.6
[Figure 4]
Figure 4
General chemical diagram, showing torsion angles τ1, τ2, τ3 and τ4 in the benzyl­idene-4-hy­droxy­benzohydrazide derivative.

5. Synthesis and crystallization

The title compound (I)[link] was prepared by dissolving 4-hy­droxy­benzohydrazide (2 mmol, 0.30 g) in ethanol (10 ml). A solution of 3,4-di­hydroxy­benzaldehyde (2 mmol, 0.28 g) in ethanol (10 ml) was then added to the reaction. The mixture was refluxed for 6 h and the white solid of the product that appeared was collected by filtration, washed with ethanol and dried in air. Colourless single crystals of (I)[link] were obtained after recrystallization from methanol at room temperature for several days.

M.p. 572–573 K. UV–Vis (MeOH) λmax 213, 327 nm; FT–IR (KBr) ν (cm−1): 3121 (O—H stretching), 2800 (C—H aromatic stretching), 1615 (amide C=O stretching), 1570 (C=N stretching), 1506 (C=C stretching of aromatic compound) cm−1; 1H NMR (300 MHz, d6-DMSO) δ 11.39 (s, 1H, NH), 10.10 (s, 1H, Ar—OH), 8.23 (s, 1H, N=CH), 7.77 (d, J = 8.4 Hz, 2H, Ar—H), 6.84 (d, J = 8.4, 2H, Ar—H), 9.33 (s, 2H, Ar—OH), 7.22 (s, 1H, Ar—H), 6.90 (d, J = 7.8 Hz, 1H, Ar—H), 6.77 (d, J = 8.1 Hz, 1H, Ar—H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (CH = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). All O- and N-bound H atoms were located in a difference-Fourier map and refined freely [O—H = 0.80 (2)–0.88 (2) Å and N—H = 0.87 (2) Å].

Table 3
Experimental details

Crystal data
Chemical formula C14H12N2O4
Mr 272.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.5352 (8), 7.1711 (5), 15.0606 (10)
β (°) 108.548 (2)
V3) 1181.10 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.80 × 0.21 × 0.07
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.924, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 22559, 3200, 2453
Rint 0.024
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.161, 1.05
No. of reflections 3200
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-N'-(3,4-Dihydroxybenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5352 (8) ÅCell parameters from 6293 reflections
b = 7.1711 (5) Åθ = 2.9–29.2°
c = 15.0606 (10) ŵ = 0.11 mm1
β = 108.548 (2)°T = 296 K
V = 1181.10 (14) Å3Plate, colourless
Z = 40.80 × 0.21 × 0.07 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1515
Tmin = 0.924, Tmax = 0.954k = 99
22559 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3200 reflectionsΔρmax = 0.35 e Å3
197 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87093 (9)0.31797 (18)0.75119 (6)0.0493 (3)
O20.72990 (8)0.42338 (15)0.31133 (6)0.0439 (3)
O30.36583 (9)0.37514 (15)0.12560 (6)0.0432 (3)
O40.11997 (10)0.35694 (18)0.18715 (7)0.0547 (3)
N10.54178 (10)0.37659 (17)0.32223 (7)0.0392 (3)
N20.48862 (10)0.38068 (17)0.22612 (7)0.0387 (3)
C10.64041 (11)0.3493 (2)0.52044 (8)0.0360 (3)
H1A0.5559980.3419010.4932790.043*
C20.69125 (11)0.32969 (19)0.61626 (8)0.0370 (3)
H2A0.6414780.3089930.6532210.044*
C30.81673 (12)0.34105 (19)0.65681 (8)0.0359 (3)
C40.89049 (12)0.3773 (2)0.60204 (9)0.0429 (3)
H4A0.9746220.3890560.6296250.051*
C50.83860 (12)0.3960 (2)0.50639 (9)0.0398 (3)
H5A0.8884740.4196860.4698120.048*
C60.71320 (11)0.38002 (16)0.46381 (8)0.0312 (3)
C70.66306 (11)0.39454 (18)0.36014 (8)0.0334 (3)
C80.37218 (12)0.37651 (18)0.19709 (8)0.0357 (3)
H8A0.3296600.3744770.2401990.043*
C90.30468 (12)0.37489 (17)0.09713 (8)0.0332 (3)
C100.36617 (11)0.38007 (18)0.03124 (8)0.0339 (3)
H10A0.4510580.3876120.0510400.041*
C110.30251 (11)0.37414 (17)0.06263 (8)0.0332 (3)
C120.17505 (12)0.36368 (19)0.09316 (9)0.0377 (3)
C130.11375 (12)0.3624 (2)0.02790 (9)0.0434 (3)
H13A0.0287560.3584710.0477900.052*
C140.17809 (12)0.3669 (2)0.06705 (9)0.0400 (3)
H14A0.1362520.3645860.1106000.048*
H1O10.8288 (18)0.256 (3)0.7732 (15)0.074 (6)*
H1O30.324 (2)0.421 (3)0.1808 (16)0.092 (7)*
H1O40.046 (2)0.345 (3)0.1964 (16)0.085 (7)*
H1N10.4954 (19)0.342 (3)0.3546 (14)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (5)0.0836 (8)0.0215 (4)0.0105 (5)0.0004 (4)0.0057 (4)
O20.0376 (5)0.0700 (7)0.0267 (4)0.0036 (4)0.0139 (4)0.0016 (4)
O30.0344 (5)0.0719 (7)0.0236 (4)0.0037 (4)0.0095 (4)0.0026 (4)
O40.0352 (6)0.0991 (9)0.0227 (5)0.0083 (5)0.0009 (4)0.0033 (5)
N10.0326 (6)0.0651 (7)0.0185 (5)0.0038 (5)0.0060 (4)0.0023 (4)
N20.0380 (6)0.0576 (7)0.0182 (5)0.0033 (5)0.0056 (4)0.0010 (4)
C10.0254 (6)0.0554 (7)0.0248 (6)0.0019 (5)0.0046 (4)0.0004 (5)
C20.0319 (6)0.0558 (8)0.0232 (6)0.0014 (5)0.0086 (5)0.0005 (5)
C30.0335 (6)0.0485 (7)0.0220 (5)0.0024 (5)0.0037 (5)0.0001 (5)
C40.0272 (6)0.0688 (9)0.0289 (6)0.0039 (6)0.0037 (5)0.0022 (6)
C50.0307 (6)0.0611 (8)0.0284 (6)0.0029 (5)0.0105 (5)0.0014 (5)
C60.0300 (6)0.0411 (6)0.0213 (5)0.0007 (4)0.0063 (4)0.0010 (4)
C70.0337 (6)0.0440 (7)0.0222 (6)0.0001 (5)0.0086 (5)0.0019 (4)
C80.0352 (7)0.0481 (7)0.0231 (6)0.0003 (5)0.0081 (5)0.0012 (5)
C90.0332 (6)0.0416 (6)0.0219 (5)0.0005 (5)0.0046 (5)0.0009 (4)
C100.0261 (5)0.0492 (7)0.0234 (6)0.0004 (5)0.0038 (4)0.0001 (5)
C110.0311 (6)0.0443 (7)0.0234 (5)0.0008 (5)0.0073 (4)0.0010 (4)
C120.0313 (6)0.0521 (7)0.0243 (6)0.0013 (5)0.0012 (5)0.0026 (5)
C130.0255 (6)0.0686 (9)0.0321 (7)0.0003 (5)0.0038 (5)0.0046 (6)
C140.0329 (6)0.0582 (8)0.0298 (6)0.0015 (5)0.0110 (5)0.0037 (5)
Geometric parameters (Å, º) top
O1—C31.3688 (14)C4—C51.3794 (18)
O1—H1O10.80 (2)C4—H4A0.9300
O2—C71.2403 (15)C5—C61.3880 (18)
O3—C111.3688 (15)C5—H5A0.9300
O3—H1O30.88 (2)C6—C71.4861 (15)
O4—C121.3556 (15)C8—C91.4584 (16)
O4—H1O40.83 (3)C8—H8A0.9300
N1—C71.3385 (17)C9—C141.3856 (18)
N1—N21.3811 (14)C9—C101.3918 (17)
N1—H1N10.87 (2)C10—C111.3709 (16)
N2—C81.2738 (17)C10—H10A0.9300
C1—C21.3812 (16)C11—C121.3959 (18)
C1—C61.3916 (17)C12—C131.3815 (19)
C1—H1A0.9300C13—C141.3861 (17)
C2—C31.3828 (18)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9300
C3—C41.3852 (19)
C3—O1—H1O1111.0 (15)O2—C7—N1121.71 (11)
C11—O3—H1O3113.5 (15)O2—C7—C6121.79 (11)
C12—O4—H1O4107.2 (16)N1—C7—C6116.49 (11)
C7—N1—N2120.02 (11)N2—C8—C9120.86 (12)
C7—N1—H1N1122.4 (13)N2—C8—H8A119.6
N2—N1—H1N1116.6 (13)C9—C8—H8A119.6
C8—N2—N1115.30 (11)C14—C9—C10119.41 (11)
C2—C1—C6121.20 (11)C14—C9—C8119.93 (12)
C2—C1—H1A119.4C10—C9—C8120.66 (11)
C6—C1—H1A119.4C11—C10—C9120.47 (11)
C1—C2—C3119.49 (11)C11—C10—H10A119.8
C1—C2—H2A120.3C9—C10—H10A119.8
C3—C2—H2A120.3O3—C11—C10119.04 (11)
O1—C3—C2121.31 (12)O3—C11—C12120.68 (11)
O1—C3—C4118.49 (11)C10—C11—C12120.26 (11)
C2—C3—C4120.20 (11)O4—C12—C13124.53 (12)
C5—C4—C3119.69 (12)O4—C12—C11116.14 (12)
C5—C4—H4A120.2C13—C12—C11119.33 (11)
C3—C4—H4A120.2C12—C13—C14120.43 (12)
C4—C5—C6121.12 (12)C12—C13—H13A119.8
C4—C5—H5A119.4C14—C13—H13A119.8
C6—C5—H5A119.4C9—C14—C13120.07 (12)
C5—C6—C1118.24 (11)C9—C14—H14A120.0
C5—C6—C7118.67 (11)C13—C14—H14A120.0
C1—C6—C7123.09 (11)
C7—N1—N2—C8174.98 (12)N1—N2—C8—C9178.29 (10)
C6—C1—C2—C30.1 (2)N2—C8—C9—C14178.83 (12)
C1—C2—C3—O1178.44 (12)N2—C8—C9—C100.76 (19)
C1—C2—C3—C41.9 (2)C14—C9—C10—C111.11 (18)
O1—C3—C4—C5178.19 (13)C8—C9—C10—C11178.47 (11)
C2—C3—C4—C52.1 (2)C9—C10—C11—O3178.51 (12)
C3—C4—C5—C60.3 (2)C9—C10—C11—C120.29 (19)
C4—C5—C6—C11.6 (2)O3—C11—C12—O40.71 (19)
C4—C5—C6—C7177.78 (12)C10—C11—C12—O4179.50 (12)
C2—C1—C6—C51.9 (2)O3—C11—C12—C13179.81 (13)
C2—C1—C6—C7177.51 (12)C10—C11—C12—C131.03 (19)
N2—N1—C7—O23.3 (2)O4—C12—C13—C14179.03 (13)
N2—N1—C7—C6177.33 (10)C11—C12—C13—C141.5 (2)
C5—C6—C7—O21.18 (19)C10—C9—C14—C130.60 (19)
C1—C6—C7—O2179.44 (13)C8—C9—C14—C13178.99 (12)
C5—C6—C7—N1179.42 (12)C12—C13—C14—C90.7 (2)
C1—C6—C7—N10.04 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.80 (2)1.92 (2)2.7203 (15)171 (2)
O3—H1O3···O2ii0.88 (2)2.17 (2)3.0276 (13)163 (2)
O4—H1O4···O1iii0.82 (2)1.93 (2)2.7379 (16)166 (2)
N1—H1N1···O3i0.87 (2)2.24 (2)3.0017 (16)146.1 (19)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z1.
Selected torsion angles (°) and the dihedral angle (°) between the terminal benzene rings top
CompoundRτ1τ2τ3τ4Dihedral angle
Planar
(I)3,4-dihydroxyphenyl-1.2-177.3-175.0-0.89.2
ABALIA (Fun et al., 2011)3-hydroxy-4-methoxyphenyl3.2178.4170.1-14.224.2
CECZOB (Subashini et al., 2012)4-chlorophenyl26.1-174.4166.6-8.95.8
CECZUH (Subashini et al., 2012)4-bromophenyl25.6-174.9169.0-7.29.8
ESOTUD (Chantrapromma et al., 2016)3-methoxyphenyl-19.4, 20.7-173.5, -177.8-175.7, -173.01.2, 0.624.0, 29.3
HOZBII (Li & Ban, 2009)4-nitrophenyl2.0177.7178.3-0.62.5
IJUKEE (Zhang, 2011)4-hydroxy-3-nitrophenyl-7.2-177.0-179.36.05.5
IRAXEF (Sánchez-Lozano et al., 2011)2,4-dihydroxyphenyl-7.7-177.8-177.2-4.16.9
MOZPEX (Ren, 2009)3,5-dichloro-2-hydroxyphenyl12.3178.7-179.4-7.35.1
ROFMOP (Xue et al., 2008)3-bromo-5-chloro-2-hydroxyphenyl-2.3175.9-176.5-1.33.0
TEWLAL (Ayyannan et al., 2016)5-bromo-2-hydroxyphenyl-15.7-173.6168.93.127.0
WACVON (Shalash et al., 2010)4-hydroxy-3-methoxyphenyl-34.2-175.5174.715.428.6
WACXOP (Huang, 2010)2,4-dichlorophenyl-14.3-179.8-175.03.07.0
YAGYAI (Horkaew et al., 2011)3,4,5-trimethoxyphenyl-10.6172.2175.82.819.4
YIFPAF (Salhin et al., 2007)2-hydroxyphenyl18.8179.5178.73.321.7
ZAPKOS (Hou, 2012)3-nitrophenyl-14.6169.4177.413.89.2
ZIPLAO (Prachumrat et al., 2018)2,3-dimethoxyphenyl9.6-175.3172.9-1.39.3
Non-planar
CABWUA (Meng et al., 2014)2-hydroxy-5-methylphenyl18.4-178.5-169.88.040.8
CEDBAQ (Subashini et al., 2012)4-(diethylamino)phenyl34.9-178.5-151.78.7577.3
HUCVIL (Hao, 2009)2-chlorophenyl-22.5-179.2177.4-4.230.5
HUCWOS (Shi, 2009)4-methoxyphenyl-50.9-177.5174.89.246.6
MOSPEQ (Qiu, 2009)5-chloro-2-hydroxyphenyl19.0-178.5-170.97.5940.2
PAQJID (Gopal Reddy et al., 2017)4-ethylphenyl-39.9171.1173.97.449.9
PAWVUG (Rassem et al., 2012a)2-methoxyphenyl29.1-166.8-175.119.266.6
PEDGOW (Saad et al., 2012)3-chlorophenyl-21.1179.5175.3-9.339.0
XEBYUA (Rassem et al., 2012b)2-hydroxy-4-methoxyphenyl28.7178.1-169.81.340.6
 

Footnotes

1This paper is dedicated to Her Royal Highness Princess Chulabhorn Krom Phra Srisavangavadhana of Thailand for her contributions to science on the occasion of her 62th birthday, which fell on July 4th, 2019.

Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank Prince of Songkla University for research grant (SCI590716S). PP thanks the Graduate School, Prince of Songkla University for partial financial support. The authors extend their appreciation to the Universiti Sains Malaysia for the research facilities.

Funding information

The authors thank Prince of Songkla University for research grant (SCI590716S). PP thanks the Graduate School, Prince of Songkla University for partial financial support.

References

First citationAyyannan, G., Mohanraj, M., Raja, G., Bhuvanesh, N., Nandhakumar, R. & Jayabalakrishnan, C. (2016). J. Photochem. Photobiol. B, 163, 1–13.  CrossRef CAS PubMed Google Scholar
First citationAziz, A. N., Taha, M., Ismail, N. H., Anouar, el H., Yousuf, S., Jamil, W., Awang, K., Ahmat, N., Khan, K. M. & Kashif, S. M. (2014). Molecules, 19, 8414–8433.  CrossRef PubMed Google Scholar
First citationBachhawat, A., Shihabudeen, J. M. S. & Thirumurugan, K. (2011). Int. J. Pharm. Pharm. Sci. 3, 267–274.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339–1342.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGopal Reddy, N. B., Krishna, P. M., Shantha Kumar, S. S., Patil, Y. P. & Nethaji, M. (2017). J. Mol. Struct. 1137, 543–552.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009). Acta Cryst. E65, o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. (2012). Acta Cryst. E68, o1352.  CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-W. (2010). Acta Cryst. E66, o3143.  CrossRef IUCr Journals Google Scholar
First citationKumari, D. & Bansal, H. (2018). Pharm. Innov. J, 7, 543–550.  Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaheswari, R. & Manjula, J. (2015). Inter. J. Applied Res. 1, 587–592.  Google Scholar
First citationMeng, X.-F., Li, W.-N. & Ma, J.-J. (2014). J. Chil. Chem. Soc. 59, 2647–2651.  CrossRef CAS Google Scholar
First citationNarasimhan, B., Kumar, P. & Sharma, D. (2010). Acta Pharm. Sci. 52, 169–180.  CAS Google Scholar
First citationPrachumrat, P., Kobkeatthawin, T., Ruanwas, P., Boonnak, N., Laphookhieo, S., Kassim, M. B. & Chantrapromma, S. (2018). Crystallogr. Rep. 63, 405–411.  CrossRef CAS Google Scholar
First citationQiu, X.-Y. (2009). Acta Cryst. E65, o975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012a). Acta Cryst. E68, o1832.  CrossRef IUCr Journals Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012b). Acta Cryst. E68, o2279.  CrossRef IUCr Journals Google Scholar
First citationRen, C.-G. (2009). Acta Cryst. E65, o1503–o1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaad, S. M., Fatima, I., Perveen, S., Khan, K. M. & Yousuf, S. (2012). Acta Cryst. E68, o3499.  CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSánchez-Lozano, M., Vázquez-López, E. M., Hermida-Ramón, J. M. & Estévez, C. M. (2011). Polyhedron, 30, 953–962.  Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, D.-H. (2009). Acta Cryst. E65, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012). Acta Cryst. C68, o408–o412.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Ismail, N. H., Imran, S., Rokei, M. Q., Saad, S. M. & Khan, K. M. (2015). Bioorg. Med. Chem. 23, 4155–4162.  CrossRef CAS PubMed Google Scholar
First citationThaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Byrne, D. H. (2006). J. Food. Composition Anal. 19, 669–675.  CrossRef CAS Google Scholar
First citationXia, Z., Hu, L. W. & Wang, X. (2007). Bioorg. Med. Chem. 17, 3374–3377.  Google Scholar
First citationXue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds