research communications
E)-N′-(3,4-dihydroxybenzylidene)-4-hydroxybenzohydrazide1
of (aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th
In the title benzohydrazide derivative, C14H12N2O4, the azomethine C=N double bond has an E configuration. The hydrazide connecting bridge, (C=O)—(NH)—N=(CH), is nearly planar with C—C—N—N and C—N—N=C torsion angles of −177.33 (10) and −174.98 (12)°, respectively. The 4-hydroxyphenyl and 3,4-dihydroxyphenyl rings are slightly twisted, making a dihedral angle of 9.18 (6)°. In the crystal, molecules are connected by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network, while further consolidated via π–π interactions [centroid–centroid distances = 3.6480 (8) and 3.7607 (8) Å]. The conformation is compared to those of related benzylidene-4-hydroxybenzohydrazide derivatives.
Keywords: crystal structure; hydrazide; molecular conformation; antioxidant; α-glucosidase inhibitory.
CCDC reference: 1942396
1. Chemical context
et al., 2010). Benzohydrazide derivatives containing an azomethine (–NHN=CH–) group have been reported to possess diverse biological activities such as antitumor (Xia et al., 2007; Kumari & Bansal, 2018), antioxidant (Aziz et al., 2014), antitubercular and antimicrobial (Maheswari & Manjula, 2015) and α-glucosidase inhibition (Taha et al., 2015) activities. The interesting biological activities of benzohydrazides led us to synthesize several benzohydrazides to study their bioactivities (Fun et al., 2011; Horkaew et al., 2011; Chantrapromma et al., 2016), including the title compound (I), which was found to exhibit antioxidant activity with an IC50 value of 0.035 ± 0.004 mM (ascorbic acid used as the reference standard; Thaipong et al., 2006) and α-glucosidase inhibitory activity with an IC50 value of 0.014 ± 0.001 mM (acarbose as the reference standard; Bachhawat et al., 2011).
and are important synthons for several transformations and have gained importance because of their various biological and clinical applications (Narasimhan2. Structural commentary
The title hydrazide derivative, (I), consists of a 4-hydroxyphenyl ring, a 3,4-dihydroxyphenyl ring and a hydrazide (C=O)—(NH)—N=(CH) connecting bridge (Fig. 1). The C6—C7, C7—N1 and C8—C9 bond lengths of 1.4861 (15), 1.3385 (17) and 1.4584 (16) Å, respectively, confirm their single-bond character, whereas the C7=O2 and N2=C8 bond lengths of 1.2403 (15) and 1.2738 (17) Å, respectively, confirm the presence of the double bonds. The sp2-hybridized character of atoms C7 and C8 is further supported by the bond angles C6—C7—N1 [116.49 (11)°] and N2—C8—C9 [120.86 (12)°]. The bond lengths and angles of the central hydrazide connecting bridge are consistent with those in related structures (Fun et al., 2011; Chantrapromma et al., 2016). The molecule exhibits an E configuration with respect to the azomethine C=N double bond. As the torsion angle C6—C7—N1—N2 [−177.33 (10)°] and C7—N1—N2—C8 [−174.98 (12)°] are both in an anti-periplanar conformation, the overall conformation for the hydrazide connecting bridge is almost planar. Furthermore, the 4-hydroxyphenyl and 3,4-dihydroxyphenyl rings are also coplanar to the corresponding azomethine and carbonyl double bonds, with torsion angles N2—C8—C9—C10 [−0.76 (19)°] and C5—C6—C7—O2 [−1.18 (19)°] both in a syn-periplanar conformation. Those torsion angles result in an overall flat shape of the title compound with the dihedral angle between the terminal benzene rings being 9.18 (6)°.
3. Supramolecular features
In the crystal, molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds (Table 1) into a three-dimensional network. Molecules are connected into infinite chains along [101] through an O4—H1O4⋯O1iii hydrogen bond and those chains are further connected into two-dimensional plates parallel to the ac plane via N1—H1N1⋯O3i and O1—H1O1⋯O2i hydrogen bonds with an R22(18) ring motif (Fig. 2a and 3a; symmetry codes as in Table 1). Those plate are interconnected via an O3—H1O3⋯O2ii hydrogen bond with an R22(20) ring motif, forming a three-dimensional network (Fig. 2b and 3b; symmetry code as in Table 1). In addition, the molecules are further stabilized by π–π interactions involving both aromatic rings with Cg1⋯Cg2iv = 3.6480 (8) Å and Cg1⋯Cg2v = 3.7607 (8) Å [symmetry codes: (iv) 1 − x, − + y, − z; (v) 1 − x, + y, − z; Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 aromatic rings, respectively.]
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016) using (E)-N′-benzenylidene-4-hydroxybenzohydrazide as the reference moiety resulted in 31 structures with different substituents at the benzylidenyl ring. The different substituent (R) together with selected torsion angles, τ1 (C5—C6—C7—O2), τ2 (C6—C7—N1—N2), τ3 (C7—N1—N2—C8) and τ4 (N2—C8—C9—C10) as shown in Fig. 4, and the dihedral angle between the terminal aromatic rings are summarized in Table 2. The torsion angles τ2 and τ3 are anti-periplanar (151.7–179.8°), showing that the hydrazide connecting bridges are nearly planar. As for the torsion angle τ4, all structures adopt a syn-periplanar conformation (0.6–19.6°). Similar to the title compound, the τ1 torsion angles for most of the structures are syn-periplanar (2.0–29.1°). However, there are three outliers (CEDBAQ, HUCWOS and PAQJID) whose τ1 torsion angles are syn-clinal (34.9–50.9°). By comparing the dihedral angles, the structures can be divided into planar compounds (dihedral angle = 2.5–29.3°) and non-planar compounds (dihedral angle = 30.5–77.3°). In general, as the hydrazide-connecting bridges are nearly planar, relatively flat τ1 and τ4 torsion angles are observed in the former compounds, while relatively twisted τ1 and τ4 torsion angles are observed in the latter.
5. Synthesis and crystallization
The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (2 mmol, 0.30 g) in ethanol (10 ml). A solution of 3,4-dihydroxybenzaldehyde (2 mmol, 0.28 g) in ethanol (10 ml) was then added to the reaction. The mixture was refluxed for 6 h and the white solid of the product that appeared was collected by filtration, washed with ethanol and dried in air. Colourless single crystals of (I) were obtained after recrystallization from methanol at room temperature for several days.
M.p. 572–573 K. UV–Vis (MeOH) λmax 213, 327 nm; FT–IR (KBr) ν (cm−1): 3121 (O—H stretching), 2800 (C—H aromatic stretching), 1615 (amide C=O stretching), 1570 (C=N stretching), 1506 (C=C stretching of aromatic compound) cm−1; 1H NMR (300 MHz, d6-DMSO) δ 11.39 (s, 1H, NH), 10.10 (s, 1H, Ar—OH), 8.23 (s, 1H, N=CH), 7.77 (d, J = 8.4 Hz, 2H, Ar—H), 6.84 (d, J = 8.4, 2H, Ar—H), 9.33 (s, 2H, Ar—OH), 7.22 (s, 1H, Ar—H), 6.90 (d, J = 7.8 Hz, 1H, Ar—H), 6.77 (d, J = 8.1 Hz, 1H, Ar—H).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). All O- and N-bound H atoms were located in a difference-Fourier map and refined freely [O—H = 0.80 (2)–0.88 (2) Å and N—H = 0.87 (2) Å].
details are summarized in Table 3
|
Supporting information
CCDC reference: 1942396
https://doi.org/10.1107/S2056989019010442/is5518sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010442/is5518Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019010442/is5518Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C14H12N2O4 | F(000) = 568 |
Mr = 272.26 | Dx = 1.531 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5352 (8) Å | Cell parameters from 6293 reflections |
b = 7.1711 (5) Å | θ = 2.9–29.2° |
c = 15.0606 (10) Å | µ = 0.11 mm−1 |
β = 108.548 (2)° | T = 296 K |
V = 1181.10 (14) Å3 | Plate, colourless |
Z = 4 | 0.80 × 0.21 × 0.07 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 3200 independent reflections |
Radiation source: fine-focus sealed tube | 2453 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 29.2°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −15→15 |
Tmin = 0.924, Tmax = 0.954 | k = −9→9 |
22559 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.161 | w = 1/[σ2(Fo2) + (0.0999P)2 + 0.1317P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3200 reflections | Δρmax = 0.35 e Å−3 |
197 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.87093 (9) | 0.31797 (18) | 0.75119 (6) | 0.0493 (3) | |
O2 | 0.72990 (8) | 0.42338 (15) | 0.31133 (6) | 0.0439 (3) | |
O3 | 0.36583 (9) | 0.37514 (15) | −0.12560 (6) | 0.0432 (3) | |
O4 | 0.11997 (10) | 0.35694 (18) | −0.18715 (7) | 0.0547 (3) | |
N1 | 0.54178 (10) | 0.37659 (17) | 0.32223 (7) | 0.0392 (3) | |
N2 | 0.48862 (10) | 0.38068 (17) | 0.22612 (7) | 0.0387 (3) | |
C1 | 0.64041 (11) | 0.3493 (2) | 0.52044 (8) | 0.0360 (3) | |
H1A | 0.555998 | 0.341901 | 0.493279 | 0.043* | |
C2 | 0.69125 (11) | 0.32969 (19) | 0.61626 (8) | 0.0370 (3) | |
H2A | 0.641478 | 0.308993 | 0.653221 | 0.044* | |
C3 | 0.81673 (12) | 0.34105 (19) | 0.65681 (8) | 0.0359 (3) | |
C4 | 0.89049 (12) | 0.3773 (2) | 0.60204 (9) | 0.0429 (3) | |
H4A | 0.974622 | 0.389056 | 0.629625 | 0.051* | |
C5 | 0.83860 (12) | 0.3960 (2) | 0.50639 (9) | 0.0398 (3) | |
H5A | 0.888474 | 0.419686 | 0.469812 | 0.048* | |
C6 | 0.71320 (11) | 0.38002 (16) | 0.46381 (8) | 0.0312 (3) | |
C7 | 0.66306 (11) | 0.39454 (18) | 0.36014 (8) | 0.0334 (3) | |
C8 | 0.37218 (12) | 0.37651 (18) | 0.19709 (8) | 0.0357 (3) | |
H8A | 0.329660 | 0.374477 | 0.240199 | 0.043* | |
C9 | 0.30468 (12) | 0.37489 (17) | 0.09713 (8) | 0.0332 (3) | |
C10 | 0.36617 (11) | 0.38007 (18) | 0.03124 (8) | 0.0339 (3) | |
H10A | 0.451058 | 0.387612 | 0.051040 | 0.041* | |
C11 | 0.30251 (11) | 0.37414 (17) | −0.06263 (8) | 0.0332 (3) | |
C12 | 0.17505 (12) | 0.36368 (19) | −0.09316 (9) | 0.0377 (3) | |
C13 | 0.11375 (12) | 0.3624 (2) | −0.02790 (9) | 0.0434 (3) | |
H13A | 0.028756 | 0.358471 | −0.047790 | 0.052* | |
C14 | 0.17809 (12) | 0.3669 (2) | 0.06705 (9) | 0.0400 (3) | |
H14A | 0.136252 | 0.364586 | 0.110600 | 0.048* | |
H1O1 | 0.8288 (18) | 0.256 (3) | 0.7732 (15) | 0.074 (6)* | |
H1O3 | 0.324 (2) | 0.421 (3) | −0.1808 (16) | 0.092 (7)* | |
H1O4 | 0.046 (2) | 0.345 (3) | −0.1964 (16) | 0.085 (7)* | |
H1N1 | 0.4954 (19) | 0.342 (3) | 0.3546 (14) | 0.069 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0364 (5) | 0.0836 (8) | 0.0215 (4) | −0.0105 (5) | 0.0004 (4) | 0.0057 (4) |
O2 | 0.0376 (5) | 0.0700 (7) | 0.0267 (4) | −0.0036 (4) | 0.0139 (4) | −0.0016 (4) |
O3 | 0.0344 (5) | 0.0719 (7) | 0.0236 (4) | 0.0037 (4) | 0.0095 (4) | 0.0026 (4) |
O4 | 0.0352 (6) | 0.0991 (9) | 0.0227 (5) | −0.0083 (5) | −0.0009 (4) | 0.0033 (5) |
N1 | 0.0326 (6) | 0.0651 (7) | 0.0185 (5) | −0.0038 (5) | 0.0060 (4) | 0.0023 (4) |
N2 | 0.0380 (6) | 0.0576 (7) | 0.0182 (5) | −0.0033 (5) | 0.0056 (4) | 0.0010 (4) |
C1 | 0.0254 (6) | 0.0554 (7) | 0.0248 (6) | −0.0019 (5) | 0.0046 (4) | −0.0004 (5) |
C2 | 0.0319 (6) | 0.0558 (8) | 0.0232 (6) | −0.0014 (5) | 0.0086 (5) | 0.0005 (5) |
C3 | 0.0335 (6) | 0.0485 (7) | 0.0220 (5) | −0.0024 (5) | 0.0037 (5) | −0.0001 (5) |
C4 | 0.0272 (6) | 0.0688 (9) | 0.0289 (6) | −0.0039 (6) | 0.0037 (5) | 0.0022 (6) |
C5 | 0.0307 (6) | 0.0611 (8) | 0.0284 (6) | −0.0029 (5) | 0.0105 (5) | 0.0014 (5) |
C6 | 0.0300 (6) | 0.0411 (6) | 0.0213 (5) | 0.0007 (4) | 0.0063 (4) | −0.0010 (4) |
C7 | 0.0337 (6) | 0.0440 (7) | 0.0222 (6) | −0.0001 (5) | 0.0086 (5) | −0.0019 (4) |
C8 | 0.0352 (7) | 0.0481 (7) | 0.0231 (6) | 0.0003 (5) | 0.0081 (5) | 0.0012 (5) |
C9 | 0.0332 (6) | 0.0416 (6) | 0.0219 (5) | 0.0005 (5) | 0.0046 (5) | 0.0009 (4) |
C10 | 0.0261 (5) | 0.0492 (7) | 0.0234 (6) | 0.0004 (5) | 0.0038 (4) | −0.0001 (5) |
C11 | 0.0311 (6) | 0.0443 (7) | 0.0234 (5) | 0.0008 (5) | 0.0073 (4) | 0.0010 (4) |
C12 | 0.0313 (6) | 0.0521 (7) | 0.0243 (6) | −0.0013 (5) | 0.0012 (5) | 0.0026 (5) |
C13 | 0.0255 (6) | 0.0686 (9) | 0.0321 (7) | −0.0003 (5) | 0.0038 (5) | 0.0046 (6) |
C14 | 0.0329 (6) | 0.0582 (8) | 0.0298 (6) | 0.0015 (5) | 0.0110 (5) | 0.0037 (5) |
O1—C3 | 1.3688 (14) | C4—C5 | 1.3794 (18) |
O1—H1O1 | 0.80 (2) | C4—H4A | 0.9300 |
O2—C7 | 1.2403 (15) | C5—C6 | 1.3880 (18) |
O3—C11 | 1.3688 (15) | C5—H5A | 0.9300 |
O3—H1O3 | 0.88 (2) | C6—C7 | 1.4861 (15) |
O4—C12 | 1.3556 (15) | C8—C9 | 1.4584 (16) |
O4—H1O4 | 0.83 (3) | C8—H8A | 0.9300 |
N1—C7 | 1.3385 (17) | C9—C14 | 1.3856 (18) |
N1—N2 | 1.3811 (14) | C9—C10 | 1.3918 (17) |
N1—H1N1 | 0.87 (2) | C10—C11 | 1.3709 (16) |
N2—C8 | 1.2738 (17) | C10—H10A | 0.9300 |
C1—C2 | 1.3812 (16) | C11—C12 | 1.3959 (18) |
C1—C6 | 1.3916 (17) | C12—C13 | 1.3815 (19) |
C1—H1A | 0.9300 | C13—C14 | 1.3861 (17) |
C2—C3 | 1.3828 (18) | C13—H13A | 0.9300 |
C2—H2A | 0.9300 | C14—H14A | 0.9300 |
C3—C4 | 1.3852 (19) | ||
C3—O1—H1O1 | 111.0 (15) | O2—C7—N1 | 121.71 (11) |
C11—O3—H1O3 | 113.5 (15) | O2—C7—C6 | 121.79 (11) |
C12—O4—H1O4 | 107.2 (16) | N1—C7—C6 | 116.49 (11) |
C7—N1—N2 | 120.02 (11) | N2—C8—C9 | 120.86 (12) |
C7—N1—H1N1 | 122.4 (13) | N2—C8—H8A | 119.6 |
N2—N1—H1N1 | 116.6 (13) | C9—C8—H8A | 119.6 |
C8—N2—N1 | 115.30 (11) | C14—C9—C10 | 119.41 (11) |
C2—C1—C6 | 121.20 (11) | C14—C9—C8 | 119.93 (12) |
C2—C1—H1A | 119.4 | C10—C9—C8 | 120.66 (11) |
C6—C1—H1A | 119.4 | C11—C10—C9 | 120.47 (11) |
C1—C2—C3 | 119.49 (11) | C11—C10—H10A | 119.8 |
C1—C2—H2A | 120.3 | C9—C10—H10A | 119.8 |
C3—C2—H2A | 120.3 | O3—C11—C10 | 119.04 (11) |
O1—C3—C2 | 121.31 (12) | O3—C11—C12 | 120.68 (11) |
O1—C3—C4 | 118.49 (11) | C10—C11—C12 | 120.26 (11) |
C2—C3—C4 | 120.20 (11) | O4—C12—C13 | 124.53 (12) |
C5—C4—C3 | 119.69 (12) | O4—C12—C11 | 116.14 (12) |
C5—C4—H4A | 120.2 | C13—C12—C11 | 119.33 (11) |
C3—C4—H4A | 120.2 | C12—C13—C14 | 120.43 (12) |
C4—C5—C6 | 121.12 (12) | C12—C13—H13A | 119.8 |
C4—C5—H5A | 119.4 | C14—C13—H13A | 119.8 |
C6—C5—H5A | 119.4 | C9—C14—C13 | 120.07 (12) |
C5—C6—C1 | 118.24 (11) | C9—C14—H14A | 120.0 |
C5—C6—C7 | 118.67 (11) | C13—C14—H14A | 120.0 |
C1—C6—C7 | 123.09 (11) | ||
C7—N1—N2—C8 | −174.98 (12) | N1—N2—C8—C9 | −178.29 (10) |
C6—C1—C2—C3 | 0.1 (2) | N2—C8—C9—C14 | 178.83 (12) |
C1—C2—C3—O1 | −178.44 (12) | N2—C8—C9—C10 | −0.76 (19) |
C1—C2—C3—C4 | 1.9 (2) | C14—C9—C10—C11 | −1.11 (18) |
O1—C3—C4—C5 | 178.19 (13) | C8—C9—C10—C11 | 178.47 (11) |
C2—C3—C4—C5 | −2.1 (2) | C9—C10—C11—O3 | −178.51 (12) |
C3—C4—C5—C6 | 0.3 (2) | C9—C10—C11—C12 | 0.29 (19) |
C4—C5—C6—C1 | 1.6 (2) | O3—C11—C12—O4 | −0.71 (19) |
C4—C5—C6—C7 | −177.78 (12) | C10—C11—C12—O4 | −179.50 (12) |
C2—C1—C6—C5 | −1.9 (2) | O3—C11—C12—C13 | 179.81 (13) |
C2—C1—C6—C7 | 177.51 (12) | C10—C11—C12—C13 | 1.03 (19) |
N2—N1—C7—O2 | 3.3 (2) | O4—C12—C13—C14 | 179.03 (13) |
N2—N1—C7—C6 | −177.33 (10) | C11—C12—C13—C14 | −1.5 (2) |
C5—C6—C7—O2 | −1.18 (19) | C10—C9—C14—C13 | 0.60 (19) |
C1—C6—C7—O2 | 179.44 (13) | C8—C9—C14—C13 | −178.99 (12) |
C5—C6—C7—N1 | 179.42 (12) | C12—C13—C14—C9 | 0.7 (2) |
C1—C6—C7—N1 | 0.04 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2i | 0.80 (2) | 1.92 (2) | 2.7203 (15) | 171 (2) |
O3—H1O3···O2ii | 0.88 (2) | 2.17 (2) | 3.0276 (13) | 163 (2) |
O4—H1O4···O1iii | 0.82 (2) | 1.93 (2) | 2.7379 (16) | 166 (2) |
N1—H1N1···O3i | 0.87 (2) | 2.24 (2) | 3.0017 (16) | 146.1 (19) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z; (iii) x−1, y, z−1. |
Compound | R | τ1 | τ2 | τ3 | τ4 | Dihedral angle |
Planar | ||||||
(I) | 3,4-dihydroxyphenyl | -1.2 | -177.3 | -175.0 | -0.8 | 9.2 |
ABALIA (Fun et al., 2011) | 3-hydroxy-4-methoxyphenyl | 3.2 | 178.4 | 170.1 | -14.2 | 24.2 |
CECZOB (Subashini et al., 2012) | 4-chlorophenyl | 26.1 | -174.4 | 166.6 | -8.9 | 5.8 |
CECZUH (Subashini et al., 2012) | 4-bromophenyl | 25.6 | -174.9 | 169.0 | -7.2 | 9.8 |
ESOTUD (Chantrapromma et al., 2016) | 3-methoxyphenyl | -19.4, 20.7 | -173.5, -177.8 | -175.7, -173.0 | 1.2, 0.6 | 24.0, 29.3 |
HOZBII (Li & Ban, 2009) | 4-nitrophenyl | 2.0 | 177.7 | 178.3 | -0.6 | 2.5 |
IJUKEE (Zhang, 2011) | 4-hydroxy-3-nitrophenyl | -7.2 | -177.0 | -179.3 | 6.0 | 5.5 |
IRAXEF (Sánchez-Lozano et al., 2011) | 2,4-dihydroxyphenyl | -7.7 | -177.8 | -177.2 | -4.1 | 6.9 |
MOZPEX (Ren, 2009) | 3,5-dichloro-2-hydroxyphenyl | 12.3 | 178.7 | -179.4 | -7.3 | 5.1 |
ROFMOP (Xue et al., 2008) | 3-bromo-5-chloro-2-hydroxyphenyl | -2.3 | 175.9 | -176.5 | -1.3 | 3.0 |
TEWLAL (Ayyannan et al., 2016) | 5-bromo-2-hydroxyphenyl | -15.7 | -173.6 | 168.9 | 3.1 | 27.0 |
WACVON (Shalash et al., 2010) | 4-hydroxy-3-methoxyphenyl | -34.2 | -175.5 | 174.7 | 15.4 | 28.6 |
WACXOP (Huang, 2010) | 2,4-dichlorophenyl | -14.3 | -179.8 | -175.0 | 3.0 | 7.0 |
YAGYAI (Horkaew et al., 2011) | 3,4,5-trimethoxyphenyl | -10.6 | 172.2 | 175.8 | 2.8 | 19.4 |
YIFPAF (Salhin et al., 2007) | 2-hydroxyphenyl | 18.8 | 179.5 | 178.7 | 3.3 | 21.7 |
ZAPKOS (Hou, 2012) | 3-nitrophenyl | -14.6 | 169.4 | 177.4 | 13.8 | 9.2 |
ZIPLAO (Prachumrat et al., 2018) | 2,3-dimethoxyphenyl | 9.6 | -175.3 | 172.9 | -1.3 | 9.3 |
Non-planar | ||||||
CABWUA (Meng et al., 2014) | 2-hydroxy-5-methylphenyl | 18.4 | -178.5 | -169.8 | 8.0 | 40.8 |
CEDBAQ (Subashini et al., 2012) | 4-(diethylamino)phenyl | 34.9 | -178.5 | -151.7 | 8.75 | 77.3 |
HUCVIL (Hao, 2009) | 2-chlorophenyl | -22.5 | -179.2 | 177.4 | -4.2 | 30.5 |
HUCWOS (Shi, 2009) | 4-methoxyphenyl | -50.9 | -177.5 | 174.8 | 9.2 | 46.6 |
MOSPEQ (Qiu, 2009) | 5-chloro-2-hydroxyphenyl | 19.0 | -178.5 | -170.9 | 7.59 | 40.2 |
PAQJID (Gopal Reddy et al., 2017) | 4-ethylphenyl | -39.9 | 171.1 | 173.9 | 7.4 | 49.9 |
PAWVUG (Rassem et al., 2012a) | 2-methoxyphenyl | 29.1 | -166.8 | -175.1 | 19.2 | 66.6 |
PEDGOW (Saad et al., 2012) | 3-chlorophenyl | -21.1 | 179.5 | 175.3 | -9.3 | 39.0 |
XEBYUA (Rassem et al., 2012b) | 2-hydroxy-4-methoxyphenyl | 28.7 | 178.1 | -169.8 | 1.3 | 40.6 |
Acknowledgements
The authors thank Prince of Songkla University for research grant (SCI590716S). PP thanks the Graduate School, Prince of Songkla University for partial financial support. The authors extend their appreciation to the Universiti Sains Malaysia for the research facilities.
Funding information
The authors thank Prince of Songkla University for research grant (SCI590716S). PP thanks the Graduate School, Prince of Songkla University for partial financial support.
References
Ayyannan, G., Mohanraj, M., Raja, G., Bhuvanesh, N., Nandhakumar, R. & Jayabalakrishnan, C. (2016). J. Photochem. Photobiol. B, 163, 1–13. CrossRef CAS PubMed Google Scholar
Aziz, A. N., Taha, M., Ismail, N. H., Anouar, el H., Yousuf, S., Jamil, W., Awang, K., Ahmat, N., Khan, K. M. & Kashif, S. M. (2014). Molecules, 19, 8414–8433. CrossRef PubMed Google Scholar
Bachhawat, A., Shihabudeen, J. M. S. & Thirumurugan, K. (2011). Int. J. Pharm. Pharm. Sci. 3, 267–274. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA. Google Scholar
Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339–1342. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gopal Reddy, N. B., Krishna, P. M., Shantha Kumar, S. S., Patil, Y. P. & Nethaji, M. (2017). J. Mol. Struct. 1137, 543–552. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hao, Y.-M. (2009). Acta Cryst. E65, o2098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hou, J.-L. (2012). Acta Cryst. E68, o1352. CSD CrossRef IUCr Journals Google Scholar
Huang, H.-W. (2010). Acta Cryst. E66, o3143. CrossRef IUCr Journals Google Scholar
Kumari, D. & Bansal, H. (2018). Pharm. Innov. J, 7, 543–550. Google Scholar
Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maheswari, R. & Manjula, J. (2015). Inter. J. Applied Res. 1, 587–592. Google Scholar
Meng, X.-F., Li, W.-N. & Ma, J.-J. (2014). J. Chil. Chem. Soc. 59, 2647–2651. CrossRef CAS Google Scholar
Narasimhan, B., Kumar, P. & Sharma, D. (2010). Acta Pharm. Sci. 52, 169–180. CAS Google Scholar
Prachumrat, P., Kobkeatthawin, T., Ruanwas, P., Boonnak, N., Laphookhieo, S., Kassim, M. B. & Chantrapromma, S. (2018). Crystallogr. Rep. 63, 405–411. CrossRef CAS Google Scholar
Qiu, X.-Y. (2009). Acta Cryst. E65, o975. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012a). Acta Cryst. E68, o1832. CrossRef IUCr Journals Google Scholar
Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012b). Acta Cryst. E68, o2279. CrossRef IUCr Journals Google Scholar
Ren, C.-G. (2009). Acta Cryst. E65, o1503–o1504. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saad, S. M., Fatima, I., Perveen, S., Khan, K. M. & Yousuf, S. (2012). Acta Cryst. E68, o3499. CrossRef IUCr Journals Google Scholar
Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sánchez-Lozano, M., Vázquez-López, E. M., Hermida-Ramón, J. M. & Estévez, C. M. (2011). Polyhedron, 30, 953–962. Google Scholar
Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, D.-H. (2009). Acta Cryst. E65, o2107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012). Acta Cryst. C68, o408–o412. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Taha, M., Ismail, N. H., Imran, S., Rokei, M. Q., Saad, S. M. & Khan, K. M. (2015). Bioorg. Med. Chem. 23, 4155–4162. CrossRef CAS PubMed Google Scholar
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Byrne, D. H. (2006). J. Food. Composition Anal. 19, 669–675. CrossRef CAS Google Scholar
Xia, Z., Hu, L. W. & Wang, X. (2007). Bioorg. Med. Chem. 17, 3374–3377. Google Scholar
Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Z. (2011). Acta Cryst. E67, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.